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Abstract

Salt tolerant organisms are increasingly being used for the industrial production

of high‐value biomolecules due to their better adaptability compared to

mesophiles. Chromohalobacter canadensis is one of the early halophiles to show

promising biotechnology potential, which has not been explored to date.

Advanced high throughput technologies such as whole‐genome sequencing

allow in‐depth insight into the potential of organisms while at the frontiers of

systems biology. At the same time, genome‐scale metabolic models (GEMs)

enable phenotype predictions through a mechanistic representation of

metabolism. Here, we sequence and analyze the genome of C. canadensis

85B, and we use it to reconstruct a GEM. We then analyze the GEM using flux

balance analysis and validate it against literature data on C. canadensis. We

show that C. canadensis 85B is a metabolically versatile organism with many

features for stress and osmotic adaptation. Pathways to produce ectoine and

polyhydroxybutyrates were also predicted. The GEM reveals the ability to

grow on several carbon sources in a minimal medium and reproduce

osmoadaptation phenotypes. Overall, this study reveals insights from the

genome of C. canadensis 85B, providing genomic data and a draft GEM that will

serve as the first steps towards a better understanding of its metabolism, for

novel applications in industrial biotechnology.
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1 | INTRODUCTION

Chromohalobacter is a genus of halophilic bacteria that have evolved

methods to survive high salinity environments, with the ability to

tolerate up to 12% w/v salt concentration in a minimal medium. They

can also have a tolerance in the same environment to other

conditions such as pH and temperature, thus widening the applica-

tions of their bioproducts (Gedikli et al., 2019). Chromohalobacter

canadensis is part of the Halomonadaceae within the phylum

Bacteria. The clade is made up of Chromohalobacter marismortui,

Chromohalobacter canadensis, Chromohalobacter israelensis, Chromo-

halobacter salexigens, Chromohalobacter beijerinckii, Chromohalobacter

japonicus, Chromohalobacter nigrandensis, Chromohalobacter salarius,

and Chromohalobacter saracensis (Arahal & Ventosa, 2006).

To survive high salinity and low water activity in their environment,

halophilic bacteria use salt‐in and low salt‐in strategies as well as nutrient

storage strategies. The salt‐in strategy involves the accumulation of

inorganic salts such as KCl to balance the osmotic difference with the

environment. The low‐salt‐in strategy involves the accumulation of

organic solutes also called compatible solutes, which allow enzymes and

other cellular processes to function properly. Organic compounds that

have been identified as compatible solutes include polyols, sugars, amino

acids, betaines, ectoines, N‐acetylated diamino acids, and N‐derivatized

carboxamides of glutamine (Gunde‐Cimerman et al., 2018). Surprisingly,

these adaptations have also evolved to make their metabolism more

efficient in high salinity and less efficient in low salinity (Pastor et al., 2013).

They have also adapted to using a wide variety of simple carbon

compounds as sole carbon sources and having high energy‐rich polymer

reserves. One such compound is polyhydroxybutyrate (PHB), a type of

polyhydroxyalkanoate (PHA). The PHAs are candidate biodegradable

bioplastics to replace currently used plastics that are a source of

environmental pollution. These unique adaptation mechanisms offer a

rich source of exploitable bacterial bioresource.

The physiology of halophiles and the range of bioproducts they

can synthesize make them suitable for use as industrial cell factories.

Halophilic organisms’ resilience to extreme conditions translates to

reduced chances of contamination in industrial bioreactors. Their

enzymes, (Prakash et al., 2009) exopolysaccharides and osmoprotec-

tants also have several industrial applications contributing to making

them highly attractive as industrial cell factories. C. canadensis has

been shown to produce PHBs, ectoines, amylases, and other high‐

value industrial products (Prakash et al., 2009; Radchenkova

et al., 2018; Wang et al., 2020). Their potential for bioremediation

has also been reported (Erdogmus et al., 2015). Recent research also

shows a promising potential in the production of levan, which is a high‐

value polymer in cosmetics and also safe for consumption (Çakmak

et al., 2020). Within the Chromohalobacter clade, however, the

genomics and in silico analysis of C. salexigens (Ates et al., 2011;

Copeland et al., 2011) has been better studied compared to C.

canadensis and other members. Despite the reported potential

applications of C. canadensis, there is little information on the potential

of C. canadensis from a genomic insight, which can be exploited for

future metabolic engineering and systems biology research.

Advances in technology and computational biology tools are

driving current research in biotechnology (Becker &Wittmann, 2018).

High throughput technologies such as whole‐genome sequencing

allow in‐depth insight into the potential of organisms. Using whole

genomes, detailed metabolic processes of organisms and their

phenotypic characteristics under various external conditions are

increasingly revealed with genome‐scale metabolic network models

(GEM) (Fang et al., 2020; Gu et al., 2019). These models are

stoichiometry‐based mathematical descriptions that permit the

modeling of biochemical metabolic pathways in living systems.

Recently, more sophisticated semi‐automated tools for the

reconstruction of GEMs have been developed that build genome‐scale

models from annotated genomes though need minimal manual curation

and validation before use (Gu et al., 2019; Machado et al., 2018). Flux

balance analysis (FBA) and its variations can be subsequently used to

investigate the metabolic phenotypes for various environmental and

genetic perturbations, predicting flux rates of all known biochemical

reactions in a variety of conditions (Orth et al., 2010). Genomic insights

into halophilic metabolism have revealed different synthetic pathways

that affect the PHA type produced. Hence, state‐of‐the‐art systems

biology tools such as GEMs can facilitate the contextualization of

metabolism for specific strains that can be used for production

optimization studies (Mitra et al., 2020). The GEMs are at the frontier

of systems biology and, when combined with data mining or machine

learning methods, are increasingly driving novel biotechnological discov-

eries. For example, omics data and GEMs are being exploited by novel

machine and deep learning algorithms to tackle a variety of research

questions in biotechnology, ranging from maximization of yield to

characterization of growth across conditions (Ben Guebila & Thiele, 2019;

Culley et al., 2020; Enuh & Aytar Çelik, 2022; Kavvas et al., 2020;

Vijayakumar et al., 2020; Zampieri et al., 2019). By providing a platform

exploitable by researchers from a wide range of disciplines, GEMs enable

a better understanding of metabolism, driving novel applications and

discoveries in industrial biotechnology (Fang et al., 2020).

Here, we sought to obtain insight from the whole genome of C.

canadensis 85B about its metabolism by using high throughput

sequencing, annotation, and analyses of its genes. Using a semi-

automated pipeline, we then built and curated a GEM from the

annotated genome. We standardized and validated the model against

experimental data from the literature. Our model can provide an in

silico platform for C. canadensis that can be used for future studies,

using genome‐scale models for applications in biotechnology.

2 | METHODS

2.1 | Bacteria strains

Bacteria samples were obtained from stored slant cultures that were

isolated from another study (Çakmak et al., 2020) and inoculated on a

nutrient agar medium for 24 h to revive. From the nutrient agar

medium, an inoculum was obtained and transferred to a minimal salt

medium composed of NaCl (96 g), MgCl2.6H2O (12 g), MgSO4.7H2O

2 of 20 | ENUH ET AL.
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(14 g), KCl (2.8 g), NaBr (0.32 g), NaHCO3 (0.008 g), CaCl2.2H2O (2 g),

yeast extract (1 g), Peptone (5 g), and glucose (20 g) as carbon source.

The culture was incubated for 3 days at 35°C and 150 rpm in 250mL

Erlenmeyer flasks for polymer production (Dyall‐Smith, 2015).

2.2 | Genomic DNA extraction

From the bacterial cultures, 2 mL of bacterial suspension was

obtained for genomic DNA extraction. Genomic DNA was extracted

using the PureLink Microbiome DNA purification kit (Invitrogen)

according to the manufacturer's instructions. Upon extraction of the

pure DNA, an electrophoresis gel was prepared to confirm the

presence of a single band corresponding to the whole bacterial

genome. A 5 µL of the sample was run on 1% agarose gel for 30min

at 100 v. Gels were stained with ethidium bromide (10mgmL−1) and

visualized on a gel documentation system (BIO‐RAD).

2.3 | Genome sequencing and annotation

The genomic DNA samples were sent for genome sequencing to BM

laboratories and sequenced with the Illumina NGS sequencing platform.

After sequencing, quality analysis was done with FASTQc v0.11.9 to

obtain raw reads quality and trimming was done with default settings.

The sequence reads were assembled and ordered with the Unicycler

pipeline (Wick et al., 2017) in PATRIC (https://www.patricbrc.org/) using

the auto assembly strategy with default parameters (Wattam

et al., 2017, 2018). Unicycler first produces an Illumina assembly graph,

then uses long reads to build bridges and anchors to determine the

positions of the contigs. This allowed resolving all repeats in the genome,

resulting in a complete genome assembly. The replicons were then

circularized and rotated to begin at a consistent starting gene.

The genome was annotated using the RAST tool kit v3.6.9

(RASTtk) (Brettin et al., 2015) annotation pipeline provided through

the RAST annotation web service (https://rast.nmpdr.org) and

PATRIC (Wattam et al., 2018). Further annotation with an

orthology‐based search to complement the homology annotations

from RAST was done with Evolutionary Genealogy of Genes: Non‐

supervised Orthologous Groups (EggNOG) (Huerta‐Cepas et al., 2019)

to assign functional annotation to the detected orthologous groups

and to facilitate the interpretation results from RAST homology

predictions. The KAAS (Moriya et al., 2007) annotation server with

BLAST and BBH (bidirectional best hit) was used for pathway

reconstruction. When needed, metabolic pathways were further

inferred from the KEGG database (http://www.genome.jp/kegg/)

(Kanehisa & Goto, 2000) and BioCyc (Karp et al., 2019).

Gene features of essential biosystems were also further

confirmed manually using BLASTp (https://blast.ncbi.nlm.nih.gov/

Blast.cgi). Predicted complementary DNA sequences were blasted in

the NCBI nonredundant database as well as Swiss‐Prot and UniProt,

(Boutet et al., 2007), and the information was combined to obtain the

characteristics of proteins. Genomic features and characteristics

were displayed with the circular genome viewer tool server (CGView)

(Stothard et al., 2019) for generating genomic maps for microorgan-

isms using the annotated genome from the RAST server.

2.4 | Phylogenetic analysis

The 16 S ribosomal subunit sequences were obtained from the

annotated genome and a sequence blast was done in the NCBI

database. The first 35 hits were selected and used to generate the

phylogenetic tree in Molecular Evolutionary Genetics Analysis MEGA

X (Kumar et al., 2018).

2.5 | Genome‐scale modeling

2.5.1 | Draft metabolic model reconstruction

CarveMe v1.4.1 (Machado et al., 2018) was used with default pipeline

arguments to curate a draft reconstruction from the genome of C.

canadensis 85B. So, CarveMe is an automated pipeline that uses a top‐

down method to build both single‐species and community models rapidly

and with high scalability. The pipeline leverages the BIGG database for

metabolite and reaction information. These models perform closely to

manually curated models in terms of reproducing experimental pheno-

types such as gene essentiality and substrate utilization. The genome file

with annotations was retrieved in the FASTA format from the RAST

server and passed into the CarveMe pipeline with $ carve ‐‐dna

genome.fna arguments in the command line for reconstruction.

2.5.2 | Model benchmarking

The metabolic model testing suite, MEMOTE v0.11.1 (Lieven

et al., 2020) in its command‐line version was used to benchmark

the model against standardized principles of model descriptions and

to obtain a report that can be used for further model curation. The

results of the standard tests and annotations helped direct further

curation of the model for consistency, metabolic gaps, assigning

metabolite charges, and reaction bounds. The MEMOTE reports were

iteratively generated after manual curation steps to ensure the

highest possible score (Lieven et al., 2020).

2.5.3 | Addition of annotations

To extend the annotations in the model, ModelPolisher v2.0.1 was

used (Römer et al., 2016). ModelPolisher compares the model's entity

IDs to the BiGG model database and retrieves relevant metadata

compliant with SBO terms (Schellenberger et al., 2010). All relevant

information and data about the matching instance are integrated as

annotations into the initial draft reconstruction for each related entry

in the BiGG database.

ENUH ET AL. | 3 of 20
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2.5.4 | Manual curation and gap analysis

After the initial draft was curated and annotated, manual refine-

ment steps followed. All manual steps were conducted by refining

the model in COBRApy v0.22.1. (Ebrahim et al., 2013). Literature

evidence related to C. canadensis (Arahal & Ventosa, 2006;

Radchenkova et al., 2018) was used to verify the reactions in the

model as well as to add reactions, metabolites, or genes that were

missing due to annotation errors. Annotation information from

RAST and EggNOG served as sources to trace the presence of

genes and gene ontologies respectively. For reactions that were

added to the model, appropriate scores based on the information

obtained from the literature were also noted. Blocked metabolites

were identified using COBRApy (Ebrahim et al., 2013). The

identifiers were used to search the KEGG (Kanehisa & Goto, 2000)

and Biocyc (Karp et al., 2019) databases that served as a reference

to curate missing reactions and fill metabolic gaps. When present,

the reactions were verified for mass and charge balance and

corrected, when necessary, before inclusion. The output model was

tested for SBML compliance with the COBRApy library in

Python 3.8.

2.5.5 | Minimal medium

Metabolite essentialities in the medium were carefully verified by

limiting each metabolite's availability and subsequently optimiz-

ing the model. If the in silico simulations revealed no growth after

limiting the metabolite's availability, the metabolite's essentiality

was considered confirmed. Finally, the list of media components

that were essential was used to make up the minimal medium for

the model.

2.5.6 | Model validation and analysis

Using the minimal medium obtained from simulations, the in silico

growth capabilities of C. canadensis 85B on different carbon sources

were examined. All available sugar exchange fluxes were extracted

from the model and sorted into monosaccharides, disaccharides,

oligosaccharides, and trisaccharides. For the exchange reactions of

the carbon source under investigation, the lower bound was set to

−10mmol gDW−1 h−1. Each carbon source was tested individually by

only enabling the tested carbon source's exchange reaction and by

optimizing the model for growth using FBA (Orth et al., 2010).

Simulations with a flux value of zero were considered as an inability

for the model to grow on the carbon source used. Further

investigations of reaction fluxes in optimal states were done with

Flux Variability Analysis (FVA), setting the biomass flux to its maximal

FBA value, therefore with a fraction of the optimum value of 1.0

(Mahadevan & Schilling, 2003), and the fitness in producing

bioproducts was investigated with a phenotypic phase plane analysis

using CAMEO (Cardoso et al., 2018) in python 3.8.

2.5.7 | Visualization

To facilitate model curation and analyzing pathways, Escher was used

for visualizing the fluxes in the model's metabolic pathways. Escher

enables the building of metabolic pathways using reactions, metabo-

lites, and genes by contextualizing them in the organism's metabolism

(King et al., 2015). The Escher Python package v1.7.1 (King

et al., 2015) was also used to draw customized metabolic maps of

C. canadensis 85B in Jupyter notebooks as it is compliant with

COBRApy. Graphs for carbon source predictions were plotted with

ggplot2 (Wickham, 2009) in R studio version 4.1.1 (RStudio

Team, 2015).

3 | RESULTS AND DISCUSSIONS

3.1 | Genomic properties

The genome was assembled after sequencing and according to basic

statistics, the genome length was estimated to be 3,718,005 bp, there

were 34 contigs with protein‐encoding genes (PEGs) and an average

G + C content of 60.90%. The N50 length, which is defined as the

shortest sequence length at 50% of the genome, was 186,789 bp.

The L50 count, which is defined as the smallest number of contigs

whose length sum produces N50, was 5 (Table 1). Very few studies

have reported the genome sequence of bacteria in the Chromoha-

lobacter genus. A comparison of genome properties for Chromoha-

lobacter genomes reported in the literature is shown in Table 2.

Considering that the genus contains nine species, it shows that there

is still a lot of research to be done to understand the physiology and

potential of Chromohalobacter.

A circular graphical display of the distribution of the genome

annotations is provided (Figure 1). This includes, from outer to inner

rings, the contigs with contig code labels, CDS on the forward and the

reverse strand also labeled as CDS; RNA genes are embedded within

the forward and reverse strand rings; the GC skew and GC content

are also shown in the same order.

TABLE 1 Summary features for Chromohalobacter canadensis
85B whole genome

Characteristic Value

Size 3,718,005

GC content 60.90

N50 186,789

L50 5

Number of contigs (with PEGs) 34

Number of subsystems 315

Number of coding sequences 3478

Number of RNAs 70

4 of 20 | ENUH ET AL.
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3.2 | Phylogenetic analysis

The 16 S ribosomal subunit sequences were obtained from the

annotated genome, and a sequence blast was performed in the NCBI

database. The evolutionary history was inferred using the Neighbor‐

Joining method (Saitou & Nei, 1987). The bootstrap consensus tree

inferred from 1000 replicates was taken to represent the evolu-

tionary history of the taxa analyzed (Felsenstein, 1985). Branches

corresponding to partitions reproduced in less than 50% of bootstrap

replicates were collapsed. The percentage of replicate trees in which

the associated taxa clustered together in the bootstrap test (1000

replicates) are shown next to the branches (Felsenstein, 1985). The

evolutionary distances were computed using the Maximum Compos-

ite Likelihood method (Tamura et al., 2004) and are in the units of the

number of base substitutions per site. This analysis involved 35

nucleotide sequences. All ambiguous positions were removed for

each sequence pair (pairwise deletion option). There were a total of

1449 positions in the final data set. Evolutionary analyses were

conducted in MEGA X (Kumar et al., 2018). Similar to the above‐

mentioned close relatives, an identity of 99.79% was reported for C.

canadensis strain DSM 6769T and C. canadensis strain ATCC 43984T

99.79% followed by C. japonicus 99.38%. This agrees with the

TABLE 2 Comparison of the genomic features of Chromohalobacter canadensis 85B of this study with other Chromohalobacter species.

Species Genome length (bp) Protein coding sequences GC content (%) Reference

C. canadensis 85B 3,718,005 3478 60.9 This study

C. marismortui DSM 6770 3,553,220 3226 61.7 (RefSeq: NZ_SOBR00000000.1),

C. salexigens type strain (1H11T) 3,696,649 3319 63.9 Copeland et al. (2011)

C. salexigens ANJ207 3,664,372 3344 63.71 Srivastava et al. (2019)

Chromohalobacter sp. SMB17 3,775,557 3486 60.5 Olsson et al. (2017)

C. israelensis DSM 6768T 3,660,991 3361 63.74 Zhou et al. (2015)

Note: Only completed assemblies were considered with a taxonomy check confirmed. A lower GC content but a higher number of predicted coding
sequences were observed with C. canadensis 85B.

F IGURE 1 Circular map showing the distribution of genes in Chromohalobacter canadensis 85B genome. Ordered from the outer ring to the
inner rings are contigs with their labels, forward and reverse strands of CDS, RNA genes, GC skew, and GC content.

ENUH ET AL. | 5 of 20
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classification of the Chromohalobacter genus that had previously been

established based on the closer sequence similarity to other

Chromohalobacter members (Arahal et al., 2001). Relationships with

other strains are shown in the phylogenetic tree (Figure 2a).

3.3 | Overview of subsystems and orthologous
cluster genes

A subsystem is a set of proteins that together implement a specific

biological process or structural complex. Thirty‐two percent (1080) of

annotated proteins were included in the subsystems analysis

according to the RAST pipeline. An overview of the subsystems for

this genome as produced by the annotation pipeline is provided in

Figure 2b. The amino acids and derivates form the highest proportion

of subsystem annotations followed by carbohydrate metabolism,

protein metabolism, cofactors, and membrane transport. Proteins

play an important role in the adaptation of halophiles to high salinity.

This suggests that C. canadensis 85B possesses the machinery to

meet its adaptation needs in a saline environment. The same is also

observed for the membrane transport systems. Osmolite balance is

fundamental for halophiles therefore robust membrane transport

systems ensure that the integrity of the cell is maintained with

changing conditions.

An analysis of orthologous genes shows amino acid metabolism

and transport and transcription containing the highest number of

(a)

(c) (d)

(b)

F IGURE 2 (a) Phylogenetic tree showing the relationship between Chromohalobacter canadensis 85B and other microorganisms. The
accession numbers and length of sequences used are shown in brackets (b) Subsystems in the C. canadensis 85B genome. (c) Number of genes
associated with general COG functional categories. (d) Polyhydroxybutyrate (PHB) synthesis pathway prediction according to KEGG.
Intermediates from both glycolysis and fatty acid metabolism. (S)‐3‐Hydroxybutanoyl‐CoA is an important intermediate as it links the PHB
synthesis pathway and fatty acid metabolism. fadN, fadB, fadJ and fadB, and fadJ, are fatty acid degradation enzymes, 3‐hydroxybutyryl‐CoA
dehydrogenase [EC:1.1.1.157] (paaH), 3‐hydroxyacyl‐CoA dehydrogenase [EC:1.1.1.35] (HADH), EHHADH.
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orthologous genes (Figure 2c). When compared with results by

Copeland et al. (2011) on C. salexigens the first seven groups seem to

be the most abundant despite the subtle differences in the relative

abundance of orthologous genes between both species. This further

emphasizes the importance of these systems in this group of

microorganisms.

3.4 | Carbohydrate metabolism

There were 177 carbohydrate metabolism genes in C. canadensis 85B and

nine subsystems representing biosynthesis and degradation pathways.

Predictions show genes for the metabolization of various carbohydrate

substrates such as sugar alcohols, C‐1 compounds, sugar acids,

monosaccharides, polysaccharides, and fermentation. Enzymes able to

metabolize the following substrates were predicted: glucose, starch,

sucrose, fructose, mannose, xylose, glycerol, and galactose. The presence

of many different pathways for carbohydrate metabolism has significant

implications for the adaptation of halophiles.

In C. salexigens, glucose metabolism occurs exclusively through the

Entner–Doudoroff pathway while fructose metabolism occurs through

the Entner–Doudoroff and Embden–Meyerhof–Parnas pathways. Fruc-

tose metabolism seems to give more metabolic flexibility in response to

energy and biosynthetic demands. The Entner–Doudoroff pathway, on

the other hand, is inefficient for growth when salinity is low, as a result of

metabolite overflow. However, in high salinity, there is a high metabolic

burden on this pathway due to the use of NADPH and ATP for the

synthesis of compatible solutes. This allows the organism to use other

pathways to meet other metabolic requirements (Pastor et al., 2019).

Despite the closeness of both species, the Entner–Duodoroff

pathway was not predicted in C. canadensis 85B, therefore other

adaptation mechanisms may apply. Other studies show that halophilic

bacteria may prefer to metabolize glucose only after other substrate

sources are depleted (Oren & Mana, 2003). Experimental studies with C.

canadensis are needed to derive conclusions as this will be helpful for

organism‐specific approaches. The broad range of usable carbohydrate

substrates is a biotechnology advantage through the growth on a wide

variety of possible cheap substrates which can help reduce production

costs (Güngörmedi et al., 2014).

3.5 | Fatty acid metabolism

The fatty acid composition of salt‐tolerant organisms is influenced by

salt concentrations. This is observed through decreased saturation of

fatty acids at suboptimal concentrations. Therefore by varying the

ratio of saturated to unsaturated fatty acids adaptation to salt stress

can be achieved (Mutnuri et al., 2005). This shows the important role

of fatty acid metabolism in the adaptation of organisms living in high

salinity. In the C. canadensis 85B genome, there were five subsystems

and 63 genes predicted to be involved in fatty acid metabolism.

Pathways for fatty acid, phospholipids triacylglycerols, and isoprenoid

metabolism were predicted. The KEGG annotations show both fatty

acid biosynthesis and fatty acid degradation pathways. Fatty acid

degradation occurs through beta‐oxidation which also has

Acetoacetyl‐CoA and (S) ‐3‐Hydroxybutanoyl‐CoA intermediates

that link it to the PHB synthesis pathway.

3.6 | Stress response, defense, and virulence

The main types of stress response systems identified were osmotic stress,

heat/cold shock, stress, resistance to antibiotics and toxic compounds,

and the Hfl operon; details are presented in Table 3 below. In bacteria,

glutathione plays an important role in protecting the cell from the effects

of low pH, chlorine chemicals, and oxidative and osmotic stressors, in

addition to maintaining the appropriate oxidation state of protein thiols.

Furthermore, by directly modifying proteins via glutathionylation,

glutathione has emerged as a posttranslational regulator of protein

function under oxidative stress (Masip et al., 2006). Iron homeostasis

regulators have previously been shown to play a role in the complicated

circuit that governs halophilic bacteria's response to osmotic stress in C.

salexigens (Masip et al., 2006).

3.7 | Polyhydroxyalkanoates

In some organisms, the genes for PHA are frequently located on the same

operon but in C. canadensis the PHA genes were located on different loci

in the genome. The genes identified were PhaA, PhaB, PhaC, and PhaR

(Table 4). The PhaA gene was predicted in two locations on the genome

while others were found in one location only. Note, PHA synthase (PhaC)

is the key enzyme in the PHB synthesis pathway, catalyzing the

polymerization of hydroxyalkanoate subunits (Figure 2d). Note, PHA

synthase influences the type of monomer, the composition, and the

weight of the PHA produced (Zheng et al., 2020). Four classes of PHA

synthases have been identified based on their primary sequence, the

composition of subunits, and their substrate specificities. Class I PHA

synthases are homodimers, class II is made of PhaC1 and PhaC2 subunits,

class III is made of PhaC and PhaE, and class IV PhaC and PhaR. Classes I,

III, and IV produce short‐chain length monomers made of three to five

carbon lengths while class II synthases produce six to 14 carbon chain

lengths (Chek et al., 2017). Up to 14 different pathways for PHB

synthesis have been described so far leading to the production of

homopolymers, random copolymers, block copolymers, and graft

polymers (Meng et al., 2014).

The protein sequence of the PHA synthase gene was blasted in NCBI

to assess the type of PHA synthase enzyme. Blast results returned

99.51% similarity with C. japonicus, 99.35% C. salexigens, and 98.38% C.

canadensis. A further search by blast in the Uniprot database first hit

99.5% similarity with Class I poly(R)‐hydroxyalkanoic acid synthase (C.

japonicus). Only one hit was obtained each in the Gene3D, InterPro, Pfam,

SUPFAM, and TIGRFAMs, all corresponding to PHA synthase class I. The

class I subfamily PHA synthases can polymerize hydroxyacyl‐CoAs with

three to five carbons in the hydroxyacyl into PHA esters in this case most

likely PHB. These can be accumulated up to 90% of the cell's dry weight.
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The PhaR genes play a posttranscriptional role and help prevent protease

degradation or act directly or indirectly to activate PHA synthase (McCool

& Cannon, 2001). Note, PhaR is found to be a DNA‐binding

homotetramer that is also capable of binding short‐chain hydroxyalkanoic

acids and PHA granules. Thus, PhaR may regulate the expression of itself,

the phasins that coat granules, and enzymes that direct carbon flux into

polymers stored in granules (Maehara et al., 2002). Further research to

determine the specific function of PhaR in PHB synthesis in C. canadensis

is required.

According to KEGG annotations, fadNBJ, paaH, HADH, EH-

HADH, fadJ, and fadB enzymes are from the fatty acid metabolism

pathways. As shown in Figure 2d, (S)‐3‐Hydroxybutanoyl‐CoA can be

either isomerized to (R)‐3‐Hydroxybutanoyl‐CoA or converted to

Acetocetyl‐CoA which are both intermediates in the PHB synthesis

TABLE 3 Predicted stress response and defense systems

Subclass Subsystem name
Gene
count

Role
count

Resistance to antibiotics
and toxic compounds

Antibiotic targets in DNA processing 4 4

Resistance to Triclosan 1 1

Fusaric acid resistance cluster 6 3

Beta‐lactamases Ambler class C 1 1

Antibiotic targets in metabolic pathways 5 4

Polymyxin resistance, lipid A modifications with
phosphoethanolamine

2 2

Antibiotic targets in transcription 3 3

Antibiotic targets in protein synthesis 8 8

Mupirocin resistance 1 1

Copper homeostasis: Copper tolerance 2 2

Antibiotic targets in cell wall biosynthesis 3 3

Resistance to Daptomycin 4 3

Fusidic acid resistance 2 2

Cadmium resistance 1 1

Resistance to chromium compounds 1 1

Stress Response Repair of iron centers 4 3

Glutathione: Redox cycle 3 3

Glutathione: Non‐redox reactions 8 5

Cluster containing glutathione synthetase 4 4

Glutathione: Biosynthesis and gamma‐glutamyl cycle 4 3

Protection from reactive oxygen species 7 7

Stress proteins YciF, YciE 2 2

Universal stress protein family 1 1

Stress Response: Heat/

cold shock

Heat shock dnaK gene cluster extended 17 16

Cold shock proteins of CSP family 4 1

Stress Response: Osmotic
stress

Choline uptake and conversion to betaine clusters 34 21

Ectoine, hydroxyectoine uptake and catabolism 8 7

Ectoine synthesis 7 7

Osmoregulation 1 1

Glycine betaine synthesis from choline 4 4

Hyperosmotic potassium uptake 3 2

Other Hfl operon 5 5
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pathway. This suggests that fatty acid metabolism and PHB synthesis

in C. canadensis 85B are closely related. Hence, under the right

conditions, fatty acid metabolism can deviate toward the production

of PHBs. Similar observations have been made with Halomonas sp.

SF2003 (Thomas et al., 2019).

3.8 | Genome‐scale modeling and analysis

3.8.1 | General model features

After reconstructing the draft, the model development followed an

iterative path (Figure 3a). The initial draft model contained 1522

metabolites, 2347 reactions, and 1159 genes within three compart-

ments: the cytosol, periplasm, and extracellular space. The model was

named iEB1159 according to the model naming convention, with i

representing in silico, EB the initials of the name of the model curator,

and 1159 the number of genes in the model. There are 1830

annotated reactions in the model. The distribution of reaction types

according to their SBO categories is shown in Figure 3b. A

comparison of general model features with other previously reported

Chromohalobacter models iFP764 (Piubeli et al., 2018) and iOA584

(Ates et al., 2011) is reported in Figure 3c, showing that iEB1159 has

a larger number of reactions, genes, and metabolites.

3.8.2 | Model benchmarking

The initial model results in MEMOTE returned a score of 37%, with

the lowest scores due to poor annotations. After model curation and

the addition of annotations, a MEMOTE score of 70% was achieved.

Considering that this is the first genome‐scale model of C. canadensis

85B and the lack of data to fill gaps, we believe that this is a

promising score, showing the model has a good foundation for

research improvement (Figure 3d).

3.8.3 | Addition of annotations

Models by CarveMe produce annotations in the Notes area of the model.

However, this is not detected by MEMOTE during benchmarking.

Annotations for metabolites, SBO terms, and genes included in the model

permitted a high score with MEMOTE. ModelPolisher permitted the

inclusion of annotations in the right fields that can be identified by

MEMOTE. Annotation databases that were queried include BiGG

(Schellenberger et al., 2010), BioCyc (Karp et al., 2019), CHEBI

(Degtyarenko et al., 2008), HMDB (Wishart et al., 2007), Inchikey (Heller

et al., 2015), Lipidmaps (Liebisch et al., 2020), KEGG (Kanehisa and

Goto, 2000), Reactome (Fabregat et al., 2018), SEED (Seaver et al., 2020),

MetaNetX (Moretti et al., 2021), and EC‐code, RHEA (Alcántara

et al., 2012).

Further SBO terms annotations were done manually using the

libSBML package in Python according to the SBO conventions (http://T
A
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www.ebi.ac.uk/sbo/main/). The annotations are as follows: passive

transport (SBO:0000658), active transport (SBO:0000657), cotransport:-

symport (SBO:0000659), cotransport:antiport (SBO:0000660) other

transport reactions (SBO:0000655), general metabolic reactions

(SBO:0000176), exchange reactions (SBO:0000627), biomass reactions

(SBO:0000629), genes (SBO:0000243), and species (SBO:0000247)

(Figure 3b).

3.8.4 | Gap analysis

There were 37 blocked metabolites identified in the model. Further

investigation of metabolites using the BIGG database showed that

the blocked reactions were mostly exchange reactions, cofactors, and

prosthetic groups. Escher maps enabled visualization of metabolic

pathways that served to identify incomplete pathways for gap filling

(Figure 3f). Due to the lack of data on C. canadensis in the major

databases, most of the pathway gaps could not be investigated in‐

depth. These were allowed and considered as knowledge gaps that

will be filled with growing research. There was however high

metabolite connectivity as reported by MEMOTE with a score of

100%. The output model was further tested for SBML compliance

with the COBRApy (Ebrahim et al., 2013) library in Python, and all

errors were corrected. The final model contains all SBML fields as

required.

3.8.5 | Minimal medium

The minimal medium for the model was obtained by iteratively

checking for growth in the model in limiting conditions. During

simulations, glucose was maintained as the sole carbon source while

the entrance of simple salts and ions was varied. The secretion of

other carbon‐containing compounds was monitored to ensure that

only CO2 was produced in the final medium. The final number of

essential metabolites termed the minimal media are provided in

Table A2. (Table A1)

3.8.6 | Validation of carbon source usage

Microorganisms in the Halomonadaceae family are metabolically

diverse. Within individual species, the ability to support growth on a

carbon source can vary between studies (Arahal & Ventosa, 2006).

Genome‐scale models provide a systems approach to understanding

the interplay between carbon sources, metabolic pathway dynamics,

and the biosynthesis of important metabolites (Ates, 2015). Model

predictions are important in guiding experiments requiring labeling or

for the production of specific bioproducts. With this in mind, FBA

simulations on a wide range of carbon sources were carried out with

iEB1159 to assess its ability to represent carbon use phenotypes and

reproduce experimental results.

(a)

(b) (c)

(d)

(e)

(f)

F IGURE 3 (a) Model development process from reconstruction from the annotated genome to refinements and analysis. (b) Distribution of
metabolic reaction types in the model. (c) Comparison of iEB1159 model and two models of C. salexigens iOA584 and iFP764. (d) MEMOTE test
for model benchmarking. (e) Carbon sources that were shown to produce growth in minimal media and their corresponding fluxes. (f) Escher map
of Glucose metabolism showing the flow of metabolites and the distribution of flux in the central carbon metabolism pathway. The colors
represent different flux ranges as shown in the legend.
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In silico predictions were done by considering biomass as an

objective function, with glucose as the sole carbon source on the minimal

medium previously obtained. Growth on other carbon sources was

simulated with FBA by using each carbon source in separate simulations

as the sole source of carbon with an uptake value of 10mmol/gDW/h.

Overall, the model showed growth on 27 carbon sources (Figure 3e), with

varying flux rates. The high biomass yield of greater than 2 g/mmol for

some carbon sources could be attributed to the need to determine the

precise uptake rate for such substrates, as 10mmol/gDW/hwas obtained

from other organisms. It was also observed that the polymerization of the

carbon source influenced the growth rate, with the growth rate increasing

as the level of polymerization increased. To provide a context for the

results obtained, the predictions were compared with experimental data

previously reported (Arahal & Ventosa, 2006; Radchenkova et al., 2018).

The model did not grow on lactose, citrate, and esculin as shown in

previous studies (Arahal & Ventosa, 2006; Radchenkova et al., 2018),

despite the presence of citrate and both L‐lactose and D‐lactose transport

reactions. This suggests an important gap in knowledge that requires

further attention considering that lactose is a favorable substrate in the

production of exopolysaccharides (Radchenkova et al., 2018). Thus,

iEB1159 also predicted growth in several carbon sources not previously

studied (Table 5).

The model did not grow in anaerobic conditions, confirming its

strictly aerobic phenotype (Ventosa & Haba, 2020). When oxygen

was limited, no growth was produced by the model even in the

presence of a potential electron acceptor such as Fe3+. So, C.

salexigens iOA584 was reported to grow anaerobically on nitrate

(Ates et al., 2011); for iEB1159, no growth was observed using nitrate

in anaerobic conditions despite the presence of transport and other

metabolic reactions. Such differences are the basis for hypotheses for

research to either improve the model knowledge base or better

understand microbial cellular behaviors.

3.8.7 | Osmoadaptation phenotypes

Salt tolerance is a hallmark phenotype of halophilic organisms with

several mechanisms happening simultaneously for survival. The

uptake and synthesis of compatible solutes constitute an important

adaptation strategy for Chromohalobacter (Arahal & Ventosa, 2006;

Piubeli et al., 2018). According to the genome annotation, C.

canadensis 85B should be able to oxidize choline to betaine and

synthesize ectoine de novo via the use of EctA, EctB, and EctC genes.

In addition, these pathways also seem to be evolutionarily conserved

in halophilic ectoine producers (Arahal & Ventosa, 2006; Piubeli

et al., 2018).

Ectoine and 5‐hydroxyectoine were included in the biomass

reaction and their respective amounts were calculated from the

amounts in the C. salexigens model by Piubeli et al. (2018) in relation

to NaCl molarity. This provides a useful approximation because both

species are close and share similar salinity adaptation features.

Demand reactions were also included to simulate the production of

intracellular ectoine. Our FBA simulations at optimal growth showed

states with flux in the direction of ectoine synthesis and the

production of small amounts of glycine betaine when choline was

added to the medium. According to Thiele and Palsson (2010);

demand functions can be added for compounds that the organism is

known to produce, and for which its production is dependent on

environmental conditions. This enables the reactions to become

active like in their favorable environment (Thiele & Palsson, 2010).

This can become useful for our model when simulating osmoadapta-

tion phenotypes. Simulations show that ectoine synthesis is inversely

related to growth. Besides, the synthesis of ectoine is highly

regulated and requires specific conditions. This can be correlated

with the fact that ectoine synthesis is energy‐intensive, also reported

with the iFP764 model (Piubeli et al., 2018).

It is worth noting that when product biosynthesis rates are

predicted, FBA simulations do not take into account the impact of

gene regulation as they only predict optimal solutions. Hence, when

validating simulations in vivo, culture conditions that provide optimal

responses need to be determined to match in silico FBA predictions.

In such cases, in principle, FBA predictions suggest optimal product

biosynthesis rates after regulatory genes have been knocked out in

cases when these genes are known (O'Brien et al., 2015). To further

improve the quality and scope of predictions related to osmoadapta-

tion, experiments towards determining the precise biomass composi-

tions in different salinities, and integrating other omics data into the

model are encouraged. This will be important in understanding

osmoadaptation in C. canadensis and halophiles in general.

3.8.8 | Gene essentiality

The analysis of the essential genes in iEB1159 was done by doing

single‐gene knockout simulations and then optimizing the model for

growth. When growth was not predicted, the knocked‐out gene and

its associated reactions were considered essential. In total, 60

essential genes were predicted (Table A2). Most essential genes

were those related to the metabolism of amino acids and nucleotides,

ectoine synthesis as well as the transportation of ions. Specifically,

our model predicted the Cl‐ channel (voltage‐gated), and zinc/iron

permease which have been reported to be associated with adapta-

tions to high salt environments by sensing salt stress and regulating

intracellular ion homeostasis respectively (Ding et al., 2019; He

et al., 2020). Noteworthy is that the mechanism through which

voltage‐gated Cl‐ channel contributes to salt tolerance is not yet

clearly understood. Our model could provide a platform to integrate

transcriptomics data to further investigate these mechanisms using a

systems biology perspective (Occhipinti et al., 2021).

3.8.9 | Model fitness to produce PHBs and ectoine

Halophilic bacteria are well known for their ability to produce PHBs

and ectoine which alongside other physiological mechanisms enable

survival in conditions of high salt concentrations. The PHBs are
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energy‐rich compounds accumulated under nutrient‐limiting condi-

tions, while ectoines are compatible solutes that help maintain a

growth‐supporting osmotic balance for the cell. Both are high‐value

products with several uses in the biotechnology industry (Prakash

et al., 2009; Radchenkova et al., 2018; Wang et al., 2020).

To investigate the ability of iEB1159 to produce PHBs and

ectoines, First, the model was simulated with FBA for optimal growth,

and the flux of the reactions producing both products was recorded.

Secondly, FVA was done to investigate the existence of other

potential optimal states. Thirdly, the objective function was changed

TABLE 5 Comparison of
Chromohalobacter canadensis growth on
various carbon sources reported in the
literature and in silico predictions of
iEB1159

Compound name Experimental Insilico Reference

D‐Glucose + + Arahal & ventosa (2006)

Maltose − + Arahal & ventosa (2006)

Maltotriose No data + no report

D‐Arabinose + + Arahal & ventosa (2006)

Cellobiose + + Arahal & ventosa (2006)

D‐Fructose + + Arahal & ventosa (2006)

D‐Galactose No data + no report

Beta D‐Galactose No data + no report

D‐Gluconate No data + no report

Maltoheptaose No data + no report

Maltohexaose No data + no report

Maltopentaose No data + no report

Maltotetraose No data + no report

D‐Mannose No data + no report

D‐Mannitol No data + no report

Raffinose No data + no report

D‐Ribose − + Arahal & ventosa (2006)

D‐Sorbitol − + Arahal & ventosa (2006)

Sucrose + + Arahal & ventosa (2006)

Trehalose No data + no report

D‐Xylose + + Arahal & ventosa (2006)

Esculin + not in model Arahal & ventosa (2006)

L‐Rhamnose not determined − Arahal & ventosa (2006)

Starch Varies not in model Arahal & ventosa (2006)

Citrate + − Arahal & ventosa (2006)

Fumarate not determined − Arahal & ventosa (2006)

Adonitol not determined not in model Arahal & ventosa (2006)

L‐Lysine not determined − Arahal & ventosa (2006)

Lactose + − Radchenkova et al. (2018)

1,4‐alpha‐D‐glucan No data + no report

2‐Dehydro‐Dgluconate No data + no report

Adenosine No data + no report

Cytidine No data + no report

Uridine No data + no report

Salicin No data + no report
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to the demand reaction in the respective pathways producing both

products and simulated to observe their highest possible production

rate. Finally, a phenotypic phase plane analysis to investigate the

fitness of the model to produce these metabolites at optimal

conditions was performed and plotted (Figures A1–A4).

For PHB synthesis, FVA simulations showed a minimum and

maximum flux of 0.0 mmol/gDW/h and 12.35mmol/gDW/h respec-

tively. The fitness of iEB1159 to produce PHBs showed that its

production is inversely proportional to the growth rate and that up to

12.35mmol/gDW/h of PHBs could be produced with the lowest

possible growth rate (Figure A1). The phase plane analysis with PHB

synthesis and nitrogen source uptake (NH4
+) showed a decrease in

PHB production with increasing nitrogen uptake rates, although with

a steeper slope after uptake rates of about 39mmol/gDW/h

(Figure A2). This suggests that in vivo, if C. canadensis reaches

optimal growth, decreasing the uptake rate of NH4
+ to trigger

secondary metabolism will result in a fairly proportional increase in

PHB production. These predictions are in agreement with laboratory

and industrial PHB production fermentation schemes (Koller, 2018;

McAdam et al., 2020). Therefore, iEB1159 shows the potential to

accurately predict the production dynamics of PHBs.

The fitness of iEB1159 to produce ectoine showed that its

production is inversely proportional to the growth rate and that up to

7.05mmol/gDW/h of ectoine could be produced when the growth rate is

lowered (Figure A3). A similar trend was also observed for 5‐

hydroxyectoine (Figure A4). This could be explained by the fact that

the synthesis of ectoine draws significant amounts of intermediates from

the TCA cycle, which reduces their availability for other growth‐

associated processes, thereby affecting the growth rate (Piubeli

et al., 2018).

4 | CONCLUSIONS

Halophilic bacteria have enormous biotechnological potential, and

there is growing interest in using them as alternative resilient cell

factories and sources of high‐value bioproducts. Their use towards

this end requires an understanding of their genetics and physiology

to better design strategies that exploit their potential. In this study,

the complete genome sequence of C. canadensis 85B was analyzed

and a draft genome‐scale model was built to provide a base for future

systems biology research. We hope that this model will provide the

first computational tool to improve our understanding of its

metabolism and drive novel biotechnology discoveries.

Generally, the genome of C. canadensis 85B is comparable to the

genome of other Chromohalobacter, and genes for adaptation and

production of high‐value products were predicted. The analysis of

metabolic subsystems showed that carbohydrate metabolism was the

second‐largest important pathway, indicating the importance for the

organism to obtain and transform a wide variety of carbon sources in

diverse ways to obtain energy. This is also supported by the pathway

diversity predicted for metabolizing different carbon compounds and

producing energy. For environment‐specific adaptation, according to the

COG functional categories, the transport of inorganic ions and metabo-

lism contained up to 233 genes. Salt and ion balance are very important

for adaptation to saline environments as previously reported by other

studies (Oren, 1999; Ventosa et al., 1998). The stress response system

was dominated by glutathione and ectoine. Studies on other halophiles

show the use of similar systems to mitigate stress and ectoine for osmotic

stress (Cai et al., 2011; Pastor et al., 2012; Schwibbert et al., 2011). C.

canadensis 85B grows at high salinity in which compatible solutes such as

ectoine are necessary for adaptation. Of interest is also the production of

polyhydroxyalkanoate biopolymers as high‐energy stores.

We here built a GEM of the metabolism of C. canadensis 85B. First,

we generated a draft reconstruction which was further curated,

annotated, and used for simulations in an iterative fashion. Finally, we

validated the model with literature data. Our model provides a platform

for multi‐omic data integration and potential combination with machine

learning and deep learning approaches. Compared to other organisms like

E. coli or S. cerevisiae, there is a limited pool of specific experimental data

on C. canadensis, indicating that there are still many knowledge gaps and

opportunities for exploration, especially for use in condition‐specific

modeling and optimization (Czajka et al., 2021; Vijayakumar &

Angione, 2021; Zhang et al., 2020).

The validated draft metabolic network model reconstructed in

this study can be updated in line with all GEMs, and can be further

improved with context‐specific modeling approaches, for instance in

presence of condition‐specific omics data. Nevertheless, we note

that GEMs remain powerful tools even when the knowledge base is

not yet complete. For instance, the model built here correctly

predicts the growth on different carbon sources in minimal media,

and the production of ectoines, betaine, and PHBs. We hope that

researchers from a wide range of disciplines will be able to use the

model to further understand its metabolism, driving novel hypotheses

on its use in industrial biotechnology.
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APPENDIX

F IGURE A1 Phenotypic phase plane for
Polyhydroxybutyrate production.

F IGURE A2 Phase plane analysis of
Polyhydroxybutyrate production with varying
concentrations of nitrogen source.
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F IGURE A3 Phenotypic phase plane for
ectoine production with varying biomass.

F IGURE A4 Phenotypic phase plane for
5‐ hydroxyectoine production with varying
biomass.

TABLE A1 Minimal media

Metabolite identifier Metabolite name

ca2_e Calcium

cl_e Chloride

cobalt2_e Cobalt

cu2_e Copper

fe2_e Ferrous Iron

glc__D_e D‐Glucose

k_e Potassium

mg2_e Magnesium

mn2_e Manganese

nh4_e Ammonium

o2_e Oxygen

pi_e Phosphate

so4_e Sulfate

zn2_e Zinc
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TABLE A2 Essential genes predicted by iEB1159

Gene ID Growth
Growth
status Gene product

{‘fig_141389_9_peg_2976'} 0 optimal Phosphomethylpyrimidine synthase ThiC (EC 4.1.99.17)

{‘fig_141389_9_peg_2742'} 0 optimal 3'(2'),5'‐bisphosphate nucleotidase (EC 3.1.3.7)

{‘fig_141389_9_peg_1758'} 0 optimal 3‐methyl‐2‐oxobutanoate hydroxymethyltransferase (EC 2.1.2.11)

{‘fig_141389_9_peg_230'} 0 optimal Dihydrofolate synthase (EC 6.3.2.12) @ Folylpolyglutamate synthase (EC 6.3.2.17)

{‘fig_141389_9_peg_1773'} 0 optimal Phosphoglucosamine mutase (EC 5.4.2.10)

{‘fig_141389_9_peg_1804'} 0 optimal Argininosuccinate lyase (EC 4.3.2.1)

{‘fig_141389_9_peg_861'} 0 optimal Threonine synthase (EC 4.2.3.1)

{‘fig_141389_9_peg_3064'} 0 optimal 3‐dehydroquinate dehydratase II (EC 4.2.1.10)

{‘fig_141389_9_peg_884'} 0 optimal Deoxyuridine 5'‐triphosphate nucleotidohydrolase (EC 3.6.1.23)

{‘fig_141389_9_peg_1913'} 0 optimal Dihydroorotase (EC 3.5.2.3)

{‘fig_141389_9_peg_2658'} 0 optimal Undecaprenyl diphosphate synthase (EC 2.5.1.31)

{‘fig_141389_9_peg_1532'} 0 optimal 3‐isopropylmalate dehydrogenase (EC 1.1.1.85)

{‘fig_141389_9_peg_2718'} 0 optimal Phosphoribosylformimino‐5‐aminoimidazole carboxamide ribotide isomerase (EC 5.3.1.16)

{‘fig_141389_9_peg_3119'} 0 optimal UDP‐N‐acetylmuramoyl‐L‐alanine‐‐D‐glutamate ligase (EC 6.3.2.9)

{‘fig_141389_9_peg_2809'} 0 optimal Thymidylate kinase (EC 2.7.4.9)

{‘fig_141389_9_peg_1215'} 0 optimal N‐acetyl‐gamma‐glutamyl‐phosphate reductase (EC 1.2.1.38)

{‘fig_141389_9_peg_860'} 0 optimal Homoserine dehydrogenase (EC 1.1.1.3)

{‘fig_141389_9_peg_1423'} 0 optimal Serine acetyltransferase (EC 2.3.1.30)

{‘fig_141389_9_peg_3232'} 0 optimal S‐adenosylmethionine synthetase (EC 2.5.1.6)

{‘fig_141389_9_peg_2716'} 0 optimal Imidazoleglycerol‐phosphate dehydratase (EC 4.2.1.19)

{‘fig_141389_9_peg_1530'} 0 optimal 3‐isopropylmalate dehydratase large subunit (EC 4.2.1.33)

{‘fig_141389_9_peg_2630'} 0 optimal Phosphoribosyl‐ATP pyrophosphatase (EC 3.6.1.31)

{‘fig_141389_9_peg_2668'} 0 optimal N‐succinyl‐L,L‐diaminopimelate desuccinylase (EC 3.5.1.18)

{‘fig_141389_9_peg_1982'} 0 optimal Cl‐ channel, voltage gated

{‘fig_141389_9_peg_415'} 0 optimal Pantothenate kinase type III, CoaX‐like (EC 2.7.1.33)

{‘fig_141389_9_peg_3186'} 0 optimal Argininosuccinate synthase (EC 6.3.4.5)

{‘fig_141389_9_peg_882'} 0 optimal N‐acetylglutamate kinase (EC 2.7.2.8)

{‘fig_141389_9_peg_226'} 0 optimal Phosphoribosylanthranilate isomerase (EC 5.3.1.24)

{‘fig_141389_9_peg_2779'} 0 optimal Cysteine synthase B (EC 2.5.1.47)

{‘fig_141389_9_peg_948'} 0 optimal Branched‐chain amino acid aminotransferase (EC 2.6.1.42)

{‘fig_141389_9_peg_683'} 0 optimal Indole‐3‐glycerol phosphate synthase (EC 4.1.1.48)

{‘fig_141389_9_peg_3097'} 0 optimal UDP‐N‐acetylglucosamine 1‐carboxyvinyltransferase (EC 2.5.1.7)

{‘fig_141389_9_peg_3118'} 0 optimal Phospho‐N‐acetylmuramoyl‐pentapeptide‐transferase (EC 2.7.8.13)

{‘fig_141389_9_peg_2514'} 0 optimal Tol‐Pal system‐associated acyl‐CoA thioesterase

{‘fig_141389_9_peg_310'} 0 optimal Erythronate‐4‐phosphate dehydrogenase (EC 1.1.1.290)

{‘fig_141389_9_peg_1942'} 0 optimal zinc/iron permease

{‘fig_141389_9_peg_2717'} 0 optimal Imidazole glycerol phosphate synthase amidotransferase subunit HisH

{‘fig_141389_9_peg_2824'} 0 optimal UDP‐N‐acetylenolpyruvoylglucosamine reductase (EC 1.3.1.98)

(Continues)
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TABLE A2 (Continued)

Gene ID Growth
Growth
status Gene product

{‘fig_141389_9_peg_340'} 0 optimal FMN adenylyltransferase (EC 2.7.7.2)/Riboflavin kinase (EC 2.7.1.26)

{‘fig_141389_9_peg_3117'} 0 optimal UDP‐N‐acetylmuramoyl‐tripeptide‐‐D‐alanyl‐D‐alanine ligase (EC 6.3.2.10)

{‘fig_141389_9_peg_3156'} 0 optimal Orotidine 5'‐phosphate decarboxylase (EC 4.1.1.23)

{‘fig_141389_9_peg_1963'} 0 optimal N‐acetylglucosamine‐1‐phosphate uridyltransferase (EC 2.7.7.23)/Glucosamine‐1‐
phosphate N‐acetyltransferase (EC 2.3.1.157)

{‘fig_141389_9_peg_306'} 0 optimal Dihydroorotate dehydrogenase (quinone) (EC 1.3.5.2)

{‘fig_141389_9_peg_885'} 0 optimal Phosphopantothenoylcysteine decarboxylase (EC 4.1.1.36)/Phosphopantothenoylcysteine
synthetase (EC 6.3.2.5)

{‘fig_141389_9_peg_1707'} 0 optimal GTP cyclohydrolase I (EC 3.5.4.16) type 1

{‘fig_141389_9_peg_274'} 0 optimal NAD kinase (EC 2.7.1.23)

{‘fig_141389_9_peg_3145'} 0 optimal Phosphoserine aminotransferase (EC 2.6.1.52)

{‘fig_141389_9_peg_2879'} 0 optimal Flavin prenyltransferase UbiX

{‘fig_141389_9_peg_3146'} 0 optimal Chorismate mutase I (EC 5.4.99.5)/Prephenate dehydratase (EC 4.2.1.51)

{‘spontaneous'} 0 optimal #N/A

{‘fig_141389_9_peg_3220'} 0 optimal 5,10‐methylenetetrahydrofolate reductase (EC 1.5.1.20)

{‘fig_141389_9_peg_3099'} 0 optimal Histidinol dehydrogenase (EC 1.1.1.23)

{‘fig_141389_9_peg_1899'} 0 optimal Orotate phosphoribosyltransferase (EC 2.4.2.10)

{‘fig_141389_9_peg_3123'} 0 optimal D‐alanine‐‐ ligase (EC 6.3.2.4)

{‘fig_141389_9_peg_1807'} 0 optimal Diaminopimelate epimerase (EC 5.1.1.7)

{‘fig_141389_9_peg_1531'} 0 optimal 3‐isopropylmalate dehydratase small subunit (EC 4.2.1.33)
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