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Abstract The authors study second-order ordinary differential operators with
functional coefficients for all derivatives and the Volterra integral operator with a
definite kernel. Results of the paper establish a hyperbolic equation and additional
conditions that allow one to construct a kernel according to the ODE. The statements
of the paper show the possibility of splitting the ODE into classes according to the
type of the kernel of the Volterra operator. Examples are considered related to ODE
with Pöschl-Teller type potentials, Bessel functions with complex arguments and
Euler’s relation for hypergeometric functions.

1 Introduction

The transmutation operator (the intertwining operator) [1–3] is a Volterra integral
operator associated with other mathematical structures, which imposes a restriction
on its construction. The article proves a theorem on conditions that interlaced
ordinary differential operators of second order with variable coefficients for all
derivatives impose on the form of the kernel of the Volterra operator. The inverse
statement is also presented that for a given kernel, interlaced structures cannot be
arbitrary, but are divided into classes of feasible functions, largely determined by
the structure of the core, and the ODE coefficients of the highest derivative.
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2 Problem Definition

Historically, the first intertwining operators, rebounding from generalized transla-
tion operators [4, 5], appeared in the form of a Volterra type II integral operator [6,
ch I, лемма 1.1.1], [7, ch. I, (1.4)]. However, according to the traditional approach
to integral equations, it is more natural to take the Volterra type I integral operator
in a one-dimensional space (T : L2(I) → L2(I)) defined by the formula

f1(x) = Tf0(x) =
x∫

0

K(x, t)f0(t)dt (1)

which reduced initial class of functions f0 ∈ E0 into reduced class f1 ∈ E1, при
I = [0, b],K ∈ L2(I × I). Transition function K(x, t) is called the kernel of the
transmutation operator.

If in (1) kernel K(x, x) = γ �= 0, then by differentiation (1) it traditionally turns
into

f ′
1(x) = γf0(x) +

x∫

0

dK(x, t)

dx
f0(t)dt

Due to this fact, only transformations of the first kind will be investigated in the
future.

Comment The features of the kernel and the coefficients of the subsequent differen-
tial equations involved in the construction of K(x, t), require a more correct record
of the proposed definition. Exactly

Tf (x) = f1(x) =
x−δ∫

ε

K(x, t)f0(t)dt

with the subsequent passage to the limit ε → 0 and δ → 0. These clarifications will
be clearly spelled out when installing the conditions imposed on the kernal of the
Volterra operator.

The Transmutation Operator (Intertwining operator) (in the work [1]—the
transformation operator for entities A and B) is a triplet of {A,B, T } objects
that satisfy the condition

T A = BT (2)
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where A, B are ordinary differential operators, traditionally defined by differential
expressions and initial conditions

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
a0(t)

df0(t)

dt

)
+ d

dt
(b0(t)f0(t)) + c0(t)f0(t) = 0

df0(t)

dt

∣∣∣∣
t=0

− h0 ∗ f0(t)|t=0 = 0 или

f0(0) = 0; df0(t)

dt

∣∣∣∣
t=0

= H0;

(3)

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1(x)
d2f1(x)

dx2 + b1(x)
df1(x)

dx
+ c1(x)f1(x) = 0

f1(0) = 0; df1(x)

dx

∣∣∣∣
x=0

= H1;
(4)

and T is an integral operator, represented in (1). Note that the Sturm-Liouville
operator (3) is written in the generally accepted divergent form (see Sturm-Liouville
theory, Wikipedia) for favorable integration in parts, which is necessary in proving
the following theorem. The transition from the divergent form to the usual one is
not difficult and is, for example, registered in [8, Ch. 9]

The initial conditions for determining the entity (4) are associated with the
tendency of the Volterra operator of the first kind to zero for x → 0. Very often,
when specifying the initial ratio (3), one of the standard constructions is used [9, ch.
8]

f0(0) = 1; f ′
0(0) = 0; or

f0(0) = 0; f ′
0(0) = 1;

which contributes to the selection of the even or odd part of the solution f0(t). Then,
after applying differentiation to transform (1) into a Volterra mapping of the second
kind, the introduced transmutation operator corresponds to the transformation
operators Kh and K∞ used in Sturm-Liouville spectral theory [10, 11].

The proposed definition of the intertwining operator admits a generalization by
modifying the operators A and B (for example, increasing the order of differential
equations), as well as changing the form of the integral transform (1), but this
extension is not intended.

In papers [1, 10, 11]) for {a0(t) = a1(x) = 1; b0(t) = b1(x) = 0, c0(t) =
q0(t), −c1(x) = q1(x)}, [12]—for Bessel operators, [13]—in general, a relation-
ship is established between the coefficients of differential operators and the type of
the K(x, t) transformation operator.
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Theorem 1 A necessary and sufficient conditions that the Volterra integral opera-
tor (1) be the transmutation operator for ordinary differential (3, 4) operators is:

(a) The kernel of the transformation operator (1) must be a solution to the
hyperbolic equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L [K(x, t)] =
[

∂

∂t

(
a0(t)

∂K(x, t)

∂t

)
− b0(t)

∂K(x, t)

∂t
+ c0(t)K(x, t)

]
−

−
[
a1(x)

∂2K(x, t)

∂x2 + b1(x)
∂K(x, t)

∂x
+ c1(x)K(x, t)

]
= 0

(5a)

(b) On the characteristic t = x, the kernel K (x, t) and its first derivative with respect
to t exist; at t → x − δ и δ → 0

b1) a0(x) = a1(x) = a(x)

b2) 2a(x)
dK(x, x − δ)

dx
+ (b1(x) − b0(x))K(x, x − δ) = 0 (5b)

(c) With initial condition t = ε → 0

{
a(ε)

[
dK(x, t)

dt

]
t=ε

− b0(ε)K(x, ε) − h0a(ε)K(x, ε)

}
f0(ε) → 0 (5c)

(d) Condition at the edge. Under δ < ε, δ → 0, ε → 0

K(ε, ε − δ) ∗ f0(ε) → 0; (5d)

Note that in (b) and (c) it is not necessary to know the explicit form of the function
f0(x). What is important is the tempo of striving f0(ε) to zero with ε → 0 to
compensate for the singularity of the coefficients a, b, c at the origin point.

The proof of the theorem is based on the definition of the transmutation operator
(2), which with respect to ordinary differential operators looks like

T (Af0)(x) = B(Tf0)(x); ∀x;

The integral in the left component of the equality is taken in parts, and in the right
component differentiation takes place according to its variable upper limit.

Proof of Theorem 1 Let us prove the assertions of the theorem, generalizing the
method [1, 9–12]. For convenience and brevity of the record, we introduce the
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notation

K0(x) = K(x, x − δ); f (x) = f0(x);

∂t = d

dt
; ∂tt = d2

dt2 ; ∂x = d

dx
; ∂xx = d2

dx2 ;

The first operation will be T A.

T A(f (x)) =
∫ x−δ

ε

K(x, t){∂x(a0(x)∂xf (x)) + ∂x(b0(x)f (x)) + c0(x)f (x)}dt

The integral with the first term is taken two times in parts. It is precisely at this
moment that the record of the operator (3) in a divergent form is highly desirable.
Similarly, in parts, the second addend will be transformed only once. This leads to
the following result

TA(f (x)) = a0(x)K0(x)∂xf (x)+
+ [

K0(x)b0(x) − a0(x) {∂tK(x, t)}|t=x−δ

]
f (x) − a0(ε)K(x, ε) {∂tf (t)}|t=ε +

+ a0(ε) {∂tK(x, t)}|t=ε f (ε) − b0(ε)K(x, ε)f (ε)+

+
∫ x−δ

ε

{∂t [a0(t)∂tK(x, t)] − b0(t)∂tK(x.t) + c0(t)K(x, t)} f (t)dt

Further action is the study of the relationship BT

B(Tf (x)) = {
a1(x)∂x,x(◦) + b1(x)∂x(◦) + c1(x)(◦)

}
⎧⎨
⎩

x−δ∫

ε

K(x, t)f (t)dt

⎫⎬
⎭

The calculation of the derivative of the integral over a variable upper limit generates
the equality

B(Tf (x)) = {a1(x)∂xK0(x) + a1(x) [∂xK(x, t)
|t=x−δ +
b1(x)K0(x)}f (x) + a1(x)K0(x)∂xf (x)+

+
∫ x−δ

ε

K(x, t){a1(x)∂xxK(x, t) + b1(x)∂xK(x, t) + c1(x)K(x, t)}f (x)

Comparison of integrands implies (5a). Due to the arbitrariness of f (x), the
coefficients in front of the function and its first derivative should be separately equal
to zero. Comparing the elements before the first derivative gives (5b.1). If we take
into account this fact in the coefficient adjacent to f (x), as well as for δ → 0, use
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equality

dK(x, x − δ)

dx
= ∂K(x, t)

∂x

∣∣∣∣
t=x

+ ∂K(x, t)

∂t

∣∣∣∣
t=x

then the grouping of elements before f (x) establishes a correspondence (5b.2). It
remains to group the initial conditions string when t = ε → 0. All its elements are
entirely in the T A operator. There will be an expression

−a2(ε)K(x, ε) {∂tf (t)}|t=ε + a(ε) {∂tK(x, t)}|t=ε f (ε) − b2(ε)K(x, ε)f (ε)

The final result is fixed in the condition (5c). To formulate the condition at the vertex
we take the derivative of (1)

∂xTf (x) = K(x, x − δ)f (x − δ) +
x−δ∫

ε

∂xK(x, t)f (t)dt

At the point x = δ + ε

∂ Tf (x)|x=δ+ε = K(δ + ε, ε) ∗ f (ε)

In the end we take into account the initial conditions

∂ f1(x)|x=ε − h1 f1(x)|x=ε = 0; ∂ f0(x)|x=ε − h0 f0(x)|x=ε = 0;

what gives (5d).

The presented conditions refer to an arbitrary form of the kernel, but even they
impose substantial restrictions on it and on the articulated operators A and B. First,
the coefficients of the highest derivative in (3) and (4) must coincide with the
accuracy of the free variable, that is, a0(t) = a1(x) with t = x. The type of ordinary
differential equation is largely determined by these coefficients, so often transmu-
tation occurs between A and B with similar properties. Secondly, the absence of
singularity of the kernel K(x, t) and its derivative with respect to the argument
t leaves outside the scope of this consideration intertwining transformations with
special points, for example, the integral Mohler-Fock representation for Legendre
functions and their generalizations [14]

P− 1
2 +ıν(cosh x) = 2

π

x∫

0

cos(xt)√
2 (cosh x − cosh t)

dt
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It is possible to overcome this difficulties with the help of integrals in the sense of
the Hadamard finite part [15], but it requires a more detailed consideration of the
presented structures.

An Example of the Theorem 1 Let us show that the Volterra operator performing
the transformation for Gegenbauer polynomials

x∫

0

(
x2 − t2

)β−1
C2ν

2n(t)dt = 2
√

π	(β)

	
(
β + 1

2

)x2β−1 Cβ
n

(
2x2 − 1

)
; Re(β) > 2;

(6)

is a transmutation operator. The presented identity follows from [16, Vol II, 16.3,
(19)] after replacing the variable and modifying the indices. It is easy to check that
the function

f0(t) = C
2β
2n (t)

turns out to be a solution of a differential operator (3) with coefficients

a0(t) = (1 − t2); b0(t) = n(1 − 4β)t; c0(t) = 4n(n + 2β) + (4β − 1);

For even lower symbols (2n), the derivative of the Gegenbauer polynomials vanishes
when t = 0, so the middle row is used as the initial condition in the operator (3) for
h0 = 0. Right part

f1(x) = 2
√

π	(β)

	
(
β + 1

2

)x2β−1 Cβ
n

(
2x2 − 1

)
;

satisfies the operator (4) with coefficients

a1(x) = (1 − x2); b1(x) = 2(1 − β) − 3x2

x
; c1(x) = 4(n + β)2 − 1;

If we substitute the kernel

K(x, t) =
(
x2 − t2

)β−1
(7)

into a hyperbolic equation (5a) with the above groups of coefficients a, b, c, then it
will turn it into a true equality. The core exponent ensures that the condition on the
characteristic is met.
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The left part of the initial condition (5c) is expanded in a series with the first member

h0
4n

√
π	(m + 2β)

	
(

1
2 − n

)
	(2n + 1)	(2β)

x2 + O(ε)

However, it was previously noted that h0 = 0, and, therefore, is realized (5c). The
condition at the vertex (5d) is an identity due to the type of kernel. As a result of
the fulfillment of all conditions, the Volterra operator of the first kind becomes a
transformation operator for ordinary differential operators (3) and (4).

3 Formulation and Specification of Reverse Statement

It can be seen from Theorem 1 that the kernal construction of the transmutation
operator can be determined on the basis of the coefficients of intertwined ordinary
differential operators (3–4). In this article, we make following inverse statement the
cornerstone—‘The kernals of the K(x, t) transmutation operator split the intert-
wined operators A and B into classes, causing the appearance of their coefficients.’

This position is related to the conditions on the characteristic of the hyperbolic
operator (5a). The work [3] noted that “the content of the Copson lemma is that
the initial data on the characteristics cannot be specified arbitrarily, they must be
connected by Bushman-Erdeyi operators of the first kind. The main point of the
proposed current article is the opposite and extended statement”.

Statement 1 Conditions on the characteristic of a hyperbolic equation (5a) together
with (5b) are necessary to classify the linked operators A and B by classes of kernels
K(x, t).

Example for Statement 1 Let us find the classes of intertwined operators A and B
for an already familiar kernel (7), but with a different coefficient in the main part.
Exactly,

K(x, t) =
(
x2 − t2

)β−1 ; a0(t) = 1; a1(x) = 1;

Substituting the specified kernel into the hyperbolic equation (5a) leads to the
relation

L[K(x, t)] = −
(
x2 − t2

)β−2

(
−4(β − 1)2 + 2(β − 1)tb0(t) − 2(β − 1)xb1(x) + (x2 − t2)(c0(t) − c1(x))

)

in this embodiment, the result can be obtained directly, without using the ratio on
the characteristic. It is easy to see that the right-hand side vanishes at constant and
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equal values of the free members of the ‘c’ and coefficients of the ‘b’, inversely
proportional to their arguments

b0(t) = b0

t
; b1(x) = b1

x
;

In this case, the next identity must be satisfied

b1 = b0 + 2 − 2β

with arbitrary b0. A change in b0 leads to an extensive one-parameter class of
possible representations of the operators A and B, but the most attractive results
are obtained for b0 = −(2 nu + 1). Then

a0(t) = 1; a1(x) = 1;

b0(t) = −2ν + 1

t
; b1(x) = −2(β + ν) − 1

x
; c0(t) = ω2; c1(x) = ω2;

The solutions of ordinary differential operators (3) and (4) with h0 = 0 are Bessel
functions, which makes it possible to write the transmutation operator [17, Vol II,
No 2.12.4 (6)]

∫ x

0

(
x2 − t2

)β−1
tν+1Jν(ωt)dt = 2β−1xβ+ν

ωβ
	(β)Jβ+ν(ωx); (8)

Thus, we arrive at the following conclusion: intertwined operators with a known
form of the kernel K(x, t) are not constructed in an arbitrary way and are largely
determined by the type of this kernel. Most often, the main factor in partitioning
differential operators (3) and (4) into classes that are consistent with the kernel
K(x, t), is the main part of these operators a(x) = a0(x) = a1(x). Recall the
generality of the principal parts, up to a free variable, written in (5a).

With respect to the ad hoc kernels K(x, t), statement 1 is strictly impossible
to prove strictly, but it is well formalized for specific categories of K(x, t). We
introduce auxiliary expressions

ϒ1(x) = 4a0(x)φ′(x)′(x) + (x)
(
φ′(x)a′

0(x) + 2a0(x)φ′′(x)
)

ϒ2(x) = −(x)φ′(x) (b1(x) − b0(x))

Lemma 1 For operator class

K(x, t) = K
(
(x)

√
φ(x) − φ(t)

)
(9)
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with kernel satisfying the requirements ((5a)–(5d)), the conditions on the character-
istic impose the following restrictions on the coefficients of the intertwined operators
A and B

�1(x) = K ′(0) (2ϒ2(x) − ϒ1(x)) = 0 (10a)

�2(x) = −2K(0) (c1(x) − c0(x)) + K ′′(0)(x) (ϒ2(x) − ϒ1(x)) (10b)

For even functions, the first equality is automatically fulfilled, for odd functions—
the second one. The proof of the lemma is carried out by substituting (9) into a
hyperbolic operator (5a). As a result, when t → x, an expression appears that
contains singular and regular parts

�1(x)

4
√

φ′(x)(x − t)
+ �2(x) + O(x − t)

In fact, a parametrix is constructed modulo smoothing operators used recently in
hyperbolic equations [18], although the study of relations on characteristics has a
rich history [19, Ch. 4]

Example 2 to Lemma 1 Consider the class of kernals of the form

K(x, t) = J0

(
(x)

√
cosh(μx) − cosh(μt)

)
(11)

under a0(t) = 1; a1(x) = 1. The condition (5b) immediately leads to the equality
b1(x) = b0(x), moreover, due to the parity of the Bessel function of zero index
J0( xi), the first line in the condition (10a) is performed automatically. The second
generates identity

1

2
μ(x)

(
μ(x) cosh(μx) + 2 sinh(μx)′(x)

) = 0

Selection of (x) in the form of an exponent makes possible the following kind of
coefficients

b0(t) = b

sinh(μt)
; b1(x) = b

sinh(μx)
;

(x) = exp
(
−μ

2
x
)

;

c1(x) = c0(x) + 1

2
μ2β2 exp(−2μx);

If these values are substituted into (5a), then we get an expression that includes two
linearly independent terms, one of which contains the factor ‘b’, the second—the
factor c0(t) − c0(x). Equating b = 0; c0( xi) = ω2, we arrive at the transmutation
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operator

f1(x) = Tf0(x) =
x∫

0

J0

(
exp

(
−μ

2
x
)√

cosh(μx) − cosh(μt)
)

f0(t)dt (12)

intertwining ordinary differential operators

d2

dt2 f0(t) + ω2f0(t) = 0 (13a)

d2

dx2
f1(x) +

(
ω2 + 1

2
μ2β2 exp(−2μx)

)
f1(x) = 0 (13b)

Earlier Sergey M. Sitnik obtained the kernel (11) by the method of fixed-point
iteration, solving the integral equation given in the work of Marchenko [11, Ch.
I].

If the initial condition is written in (3) in the traditional form with h0 = 0,
and a solution that satisfies the zero initial condition is selected in (4), then the
transmutation operator taking into account [20, No.2.37 b] will give the following
result

x∫

0

J0

(
e− μ

2 x
√

cosh(μx) − cosh(μt)
)

cos(ωt)dt =

= − ıπ

2μ

1

sinh
(

πω
μ

)
[
J ıω

μ

(
β√
2

)
J− ıω

μ

(
βe−μx

√
2

)
− J− ıω

μ

(
β√
2

)
J ıω

μ

(
βe−μx

√
2

)]

(14)

For μ → 0, the relation presented is reduced to the Vekua transformation operator
[21, Ch. I, Par.12], created at the time to solve elliptic equations of mathematical
physics. Its feature is the shift in spectral parameter

x∫

0

J0

(
β
√

x2 − t2
)

cos(ωt)dt =
sin

(√
ω2 + β2 x

)
√

ω2 + β2
(15)

Equalities (10a) lead to another class of transmutation operators.
An isolated class with respect to intertwined second-order operators are the

Bushman-Erdei transformations, which include the Legendre functions [3]. It
suffices to look at the tables [17, vol II, No 2.17-2.18] to see in most of the options
the record of the transformed component of f1(x) by means of the generalized
hypergeometric series pFq with p + q > 3. Thus, a very significant set of second-
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order differential operators ‘B’ do not fit into the construction (4). But in rare
exceptions, the method of studying a hyperbolic operator on the characteristic
admits cases of finding new versions of the Bushman-Erdeia OP.

Let’s start with the traditional core of the Bushman-Erdeyi operator

K(x, t) = Pν

(
t

x

)
(16)

where the Legendre function Pν(z) is a solution of a differential equation [16, vol I,
Ch. III]. The singularity in calculating L[K(x, t)] with t → x is

1

2x2

[
−2ν(ν + 1) + ν(ν + 1)(b1(x) − b0(x))x − 2x2(c1(x) − c0(x))

]
+ O(t − x)

For its elimination it is enough to put

a0(t) = a1(x) = 1; b0(t) = b1(x) = 0; c0 = ω2; c(x) = ω2 − ν(ν + 1)

x2 ;
(17)

With such coefficients, the relations (3) and (4) taking into account the initial
conditions in (3) and the finiteness of the solution at the origin for (4) are given
for integer values the index ν [17, Vol II, No 2.17.7 (1)]. Exactly,

x∫

0

P2n+1

(
t

x

)
sin(ωt)dt = (−1)n

√
πx

2ω
J2n+ 3

2
(ωx) (18a)

and

x∫

0

P2n

(
t

x

)
cos(ωt)dt = (−1)n

√
πx

2ω
J2n+ 1

2
(ωx) (18b)

We show that the kernel (18) can be extended to wider classes of functions. In this
case, we obtain the original solutions of hyperbolic equations and representations
for some hypergeometric functions, including composite arguments. Consider the
Bushman-Erdeia transmutation operators with kernels

K(x, t) = Pν

(
sinh(μt)

sinh(μx)

)
(19)



Necessary Condition for the Existence of an Intertwining Operator and. . . 183

The study of the relation on the characteristic L[K(x, t)] with t → x leads to an
estimate

L[K(x, t)] = −ν(ν + 1)μ2Csch2(μx) + 1

2
ν(ν + 1)(b1(x) − b0(x))

− (c1(x) − c0(x) + O(t − x) (20)

The selection of coefficients in the equations is not complicated. Initially, they are
located so as to nullify the final term in (20), and then the final sorting takes place to
turn (5a) into an identity. Finally, it found that the kernel (19) satisfies the hyperbolic
equation

∂2K(x, t)

∂t2 + ω2K(x, t) = ∂2K(x, t)

∂x2 +
(

ω2 − μ2 ν(ν + 1)

sinh2(μx)

)
K(x, t) (21)

The steps involved in transforming an ordinary differential equation for the operator
‘B’ are well known from books on quantum mechanics [22, Problem 39]. Replace
variables and the function sought are sequentially performed

y = − sinh2(μx); f1(y) = y
ν+1

2 v(y)

and also, parameter designation is introduced

a = ν

2
+ ı

ω

2μ
; b = −ν

2
+ ı

ω

2μ
;

The solution consists of a linear combination of the regular part tending to zero for
x → 0

2F1

(
−a, b,

1

2
− ν,− sinh2(μx)

)
(− sinh2(μx))

ν+1
2

and singular part

2F1

(
1

2
− b,

1

2
+ a,

3

2
+ ν,− sinh2(μx)

)
(− sinh2(μx))−

ν
2

Clearly, the transmutation operator

x∫

0

Pν

(
sinh(μt)

sinh(μx)

)
cos(ωt)dt (22)

correlates only with the regular component, however, due to the complexity of the
parameters of the hypergeometric function, it is very difficult to trace the exact
match. Nevertheless, the finite number of components in the Legendre polynomials
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for integer ν = 2n allows us to express and investigate the result in a much simpler
form.

When nu = 2, the integral (22) takes the value

f1(x) = − sin(ωx)

2ω
+

+ 3

4

1

sinh2(μx)

[
− sin ωx

ω
+ ω cosh(2μx) sin(ωx) + 2μ cos(ωx) sinh(2μx)

ω2 + (2μ)2

]

When μ → 0, this representation completely coincides with the right-hand side
of Eq. (18b) for n = 1. The presented examples with different integer indices
describe a certain set of Bargman potentials [23, Ch. VI.I] and can be used for
their construction and study. Calculations with kernels of the type (22) are carried
out similarly. We present their results in the following lemma.

Lemma 2 Bushman-Erdei transmutation operators with kernels

K(x, t) = Pν

(
sinh(μt)

sinh(μx)

)
; K(x, t) = Pν

(
cosh(μx)

cosh(μt)

)
;

K(x, t) = Pν

(
sin(μt)

sin(μx)

)
; K(x, t) = Pν

(
cos(μx)

cos(μt)

)
; (23)

connect the solution to the equation

d2f0(t)

dt2
+ ω2f0(t) = 0

with solutions of equations

d2f1(x)

dx2 +
(
ω2 + V (x)

)
f1(x) = 0

for potentials

V (x) = μ2ν(ν + 1)U(x) (24)

where respectively

U(x) = 1

sinh2(μx)
; U(x) = 1

cosh2(μx)
;

U(x) = 1

sin2(μx)
; U(x) = 1

cos2(μx)
; (25)

In quantum mechanics, the potentials presented are called Peschl-Teller potentials
(modified and ordinary) [22, Problems No 38, 39]. Their use for integer ν = n
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is important when considering eigenvalues and eigenfunctions that are consistent
with boundary or other quantization conditions [24]. The group of transmutation
operators presented in Lemma 3 is an essential addition to the set of Bushman-Erdei
operators given in the work [3].

4 Some Convolutions as Transmutation Operators and Their
Modifications

Convolution type transformation operators have been extensively studied in the
literature (see, for example, [25]), so we will only touch on those that are important
from a transmutation point of view.

Lemma 3 By definition, each transmutation operator is a Volterra operator of the
first or second kind, the converse is false.

Let us give an example of the last statement—the Kapteyn trigonometric integral
[26, 12.21]

x∫

0

cos(x − t)J0(t)dt = xJ0(x)

Here the kernel is K(x, t) = cos(x − t), and the coefficients in the ordinary
differential operators (3) and (4) are

a0(t) = 1; b0(t) = 1
t
; c0(t) = 1 + 1

t2 ;
a1(x) = 1; b1(x) = − 1

x
; c1(x) = 1 + 1

x2 ;

It is easy to check the impracticability of the hyperbolic equation (5a) with a similar
combination of elements necessary for the transmutation operator.

At the same time, extensive combinations of K(x, t); f0(t); f1(x) associated
with hypergeometric functions for which there is a possibility of linking. Imagine
an initially simple illustration. It is easy to check that the coefficients

a0(t) = t; b0(t) = (1 − β) − t; c0(t) = β − α;
a1(x) = x; b1(x) = (2 − β − γ ) − x; c1(x) = β + γ − α − 1;

substituted into Eqs. (3) and (4) lead to Kummer intertwined functions. In this case,
the kernal

K(x, t) = (x − t)γ−1
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Replacing the variables t → xt gives the well-known integral relation [27, Vol II,
No 20.3 (2)]

x∫

0

(x − t)γ−1tβ−1
1F1(α, β, t)dt = 	(β)	(γ )

	(β + γ )
xβ+γ−1

1F1(α, β + γ, x); (26)

A degenerate hypergeometric function with an integral nonpositive first argument is
a generalized Laguerre polynomial

1F1(−n, β, z) = Lβ
n(x)

Together with (26), this leads to the transmutation operator [27, Vol II, No 16.6 (5)]

1∫

0

(1 − t)β−α−1tαLα
n(xt)dt = 	(α + n + 1)	(β − α)

	(β + n + 1)
Lβ

n (x); (27)

5 Euler Transformation for Hypergeometric Functions
as a Transmutation Operator

For the basis of further intertwining operators, we take the Euler transformation [28,
Ch. 4]

p+1Fq+1

(
a1 . . . ap c

b1 . . . bq d
; z

)
=

= 	(d)

	(c)	(d − c)

1∫

0

ξc−1(1 − ξ)d−c−1
pFq

(
a1 . . . ap c

b1 . . . bq d
; zξ

)
dξ

There are two directions in which it can develop. In the first case, this is a transition
to the standard transformation operator, by replacing t = zξ .

zd+1
p+1Fq+1

(
a1 . . . ap c

b1 . . . bq d
; z

)
=

= 	(d)

	(c)	(d − c)

z∫

0

(z − t)d−c−1tc−1
pFq

(
a1 . . . ap c

b1 . . . bq d
; t

)
dξ (28)

The second option is more interesting. The Euler transformation initially relies on
z = κx2, where κ = ±1. Then the integral follows the replacement ξ = η2 with the
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following substitution t = zη. The final ratio is as follows.

z2(d−1)
p+1Fq+1

(
a1 . . . ap c

b1 . . . bq d
; κz2

)
=

= 2	(d)

	(c)	(d − c)

z∫

0

(z2 − t2)d−c−1t2c−1
pFq

(
a1 . . . ap c

b1 . . . bq d
; κt2

)
dξ (29)

We emphasize that the integral relations (28) and (29) in this article are only
postulated as Euler transformation operators and their modifications. The proof that
they turn out to be intertwining operators in the general version is difficult, if only
by replacing the standard hyperbolic equation (5a) with its generalized analogue.
One of the works, highlighting the path of development in this direction [29].

Since the preimage 0F1 satisfies the operator with the second, and, accordingly,
the image of the Euler transformation 1F2 to the operator with the third derivative,
in the framework of second-order differential equations, only two types of hyperge-
ometric functions [30, 31]:

0F0(t) = F(; ; t) = et ; 1F0(t) = F(a; ; t) = (1 − t)−a;

The Euler transformation for 0F0 leads to an integral representation of the Kummer
function [16, раздел 6.5], [2, 32, 33]

�(c, d, x) = xd−1
1F1(c; d; x) = 	(d)

	(d − c)	(c)

x∫

0

(x − t)d−c−1tc−1
0F0(t)dt

(30)

provided that x is a real variable and Re(d) > Re(c) > 0. We note an important
fact: the resulting transformation operator covers a smaller set of parameters than
the series

1F1(c; d; x) =
∞∑

k=0

(c)k

(d)kk!x
k

where (q)k is a Pohgammer symbol, since the inequalities Re(d) > Re(c) > 0
impose significant restrictions on the domains of parameter changes.

We prove that the transformation operator (30) is a transmutation operator. The
function 0F0(t) = et , which is present under the integral sign, is a solution of a first
order differential equation, but the conjugate form (3) allows you to artificially add
another differentiation digit. Exactly if

f0(t) = tc−1
0F0(t) = tc−1et

a0(t) = t; b0(t) = 1 − c − t; c0(t) = 0;
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then the equality (3) takes the form

d

dt

[
a0(t)

df0(t)

dt
+ b0(t)f0(t)

]
= 0

For the transformed function f1(x) = xd−1
1F1(c, d, x), the identity (4) with the

coefficients

a1(x) = x; b1(x) = 2 − d − x; c1(x) = d − c − 1;

It is easy to verify that with the coefficients indicated above, and K(x, t) = (x −
t)d−c−1, the hyperbolic equation (5a) holds.

Thus, the formula (30) is a two-parameter family of intertwining operators.
According to the definition [34, Ch I, Def 2.1], it simultaneously belongs to the
class of fractional integrals. The enumeration of the permissible values of the
parameters [33, Ch 3] leads to many interesting results illustrating the significance
of transmutation operators. For example, ratio

�(1, 2, x) = ex − 1; при x > 0

with the help of the OP it turns out much easier to expand the Kummer function
in a series. On the other hand, much less elementary results are possible. With real
x > 0

�(
3

4
,

3

2
, x) = √

2 4
√

xe
x
2 	

(
5

4

)
I 1

4

(x

2

)

with a modified Bessel function, a fractional argument—and this is not the highest
bar of complexity.

At one time, the identity (28) was used by Leonard Euler to determine the
traditional hypergeometric function. Because of the literal following (28), the
definition will take on a different look.

xd−1 π

sin(πc)	(c)	(1 − c)
2F1(a, c, d, x) =

= 	(d)

	(c)	(d − c)

x∫

0

(x − t)d−c−1tc−1
1F0(a, t)dt (31)

or

xd−1 π

sin(πc)	(c)	(1 − c)
2F1(a, c, d, x) = 	(d)

	(c)	(d − c)

x∫

0

(x − t)d−c−1tc−1

(1 − t)a
dt

(32)
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The fact that the presented formula has a three-century history does not save it from
checking for the agreement of all the equations for the transition from the variety of
transformations to the class of intertwining operators. We have

a0(t) = t (1 − t); b0(t) = 2 − c − (3 + a − c) − da0(t)
dt

;
a1(x) = x(1 − x); b1(x) = 2 − d − (3 + a + c − 2d)x;
c0(t) = c − a − 1 − db0(t)

dt
; c1(x) = −(1 + a − d)(1 + c − d).

If, as before, K(x, t) = (x − t)d−c−1, then the hyperbolic equation (5a) turns into
an identity. Note again that the transformation is valid only for real 0 < x < 1 and
Re(d) > Re(c) > 0. In addition, the parameter c should not be an integer. The
number of representatives of this transmutation operator with different variants of
the coefficients is almost innumerable [33, Ch. 2, Section 2.4]

Lemma 4 The Euler transformation (32) is the intertwining operator for the hyper-
geometric functions when selecting the coefficients in (3) and (4) mentioned above.

We will not check the relations (29), but instead show how knowing the values on
the characteristic of a hyperbolic equation helps to find a rather complicated integral
that is close in some parameters, for example, 2 paragraph 1 of [35].

x∫

0

(x2 − t2)β cos(ωt)dt (33)

Here, the coefficients for the input function f0(t) = cos(ωt) are obvious

a0(t) = 1; b0(t) = 0; c0(t) = ω2;

We substitute them in (5a), taking into account simultaneously (5b). For t → x, a
relation arises on the characteristic of a hyperbolic operator for the kernel K(x, t) =
(x2 − t2)β

L [K(x, t)]t→x = 2ββ(2β + b1(x))(x(x − t))β−1 + (x(x − t))βO(x − t);

The remaining coefficient c1(x) is easily chosen. As a result

a1(x) = 1; b1(x) = −2β

x
; c1(x) = ω2;

The solution of an ordinary differential equation (4) is a linear combination

x
2β+1

2

[
C1J 2β+1

2
(ωx) + C2Y 2β+1

2
(ωx)

]
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with Bessel and Neumann functions as components. The singularity at zero elimi-
nates the coefficient C2. For different interpretations of the result, it is convenient to
use the relationship between the Bessel function and the hypergeometric function.
The integral (33) takes the form

x∫

0

(x2 − t2)β cos(ωt)dt =
√

π

2
	(β + 1)x

2β+1
2 J 2β+1

2
(ωx) =

=
√

π

2
	(β + 1)0F1

(
; β + 3

2
; −

(ωx

2

)2
)
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