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Vision-Based Correction
of Robot Kinematics

Robots can suffer from imprecise forward kine-
matics, caused by e.g., elasticities, non-linearies, or
external loads. We propose a correction of erro-
neous robot kinematics using vision:
• Robust detection of 2D robot keypoints in

images using deep-learning: PK-ROKED
• Robot-centric approach: Steer the network

using prior kinematic knowledge
• Uncertainty estimation: Enable

downstream sensor fusion – e.g., with a
probabilistic formulation of robot kinematics,
see [1]

Figure 1: Our LRU rover on Mt. Etna. PK-ROKED detects
keyoints on the Jaco2 arm: Detected keypoints, corresponding
uncertainty ellipses, and detected false positives.

Related works: e.g., [2] & [3], but no uncertainty
estimates and no usage of prior kinematic knowl-
edge.

Network Architecture
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Figure 2: PK-ROKED architecture.

Prior Knowledge - RObot KEypoint Detection (PK-ROKED) network – hourglass architecture; train-
ing on synthetic data with domain randomization techniques.

• input: RGB image of robot + heatmaps of k
keypoints (predicted with robot kinematics)

• output: k heatmaps of predicted keypoint
locations

• dimensions: 640×480×(3+ k) →
40×30×2048→640×480×k

• active dropout layers [4] around the
bottleneck with t = 20 forward passes

Accuracy Evaluation

We evaluate the performance of PK-ROKED on
four different data sets and compare its performance
with and without prior kinematic knowledge.

Figure 3: Accuracy evaluation.

• DREAM network [2] as baseline
• We evaluate the performance of DREAM and

PK-ROKED both with and without prior
kinematic knowledge as input channels

• Evaluation Data:
• two data sets from [2]
• synthetic and real data from our Jaco2 arm

• Metric: percentage of correct keypoints
(PCK) at pixel thresholds w.r.t. the ground
truth

• The resulting keypoint locations are the mean
of the image coordinates y∗

i = fŴi(x∗) over all
t forward passes:

E(y∗) =
1

t

t∑
i=1

y∗
i

Uncertainty by Monte Carlo
Dropout

We evaluate several approaches for uncertainty es-
timation for PK-ROKED.

Explicit Uncertainty Computation
According to [4], the covariance matrix Σ can be
approximated as:

Σ(y∗) ≈ τ−1ID +
1

t

t∑
i=1

y∗
i
Ty∗

i − E(y∗)TE(y∗)

• hyperparameter τ encodes the aleatoric
uncertainty (homoscedastic)

• alternative: instead of τ, learn aleatoric
uncertainty (heteroscedastic) [5] –
additional network output head

• other terms: epistemic uncertainty

Implicit Uncertainty Computation
from Belief Maps

The heatmap of the predicted keypoint locations
can also be viewed as a belief map approximat-
ing the probability of keypoint locations. We
stack the heatmaps for all forward passes and bi-
narize the image. We use image moments to
compute the resulting covariance matrix.

Figure 4: Precision: percentage of keypoints within a s ∗ σ

boundary for different uncertainty computation approaches.
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