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Vision-Based Correction
of Robot Kinematics

Robots can suffer from imprecise forward kine-
matics, caused by e.g., elasticities, non-linearies, or
external loads. We propose a correction of erro-
neous robot kinematics using vision:
® Robust detection of 2D robot keypoints in
images using deep-learning: PK-ROKED
® Robot-centric approach: Steer the network
using prior kinematic knowledge
® Uncertainty estimation: Enable
downstream sensor fusion — e.g., with a

probabilistic formulation of robot kinematics,
see [1]
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Accuracy Evaluation Uncertainty by Monte Carlo
Dropout

We evaluate the performance of PK-ROKED on

four different data sets and compare its performance  We evaluate several approaches for uncertainty es-
with and without prior kinematic knowledge. timation for PK-ROKED.
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According to [4], the covariance matrix £ can be
approximated as:
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® alternative: instead of T, learn aleatoric
“os uncertainty (heteroscedastic) [5] -
additional network output head
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® other terms: epistemic uncertainty
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Figure 3: Accuracy evaluation.

The heatmap of the predicted keypoint locations

® DREAM network [2] as baseline can also be viewed as a belief map approximat-
® We evaluate the performance of DREAM and ing the probability of keypoint locations. We
PK-ROKED both with and without prior stack the heatmaps for all forward passes and bi-
kinematic knowledge as input channels narize the image. We use image moments to

® Evaluation Data:
® two data sets from [2]

compute the resulting covariance matrix.

Precision on Jaco2 data (real world and synthetic)

® synthetic and real data from our Jaco2 arm 1.0 -
® Metric: percentage of correct keypoints
(PCK) at pixel thresholds w.r.t. the ground 0.8
truth
Figure 1: Our LRU rover on Mt. Etna. PK-ROKED detects ~ ® The resulting keypoint locations are the mean  — 5.
keyoints on the Jaco2 arm: Detected keypoints, corresponding of the image coordinates yi = fWi(x*) over all §
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Figure 4: Precision: percentage of keypoints within a s x o
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