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Abstract— Robots with elasticity in structural components
can suffer from undesired end-effector positioning imprecision,
which exceeds the accuracy requirements for successful manip-
ulation. We present the Probabilistic-Product-Of-Exponentials
robot model, a novel approach for kinematic modeling of robots.
It does not only consider the robot’s deterministic geometry but
additionally models time-varying and configuration-dependent
errors in a probabilistic way. Our robot model allows to
propagate the errors along the kinematic chain and to compute
their influence on the end-effector pose. We apply this model in
the context of sensor fusion for manipulator pose correction for
two different robotic systems. The results of a simulation study,
as well as of an experiment, demonstrate that probabilistic
configuration-dependent error modeling of the robot kinematics
is crucial in improving pose estimation results.

I. INTRODUCTION

Robots require sufficient accuracy to manipulate objects.
The accuracy is defined by the application and can range
from centimeters to submilimeters. Classic industrial manip-
ulators usually fulfill the accuracy requirements and their
positioning is commonly assumed to be exact during the
manipulation process.

However, robots with elastic components are becoming
common in research but can suffer from undesired posi-
tioning imprecision that exceeds the accuracy requirements
imposed by the application. The elasticity can be introduced
to the system on purpose to allow for intrinsically compliant
robots or can be a side effect of additional design constraints.
One example is the DLR Lightweight Rover Unit (LRU,
shown in Fig. 1), where lightweight materials cause structural
bending during the manipulation process. Another example
is the emerging low-budget robotic arms that trade accuracy
for simplicity.

Kinematic errors of robots have traditionally been miti-
gated by calibration procedures prior to starting the actual
robot operations, namely the manipulator calibration and the
camera-to-robot calibration. Using static calibration alone,
however, imposes constraints on the robot model, such as
that the error parameters are constant and that there are
enough sensors to fully observe all degrees of freedom (DoF)
of the robot. This assumption is violated once we consider
time-varying, configuration-dependent errors or unobservable
parts of the forward kinematics. Instead, online error correc-
tion strategies must be employed (e. g., camera observation
of the manipulator or the use of tracking devices).
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Fig. 1: The Lightweight Rover Unit (LRU) [1]: During
manipulation, structural elasticities (red) cause undesired,
configuration-dependent positioning offsets in the real robot
(black) compared to the nominal forward kinematics (gray).
Image: © DLR.

Such online techniques require an adequate probabilistic
kinematic model of the robot that allows to represent varying
kinematic errors and provides the means to propagate the
error from its source along the kinematic chain. The error
propagation is of special relevance, as small rotational errors
in the kinematic chain are not directly observable but can
result in significant displacements at the robot’s end-effector.
In this paper, we formulate the robot forward kinematics in
a way such that they encode the error correlations of the
kinematic chain and that they can be used as an independent
sensor input for online correction strategies.

We propose the use of the Probabilistic Product-Of-
Exponentials robot model (PPOE) that augments the local
Product-Of-Exponentials (POE) robot model of [2] by a
probabilistic representation of kinematic errors. We consider
all relative transformations and perturbations in the kine-
matics as elements of a Lie group, the Special Euclidean
group SE(3). This allows us to use a wide set of math-
ematical tools to propagate and compose all perturbations
along the forward kinematics towards the end-effector or any
other desired frame of reference. Our general Lie group-
based formulation additionally allows for straightforward
adaptation of the perturbation model to another Lie group-
based robot representations, e. g., the piecewise constant
curvature model for continuum robots [3].

We propose the PPOE model in combination with sensor
fusion for manipulator pose correction as the principal appli-
cation in mind. The idea is that improved knowledge on the
robot kinematics leads to an improved estimate of the 6DoF
pose of the end-effector.

We argue that despite being erroneous, the forward kine-
matics is still rich in information. The kinematics can effec-
tively be considered as a high-frequency, low-computational-
cost principal sensor for manipulator pose estimation al-
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gorithms. Relying on the forward kinematics as principal
sensor loosens the requirements for the other sensors, e. g.,
in frequency or dimensions.

In this work, we show sensor fusion scenarios with two
of our robotic systems: a) a simulation study of object
contact interaction by a humanoid robot and b) experiments
of manipulator pose correction using the principal camera on
our planetary rover prototype LRU (Fig. 1). Both scenarios
have in common that we do not measure the full manipulator
pose with the additional sensors but use lower dimensional
measurements instead. The idea is that sensors that measure
only a subset of the full robot pose can be fused with the
PPOE kinematics to allow for significant pose improvements.

The contributions of the paper are as follows:
• We present the PPOE model, a probabilistic formulation

of the robotic forward kinematics in Section IV and
provide an illustrative example.

• We discuss the advantages of the PPOE model and list
the limitations.

• We showcase the potential of the PPOE kinematics
modeling in two proof-of-concept applications with a
pose fusion scheme based on a Lie group Extended
Kalman Filter architecture (Section V). The first ap-
plication illustrates in a simulation how a correct cor-
relation representation of the error allows for a better
pose estimate. The importance of considering the de-
pendence of the kinematic error with respect to (w.r.t)
the change of robot configuration is shown in the second
application as experiment.

II. RELATED WORK

Our work combines the aspects of error and uncertainty
propagation in SE(3) with the field of robot kinematic
modeling.

Regarding uncertainty representation for poses, we mostly
follow [4] who consider the Lie group character of poses to
represent, propagate, and manipulate uncertainties. Contrary
to their approach, we formulate our model w.r.t. local refer-
ence frames.

Early work on this topic includes [5], who already consider
first-order uncertainty propagation on Lie groups and use
it to model spatial relationships in the workspace during
robotic manipulation. The work of [4] is closely related to
the works of [6] and [7] and differ in the specific definition
of perturbation; a detailed discussion of the differences is
provided by [4] itself. A major field of application of Lie
group-based uncertainty representation is robot navigation,
i. e. state estimation and SLAM [8].

Wang and Chirikjian [9] apply error propagation and
uncertainty representation specifically to manipulator kine-
matics in order to model the influence that errors in the
robot’s structure have on the pose of the end-effector. How-
ever, they limit their approach to specific applications and
do not consider a generalized robot model for arbitrary error
sources.

Regarding the robot kinematic modeling, many different
conventions exist. A well-known generalized approach is the

Denavit-Hartenberg convention and its multiple adaptations
(see [10, p. 23f]). In our case, however, we require a conven-
tion that is based on the concept of Lie groups, such that we
can more naturally incorporate the handling of uncertainties
using the methods of the previously mentioned works. The
POE convention (see [11, p. 82f]) is such a representation.
More specifically, we build our work on the local POE
as introduced by [2] and augment it with the uncertainty
representation of [4]. To the best of our knowledge, no other
works exist in the literature that combine a generalized robot
kinematics convention with uncertainty representations.

Our primary intended use case for the PPOE model is
in sensor fusion with low-frequency and low-dimensional
sensors for robot pose estimation. The work of [12] uses high
frequency depth images for 6D manipulator pose estimation,
but only use the kinematic information for initialization.
The algorithm from [13] uses similar sensor information in
a particle filter based architecture. Even though it corrects
for errors in the joint measurements and camera-to-base
transformation, a further generalization of error sources is
omitted. Regarding deep learning-based approaches, amongst
others, [14] detect key-points on robotic manipulators but
assume the kinematics within the robot to be exact and only
apply a camera-to-robot-base pose correction.

III. MATHEMATICAL BACKGROUND

We consider robotic manipulators that can be modeled
with a tree structure of interconnected individual rigid bodies,
namely links connected by joints. The relation between the
elements of the robot are described using poses. A pose
X is the composition of rotation and translation of a rigid
body and can be represented as element of the special
Euclidean group SE(3) [11, p. 35], i. e. using homogeneous
transformation matrices

X =

[
R t
0 1

]
, t ∈ R3,R ∈ SO(3) (1)

containing the rotation matrix R as element of the special
orthogonal group SO(3) and the translation vector t. The
origin frame of SE(3) is denoted as E , the identity matrix.

The SE(3) is a Lie group which allows the application of
a wide set of mathematical tools. An excellent and concise
overview regarding Lie groups can be found in [15], whose
notation we mostly follow.

We briefly present the notations and operators used in this
work. A pose X evolves on a manifold M (in our case
SE(3)) that is defined by the Lie group’s properties - see
[15] for details. Around any X on that manifold, locally
linear coordinates Xξ∧ (also called the Lie algebra se(3))
can be established that ’live’ in the corresponding tangent
space T MX .

The ∧-decorator illustrates that Xξ∧ is an element of the
tangent space, however any element can also be expressed
as cartesian vector ξ with

ξ∧ =

[
[θ]× ρ
0 0

]
∈ se(3), ξ =

[
ρ
θ

]
∈ R6, (2)

where [ ]× denotes a skew-symmetric matrix, and ρ,θ ∈



R3 denote the translational and rotational components in the
tangent space.

The exponential map allows to map ξ∧ into elements of
SE(3) and the logarithmic map reverses the operation [15]:

exp : T MX → M; ξ∧ 7→ X = exp(ξ∧), (3)
log : M → T MX ; X 7→ ξ∧ = log(X ). (4)

Note that the capitalized exponential and logarithmic maps
allow us to omit the intermediate step of Lie Algebra
representation and to directly work with vectors ξ instead,
with X = Exp(ξ) and ξ = Log(X ) respectively.

A. Incrementing in SE(3)

Consider a pose Y that is the result of incrementing X
by a ξ. The increment can either be expressed globally w.r.t.
the origin E or locally w.r.t. X . Then, the following identity
holds [15]:

Y = Exp(Eξ)X = X Exp(Xξ), (5)

which means that X can be incremented either globally
around its origin using Eξ or locally at X using Xξ, yielding
the same result. However, due to the non-commutativity of
SE(3), Eξ and Xξ are not the same but comply to the
following identity

Eξ = AdX
Xξ, (6)

that uses the adjoint matrix Ad w.r.t. X to linearly map
the tangent vectors ξ between different points on a manifold
[15].

The adjoint matrix is calculated as

Ad =

[
R [t]×R
0 R

]
∈ R6×6. (7)

Equation (6) illustrates that the rotational part of an incre-
ment stays constant in magnitude anywhere on the manifold,
but additionally contributes to the translational part scaled
by t. This is of key relevance for the error propagation
presented in Section IV, as it shows that small rotational
changes can cause significant translational offsets further
away, but the influence of translational changes remains
constant everywhere.

B. Uncertainties in SE(3)

We express uncertainties of poses as covariances in their
respective tangent space [6, p. 376], using the proposed
framework of [4]. Consider a pose X that is locally perturbed
around its mean value X̄ by a ξ ∈ T MX , thus

X = X̄ Exp(Xξ). (8)

Note that we apply the perturbation around the point X̄
that results in a right multiplicative, local representation of
perturbations (following [15]), contrary to the global, left
multiplicative representation used by [4].

The corresponding covariance matrix ΣX ∈ R6×6 is [15]

ΣX := E[ξξT ] = E[ Log(X̄−1X ) Log(X̄−1X )T ], (9)

and can be mapped to other tangent spaces using the adjoint
matrix (e. g., expressed globally at the origin [15])

ΣE = AdXΣXAdT
X . (10)

C. Composition of uncertain poses

To describe the forward kinematics, it is necessary to
compound several poses and their corresponding covariance
matrices. The approach by [4] (rewritten as right multiplica-
tive) is summarized in the following. Consider two relative
poses that are each perturbed with a zero-mean, normal
distributed ξi, and are fully described by the mean pose and
an associated covariance matrix [X̄i,ΣXi

], with i = 1, 2. The
compounded pose X12 with [X̄12,ΣX12 ] is therefore

X12 = X̄1 Exp(ξ1)X̄2 Exp(ξ2), (11a)
= X̄1X̄2 Exp(AdX−1

2
ξ1) Exp(ξ2), (11b)

= X̄1X̄2 Exp(ξ
′
1) Exp(ξ2), (11c)

= X̄12 Exp(ξ12). (11d)

Note that the zero-mean assumption for the perturbations
needs to hold for step (11b).

In (11d), both individual perturbations are compounded,
which is calculated using the Baker–Campbell–Hausdorff
formula (BCH) [4]. It takes into account that all ξi cannot be
added together directly, as they are still in slightly different
reference frames. Using BCH provides an infinite series [4]

ξ12 = ξ′1 + ξ2 +
1

2
ξ′⋏1 ξ2 +

1

12
ξ′⋏1 ξ′⋏1 ξ2

+
1

12
ξ⋏2 ξ

⋏
2 ξ

′
1 −

1

24
ξ⋏2 ξ

′⋏
1 ξ′⋏1 ξ2 + · · · , (12)

with

ξ⋏ =

[
[θ]× [ρ]×
0 [θ]×

]
. (13)

This series is inserted in the covariance definition (9),
yielding

E[ξ12ξ12
T ] = E

[
ξ′1ξ

′T
1 + ξ2ξ

T
2 + · · ·

]
(14)

and can be evaluated up to the desired order of accuracy. For
the applications in this work, we evaluate the series for the
first two terms, yielding

Σ12 = E
[
ξ′1ξ

′T
1

]
+ E

[
ξ2ξ

T
2

]
,

= AdX−1
2

Σ1AdT
X−1

2
+Σ2. (15)

There is an ambiguity in the literature: our approximation
is referred to as second order [4] or first order [7] respec-
tively. For approximations of next-higher order the nomen-
clature is consequently fourth or second order, respectively.

We plan to include higher order approximations of (14)
in future work, as the approximation error becomes relevant
especially for high perturbation values [4].

IV. PROBABILISTIC PRODUCT-OF-EXPONENTIALS
ROBOT MODEL

We present a robot kinematic convention that allows a
straightforward incorporation of the perturbation modeling
introduced in Section III. We modify the local POE [2]
and augment it with probabilistic terms considering generic
concentrated perturbation sources in a manipulator.

We refer to the result as Probabilistic Product-Of-
Exponentials robot kinematic model, as it encodes both



geometry and probabilistic perturbations as tangent space
elements and combines these using the exponential map.

A. Model
A robotic manipulator consists of links and joints, where

an assembly of two links i and i+1 is connected by a joint.
Analogous to [2], we split the kinematic description into sev-
eral relative poses and consider link i and its corresponding
joint combined w.r.t. a local reference frame Fi, as shown
in Fig. 2. The relative pose between Fi and Fi+1 is

Xi,i+1(qi) = Exp(pi) Exp(ξi) Exp(ζiqi), (16)

where
• p denotes the static transformation w.r.t. the nominal

link geometry, depicted as intermediate frame Fi,p

(green) in Fig. 2.
• ξ is a perturbation in the robot kinematics, describing

the offset between the nominal and real joint axes. It is
shown in Fig. 2 as Fi,ξ (gray).

• ζ defines the direction of a joint movement with an
amplitude of q, thus in combination denote the time-
varying joint movement around the joint axis, resulting
in Fi+1. Note that the unit-vector ζ can be used to
represent both prismatic and revolute joints [11, p. 85],
with all entries except one set to zero.

In our approach, the perturbation is located behind the
static transformation. This representation allows to correct
the true axis of rotation for the subsequent joint, see [16,
p. 194f]. Obviously, the presented order of transformations
can be modified to suite other specific kinematic problems.

Fig. 2: Frames of the PPOE model for a link i: Fi,p (green)
denotes the nominal rigid link geometry. Fi,ξ (gray) is the
correct (true) rigid link geometry. Fi+1 denotes the joint
frame after a movement of qi around the joint rotation axis
(it coincides with an axis of Fi,ξ - here around the z-axis).

For the manipulator, the full kinematic chain is expressed
as

X0,n+1=
( n∏
i=1

Xi,i+1(qi)
)
Exp(pn+1), (17)

where n denotes the number of joints and Exp(pn+1) is
the relative pose of the end-effector w.r.t. the last joint.
Kinematics in a tree-structure (e. g., dual manipulators) can
be modeled as individual chains for each branch.

B. Kinematics computation
The probabilistic forward kinematics from the PPOE

model are the mean pose together with the corresponding

covariance matrix of the end-effector (or any other desired
frame along the chain), thus forming [X̄0,n+1,ΣX0,n+1

]. To
obtain the mean pose X̄0,n+1, we evaluate (17) with all
ξi = 0.

The corresponding covariance ΣX0,n+1
is obtained by

compounding the individual covariances sequentially along
the kinematic chain, using (14) up to the desired order. For
example, with our approximation in (15), the covariance
matrix at the location of perturbation i is

ΣX0,i
= AdXi,i−1

Σ0,i−1AdT
Xi,i−1

+Σi, (18)

where Σ0,i−1 is the composition of all previous covariances.
This is a key aspect of the PPOE model: it encodes in

the resulting covariance matrix how errors in each of the six
dimensions of the end-effector pose correlate with each other,
given perturbations that do not originate at the end-effector
itself but instead within the robot’s kinematic chain.

C. Example

We illustrate the concept of the PPOE model on an
exemplary planar robot arm with three revolute joints, as
shown in Fig. 3. The perturbations are marked in red and
are – to simplify this example – only of rotational character
around the joint axes. The resulting uncertainty regarding
the end-effector pose is calculated using the PPOE model,
where the 80% confidence interval is plotted in blue for the
translational component. Furthermore, we provide Monte-
Carlo samples of the end-effector poses (green dots) as
comparison.

In Fig. 3a, only a perturbation on the first joint axis is
considered, thus resulting in a probability distribution at the
end-effector that resembles a circular arc. This is exactly
what to expect, considering the perturbation propagation
described by (6), i. e. the rotational error at the joint causes
a significant displacement at the end-effector.

The other examples consider equal-valued perturbations on
all joint-axes. This introduces a widening of the arc, resulting
in the well-known banana-distribution [17] in Fig. 3b. Note
that the pose in Fig. 3b is a singular configuration of the
robot thus all individual perturbations result in translational
errors at the end-effector with the identical direction. In cases
where the perturbations combine with a higher angle w.r.t.
each other, the covariance is bulged towards a more elliptical
shape (Figs. 3c and 3d)

In general, this way of representing the pose uncertainty is
correct but conservative as the comparison with the sampled
poses shows. Nevertheless, it is a much more accurate
representation than classical approaches such as ellipses. See
[4] for an analysis on approximation errors. Figure 3 under-
lines the fact that end-effector errors and the corresponding
covariance matrix are highly configuration dependent, which
has to be considered for applications.

For visualizing the covariances, we follow the same ap-
proach as [4] in their example: The covariance matrix is
scaled to the desired confidence interval and its eigenvalues
and -vectors are computed. For all pairwise eigenvector
combinations, six-dimensional ellipsoids are computed in the
tangent space T MX . The resulting representation for X is



(a) (b) (c) (d)

Fig. 3: Example of the PPOE model with a 3DoF planar manipulator. The robot joints are marked with circles, with
pure angular perturbations of 10◦ standard deviation (red). The 80% enclosure of the covariance is shown in blue. As
comparison, a sampling of the end-effector pose is given (green, 200 samples each). (a) shows the uncertainty distribution
for a perturbation in the first joint, resulting in a one-dimensional position error. (b) shows the banana shape for three
compounded perturbations, where all perturbations have the same principal direction of influence on the end-effector due to
a singular robot configuration. In (c), the perturbations act on the end-effector pose with non-parallel principal directions,
causing a widening of the banana. (d) shows how the banana shape becomes more elliptical, once the angles between the
principal directions increase further due to the change in robot configuration.

obtained by converting all elements on the ellipsoid surface
into elements of the manifold M using the exponential
map. As final step, all elements are transformed into the
global frame E and are visualized. The underlying probability
distribution is Gaussian only in the tangent space T MX , and
the transformation onto the manifold creates the shapes seen
in Fig. 3.

D. Simplifications and Discussion

The PPOE model contains two key simplifications w.r.t.
the error modeling. First, it only considers concentrated error
sources within the kinematic chain and therefore does not
allow to directly model e. g., continuous deflections like in
continuum material robots. This simplification can be con-
sidered valid, as (6) shows that rotational and translational
errors propagate constant individually. Furthermore, for the
rotational influence on the translation error, only the correct
lever needs to be assigned to the rotation error location. Thus,
continuum errors can be concentrated onto discrete locations.

Second, the PPOE model considers zero-mean probabilis-
tic errors and uses a probability distribution that is Gaussian
in the tangent space. Any non-zero-mean offset can therefore
not be modeled directly. However, it still correctly captures
the principal directions of error influence at any frame of
reference. For sensor fusion schemes, we therefore argue that
the resulting covariance matrix of PPOE is a valuable tool
to consistently weight the forward kinematics information in
combination with other observations of the robot pose.

Optionally, restricting perturbations in several DoF in the
PPOE model can be an application-oriented simplification.
We argue that in many cases, rotational errors can be
considered the dominant error source as they get scaled by
the respective distance to the target frame. Subsequently,
translational error sources can be neglected for such scenar-
ios. Furthermore, if knowledge of the system exists regarding
its principal error sources, all other errors can be restricted
to zero if assumed to be negligible.

The general formulation of PPOE allows for arbitrary

customization. As example, the user can simply set all ξ = ζ
and assign variances to these perturbations in the desired
magnitude to explicitly model errors in the joint angles. If
the PPOE model is to be applied to other kinematic mod-
eling approaches, such as the piecewise constant curvature
kinematics [3] for continuum soft robots, their exponential
coordinate model can be augmented by perturbations in
identical manner to (16) and the same mathematical tools
can be applied.

Additionally, the forward kinematics can be extended to
model uncertainties in grasp linkage. For this, a new end-
effector frame is defined by the grasped object which is
described probabilistically by adding pgrasp and ξgrasp to (17).

A POE kinematic description for parallel manipulators is
discussed in [11, p. 133]. PPOE can potentially be used there
as well, e. g., using the fused end-effector pose of all parallel
branches as reference in the structure equation. However,
detailing this remains for future research.

V. APPLICATION: PROBABILISTIC KINEMATICS IN
SENSOR FUSION

We devised the PPOE model with the application to sensor
fusion in mind. The covariance matrix of the end-effector
pose defines how additional (low-dimensional) sensor mea-
surements are weighted in the fusion process. The idea is that
using a covariance matrix which is consistent with the real
errors of the system improves the accuracy of the fused pose.
We investigate how a weighting of measurements guided by
the PPOE covariance influences the fusion result, compared
to a ’naive’ approach using static and uncorrelated covariance
matrices.

We illustrate this proof-of-concept with two different sen-
sor fusion examples. The first application is a simulation
study of a humanoid robot that can sense contact with other
objects of known but uncertain poses as illustrated in Fig. 4.
It is used to showcase the importance of correlation in the
covariance matrix.



The second example shows pose correction for the LRU’s
end-effector (Fig. 1), where camera observations are com-
bined with the forward kinematics. Here, we show how
the configuration dependency of the error influences the
estimation results.

A. Lie group-EKF Framework
The state is the pose X of the end-effector. To correct

X , we use the update step of an extended Kalman filter
(EKF) that considers the underlying Lie group structure of
the problem, thus named LG-EKF [18].

Note, that we only consider the update process of a static
state regarding single measurements to illustrate the usability
of the PPOE model. Discussion and implementation of an
applicable online fusion architecture of the LG-EKF exceeds
the scope of this letter and is left for future work.

We initialize the state X0 as the mean end-effector pose
obtained from the kinematics together with the associated
covariance matrix ΣX,0. The sensor measurement is

z = h(X ,v), (19)

where v ∼ N (0,Σv) is the zero mean measurement noise
characterized by its covariance matrix Σv .

We can therefore correct the initial pose by the following
measurement step (adapted from [18]) to

Kk = ΣX,kH
T
k (HkΣX,kH

T
k +Σv), (20)

mk = Kk(zk − h(Xk,0)), (21)
Xk+1 = Xk Exp(mk), (22)

ΣX,k+1 = (I −KkHk)ΣX,k. (23)

The state correction m ∈ R6 is expressed in the tangent
space of the state. The update is applied iteratively, denoted
with k. K represents the Kalman gain and H and M are
the linearization Jacobians of (19)

Hk =
∂hk

∂X

∣∣∣∣
Xk

, Mk =
∂hk

∂v

∣∣∣∣
Xk

. (24)

These Jacobians can be computed numerically following
[19] by applying variations to the tangent space around the
state and on the noise.

B. Simulation Study: Pose Correction by Contact Sensing
The DLR humanoid robot David (Fig. 4), has three

principal sources of kinematic errors: First, David has a
continuum-elastic neck, where several sophisticated pose
estimation algorithms yield accuracies of 0.5◦ to 5◦ for the
transformation between head and torso [20]. Second, the
wrist kinematics are nonlinear [21], therefore a modeling
as two revolute joints causes approximation errors. Last, we
consider inaccurate measurements in the finger joints.

The simulation setup is illustrated in Fig. 4. David uses
its stretched index finger to touch a table in front of it.
Integrating contact sensors at the fingertips of the physical
David robot is work in progress. We therefore consider a
detected table interaction as a simulated one-dimensional
measurement source to our estimation algorithm.

The table surface is modeled as a pose with covariance
matrix Σv = diag(0.5, 0.5, 0.001, 0.017, 0.017, 0.17) that

touch measurement
true robot pose
robot kinematics

Fig. 4: The DLR humanoid David interacts with a table
surface in the simulation study. The contact between its index
finger and the table surface is the noisy 1D measurement (or-
ange) to correct the erroneous kinematics (frames visualized
in RGB-colors) to match the true kinematic frames (purple).

symbolizes a small error in the direction and the orientation
of the surface’s normal vector and a high error otherwise. It
can be imagined as a measurement, where the table plane is
recognized by a depth camera. The measurement error in (21)
is the distance between the predicted fingertip position and
the table surface along the surface’s normal direction during
contact. The measurement information is then transformed
from the reference frame of the table into the reference frame
of the end-effector. The kinematic errors described before
are all set to a static offset with values between one and two
degrees, to simulate erroneous forward kinematics.

Once David establishes contact with the table, the forward
kinematics from the PPOE model are iteratively corrected
by the algorithm of Section V-A. The results are shown
as solid lines in Fig. 5. It can be seen that the positional
error in Fig. 5a converges to a small residual for all degrees
of freedom and the resulting covariance matrix of the state
decreases in its eigenvalues, indicating an increase in confi-
dence w.r.t. the pose (Fig. 5c).

We stated before that one of the main goals of the PPOE
model is to encode the correlation between kinematic errors
and to describe their influence onto the end-effector pose,
which is done by the covariance matrix. Indeed, if we would
use a naive approach and model all end-effector errors as
independent (this is essentially dropping all non-diagonal
entries of the covariance matrix), we are only able to correct
the pose in the observable direction and the residual error
stays relatively high, see dashed lines in Fig. 5a.

The rotation error (Fig. 5b) is not significantly corrected
in either setup, however an error of two degrees at the end-
effector itself can usually be considered sufficiently small for
successful manipulation.

C. Experiment: 2D camera measurements for manipulator
pose correction

We motivated our work using the planetary rover prototype
LRU (Fig. 1) as an example. It is equipped with a Jaco2
arm from Kinova that is mounted on a carbon-fiber plate
at the rear of the rover. For our experiment, we correct the
end-effector pose of the LRU by observing fiducial markers



(a) (b) (c)

Fig. 5: Residual pose errors of the end-effector, i. e. the finger-tip of David’s index finger, during the contact phase with
a simulated table surface. The residual error of the pose estimation is shown for two cases, using the covariance matrix
computed by the PPOE model (solid lines) and for a covariance matrix that naively assumes independence of the state
variables (dashed lines). PPOE enables us to encode a strong correlation between the positional state variables and therefore
allows for a better pose estimate w.r.t. translational components (a). The absolute rotational error is mostly unaffected by
either approach (b). The decreasing eigenvalues of the covariance matrix during the contact phase illustrate an increase in
confidence w.r.t. the true manipulator pose (c).

(AprilTags [22]) on the end-effector and fuse their 2D bear-
ings information with the 6D pose from the kinematics. We
model the forward kinematics of the LRU using the PPOE
model and assign errors using our knowledge of the system.
The most prominent error source is the base plate where the
manipulator is mounted, as it bends under load. We assign an
error with standard deviation of 1◦ and 5◦ in horizontal and
vertical directions, respectively. Along the joints, we assign
errors with 0.5◦ standard deviation. These are conservative
heuristic estimates to account for changes in load and for
potential de-calibration. The magnitude is motivated by the
fact that the hand-eye-calibration [23] results in a residual
error of 2.1◦ and 1.9 cm at the end-effector.

Equation (19) becomes

z =

[p1

p3
f1

p1

p3
f2

]
+ v, (25)

where z ∈ R2 are the 2D image coordinates, pi denotes the
ith translational component of X , and fi is the corresponding
focal length. The measurement noise v ∈ R2 is modeled
with a standard deviation of 0.5 pixel in each direction. The
’naive’ covariance matrix is set with a standard deviation
of 7 cm in the lateral directions of the end-effector and to
3 cm for the longitudinal direction. The angular standard
deviations are set to 5◦ and 15◦ respectively. In the order
of magnitude, these values resemble the covariances from
the PPOE model. The main difference is, that the PPOE
covariance is configuration-dependent whereas this naive
covariance is statically attached to the end-effector.

To validate our approach, we use the data from two experi-
ments performed in our laboratory. We move the manipulator
to different configurations, point the robot’s cameras towards
the arm and run the pose estimation. This setup is very
similar to the LRU’s configuration as shown in Fig. 1. In

experiment I, the manipulator is moved to 9 configurations,
where the end-effector is rotated significantly w.r.t. the
camera. This requires the arm to be closer to the camera to
allow for a detection of the small, inclined AprilTags of the
end-effector. Experiment II considers the opposite scenario.
In 29 configurations, the arm is stretched out - sometimes to
the maximum reach - and the end-effector is barely rotated
w.r.t. the camera. We grasp a VICON tracking target with the
end-effector for ground truth measurements. Note that the
LRU’s end-effector is of rotational symmetrical peg-in-hole
type. Once grasped, an object is precisely aligned in lateral
direction, but residual errors remain in longitudinal direction
and around the rotation axis. The evaluation metric is thus
defined as the lateral distance between the estimated end-
effector pose and the ground-truth obtained from the tracking
target.

TABLE I: Mean error and standard deviation [cm] in the
estimated position of the manipulator w.r.t. the ground truth.

Method Covariance Experiment I Experiment II

forward kinematics - 0.82 ± 0.49 1.48 ± 0.38
2D estimation PPOE 0.29 ± 0.15 0.50 ± 0.25
2D estimation naive 0.44 ± 0.29 0.52 ± 0.24

The results are displayed in Table I. The measured error of
the forward kinematics is significantly smaller in experiment
I than in II, illustrating the configuration dependency of
the LRU’s kinematic errors. The errors from experiment
II, where the arm is stretched out further, are consistent
in magnitude with the residual of the hand-eye calibration.
This error magnitude underlines the need for pose correction
algorithms.

Table I shows that for the experiment I, a significant
estimation improvement is obtained when using the covari-



ance matrices computed with PPOE compared to the ’naive’
approach. The covariance matrix of PPOE adapts to the
significantly changed configuration of the robot, but the
’naive’ covariance matrix remains constant. This causes a
degradation in the accuracy of the estimation algorithms.

Contrary to this, the 2D pose correction of experiment
II results in values that are largely similar regardless the
type of covariance used. Experiment II ensured that the
fiducial markers on the end-effector face towards the camera
to ensure observability for all poses. This causes the ’naive’
covariance matrix to locally coincide with the covariance
matrix from PPOE for all configurations of II.

Summarized, it can be said that a static uncorrelated
covariance matrix can represent the uncertainties of the
forward kinematics in specific configurations, but fails to
generalize for the complete workspace of the robot. Only a
configuration-dependent error modeling like the PPOE model
allows to consider forward kinematics as a consistent and
reliable sensor for any configurations of the robot.

The fact that a residual error still exists for both cases
indicates that systemic approaches to identify and quantify
the error sources within kinematic chains are crucial for the
use of the PPOE model, which will be part of future work.

VI. CONCLUSION

In this letter, we present the PPOE kinematics model –
a novel approach for kinematic modeling of robots, which
does not only consider the robot’s deterministic geometry
but also incorporates time and configuration dependent errors
in a probabilistic way. We illustrate the PPOE model in an
example and detail simplifications that are applied to it.

We specifically derive the PPOE model with a dedicated
use in the field of sensor fusion in mind, focusing on sensor
measurements that measure only a subset of the full end-
effector pose. We provide two examples, where in both
cases a significant improvement of the pose estimate is
obtained using the PPOE model. The simulation showcases
the benefits of correctly correlating the DoF of the error
within the covariance matrix of the end-effector pose. In the
experiment, we show that static covariances can provide valid
measurements locally, but over the whole robot workspace,
configuration dependency needs to be considered.

For future work, two principal aspects need to be men-
tioned. First, a systematic calibration approach needs to be
developed that is capable of identifying the location and
magnitude of error sources within the manipulator, thus
allowing to precisely characterize the covariances of each
error in the kinematics. Second, we plan to incorporate the
PPOE model into dynamic pose estimation schemes that
allow for online estimation of kinematic error parameters.
Potential approaches consist of extending the EKF formula-
tion of Section V-A by an online fusion scheme, alternatively
applying particle filters to the system that include parameter
identification approaches, or exploiting a factor graph based
description of the system.
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generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
2011.

[20] A. Raffin, B. Deutschmann, and F. Stulp, “Fault-tolerant six-DoF pose
estimation for tendon-driven continuum mechanisms,” Frontiers in
Robotics and AI, vol. 8, 2021.
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