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ABSTRACT OF THE DISSERTATION

A STUDY OF SPARSE REPRESENTATION OF BOOLEAN FUNCTIONS

by

Yekun Xu

Florida International University, 2021

Miami, Florida

Professor Ning Xie, Major Professor

The Boolean function is one of the most fundamental computation models in theoreti-

cal computer science. The two most common representations of Boolean functions are

Fourier transform and real polynomial form. Applying analytic tools under these repre-

sentations to the study Boolean functions has led to fruitful research in many areas such

as complexity theory, learning theory, inapproximability, pseudorandomness, metric em-

bedding, property testing, threshold phenomena, social choice and etc.

In this thesis, we focus on sparse representations of Boolean function in both Fourier

transform and polynomial form, and obtain the following new results.

A classical result of Rothschild and van Lint asserts that if every non-zero Fourier

coefficient of a Boolean function f over Fn2 has the same absolute value, namely |f̂(α)| =

1/2k for every α in the Fourier support of f , then f must be the indicator function

of some affine subspace of dimension n − k. Here we slightly generalize their re-

sult, and show that Boolean functions whose Fourier coefficients take values in the set

{−2/2k,−1/2k, 0, 1/2k, 2/2k} are indicator functions of two disjoint affine subspaces of

dimension n − k or four disjoint affine subspaces of dimension n − k − 1. Our main

technical tools are results from additive combinatorics which offer tight bounds on the

affine span size of a subset of Fn2 when the doubling constant of the subset is small.

For polynomial representation of a Boolean functions, we study the distribution of the

number of non-zero coefficients of random Boolean functions. For a random Boolean

v



function f : {0, 1}n → {0, 1}, i.e., a function whose value at each point on the Boolean

cube is chosen independently and uniformly at random from {0, 1}, in real polynomial

representation, we give several bounds and concentration results about the distribution of

the sparsity of f .

vi



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Relations between two representations . . . . . . . . . . . . . . . . . . . . . 3

2. A GENERALIZATION OF A THEOREM OF ROTHSCHILD AND VAN LINT 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Rothschild and van Lint Theorem . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Proof overview and our techniques . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Motivations and related work . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Boolean functions and Fourier analysis . . . . . . . . . . . . . . . . . . . 14
2.2.2 Additive combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Proof of the Main Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Some additive properties of sets A and B . . . . . . . . . . . . . . . . . . 20
2.3.2 Even-Zohar’s tight bound on F (K) . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Characterizing 2B and span(B) . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Completing the proof of the Main Lemma . . . . . . . . . . . . . . . . . . 27
2.4 Dealing with small values of k . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Proof of the case k = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Proof of the case k = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Proof of the case k = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 The Fourier spectrum of disjoint union of two affine subspaces . . . . . . . . 34
2.7 Concluding Remarks and Open Problems . . . . . . . . . . . . . . . . . . . 36

3. STATISTICS OF SPARSITY OF REAL POLYNOMIAL REPRESENTATION 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Real polynomial representation of Boolean function . . . . . . . . . . . . 38
3.3 Statistics results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Concluding remarks and Open Problems . . . . . . . . . . . . . . . . . . . . 47

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



CHAPTER 1

INTRODUCTION

The fundamental problem in complexity theory [AB09] is to determine which prob-

lems are easy to solve computationally and which ones require more time or space for

computers to find solutions. During the last half century, many scientists have contributed

to this area and have developed many fruitful theories, such as NP-completeness [Coo71,

Lev73, GJ79], PCP theorems for hardness of approximations [FGL+96, AS98, ALM+98],

and parameterized complexity [FL87, ADF95, PY96, BFR98, DF12]. For a given prob-

lem, we may be able to design efficient algorithms, which lead to upper-bounds for the

complexity; or the least time needed to solve the problem, which leads to lower-bounds.

If the gap between upper and lower bound are asymptotically negligible, we established

the tight complexity result of the problem. For example, a classical result is that sorting

n numbers using any comparison-based algorithm takes Θ(n log n) time.

Although different hardware may have different computation power, causing different

running time for the same problem on different computers, we still have theoretical meth-

ods to measure the complexity. For example, we could use the number of bit operations,

the size of circuit that computes the problem, or the simplicity of the function computes

the problem as measurements. Moreover, sometimes the model of question may not rely

on a single computing device, where the input data spread among multiple persons or

computers. We could measure the difficulty by the number of communications between

the multiple parties, which leads to the area of communication complexity [Yao79, KN97].

Despite much success, unfortunately, after decades of intensive research, there are

numerous computational problems of which tight complexity bounds are still elusive. Of

central importance to both computer science and mathematics is the well-know P versus

NP problem: for all NP problems, can they be solved in polynomial times in terms of input
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size? Any state of the art algorithms for NP-complete problems still take exponential

running time.

A systematic approach for studying computation complexity may start with formally

modelling computational problems in a most generalized way. Note that almost all prob-

lems that can be computed by a computer can be modelled well by one or a collection of

Boolean functions f : {0, 1}n → {0, 1}, since we can always encode the input and output

data into finite binary bits {0, 1}. Any distributed problem involving multiple parties can

be transformed to multiple subproblems with only two parties involved. These simple

observations explain why the study of Analysis of Boolean functions has grown into one

of the central research areas in the past thirty years in theoretical computer science. We

refer interested readers to [Juk12, O’D14] for comprehensive treatments.

1.1 Boolean functions

’Boolean’, which represents the work derived by George Boole, is the subfield of mathe-

matics handling variables only in two values, true or false, or equivalently 1 or 0, respec-

tively. Boolean cube of dimension n, {0, 1}n can be considered as the set of all n-length

boolean vectors or binary strings. Every n-length binary string S ∈ {0, 1}n can also be

considered as a subset of [n] = {1, 2, · · · , n}. Any function f : {0, 1}n → R defined on

the Boolean cube will be assigned a value f(S) for any input S.

For every function f defined on a Boolean cube, we may consider the input as n

Boolean variables representing true or false, with arbitrary outputs. In the area of com-

puter science, we usually focus on Boolean functions which restrict the output to Boolean

variables only. Naturally, we can represent function f as a circuit of logical gates with

n bits of Boolean variables as input, returning a single bit as output. The circuit may

contain complicated multi-way gates, but using basic 2-way AND/OR/XOR gates would

be enough to represent all functions.
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The most common alternative way to characterize a function is by providing a polyno-

mial that computes f . In order to compute a polynomial, we have to assign real numbers

to represent the input bits.

The standard polynomial representation is assigning 0 to false and 1 to true, while

multiplications are equal to logical AND gates. For each monomial,
∏

i∈S xi equals to 1

if and only if all the xi ∈ S are 1(true).

Another most widely used representation is called Fourier representation, which as-

signs 1 to false and −1 to true. In this representation, multiplications are equal to logical

XOR gates. Then for each monomial in Fourier representation,
∏

i∈S xi equals to 1 if and

only if the number of negative(true) xi ∈ S are even.

1.2 Relations between two representations

Both representations have a good property: a unique multi-linear form. For standard

representation, we have xki = xi for any positive k, while for Fourier representation, we

have x2i = 1 being a constant. And for all S, the 2n terms
∏

i∈S xi will form a basis of the

2n-dimension vector space for functions defined on Boolean cube.

Furthermore, there exists a direct relation between the two forms. Supposing that fR :

{0, 1}n → R and fF : {1,−1}n → R both represents the function f : {false, true}n →

R. They can be rewritten as follows: fR =
∑

S cS
∏

i∈S xi and fF =
∑

S f̂(S)
∏

i∈S x̃i,

while xi = 1−x̃i
2

and x̃i = 1 − 2xi. cS and f̂(S) are called polynomial coefficients and

Fourier coefficients.
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By multiplying out the equations, we get the following two transformation formulas.

fR(x) =
∑
S

cS
∏
i∈S

xi =
∑
S

cS
∏
i∈S

1− x̃i
2

=
∑
S

cS
2|S|

(∑
T⊂S

(−1)|T |
∏
i∈T

x̃i

)

⇒ f̂(S) = (−1)|S|
∑
T⊃S

cT
2|T |

fF (x) =
∑
S

f̂(S)
∏
i∈S

x̃i =
∑
S

f̂(S)
∏
i∈S

(1− 2xi) =
∑
S

f̂(S)

(∑
T⊂S

(−2)|T |
∏
i∈T

xi

)

⇒ cS = (−2)|S|
∑
T⊃S

f̂(T ).

Although the coefficients differ substantially, the basis generated by Fourier repre-

sentations is orthogonal, while the basis by standard polynomials is not. These two rep-

resentations are essentially equivalent, represent the same functions, and can be easily

converted via the above formulas. The study of properties of one representation will

provide better understanding of the other.

In this thesis, we contributed to the understanding of sparsity of both representations

of Boolean functions. For Fourier representation, we provide brand-new results, which

could characterize the structure of the function support based only on the magnitude of

the Fourier coefficients of the functions under specific circumstances. For real polynomial

representation, we give statistical results to improve the understanding of the distribution

and concentration of sparsity for all Boolean functions.
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CHAPTER 2

A GENERALIZATION OF A THEOREM OF ROTHSCHILD AND VAN LINT

2.1 Introduction

One of the most fruitful approaches in functional analysis is to represent functions as sums

of simple and well-structured objects, such as sine wave functions and polynomials. Such

representations often provide additional insights on the combinatorial structures of or

complexity measures associated with the subjects under consideration. This paradigm in

theoretical computer science has witnessed harmonic analysis on the cube, or the discrete

Fourier transform of Boolean functions, emerged in the past three decades as a powerful

and versatile tool that finds numerous applications in complexity theory (such as PCP and

circuit complexity), property testing, learning, cryptography, coding theory, social choice

theory and others; see [O’D14] for a comprehensive survey.

Fourier coefficients and function values are two equivalent ways to represent a func-

tion. That is, the Fourier spectrum of a function completely determines the function-value

at any point on the cube. However, knowing only the values of the Fourier spectrum but

without the information of the locations of these values in the Fourier space in general

leaves the function undetermined to a large extent, even restricted to Boolean functions.

To see this, consider the following examples. Generally speaking, we view two Boolean

functions as the same function if they are isomorphic. More formally, we say that two

Boolean functions f, g : Fn2 → {0, 1} are isomorphic to each other if there is an invert-

ible linear transformation L : Fn2 → Fn2 such that g(x) = Lf(x) for every x ∈ Fn2 ,

where Lf(x) := f(Lx). Now consider the following two families of Boolean functions

{fk : Fk2 → {0, 1} | k ∈ N, k ≥ 3} and {gk : Fk2 → {0, 1} | k ∈ N, k ≥ 3},

with the Fourier expansions of fk(x) = 3
4
− 1

4
χ{1}(x) − 1

4
χ{2}(x) − 1

4
χ{1,2}(x) and

gk(x) = 3
4
− 1

4
χ{1,2}(x) − 1

4
χ{1,3}(x) − 1

4
χ{2,3}(x). One can check easily that both fk

5



and gk are indeed Boolean functions and the multisets of non-zero Fourier coefficients

are both {3
4
,−1

4
,−1

4
,−1

4
}. On the other hand, the Fourier dimension — dimension of

the subspace spanned by vectors at which the function’s Fourier coefficients are non-zero

— of fk is 2 while the Fourier dimension of gk is 3. Since the Fourier spectrum trans-

forms according to (LT )−1 when the function undergoes the linear transformation L, it

follows that there is no invertible linear transformation L that maps fk to gk, i.e. they

are not isomorphic to each other. Another such example is the class of address functions

fn : Fn2 → {−1, 1}, where n = k + 2k for some positive integer k, together with the

class of functions gn : Fn2 → {−1, 1} formed by tensoring some bent function on 2k-bits

with a δ-function on n − 2k bits. Then both fn and gn have 22k non-zero Fourier coeffi-

cients, with 22k−1 +2k−1 of them taking value 1/2k and 22k−1−2k−1 of them taking value

−1/2k; moreover, since the Fourier dimension of fn is n and the Fourier dimension of gn

is 2k < n, these two functions are not isomorphic to each other.

Nevertheless, there are a few exceptions to the general phenomenon in the sense that

knowing only the values of the Fourier spectrum completely determine the Boolean func-

tion, up to an isomorphism. One such example is the indicator function of an affine

subspace, which enjoys a very simple Fourier spectrum. Specifically, if f is the indicator

function of an affine subspace in Fn2 of dimension n − k, then it is straightforward to

check that every non-zero Fourier coefficient of f is either 1/2k or −1/2k. What about

the converse? Namely, if we know that the non-zero Fourier coefficients of a Boolean

function all have magnitude 1/2k, then what can be said about the function?

2.1.1 Rothschild and van Lint Theorem

Rothschild and van Lint [RvL74] (see also Chapter 13, Lemma 6 in [MS77]) proved the

following theorem:
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Theorem 2.1.1. Let n ≥ 1 and 0 ≤ k ≤ n. Let f = 1S be the indicator function of a set

S ⊆ Fn2 of size |S| = 2n−k. If for every α ∈ Fn2 , |f̂(α)| is equal to either zero or 1/2k,

then S is an affine subspace of dimension n− k.

In other words, Rothschild and van Lint Theorem shows that, up to an invertible linear

transform, we have a complete characterization when the Fourier coefficients of a Boolean

function are all from the set {−1/2k, 0, 1/2k}: the Boolean function must be the indicator

of some affine subspace of co-dimension k.

A natural question is: how far can we extend such a nice characterization in terms

of the values of Fourier coefficients only? Following [GOS+11], for a rational number

x, the granularity gran(x) of x is defined to be the least nonnegative integer k such that

x = m/2k, wherem is an (odd) integer. A function Fn2 → R is said to be k-granular if the

maximum granularity of its Fourier coefficients is k — that is, k = maxα{gran(f̂(α))}.

For a Boolean function, its granularity is known to be intimately correlated with its

Fourier sparsity [GOS+11] — the number of non-zero Fourier coefficients; see discus-

sion in Section 2.1.4 for more details. Therefore, one can view Rothschild and van Lint

Theorem as a characterization of k-granular Boolean functions with minimum support

size (that is, f̂(0) = |{x : f(x) = 1}|/2n = 1/2k).

2.1.2 Our results

In this chapter, we slightly generalize Rothschild and van Lint Theorem to give a complete

characterization of k-granular Boolean functions of support size 2n · 2/2k = 2n−k+1.

Roughly speaking, our main theorem is the following:

Theorem 2.1.2 (Informal statement). For large enough integers n ≥ k, if a Boolean

function f : Fn2 → {0, 1} has all its Fourier coefficients in the set {0, ±1
2k
, ±2
2k
}, then f is

the indicator function of disjoint union of two affine subspaces of dimension n− k.

7



Our Main Theorem is based on the following Main Lemma, which deals with the

general case of k ≥ 5, together with case analysis1 for small values of k.

Lemma 2.1.3 (Main). Let k ≥ 5 and n ≥ k be integers. Let f : Fn2 → {0, 1} be a

Boolean function such that f̂(0) = 1/2k−1 and any other Fourier coefficients are either

zero or equal to ± 1
2k

, then f is the indicator function of a disjoint union of two dimension

n− k affine subspaces.

2.1.3 Proof overview and our techniques

The original form of Rothschild and van Lint Theorem was stated to characterize sub-

spaces in affine geometry and projective geometry. For completeness and more impor-

tantly, because the first step in our proof of the main theorem follows a similar strategy,

we present a slightly different proof using the notation of Fourier analysis.

A proof of Rothschild and van Lint Theorem. We prove the theorem by induction on

n. It is trivial to see that the theorem holds for n = 1 (for both k = 0 and k = 1). Let n ≥

2. Clearly there is nothing to prove for k = 0 and k = n, so we assume 0 < k < n. Note

that f̂(0) = |S|/2n = 1/2k, then by Parseval’s identity, there exists a non-zero α such

that f̂(α) = 1/2k or −1/2k. Assume that f̂(α) = 1/2k and the case of f̂(α) = −1/2k is

similar. Applying an invertible linear transform L that maps α to e1, where e1 stands for

the standard basis vector (1, 0, . . . , 0). Note that both the Fourier spectrum of f and any

affine subspace are invariant under invertible linear transformations, hence it suffices to

argue about g := Lf . Now we have ĝ(0) = ĝ(e1) = 1/2k. Applying a linear restriction

over the first bit of the input to get sub-functions g0 and g1 (see Proposition 2.2.3 in 2.2.3

1The need for a nasty case analysis stems from a key lemma in the proof, namely Lemma 2.3.9,
which holds only when k ≥ 5.
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for details). By (2.2), ĝ1(0) = ĝ(0) − ĝ(e1) = 0, which implies that g1 is the zero-

function. This implies that S is completely contained in the support of g0 and moreover,

by (2.3), ĝ0(β) = 2f̂(0, β) for every β ∈ Fn−12 . In other words, g0 is a Boolean function

over Fn−12 and |ĝ(β)| is equal to either zero or 1/2k−1, therefore the induction hypothesis

applies to g0. It follows that S is an affine subspace of dimension n−1− (k−1) = n−k.

This completes the proof of Theorem 2.1.1.

Reducing the dimension of the function domain. The proof of the Main Theorem is

much more involved than that of Rothschild and van Lint Theorem. In fact, the proof we

described above of Theorem 2.1.1 is the first step toward proving the main theorem. The

reduction step in the proof of Theorem 2.1.1 can be regarded as reducing the dimension of

function domain while keeping all the support of the function. Equivalently, one may view

the reduction step as decomposing the original function f as a tensor product between a

“core-function” g and a “δ-function” h (see Section 2.2 for definition of tensor product

of Boolean functions). Namely, f(x, y) = g(x) ⊗ h(y), where h : Fm2 → {0, 1} is

the δ-function: h(y) = 1 if y = 0m and h(y) = 0 for all other vectors. That is, f is

“reduced” to a core-function g with dimension n − m. To this end, we say a function

f : Fn2 → {0, 1} is reducible if there exists an invertible linear transformation L such

that Lf can be decomposed as the tensor product of a function g : Fn−m2 → {0, 1} and a

δ-function h over Fm2 with m ≥ 1. f is said to be irreducible if f is not reducible.2 Now

we are ready to present our Main theorem more precisely.

Theorem 2.1.4 (Main). Let k ≥ 1, n > k be two integers, and let f : Fn2 → {0, 1}

be a non-constant Boolean function with all its Fourier coefficients taking values in

{0, ±1
2k
, ±2
2k
}. Then we have the following complete characterization

2To put it differently, a function f defined on Fn2 is irreducible if and only if the minimum
dimension of the affine subspace containing the support of f is n.
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• If f̂(0) = 1
2k

, then f is the indicator function of an affine subspace of dimension

n− k (Rothschild and van Lint Theorem);

• If f̂(0) = 1
2k−1 and f is irreducible, then f is either the indicator function of disjoint

union of two affine subspaces of dimension n − k, or the indicator function of

disjoint union of four affine subspaces of dimension n− k− 1. Moreover, the latter

case is only possible when k = 4.

Back to our problem, since f̂(0) = 1/2k−1, it is easy to see that whenever there is a

non-zero α such that |f̂(α)| = 1/2k−1, we can restrict f either to the subspace 〈α, x〉 = 0

or to the affine subspace 〈α, x〉 = 1 while keeping the entire support of f . We repeat this

process until we reach a Boolean function f with f̂(0) = 1/2k−1 and all other non-zero

Fourier coefficients have magnitude 1/2k.

Additive structures of the Fourier spectrum. The starting point of our main argu-

ment is the following well-known characterization of Boolean functions in terms of their

Fourier spectra: a function f : Fn2 → R on the cube is Boolean if and only if

f̂(α) =
∑
β∈Fn2

f̂(β)f̂(α + β)

holds for every α ∈ Fn2 . Our main observation is that, since the non-zero Fourier coef-

ficients f can take only two values when f is irreducible, denoting A := {α | f̂(α) =

1/2k} and B := {β | f̂(β) = −1/2k}, then these two sets — viewed as subsets of

abelian group Fn2 — must exhibit strong additive structures. Indeed, one can show that

B +B ⊆ A ∪ {0} and consequently |B +B|/|B| ≤ (1 + |A|)/|B|.

What can be said about a set B if its doubling constant K := |B + B|/B is small?

This is a classical problem extensively studied in additive combinatorics. Additive com-

binatorics is a burgeoning mathematics sub-area which finds exciting applications in the-

oretical computer science in recent years [ADL18, BSLRZ14, BSRZ15, BDL13, Sam07].
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Green and Tao [GT09] proved that, when the underlying ambient group is Fn2 , then B is

contained in a subspace of size 22K+O(K logK)|B|, which is asymptotically optimal. Un-

fortunately, such asymptotic “high end” bounds are not accurate enough to be useful for

our problem. In fact, we make crucial use of a “low end” additive combinatorics result of

Even-Zohar [EZ12], which provides tight bounds on the size of affine span of B in terms

of its doubling constant. It is worth noting that all aforementioned applications of addi-

tive combinatorics in theoretical computer science employ theorems regarding asymptotic

behaviors of certain combinatorial objects. We hope researchers may find further appli-

cations of such “low end” additive combinatorics results in other places.

2.1.4 Motivations and related work

To the best of our knowledge, besides the work of Rothschild and van Lint, there is no

previous structural result on Boolean functions in terms the magnitudes of their Fourier

coefficients only. Friedgut [Fri98] showed that if the total influence of a Boolean func-

tion is small, then it is close to some junta — a function that depends only on a bounded

number of variables. Friedgut et al. [FKN02] studied Boolean functions whose Fourier

mass are concentrated on the lowest two levels and proved that such functions are close to

parity functions or negations of parity functions. For a special class of Boolean functions,

the so-called linear threshold functions, a celebrated result of Chow [Cho61] states that

these functions are completely determined by their lowest two level Fourier coefficients;

see [DDFS14, OS11] for recent robust versions as well as algorithmic versions of Chow’s

theorem. Note that all previous structural theorems mentioned above, except Chow’s, are

“robust” in the following sense: the structural results are robust against small perturba-

tions in the Boolean function’s Fourier spectrum. Our main result is automatically robust:

by Parseval’s identity, small distance in Fourier spectrum implies small distance in func-
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tion space; consequently, any Boolean function whose Fourier coefficients are close to

being in the form stated in our Main Theorem must also be close to having the affine

subspace structures asserted in the theorem.

Apart from studying to what extent can the values of Fourier coefficients themselves

determine a Boolean function, an important motivation of this research is to study the be-

haviors of Fourier sparse Boolean functions [GOS+11]. Gopalan et al. [GOS+11] proved

that, if a Boolean function f has only s non-zero Fourier coefficients, then every Fourier

coefficient of f is of the form m/2k, where m is an integer and k/2 ≤ log s ≤ k. That

is, the granularity and Fourier sparsity of a Boolean function are, up to a constant fac-

tor, identical. Our result may be regarded as characterizing Boolean functions of Fourier

granularity k when all Fourier coefficients of f are between −2/2k and 2/2k.

Probably the most prominent open problem in communication complexity is the so-

called Log-rank Conjecture proposed by Lovász and Saks [LS88], which asserts that the

deterministic communication complexity of any F : Fn2 × Fn2 → {0, 1}, DCC(F ), is

upper bounded by a polynomial of the logarithm of the rank of the communication matrix

MF = [F (x, y)]x,y, where the rank is taken over the reals. Even after more than 30 years

of extensive study, we are still very far from resolving it; the current best bound is Lovett’s

DCC(F ) = O(
√
r log r) [Lov14], where r is the rank of MF . Recently, studying the Log-

rank conjecture for a special class of two-party functions, the so-called XOR functions, has

attracted much attention [CP18, HHL18, LZ17, STlV17, TXZ16, TWXZ13, ZS10]. The

corresponding conjecture for this special class of functions is sometimes called Log-rank

XOR conjecture. Specifically, F is an XOR function if there exists an f : Fn2 → {0, 1}

such that for all x and y, F (x, y) = f(x + y). The beautiful connection between the

Log-rank XOR conjecture and Fourier analysis of Boolean functions is that, if F is an

XOR function, then the rank of MF is just the Fourier sparsity of f [BC99]. Moreover,

it is now known that resolving the Log-rank XOR conjecture is equivalent to finding a
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parity decision tree of depth polylog(s), or poly(k) for any Boolean function f [HHL18,

TWXZ13, ZS10], where s is the Fourier sparsity and k is the granularity of f .

The parity kill number of a Boolean function f is defined as

C⊕,min(f) := min{co-dim(S) | S is an affine subspace on which f is constant}

Tsang et al. [TWXZ13] demonstrated that, to resolve the Log-rank XOR conjecture, it is

sufficient to prove that the kill number of any Boolean function f is upper bounded by

polylog(s) or poly(k). See [CMS19, OST+14] for recent developments on constructing

Boolean functions with large kill numbers. Our main result can be regarded as showing

that any Boolean function with granularity k and f̂(0) ≤ 2/2k has kill number at most

k + 1. In fact, by induction on m and folding f̂(0) with any other non-zero Fourier

coefficient, we immediately have the following corollary.

Corollary 2.1.5. Let f : Fn2 → {0, 1} be a Boolean function with granularity k and

f̂(0) = m/2k. Then the kill number of f is at most k +m− 1.

Of course, Corollary 2.1.5 is still very far from showing the desired kill number bound

poly(k) as m can be as large as 2k−1, but it is hoped that further investigations along this

approach may lead to more interesting results.

2.1.5 Organization

The rest of the chapter is organized as follows. Preliminaries and notations that we use

throughout the chapter are summarized in Section 2.2. We prove our Main Lemma, which

deals with the cases when k is at least 5 in Section 2.3, while the small value cases are

discussed in Section 2.4. Then, by combining these two ingredients, we prove our Main

Theorem in Section 2.5. Finally we end with a brief section of conclusions and open

questions.
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2.2 Preliminaries

All logarithms in this chapter are to the base 2. Let n ≥ 1 be a natural number, then

[n] denotes the set {1, . . . , n}. We use F2 for the field with 2 elements {0, 1}, where

addition and multiplication are performed modulo 2. We view elements in Fn2 as n-bit

binary strings, i.e. elements in {0, 1}n, interchangeably. If x and y are two n-bit strings,

then x+ y (or x− y) denotes bitwise addition (i.e. XOR) of x and y. For positive integers

m and n, if y ∈ Fm2 and z ∈ Fn2 , then we write x = (y, z) to denote the binary string

x ∈ Fm+n
2 obtained from concatenating y and z together. We view Fn2 as a vector space

equipped with an inner product 〈x, y〉, which we take to be the standard dot product:

〈x, y〉 =
∑n

i=1 xiyi, where all operations are performed in F2.

2.2.1 Boolean functions and Fourier analysis

We often use f to denote a real function defined on Fn2 and write supp(f) = {x ∈ Fn2 |

f(x) 6= 0} for the support of f . Sometimes we view f as a 2n-dimensional vector,

e.g. write f = 0 and f = 1 to denote the trivial all-zero function and all-one function,

respectively. In this paper, a function f is Boolean if its range is {0, 1}.

For every α ∈ Fn2 , one can define a linear function (or parity function) mapping Fn2 to

{0, 1} as `α(x) = 〈α, x〉. Let χα = (−1)`α , which are commonly known as characters.

For functions f, g : Fn2 → R the inner product is defined as 〈f, g〉 := Ex∈Fn2 (f(x)g(x)).

For α = (α1, . . . , αn) ∈ Fn2 , the corresponding character function χα is defined as

χα(x1, . . . , xn) =
∏

i : αi=1(−1)xi = (−1)〈α,x〉. For α, β ∈ Fn2 , the inner product between

χα and χβ is 1 if α = β, and 0 otherwise. Therefore the characters form an orthonormal

basis for real-valued functions over Fn2 , and we can expand any f defined on Fn2 using

{χα}α∈Fn2 as a basis.
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Definition 2.2.1 (Fourier Transform). Let f : Fn2 → R. The Fourier transform f̂ : Fn2 → C

of f is defined to be f̂(α) = Ex(f(x)χα(x)). The quantity f̂(α) is called the Fourier

coefficient of f at α.

The Fourier inversion formula is given by f(x) =
∑

α∈Fn2
f̂(α)χα(x), and the Parse-

val’s identity is
∑

α∈Fn2
f̂(α)2 = Ex(f(x)2). The Fourier sparsity of f , denoted by ‖f̂‖0

or spar(f), is the number of nonzero Fourier coefficients of f .

Fourier characterization of Boolean functions

Our proof crucially relies on the following characterization of Boolean functions in terms

of their Fourier spectra. We give a proof for completeness.

Proposition 2.2.2 (Folklore). A function f : Fn2 → R defined on the hypercube is Boolean

if and only if for every α ∈ Fn2 ,

f̂(α) =
∑
β∈Fn2

f̂(β)f̂(α + β). (2.1)

Proof. This follows from the fact that f is Boolean if and only if f 2(x) − f(x) = 0

for every x. Now expand the left-hand side in terms of Fourier coefficients and notice

that, since the right-hand side is the 0-function, all of its Fourier coefficients all zero.

Comparing each pair of the corresponding Fourier coefficients on both sides gives the

desired equality.

Linear restrictions

The following is a folklore theorem regarding the effect of linear restrictions on the

Fourier spectrum of a function defined over the Boolean hypercube.

Proposition 2.2.3. Let f : Fn2 → R be a function defined on the Boolean hypercube.

Let f0, f1 : Fn−12 → R be the “sub-functions” obtained from restricting the first bit of
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the input to 0 and 1, respectively; that is, f0(y) := f(0, y) and f1(y) := f(1, y) for all

y ∈ Fn−12 . Then the Fourier spectra of f0 and f1 satisfy that, for all β ∈ Fn−12 ,

f̂0(β) = f̂(0, β) + f̂(1, β), f̂1(β) = f̂(0, β)− f̂(1, β). (2.2)

Conversely, the Fourier spectrum of f satisfies

f̂(0, β) =
1

2
(f̂0(β) + f̂1(β)), f̂(1, β) =

1

2
(f̂0(β)− f̂1(β)). (2.3)

Proof. We prove the first part in (2.3), the second part follows analogously. By the defi-

nition of Fourier transform,

f̂(0, β) =
1

2n

∑
x∈Fn2

f(x)χ(0,β)(x)

=
1

2n

∑
y∈Fn−1

2

(
f(0, y)χ(0,β)((0, y)) + f(1, y)χ(0,β)((1, y))

)

=
1

2n

 ∑
y∈Fn−1

2

f(0, y)χβ(y) +
∑

y∈Fn−1
2

f(1, y)χβ(y)


=

1

2n

∑
y∈Fn−1

2

f0(y)χβ(y) +
1

2n

∑
y∈Fn−1

2

f1(y)χβ(y)

=
1

2
(f̂0(β) + f̂1(β)).

Tensor product

The statement as well as the proof of Main Theorem requires the standard notion of tensor

products between functions.

Definition 2.2.4 (Tensor Product of Boolean Functions). Let f : Fn1
2 → {0, 1} and g :

Fn2
2 → {0, 1} be two Boolean functions on n1 and n2 variables respectively. Then the

tensor product of f and g, denoted by f ⊗ g, is a Boolean function over Fn1+n2
2 such that

f ⊗ g(x, y) = f(x) · g(y) for all x ∈ Fn1
2 and y ∈ Fn2

2 .
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It is easy to verify the following fact.

Fact 2.2.5. If h = f ⊗ g is the tensor product of two Boolean function defined above,

then the Fourier spectrum h satisfies that ĥ(α, β) = f̂(α) · ĝ(β), for every α ∈ Fn1
2 and

β ∈ Fn2
2 .

Given a Boolean function f : Fn1
2 → {0, 1}, two commonly used functions to tensor

with f are the all-one function g1 = 1 whose Fourier spectrum is ĝ1(0) = 1 and ĝ1(α) = 0

for any α 6= 0; and the “δ-function” g2 defined by g2(x) = 1 if and only if x = 0n2 , whose

Fourier spectrum is ĝ2(α) = 1/2n2 for every α. Note that tensoring f with g1 is equivalent

to setting each to the 2n2 sub-functions, defined by restricting y to different values in Fn2
2 ,

to f ; and tensoring f with g1 is to set the sub-function with y = 0 to f and set all other

sub-functions to the all-zero function.

Invertible linear transformations and linear shifts

Let L : Fn2 → Fn2 be an invertible linear transformation. If f : Fn2 → {0, 1} is a Boolean

function, then define g := Lf , the function obtained from applying the linear transfor-

mation L to f , as g(x) = f(Lx) for all x ∈ Fn2 . The Fourier spectrum of g is given by

ĝ(α) = f̂((LT )−1α), where LT stands for the transpose of L viewed as an n× n matrix.

One can check that the set of Fourier coefficients as well as the property of being the

indicator function of an (affine) linear subspace are invariant under invertible linear trans-

formations. If a ∈ Fn2 is a non-zero vector, and let h(x) := f(x+ a) be the linear shift of

f , then the Fourier spectrum of h is given by ĥ(α) = χa(α)f̂(α) for every α ∈ Fn2 .

2.2.2 Additive combinatorics

Additive combinatorics is the sub-field of mathematics concerned with subsets of integers

or more generally abelian groups, and studies the interplay between the structural prop-
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erties of a subset and its combinatorial estimates associated with arithmetic operations.

Recently additive combinatorics has found many applications in computer science, see

the excellent exposition [Lov17] and the textbook [TV06] for comprehensive treatments.

Throughout this chapter, G is the abelian group Fn2 for some positive integer n and

the underlying field is F2. If A = {a1, . . . , am} ⊂ G, then span(A) stands for the linear

span of A: span(A) = {
∑

i∈S ai | S ⊆ [m]}, where summation over the empty set is

understood to be the 0 element by convention. For any x ∈ G and A ⊂ G, we write x+A

to denote the set {x + a | a ∈ A}. If A and B are two subsets of G, then A + B denotes

the sumset {a+ b | a ∈ A and b ∈ B}. Similarly, A− B := {a− b | a ∈ A and b ∈ B},

although A − B is always the same as A + B in this chapter as the underlying ambient

group is Fn2 . IfA = B then we write 2A := A+A and in general write kA := A+ · · ·+ A︸ ︷︷ ︸
k times

for integer k ≥ 1.

The following Lemma of Laba is useful for our proofs.

Lemma 2.2.6 ([Łab01], Theorem 2.5). LetG be an abelian group andA ⊂ G be a subset

of G such that |A− A| < 3
2
|A|. Then A− A is a subgroup of G.

2.3 Proof of the Main Lemma

First recall our Main Lemma states the following.

Lemma 2.1.3. Let k ≥ 5 and n ≥ k be integers. Let f : Fn2 → {0, 1} be a Boolean

function such that f̂(0) = 1/2k−1 and any other Fourier coefficients are either zero or

equal to ± 1
2k

, then f is the indicator function of a disjoint union of two dimension n− k

affine subspaces.

In Section 2.6, we compute the Fourier spectrum of a Boolean function that is sup-

ported on two disjoint affine subspaces such that the two affine subspaces are of the same
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dimension and their Fourier spectra have minimum intersection. Our strategy for the

proof of the Main Lemma is to show that if the Fourier coefficients of a Boolean function

satisfy the condition prescribed in the Main Lemma, then its Fourier spectrum matches

the one we show in Section 2.6.

Let us define

A = {α ∈ Fn2 | f̂(α) =
1

2k
}

and

B = {β ∈ Fn2 | f̂(β) = − 1

2k
}.

Without loss of generality3, from now on, we may assume f(0) = 1. We begin with

calculating the cardinalities of sets A and B.

Claim 2.3.1. For any k ≥ 1 and n ≥ k, we have |A| = 3t and |B| = t, where t =

2k−1 − 1.

Proof. Since f̂(0) = 1/2k−1, by Parseval’s identity f̂(0) = 1/2k−1 =
∑

α∈Fn2
f̂ 2(α), we

have |A|+ |B| = 2k+1 − 4.

On the other hand,

1 = f(0) =
∑
α∈Fn2

f̂(α)χα(0) =
1

2k−1
+
∑
α∈A

1

2k
+
∑
β∈B

(− 1

2k
),

which gives |A|−|B| = 2k−2. Therefore we have |A| = 3(2k−1−1) and |B| = 2k−1−1.

For convenience, we let A = {α1, . . . , α3t} and B = {β1, . . . , βt} in the following.

3This is because if f(0) = 0, then let a ∈ Fn2 be any vector such that f(a) = 1. We can apply
a linear shift a to f to get a new Boolean function, h(x) = f(x+a) for every x, so that h(0) = 1.
Note that the conclusions in our Main Theorem are invariant under linear shifts. Moreover, since
ĥ(α) = χa(α)f̂(α) for every α ∈ Fn2 , we have ĥ(0) = 1/2k−1 and |ĥ(α)| = |f̂(α)| for any other
nonzero α. Therefore, the assumptions apply to h as well.
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2.3.1 Some additive properties of sets A and B

We now study the additive properties of sets A and B. Note that the Fourier coefficients

of f are non-zero only at 0 and in sets A and B; moreover, the Fourier coefficients are

uniform for points in A or B. Therefore, by Proposition 2.2.2, we expect that there are

nice additive structures within A and B.

Definition 2.3.2. We call (α, β, α+ β) a triangle if α, β and α+ β are all in the support

of f̂ ; that is α, β, α + β ∈ A ∪B ∪ {0}.

Lemma 2.3.3. For any βi ∈ B, there are exactly t triangles passing through βi; namely,

the t triangles are (βi, βi,0) and {(βi, βj, βi+βj)}tj=1,j 6=i. In the language of set addition,

we have 2B ⊆ A ∪ {0}.

Proof. For any βi ∈ B, by Proposition 2.2.2,

f̂(βi) = − 1

2k
=
∑
γ∈Fn2

f̂(γ)f̂(βi + γ)

= 2f̂(0)f̂(βi) +
t∑

j=1
j 6=i

f̂(βj)f̂(βi + βj) +
3t∑
`=1

f̂(α`)f̂(βi + α`)

≥ 2 · 1

2k−1
· (− 1

2k
) + 2(t− 1)(− 1

2k
)(

1

2k
) 4

= − 1

2k
,

where the inequality in the second last line becomes equality if and only if the following

two conditions hold: 1) for every 1 ≤ j ≤ t, j 6= i, βi + βj ∈ A; and 2) there is no

triangle of the form (βi, αj, α`). Hence the lemma follows.

Corollary 2.3.4. The set B is a sum-free set; namely, for any three elements β1, β2, β3 ∈

B, β1 + β2 6= β3. Equivalently, 2B ∩B = ∅.
4There is a factor 2 in the second summation because if βi + βj ∈ A, then the triangle

(βi, βj , βi + βj) appears twice in the summation
∑

γ∈Fn2
f̂(γ)f̂(βi + γ): once with γ = βj and

the other with γ = βi + βj .
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Proof. This follows directly from Lemma 2.3.3 and the fact sets A and B are disjoint.

Corollary 2.3.5. We have 2B ∩ 3B = ∅.

Proof. Suppose not, then there exist β1, β2, β3, β4, β5 inB such that β1+β2 = β3+β4+β5.

These five elements must be distinct as otherwise they would give rise to a triangle in B.

But then we have a (α1, α2, β5) triangle, where α1 := β1 + β2 and α2 := β3 + β4,

contradicting to Lemma 2.3.3.

Let us define

R = 2B ∩ A = 2B \ {0}

and

L = A \R.

Note that L and R are disjoint and A = L ∪R. For any ρ ∈ R, let

N(ρ) = {βi ∈ B | ∃βj ∈ B s.t. ρ = βi + βj }

be the set of points in B which has a triangle passing through ρ. Define a set Γ ⊂ Fn2 as

Γ = {γ = ρ+ β | ρ ∈ R, β ∈ B and β /∈ N(ρ)}.

Observe that Γ is nonempty: since for every ρ ∈ R, all its β-neighbors can be paired

together, so |N(ρ)| is an even number, but |B| = 2k−1 − 1 is odd.

Claim 2.3.6. We have Γ = 3B \B.

Proof. On one hand, by the definition of set Γ, Γ ⊆ 3B; since R and B are disjoint

and 0 /∈ R, we have Γ ∩ B = ∅, and hence Γ ⊆ 3B \ B. On the other hand, let γ

be any element in 3B; that is γ = β1 + β2 + β3, where β1, β2, β3 ∈ B. When will γ
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actually be in B? This happens only if any two of these three elements are identical, then

γ = βi for some i ∈ {1, 2, 3}, thus γ ∈ B. Moreover, assume that these three elements

are distinct and suppose γ ∈ B, i.e. γ = βj for some j > 3. Let ρ := β1 + β2, then

ρ = β3 + γ = β3 + βj; that is γ = ρ + β3 and β3 ∈ N(ρ). Therefore, if γ ∈ 3B \ B,

then we must have β3 /∈ N(ρ) and consequently γ ∈ Γ. It follows that 3B \B ⊆ Γ. This

completes the proof of the claim.

It is easy to see that Γ is disjoint from the Fourier support of f .

Claim 2.3.7. For every element γ ∈ Γ, we have f̂(γ) = 0.

Proof. Recall that, the support of f̂ is A ∪ B ∪ {0}. Suppose f̂(γ) 6= 0, that is γ ∈

supp(f̂). Since A = L∪R, from Claim 2.3.6, we know that Γ∩B = ∅; from Claim 2.3.6

and Corollary 2.3.5, we know that Γ ∩ 2B = Γ ∩ (R ∪ {0}) = ∅. So there is only one

possibility left, which is γ ∈ L. However, if this were the case, because γ = ρ + β with

ρ ∈ R, it would give rise to a (γ, ρ, β)-triangle with γ, ρ ∈ A, contradicting Lemma 2.3.3,

so γ is not in L, hence f̂(γ) = 0.

2.3.2 Even-Zohar’s tight bound on F (K)

Let G be an abelian group and A ⊂ G be a subset. The fundamental Freiman theo-

rem [Fre73] in additive combinatorics states that if G is Z and |A + A| ≤ K|A| for

some constant K, then there exist functions d(K) and `(K) such that A is contained

in a d(K)-dimensional arithmetic progression of length at most `(K)|A|. The ratio

σ[A] := |A + A|/|A| is commonly known as the doubling constant of set A. Hence

Freiman theorem asserts that if a set of integers has small doubling constant, then the set

is well-structured. Ruzsa [Ruz99] established an analog of Freiman’s theorem for finite

abelian groups with torsion r. Specifically, he proved that any subset A with doubling
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constant K is contained in a subgroup of G of size at most K2rK
4|A|. The question for

groups Fn2 was first studied by Green and Ruzsa [GR06] and the bound was later im-

proved by Sanders [San08]. An asymptotically tight bound was first proved in [GT09]

and [Kon08].

For a subset A ⊂ Fn2 , let 〈A〉 denote the affine span of A; namely, the smallest affine

subspace that contains A. If σ[A] = K, then let F (K) := maxA:σ[A]=K |〈A〉|/|A| denote

the maximum relative size of the affine span of A. Even-Zohar [EZ12] gave the tight

bound of F (K) for all values of doubling constant K.

Theorem 2.3.8 ([EZ12], Theorem 2). Let A be a subset of Fn2 with doubling constant K,

i.e. |2A|/|A| ≤ K. If s is the unique positive integer satisfying the inequalities(
s
2

)
+ s+ 1

s+ 1
≤ K <

(
s+1
2

)
+ s+ 2

s+ 2
, (2.4)

then |〈A〉|/|A| ≤ F (K), where F (K) is given by

F (K) =


2s

(s2)+s+1
·K if (s2)+s+1

s+1
≤ K < s2+s+1

2s
,

2s+1

s2+s+1
·K if s

2+s+1
2s
≤ K <

(s+1
2 )+s+2

s+2
.

(2.5)

2.3.3 Characterizing 2B and span(B)

Note that the doubling constant of set B satisfies that

σ[B] =
|R|+ 1

|B|
≤ |A|+ 1

|B|
= 3 +

1

t
, (2.6)

and recall that t = 2k−1 − 1. Therefore, when k ≥ 5, K = σ[B] ≤ 46
15

. Plugging this

K into (2.4) gives that s ≤ 5 and consequently F (K) ≤ 2K < 7. That is, we have

|〈B〉| < 7|B|.

The most important step in our proof is establishing the following lemma, which

almost completely characterizes the structure of set B.
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Lemma 2.3.9. If k ≥ 5, then | span(B)| = 2k = 2(|B| + 1) and 2B is a subspace of

dimension k − 1.

We prove Lemma 2.3.9 in the following two subsections, distinguishing between the

case when 〈B〉 is an affine subspace and the case when 〈B〉 is a subspace.

If 〈B〉 is an affine subspace

In the case that 〈B〉 is an affine subspace, let 〈B〉 = a+H be the affine subspace, where

H is a subspace of Fn2 , a ∈ H⊥ and a 6= 0. Therefore span(B) = H ∪ (a + H). Note

that we now have 2`B ⊆ H and (2`− 1)B ⊆ a + H for every integer ` ≥ 1. Moreover,

| span(B)| = 2|〈B〉| < 14|B|. Since span(B) is a subspace and |B| = 2k−1 − 1, so

there are only three possibilities: | span(B)| = 8(|B| + 1), | span(B)| = 4(|B| + 1)

and | span(B)| = 2(|B| + 1). In the following, we are going to eliminate the first two

possibilities.

Claim 2.3.10. Set L is nonempty.

Proof. Suppose not, then 2B = A ∪ {0} ⊂ H . Recall that by Claim 2.3.6, Γ = 3B \ B,

so Γ ⊆ a + H and is disjoint from set A. It follows that for any γ ∈ Γ, f̂(γ) = 0 (or

directly from Claim 2.3.7). However, applying Proposition 2.2.2 to f̂(γ), we see that by

the definition of set Γ, γ = ρ + β with ρ ∈ A, β ∈ B and β /∈ N(ρ). Hence there is at

least one negative term contribution on the right-hand side in (2.1) for f̂(γ), but since both

2B and 2A are disjoint from Γ, there is no positive term on the right-hand side in (2.1), a

contradiction.

We discuss the following two possibilities separately.
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The case when |H| = 4(|B| + 1). First note that if this were the case, then F (K) =

|〈B〉|/|B| = 4(1 + 1
|B|). By Theorem 2.3.8, the doubling constant of B is at least K =

|2B|/|B| > 2.5, or |2B| > 2.5|B|. Therefore |L| ≤ 0.5|B|. On the other hand, 4B =

2B + 2B and 4B ⊆ H so σ[2B] = |4B|/|2B| < 4+ 1
16

2.5
< 7/4. Then by Theorem 2.3.8

again, |4B| = |〈2B〉|, that is 4B = H .

We next claim that L ⊆ H . To see this, let λ be an arbitrary element in L; applying

Proposition 2.2.2 to f̂(λ) gives

1

2k
= f̂(λ) = 2f̂(λ)f̂(0) +

∑
λ′∈L

f̂(λ′)f̂(λ+ λ′) + other terms.

The first term and the second summation can contribute at most 1
22k

(2|L|+ 2) ≤ |B|+2
22k

<

1
2k

. Therefore, the “other terms” on the right-hand side must contain terms of the form

f̂(α1)f̂(α2), where α1 and α2 are two distinct points in A and λ = α1 + α2. That is

λ ∈ 2B + 2B, hence it follows that L ⊆ 4B = H .

Let D := H \ (2B ∪ L). We have |D| = 4(|B| + 1)− 3|B| − 1 = |B| + 3 > 0. Let

δ be any point in D. First, since δ /∈ 2B ∪ B, f̂(δ) = 0. Second, since δ ∈ H , there is

no negative term in the right-hand side of 0 = f̂(δ) =
∑

γ∈Fn2
f̂(γ)f̂(δ + γ), because if

γ ∈ B, then δ + γ ∈ a + H but there is no positive Fourier coefficient in a + H (since

L ⊂ H). On the other hand, consider the set {δ + α | α ∈ 2B ∪ L}. Since |D| < |H|/2,

this set has non-empty intersection with 2B ∪ L. Therefore, there are positive terms in∑
γ∈Fn2

f̂(γ)f̂(δ + γ), this contradicts the fact that f̂(δ) = 0.

The case when |H| = 2(|B|+ 1). This case is similar to the previous one. First, if this

were the case, then F (K) = |〈B〉|/|B| = 2(1 + 1
|B|). It follows that, by Theorem 2.3.8,

the doubling constant of B is at least K = |2B|/|B| > 7/4, and hence |4B|/|2B| ≤

|H|/|2B| < 3/2, and by Theorem 2.3.8 again 4B = H . The rest is identical to the case

when |H| = 4(|B|+ 1).
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Proof. [Proof of Lemma 2.3.9 when 〈B〉 is an affine subspace] Now that the only possi-

bility left is | span(B)| = 2 · (|B|+ 1), and because 〈B〉 is an affine subspace, it follows

that 2B ⊆ H and hence |2B| ≤ |B| + 1. Applying Laba’s lemma, Lemma 2.2.6, to set

B gives that 2B is a subspace. Since |2B| ≥ |B|, it follows that 2B = H , a dimension

k − 1 subspace.

If 〈B〉 is a subspace

If the affine span 〈B〉 is a subspace, and since |〈B〉| < 7|B|, then we either have |〈B〉| =

4(|B| + 1) or |〈B〉| = 2(|B| + 1) (because B ∩ 2B = ∅ and |2B| ≥ |B|, |〈B〉| ≥ 2|B|).

In the following we exclude the first case.

Recall that R = 2B \ {0} is the set of non-zero points in the Fourier support of f that

can be written as a sum of two β-points in B. Let R = {λ1, . . . , λm}, where m is the

cardinality of R.

Claim 2.3.11. If 〈B〉 is a subspace, then m ≤ 2.5t.

Proof. For the sake of contradiction, suppose that m > 2.5t. For every λi ∈ R, let di

be the number of βj’s that form a triangle with λi. Then we have
∑m

i=1 di = t(t − 1)

and di ≥ 2 for every 1 ≤ i ≤ m. By a standard averaging argument, there is some λi

with di ≤ 0.4t. By the definition of set Γ, it follows that |Γ| ≥ t − di = 0.6t. Recall

that Γ = 3B \ B so Γ ⊂ 〈B〉 = span(B), and Γ is disjoint from either 2B or B, thus

|〈B〉| ≥ |2B| + |B| + |Γ| > 4.1t, contradicting our assumption that |〈B〉| = 4(|B| + 1).

Proof. [Proof of Lemma 2.3.9 when 〈B〉 is a subspace] Now sincem ≤ 2.5t, the doubling

constant of B is at most |2B|/|B| ≤ 2.5 + 1/|B| < 21/8, then by Theorem 2.3.8,

|〈B〉|/|B| < 42/11 < 4, therefore we must have |〈B〉| = 2(|B| + 1) = 2k. Once again,

applying Laba’s lemma to set B shows that 2B is a subspace of dimension k − 1.
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2.3.4 Completing the proof of the Main Lemma

By Lemma 2.3.9, 2B is a dimension k − 1 subspace; without loss of generality, we may

assume that

H = 2B = span(e1, . . . , ek−1). (2.7)

Since | span(B)| = 2k = 2|2B|, and B∩2B = ∅, B is an affine shift of H with one point

δ missing. Since δ /∈ H , so without loss of generality, we may assume ek is the missing

point. That is

B = (ek + span(e1, . . . , ek−1)) \ {ek} and (2.8)

R = 2B \ {0} = span(e1, . . . , ek−1) \ {0} = ek +B. (2.9)

Now by Claim 2.3.6, we have Γ = {ek} and consequently f̂(ek) = 0. Our last task is

to determine the structure of set L. Recall that A = R ∪ L and |A| = 3t, and because we

now have R = 2B \ {0}, therefore |L| = 2t = 2k − 2.

Claim 2.3.12. For any λ ∈ L, ek + λ ∈ L.

Proof. Applying Proposition 2.2.2 to the Fourier coefficient of f at ek and noting that

R = ek +B, we have

f̂(ek) = 0 =
∑
γ∈Fn2

f̂(γ)f̂(ek + γ)

= 2
∑
ρ∈R

f̂(ρ)f̂(ek + ρ) +
∑
λ∈L

f̂(λ)f̂(ek + λ)

≤ 2t · (− 1

22k
) + 2t · 1

22k

= 0,

where equality holds in the second last line only if for every λ ∈ L, f̂(ek +λ) = 1
2k

. That

is, ek + λ ∈ A(= L ∪ R). As each element in R has already been taken into account in

the first summation in the second line, therefore we necessarily have ek + λ ∈ L.
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Claim 2.3.13. For any λ ∈ L and ρ ∈ R, f̂(λ+ ρ) = 0.

Proof. Applying Proposition 2.2.2 to f̂(ρ), where ρ is an arbitrary element in R, we have

f̂(ρ) =
1

2k

= 2 · f̂(0)f̂(ρ) +
∑
β∈B

f̂(β)f̂(ρ+ β) +
∑

ρ′∈R,ρ′ 6=ρ

f̂(ρ′)f̂(ρ+ ρ′) +
∑
λ∈L

f̂(λ)f̂(λ+ ρ)

= 2 · 2

2k
· 1

2k
+ (t− 1) · (− 1

2k
) · (− 1

2k
) + (t− 1) · ( 1

2k
) · ( 1

2k
) +

∑
λ∈L

1

2k
· f̂(λ+ ρ)

≥ 1

2k
, (as λ+ ρ /∈ B, therefore f̂(λ+ ρ) ≥ 0)

where we have a factor of (t − 1) in the second line because ρ + ek ∈ B and equality

holds in the last line only if f̂(λ+ ρ) = 0 for every λ ∈ L and every ρ ∈ R.

Claim 2.3.14. For any λ, λ′ ∈ L, λ+ λ′ ∈ L except that λ+ λ′ = 0 or ek.

Proof. Applying Proposition 2.2.2 to f̂(λ), where λ is an arbitrary element in L, we have

f̂(λ) =
1

2k

= 2 · f̂(0)f̂(λ) +
∑
β∈B

f̂(β)f̂(λ+ β) +
∑
ρ∈R

f̂(ρ)f̂(λ+ ρ) +
∑

λ′∈L,λ′+λ/∈{0,ek}

f̂(λ′)f̂(λ+ λ′)

= 2 · 2

2k
· 1

2k
+ 0 + 0 +

∑
λ′∈L,λ′+λ/∈{0,ek}

1

2k
· f̂(λ+ λ′) 5

≤ 4

22k
+ (2t− 2) · ( 1

2k
) · ( 1

2k
)

=
1

2k
,

where equality holds in the second last line only if λ + λ′ ∈ L for every λ′ ∈ L, except

when λ′ is equal to λ or λ+ ek.

5The second term vanishes because the only triangles passing through a point βi ∈ B are of
the type (βi, βj , ρ`) where ρ` ∈ R; the third term vanishes because of Claim 2.3.13.
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Put Claim 2.3.12, Claim 2.3.13 and Claim 2.3.14 together, and since |L| = 2k −

2 we conclude that H ′ := L ∪ {0, ek} is a subspace of dimension k. Moreover, as

span(B) = span(e1, . . . , ek) is a subspace of dimension k, and L ∩ span(B) = ∅, we

thus have H ′ ∩ span(B) = {0, ek}. Therefore, without loss of generality, we may take

H ′ = span(ek, . . . , e2k−1) and consequently finally have

L = span(ek, . . . , e2k−1) \ {0, ek}. (2.10)

It is straightforward to check6 that the Fourier spectrum calculated in Section 2.6 for a

disjoint union of two dimension n−k affine subspaces is identical to the Fourier spectrum

of f , which is completely specified by sets in (2.8), (2.9) and (2.10). Therefore the proof

of the Main Lemma is complete.

2.4 Dealing with small values of k

When k = 2 or k = 3, note that since Claim 2.3.1 holds for every k ≥ 2, this will enable

us to prove the same results as Main Lemma by slightly different arguments. That is,

when k = 2 or k = 3, support of f is also a disjoint union of two dimension n− k affine

subspaces. However, when k = 4 one can not prove the same characterization as Main

Lemma. In fact, there are two possibilities: one is that f is still the indicator function

of two disjoint dimension n − 4 affine subspaces; the other is that support of f are four

disjoint n−5 affine subspaces. Furthermore, we show that this is the only counterexample

to Main Lemma for all k. Now we give the precise statements for small values of k and

their proofs.

Lemma 2.4.1. Let 2 ≤ k ≤ 4 and n ≥ k be integers. Let f : Fn2 → {0, 1} be a Boolean

function such that f̂(0) = 1/2k−1 and any other Fourier coefficients are either zero or

6The second line in (2.11) corresponds to set B, third line in (2.11) corresponds to set R, and
the fourth and fifth lines of (2.11) correspond to set L.
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equal to ± 1
2k

. If k = 2 or k = 3, then f is the indicator function of a disjoint union of

two dimension n− k affine subspaces; If k = 4, then f is either the indicator function of

a disjoint union of two dimension n − k affine subspaces, or the indicator function of a

disjoint union of four dimension n− k − 1 affine subspaces.

2.4.1 Proof of the case k = 2

In this case, |A| = 3 and |B| = 1. For convenience, suppose that f̂(0) =
1

2
, f̂(β) = −1

4

and f̂(α1) = f̂(α2) = f̂(α3) =
1

4
, where β, α1, α2, α3 are four distinct non-zero vectors.

We claim that there exists an αi, 1 ≤ i ≤ 3, such that f̂(β + αi) = 0. To see this,

suppose f̂(β + αi) 6= 0 for every 1 ≤ i ≤ 3. Because the four vectors are distinct,

β+αi 6= 0; furthermore, since αi 6= 0, so β+αi 6= β. It follows that β+ {α1, α2, α3} =

{α1, α2, α3}; that is, adding β toA permutes the three elements in the set. But now adding

these three elements together gives 3β1 +
∑
αi =

∑
αi, a contradiction since β1 6= 0.

Without loss of generality, assume f̂(β + α1) = 0 and denote β + α1 by γ. Now

applying Proposition 2.2.2 to γ gives:

f̂(γ) = 0 =
∑
α

f̂(α)f̂(α + γ)

= 2 · f̂(β1)f̂(α1) + f̂(α2)f̂(α2 + γ) + f̂(α3)f̂(α3 + γ)

= 2 · (−1

4
) · 1

4
+ f̂(α2)f̂(α2 + γ) + f̂(α3)f̂(α3 + γ)

≤ 0,

where equality holds in the last line only if γ = α2 + α3 so that

f̂(α2)f̂(α2 + γ) = f̂(α3)f̂(α3 + γ) = f̂(α2)f̂(α3) =
1

4
· 1

4
.

After taking an invertible linear transformation if necessary, we may take α1 = e1, β =

e1 + e2, α2 = e3 and α3 = e2 + e3, then it is easy to verify that this is identical to the

Fourier spectrum in (2.11) for the case of k = 2.
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2.4.2 Proof of the case k = 3

In this case, |A| = 9 and |B| = 3. Denote set B by {β1, β2, β3}. Then by Corollary 2.3.4,

β1 + β2 + β3 6= 0, therefore R = {β1 + β2, β1 + β3, β2 + β3}, and Γ = {β1 + β2 + β3}.

Hence Lemma 2.3.9 is established and the rest of the proof is identical to that of the Main

Lemma in Section 2.3.4 for the general k ≥ 5 case.

2.4.3 Proof of the case k = 4

First of all, it is easy to see that when k = 4, the indicator function of a disjoint union of

2 affine subspaces of dimension n − k = n − 4 is still a Boolean function with desired

Fourier spectrum, for every n ≥ 4. Next we construct another Boolean function, which

demonstrates that Main Lemma is no longer valid for k = 4.

Construction 2.4.2. Let G = F6
2 with e1, · · · , e6 as the standard basis and let A,B ⊂ G

be two disjoint subsets given as follows:

• B = {ei | 1 ≤ i ≤ 6} ∪ {
∑6

i=1 ei};

• A = {ei + ej | 1 ≤ i < j ≤ 6} ∪ {
∑

i∈S ei | S ⊂ [6], |S| = 5}.

Clearly A = 2B \ {0}, |B| = 24−1 − 1 = 7 and |A| =
(
7
2

)
= 3|B|, which satisfy the

size requirements for A and B for k = 4. To see that sets A and B in Construction 2.4.2

satisfy all the additive properties imposed by Proposition 2.2.2, one can explicitly com-

pute a “core” function fCE : F6
2 → R with A∪B∪{0} being its Fourier support to verify

that f is indeed a Boolean function and supp(fCE) = {0} ∪ {
∑

i∈S ei | S ⊂ [6], |S| =

5} ∪ {
∑6

i=1 ei}. That is, f is equal to 1 on vectors of weights 0, 5 and 6, and is equal to

0 on all other vectors. Note that supp(fCE) consists of 8 distinct vectors and is a disjoint

union of four affine subspaces of dimension n − 4 − 1 = 1 each. Moreover, it can be
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checked that supp(fCE) is not the union of any two disjoint affine subspaces of dimension

2.

Our next claim shows that, up to an invertible linear transformation, Construction 2.4.2

is essentially the only counterexample to the Main Lemma.

Claim 2.4.3. When k = 4, either f is the indicator function of a disjoint union of two

affine subspaces of dimension n − k, or the Fourier spectrum of f is given by Construc-

tion 2.4.2 under some invertible linear transformation, and consequently f is the indicator

function of a disjoint union of four affine subspaces of dimension n− k − 1.

Proof. When k = 4, we have |B| = 24−1 − 1 = 7. By inequality (2.6), σ[B] =

|2B|/|B| ≤ 22/7. But if |2B| ≤ 21, then plugging K = σ[B] ≤ 3 into (2.4) gives that

s ≤ 5 and consequently F (K) ≤ 2K < 7. That is, we would have |〈B〉| < 7|B| = 49.

Then following the same argument, we would be able to establish Lemma 2.3.9 for the

case k = 4 as well, i.e. to have | span(B)| = 2k = 2(|B| + 1) and 2B is a subspace

of dimension k − 1, thereby recovering the regular configuration of f being the indicator

function of two disjoint affine subspaces of dimension n− k.

Therefore, from now on, we assume that |2B| = 22. On the other hand, |A| = 3|B| =

21; combining this with Lemma 2.3.3 (i.e. 2B ⊆ A∪ {0}), we must have A = 2B \ {0}.

By the upper bound on |〈B〉| given in Theorem 2.3.8, we have |〈B〉| ≤ 26 = 64. But

if |〈B〉| < 64 (hence |〈B〉| = 32 or |〈B〉| = 16), then the proof of Lemma 2.3.9 would

follow again.

Hence, the counter-example is possible only when the dimension of span(B) is at

least 6. Without loss of generality, we may assume B = {ei | 1 ≤ i ≤ 6} ∪ {β}. We will

determine vector β next.

If β /∈ span(e1, · · · , e6), then without loss of generality, let β = e7. Now A = 2B \

{0} = {ei+ej | 1 ≤ i < j ≤ 7}. But applying Proposition 2.2.2 to the vector e1+e2+e3
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gives that f̂(e1 + e2 + e3) = −6/22k, contradiction to the fact that f̂(e1 + e2 + e3) = 0

because e1 + e2 + e3 /∈ A ∪B. It follows that β ∈ span(e1, · · · , e6).

Note that every weight-2 vector ei + ej , 1 ≤ i < j ≤ 6, is in A. On the other hand,

since |A| =
(|B|

2

)
, it follows that for every αk ∈ A, there exist a unique pair βi, βj ∈ B

such that βi+βj = αk. Combining these two facts, we conclude that none of the weight-3

vector of the form ei + ej + ek is in B, for every 1 ≤ i < j < k ≤ 6, as it would gives

two ways to obtain vectors such as ei + ej by adding two vectors from B, thus making

|A| <
(|B|

2

)
. By Claim 2.3.5, none of the weight-4 vectors can be in B either, which

leaves only the possibilities of weight-5 or weight-6 vector for β.

If β is a weight-5 vector, without loss of generality, we may assume β =
∑5

i=1 ei.

Then B would contain vectors of weight-1 and weight-5 only, consequently A would

contain vectors of weight-2, weight-4 and weight-6 only. Now applying Proposition 2.2.2

to the vector e1 + e2 + e3 yields f̂(e1 + e2 + e3) < 0, contradicting to the fact that

f̂(e1 + e2 + e3) = 0 as e1 + e2 + e3 /∈ A ∪ B. Therefore, we have β =
∑6

i=1 ei,

completing the proof of the claim.

2.5 Proof of the Main Theorem

Clearly, if f̂(0) = 1
2k

, then, because |f̂(α)| ≤ f̂(0) for every α, all non-zero Fourier

coefficients of f have absolute value 1
2k

. Therefore, Rothschild and van Lint Theorem

applies and f is the indicator function of an affine subspace of dimension n−k. Therefore,

from now on, we assume f̂(0) = 1
2k−1 .

The first step in our proof of the Main Theorem is to follow a similar procedure em-

ployed in the proof of Theorem 2.1.1. That is, whenever possible, we reduce the values

of n and k simultaneously. This proceeds as follows. Suppose there exists a non-zero

α with f̂(α) = 1
2k−1 or − 1

2k−1 . Without loss of generality, assume that f̂(α) = 1
2k−1 .
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Apply an invertible linear transform L that maps α to e1 and let g := Lf . Now we have

ĝ(0) = ĝ(e1) = 1
2k−1 . Apply the restriction on the first bit of the input to get sub-functions

g0 and g1. Then by (2.2), ĝ1(0) = ĝ(0) − ĝ(e1) = 0, which implies that g1 ≡ 0. This

implies that supp(f) is completely contained in the support of g0 and moreover, by (2.3),

ĝ0(β) = 2f̂(0, β) for every β ∈ Fn−12 . In other words, g0 is a Boolean function over

Fn−12 and |ĝ(β)| is equal to either zero, or 1
2k−1 , or 1

2k−2 . That is, by performing a linear

restriction, we reduce both the dimension n and the parameter k by one, so that the Main

Theorem holds for Boolean functions over Fn2 as long as it holds for Boolean functions

over Fn−12 .

When we arrive at a point that such a linear restriction is no longer possible; equiva-

lently, f is irreducible, then f̂(0) is the only Fourier coefficient whose absolute value is

1
2k−1 . Therefore, the Main Lemma for k ≥ 5 or Lemma 2.4.1 for 2 ≤ k ≤ 4 applies.

2.6 The Fourier spectrum of disjoint union of two affine subspaces

In this section we calculate the Fourier spectrum of a Boolean function whose support is

the union of two disjoint affine subspaces satisfying certain properties. In particular, the

two affine subspaces are of the same dimension and their Fourier spectra have minimum

intersection.

Let n ≥ 1 and 0 ≤ k < n be integers. If V is a linear subspace in Fn2 of dimension n−

k and a ∈ V ⊥, where V ⊥ denotes the linear subspace that is the orthogonal complement

of V , then it is well known that the Fourier spectrum of the indicator function of affine

subspace a+ V is (see e.g. [O’D14]):

1̂a+V (α) =


1
2k
χα(a) if α ∈ V ⊥,

0 otherwise.
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Let f : Fn2 → {0, 1} be a Boolean function whose support is the union of two disjoint

affine subspaces of dimension n−k. By a shift of the origin if necessary, we may assume

that one of the two affine subspaces is a linear subspace. Therefore f = 1a+V1 + 1V2 ,

where V1 and V2 are two linear subspaces of dimension n− k in Fn2 and a ∈ V ⊥1 . In order

for a+V1 and V2 to be disjoint, a necessary condition is that their orthogonal complement

subspaces have non-trivial intersection, V ⊥1 ∩ V ⊥2 6= {0}. The special configuration we

are interested in is when this intersection is minimal, that is when |V ⊥1 ∩ V ⊥2 | = 2.

To this end, without loss of generality, we let V ⊥1 = span(e1, . . . , ek) and V ⊥2 =

span(ek, . . . , e2k−1) so that V ⊥1 ∩ V ⊥2 = {0, ek}. Then we necessarily have7 〈ek, a〉 =

1. Therefore for simplicity (and also without loss of generality) we may take a = ek.

Therefore the Fourier spectrum of f is

f̂(α) = 1̂a+V1(α) + 1̂V2(α) =



1
2k−1 if α = 0,

− 1
2k

if α ∈ ek + (span(e1, . . . , ek−1) \ {0}),

1
2k

if α ∈ span(e1, . . . , ek−1) \ {0},

1
2k

if α ∈ ek + (span(ek+1, . . . , e2k−1) \ {0}),

1
2k

if α ∈ span(ek+1, . . . , e2k−1) \ {0},

0 otherwise.

(2.11)
7This is because, the affine subspace a + V1 can be expressed as the solutions to a system of

linear equations a + V1 = {x ∈ Fn2 | 〈x, ei〉 = ai for every 1 ≤ i ≤ k}, where {e1, . . . , ek} is
an orthonormal basis for V ⊥1 , and {ai := 〈ei, a〉}ki=1 are the components under this basis. Now if
|V ⊥1 ∩ V ⊥2 | = 2, and because the intersection of the two orthogonal complement subspaces is a
subspace, we may take V ⊥1 ∩ V ⊥2 = {0, ek} for convenience. On the other hand, V2 = {x ∈ Fn2 |
〈x, ei〉 = 0 for every k ≤ i ≤ 2k − 1}. a+V1 and V2 are disjoint if and only if there is no solution
to the two systems of linear equations combined together, which is equivalent to the condition that
〈ek, a〉 = 1.
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2.7 Concluding Remarks and Open Problems

In this chapter, we extend a classical result of Rothschild and van Lint to give a com-

plete characterization of Boolean functions whose Fourier coefficients take values only in

the set {−2/2k,−1/2k, 0, 1/2k, 2/2k}. Our work may be regarded as a first step toward

understanding the structures of Boolean functions of granularity k. A major motiva-

tion for such studies is to prove a polynomial upper bound on the kill number for any

k-granular Boolean function, thus resolving the Log-rank XOR conjecture. Another in-

teresting question is to find other sets of Fourier coefficients which uniquely or almost

uniquely determine the structures of their corresponding Boolean functions.
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CHAPTER 3

STATISTICS OF SPARSITY OF REAL POLYNOMIAL REPRESENTATION

3.1 Introduction

In the previous chapter, we focused our work on Fourier representation of Boolean func-

tions and the structure of the Fourier support. In this chapter, we want to learn more about

the sparsity of Boolean functions in real polynomial form.

There is a long history of investigating the relation between polynomials and complex-

ity bounds, from communication complexity to circuit complexity. In 1969, Minski and

Papert [MP88] started to use real polynomial representations to prove computational com-

plexity properties, together with works by Razborov [Raz87] and Smolensky [Smo87].

In 1992, Nisan and Szegedy [NS94] built connections between degrees, decision tree

complexity and sensitivities of Boolean functions. Nisan and Szegedy [NS94] and Pa-

turi’s [Pat92] work gave new results related to polynomials that approximate function f .

The work from Beigel [Bei93] showed the relations between real polynomial represen-

tations and Fourier transform representations. More details can be found in the survey

paper from Buhrman and de Wolf [BdW02].

Though, function analysis has drawn lots of attention in the last decades, but under-

standing of arbitrary functions still needs more work. A recent breakthrough from Knop

et al. [KLMY20], is also based on real polynomial representation, reduced the originally

exponential gap for log-rank conjecture of AND-functions to only log n. Their work built

a strong connection between sparsity, monotone block sensitivity and AND-decision tree

complexity.

That fascinating result motivates us to study more about the sparsity of polynomial

representation of Boolean functions. Given any Boolean function f : {0, 1}n → {0, 1},
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it can be computed by unique real multi-linear polynomial, in the form of summation of

monomials f(x) =
∑

S∈{0,1}n cS
∏

i∈S xi.

Like in the previous chapter, we can still define the sparsity of function f , which we

denote as spar(f), as the number of non-zero coefficients cS . What can we say about

spar(f) of a random Boolean function f?

3.2 Preliminaries

In this chapter, we will need some other common notations. R denotes all the real numbers

and Z denotes all the integers.

As in the previous chapter, we can also consider any S ∈ {0, 1}n as a subset of [n], and

from now on, we will denote the size of S as the corresponding lower-case letter, s := |S|

(similarly t := |T | and r := |R|). Moreover we will use S \ T := {α : α ∈ S
⋂
α /∈ T}

to represent set S minus set T.

For any set S, we define BS := {T : T ⊂ S}, the Boolean subcube generated by S,

or equivalently the set of all subsets of S.

For any random variable X , we define E[X] :=
∑

i iPr[X = i] as the expectation of

X , and Var[X] := E[X2]−E2[X] as the variance of X . For two random variables X and

Y , we define cov[X, Y ] = E[XY ]− E[X]E[Y ] as the covariance of X and Y .

For an event A, we use 1A to denote the indicator function of A, which means

1A :=


1 A happens,

0 otherwise.
(3.1)

3.2.1 Real polynomial representation of Boolean function

For any functions f : {0, 1}n → R, we can always have a multivariate polynomial com-

putes f as follow, f(x1, x2, · · · , xn) =
∑

S∈{0,1}n f(S)
∏

i∈S xi
∏

i/∈S(1−xi). Beigel [Bei93]
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named this as table lookup representation. For any input S, we can directly go to the co-

efficient of the corresponding term
∏

i∈S xi
∏

i/∈S(1 − xi). We can also view those terms

as indicator polynomials.

The 2n terms form a basis for the vector space of functions f : {0, 1}n → R as that is

a vector space of dimension 2n. Therefore every functions f : {0, 1}n → R has a unique

table lookup representation.

Table lookup representation can be directly transformed to real polynomial form f(x) =∑
S∈{0,1}n cS

∏
i∈S xi by multiplying out the formula with applying distributive law. But

the value of cS looks unclear. The famous Moebius inversion formula would be the an-

swer. And we will include a self-contained proof just for completeness.

Lemma 3.2.1 ([Bei93, BdW02], Moebius inversion formula). we have f(S) =
∑

T⊂S cT

and controversially cS =
∑

T⊂S(−1)s−tf(T ).

Proof. The first part is trivial since
∏

i∈T xi = 1 if and only if T ⊂ S.

And we could rewrite cS =
∑

T⊂S µ(S, T )f(T ), and key-point is to calculate µ(S, T ).

Let’s use induction on s − t to prove µ(S, T ) = (−1)s−t, and we should start from

s− t = 0. Obviously µ(S, S) = 1, since cS = f(S)−
∑

T$S cT .

Now suppose for all s − t ≤ k − 1, we have µ(S, T ) = (−1)s−t, we will show that

when s− t = k, µ(S, T ) = (−1)s−t = (−1)k still holds.

Since we have cS = f(S) −
∑

R⊂S,R 6=S cR = f(S) −
∑

R$S
(∑

T⊂R µ(R, T )f(T )
)
,

we obtain that µ(S, T ) = −(
∑

T⊂R$S µ(R, T )) = −
∑k−1

i=0

(
k
i

)
(−1)i = (1 − 1)n +

(−1)k = (−1)k, which is just what we want, and the third equation is by Binomial

theorem [GKP89, p.174].

Moebius inversion formula is a general method, about relation between a pair of func-

tions, first derived by Moebius in 1832. But any further details would be out of our scope.
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Although these representations and formulas works for all functions defined on the

Boolean cube, f : {0, 1}n → R. In aspect of computer, we have only Boolean digits,

hence, we will restrict our work on Boolean functions f : {0, 1}n → {0, 1}.

3.3 Statistics results

3.3.1 Expectation

First let’s start with the expectation. For a random Boolean function f : {0, 1}n → {0, 1},

we have E[spar(f)] = E[
∑

S∈{0,1}n 1cS 6=0]. By the linearity of expectation, we could

calculate E[1cS 6=0] = Pr[cS 6= 0] for all set S and sum them together. We will need the

Moebius inversion formula which we have previously shown.

And also another useful lemma from personal communication between Yaoyun Shi,

Buhrman and de Wolf [BdW02, Lemma 4, Theorem 6] will be needed.

Lemma 3.3.1 (Shi & Yao, [BdW02]). For a random Boolean function f : {0, 1}n →

{0, 1}, we have E[1c[n]=0] = Pr[c[n] = 0] =
( 2n

2n−1)
22n

.

We noticed that this lemma can be easily generalized to any cS as below, and that

would be the starting point of our method measuring the sparsity.

Lemma 3.3.2. For a random Boolean function f : {0, 1}n → {0, 1}, we have E[1cS=0] =

Pr[cS = 0] =
( 2s

2s−1)
22s

.

Proof. Following the Lemma 3.2.1 we may see that only the value of f(T ) is affecting

the value of cS when T ⊂ S.

Restricting our function to the Boolean cube BS , with size |BS| = 2s, we have a total

of 22s choices to assign the values. Also, we can partition the cube to the odd layers,

denote it as BS
odd = {T : T ⊂ S

⋂
s− t is odd} and the even layers BS

even = {T : T ⊂
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S
⋂
s− t is even}, as any subset T in them such that f(T ) = 1 will contribute −1 and

1 to cS respectively.

Hence, for cS = 0 to happen, we will have a balanced state, which means equal num-

ber of T s.t. f(T ) = 1 in both BS
odd and BS

even. Supposing that number as k and k could

go from 0 to 2s−1, we have total
∑2s−1

k=0

(
2s−1

k

)(
2s−1

k

)
=
(

2s

2s−1

)
Boolean functions satisfy-

ing this property. The last equation is implied by the Vandermonde convolution [GKP89,

p.174].

As we may call cS = 0 as a balanced state, cS = k as k-biased state, then we have the

following corollary for k-biased state using Vandermonde convolution again.

Corollary 3.3.3. For all k such that, −2s−1 ≤ k ≤ 2s−1, we have Pr[cS = k] =
( 2s

2s−1+k)
22s

.

By Lemma 3.3.2, we may notice that when n and s = |S| goes to infinity, Pr[cS 6= 0]

is close to 1. We may want to measure the supplementary part Pr[cS = 0] and zero(f) :=∑
S∈{0,1}n 1cS=0, the number of zero coefficients cS , hence we have zero(f) = 2n −

spar(f). zero(f) have similar concentration properties as spar(f) since it’s just flipped

horizontally over range [0, 2n]. Also, we could consider cS = 0 as an event, and denote

XS = 1cS=0 as a variable equals to the indicator function of the event cS = 0.

With the help of Stirling formula n! ∼
√

2πn(n
e
)n and

(
n
n/2

)
∼
√

2
π

2n√
n

as an approxi-

mation, we obtain the following corollary.

Corollary 3.3.4. E[zero(f)] = O((1 + 1√
2
)n).

Proof. E[zero(f)] = E[
∑

S⊂{0,1}n XS] =
∑

S⊂{0,1}n
( 2s

2s−1)
22
s = O(

∑
S⊂{0,1}n

1√
2
s ) =

O((1 + 1√
2
)n)

The last equation is by Binomial theorem,
∑n

i=0

(
n
i

)
aibn−i = (a+ b)n.
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3.3.2 Variance

The next important measurement would be the variance, since we have Var[zero(f)] =

Var[spar(f)] = E[zero2(x)] − E2[zero(f)], it’s equivalent to measure E[zero2(x)] =

(
∑

S∈{0,1}n Pr[cS = 0])2 =
∑

S,T∈{0,1}n Pr[cS = 0, cT = 0].

First, we will list the probability Pr(cS = 0, cT = 0) for all circumstances in the

following Lemma.

Lemma 3.3.5.

Pr[cS = 0, cT = 0] =



( 2s

2s−1)
22s

Case 1: S = T ,

( 2s

2s−1)
22s

( 2t−2s

2t−1−2s−1)
22t−2s

Case 2: S ⊂ T ,

( 2s

2s−1)
22s

( 2t

2t−1)
22t

Case 3: S
⋂
T = ∅,∑2r−1

k=−2r−1

( 2s−2r

2s−1−2r−1+k)
22s−2r

( 2t−2r

2t−1−2r−1+k)
22t−2r

( 2r

2r−1+k)
22r

Case 4: S ∩ T = R.

(3.2)

Proof. Case 1 is trivial, as S and T are the exact same set.

Case 2 could follow the same proof in Lemma 3.3.2, we may noticed that the Boolean

cube BS and set BT \ BS , these two parts will be independent. The probability for each

part being balanced could be referred from Lemma 3.3.2, and the result is multiplying the

probabilities together.

All the first three cases are actually special cases of Case 4, let’s rewrite the probability

of Case 4 for a better understanding. If S ∩ T = R and |R| = r, Pr(cS = 0, cT = 0) =∑2s−1

k=−2s−1 Pr(cR = k, cS = 0, cT = 0).

Obviously, we may partition the union of Boolean cubes BS ∪ BT into three inde-

pendent parts, BR, BS \ BR and BT \ BR, and the formula is directly summing up the

probability according to how bias is BR.

Case 1 indicates BS = BT = BR, while Case 2 implies that BS = BR. Both

will force the k could only be 0. The Case 3 is only different in the way that r = 0,
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|BR| = 2r = 1 and 2r−1 = 1
2
, k could only be −1

2
or 1

2
. We may have Pr(cS = 0, cT =

0) =
( 2s−1

2s−1+1)
22s−1

( 2t−1

2t−1+1)
22t−1

(1
0)
2

+
( 2s−1

2s−1−1)
22s−1

( 2t−1

2t−1−1)
22t−1

(1
1)
2

=
( 2s

2s−1)
22s

( 2t

2t−1)
22t

.

Before having more specific calculation, we show that for any S, T ∈ {0, 1}n, Pr[cS =

0, cT = 0] ≥ Pr[cS = 0] Pr[cT = 0], or equivalently, random variables XS and XT are

positive correlated.

Here we present the Fortuin–Kasteleyn–Ginibre (FKG) inequality with a self-contained

folklore proof for completeness.

Lemma 3.3.6 (FKG inequality). let µ : Z → R be a non-negative function, and f, g :

Z→ R be two monotonically non-decreasing functions on Z. Then we have the following

inequality:

(
∑

x f(x)g(x)µ(x))(
∑

x µ(x)) ≥ (
∑

x f(x)µ(x))(
∑

x g(x)µ(x)).

Proof.

LHS −RHS

=
∑
x

∑
y>x

µ(x)µ(y)(f(y)g(y) + f(x)g(x))−
∑
x

∑
y>x

µ(x)µ(y)(f(x)g(y) + f(y)g(x))

=
∑
x

∑
y>x

µ(x)µ(y)(f(y)− f(x))(g(y)− g(x)) ≥ 0.

Lemma 3.3.7. Pr[cS = 0, cT = 0] ≥ Pr[cS = 0] Pr[cT = 0]

Proof. For Case 1, S = T , it’s true as ( 2s

2s−1)
22s

< 1.

For Case 2, S ⊂ T , it’s true since ( 2t−2s

2t−1−2s−1)
22t−2s

>
( 2t

2t−1)
22t

.

For Case 3, S
⋂
T = ∅, we have Pr(cS = 0, cT = 0) = Pr(cS = 0) Pr(cT = 0)), so

their correlation are 0 when S
⋂
T = ∅.

Case 4 is when S ∩ T = R and |R| = r.
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Let’s take µ(x) =
( 2r

2r−1+x)
22r

, f(x) =
( 2s−2r

2s−1−2r−1+x)
22s−2r and g(x) =

( 2t−2r

2t−1−2r−1+x)
22t−2r

and use

the facts that
∑2r−1

k=−2r−1 µ(k) =
∑2r−1

k=−2r−1

( 2r

2r−1+k)
22r

= 1,∑2r−1

k=−2r−1 µ(k)f(k) =
∑2r−1

k=−2r−1

( 2s−2r

2s−1−2r−1+k)
22s−2r

( 2r

2r−1+k)
22r

=
( 2s

2s−1)
22s

and
∑2r−1

k=−2r−1 µ(k)g(k) =
∑2r−1

k=−2r−1

( 2t−2r

2t−1−2r−1+k)
22t−2r

( 2r

2r−1+k)
22r

=
( 2t

2t−1)
22t

.

Then after reordering the items and apply Lemma 3.3.6, we get the following inequal-

ity.

Pr[cS = 0, cT = 0] =
2r−1∑

k=−2r−1

(
2s−2r

2s−1−2r−1+k

)
22s−2r

(
2t−2r

2t−1−2r−1+k

)
22t−2r

(
2r

2r−1+k

)
22r

=
2r−1∑

k=−2r−1

µ(k)f(k)g(k) =

(
2r−1∑

k=−2r−1

µ(k)f(k)g(k)

)(
2r−1∑

k=−2r−1

µ(k)

)

≥

(
2r−1∑

k=−2r−1

µ(k)f(k)

)(
2r−1∑

k=−2r−1

µ(k)g(k)

)
=

(
2s

2s−1

)
22s

(
2t

2t−1

)
22t

= Pr[cS = 0] Pr[cT = 0].

Now let’s focus on upper-bounding the variance Var[zero(f)]. Given set S, T ∈

{0, 1}n and their intersection setR, with size s, t and r respectively, we may upper-bound

the summation by upper-bounding every single item cov(XS, XT ) = Pr[cS = 0, cT =

0]−Pr[cS = 0] Pr[cT = 0]. The idea is, supposing we could upper-bound cov(XS, XT ) =

O(as−rbt−rcr), we will obtain
∑
|S|=s,|T |=t,|S∩T |=r cov(XS, XT ) = O((1 + a + b + c)n)

by multinomial theorem. We will handle the four cases separately.

For Case 1, if S = T , we have the following upper-bound,∑
S=T

cov(XS, XT ) =
∑
S

(Pr[cS = 0]− Pr[cS = 0]2)

≤
∑
S

Pr[cS = 0] = E[zero(f)].

(3.3)
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For Case 2, if S ⊂ T , with the help of the Stirling formula we have the following

approximations and upper-bounds.

cov(XS, XT ) =

(
2s

2s−1

)
22s

(

(
2t−2s

2t−1−2s−1

)
22t−2s −

(
2t

2t−1

)
22t

)

= O(
1√
2s

(
1√

2t − 2s
(1 +O(

1

2t − 2s
))− 1√

2t
(1 +O(

1

2t
))))

= O(

√
2t −

√
2t − 2s +O(

√
2t

2t−2s ) +O(
√
2t−2s
2t

)
√

2s
√

2t
√

2t − 2s
)

= O(

√
22s−t +O(

√
2t

2t−2s ) +O(
√
2t−2s
2t

)
√

2s2t
)

= O(
(
√

2)s

(2
√

2)t
) = O(

1

(2
√

2)t−s2s
).

(3.4)

Therefore, we have the following bound.

∑
S⊂T

cov(XS, XT ) ≤
n∑
s=0

(
n

s

)( n∑
t=s

(
n− s
t− s

)
O(

1

(2
√

2)t−s2s
)

)

= O((
3

2
+

1

2
√

2
)n).

(3.5)

For Case 3, if S
⋂
T = ∅, we will have cov(XS, XT ) = 0, so is the summation.

For Case 4, if S∩T = R and |R| = r, we use magnifying on Pr[cS = 0, cT = 0] such

that,

Pr[cS = 0, cT = 0] =
2r−1∑

k=−2r−1

(
2s−2r

2s−1−2r−1+k

)
22s−2r

(
2t−2r

2t−1−2r−1+k

)
22t−2r

(
2r

2r−1+k

)
22r

≤
(

2t−2r
2t−1−2r−1

)
22t−2r

2r−1∑
k=−2r−1

(
2s−2r

2s−1−2r−1+k

)
22s−2r

(
2r

2r−1+k

)
22r

=

(
2t−2r

2t−1−2r−1

)
22t−2r

(
2s

2s−1

)
22s

.

(3.6)

Then by using the same method in (3.4), we can get the following bound:
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cov(XS, XT ) ≤
(

2s

2s−1

)
22s

(

(
2t−2r

2t−1−2r−1

)
22t−2r −

(
2t

2t−1

)
22t

)

= O(
1√
2s

(
1√

2t − 2r
(1 +O(

1

2t − 2r
))− 1√

2t
(1 +O(

1

2t
))))

= O(

√
2t −

√
2t − 2r +O(

√
2t

2t−2r ) +O(
√
2t−2r
2t

)
√

2s
√

2t
√

2t − 2r
)

= O(

√
22r−t +O(

√
2t

2t−2s ) +O(
√
2t−2s
2t

)
√

2s2t
)

= O(
2r

(2
√

2)t(
√

2)s
) = O(

1

(2
√

2)t−r(
√

2)s−r2r
).

(3.7)

Then we can have upper-bound as below,

∑
S∩T 6=∅

cov(XS, XT )

≤
n∑
r=0

(
n

r

)( n∑
s=r

(
n− r
s− r

)(n−s+r∑
t=r

(
n− s
t− r

)
O(

1

(2
√

2)t−r(
√

2)s−r2r
)

))

= O((
3

2
+

3

2
√

2
)n).

(3.8)

Combining (3.3), (3.5) and (3.8) together, we have the following corollary:

Corollary 3.3.8. Var[zero(f)] = O((3
2

+ 3
2
√
2
)n).

Now let’s present the famous Chebyshev’s inequality and its proof from [AS08].

Lemma 3.3.9 ([AS08], Theorem 4.1.1, Chebyshev’s inequality). Let X be a random

variable with finite expected value µ and finite non-zero variance σ2. Then for any positive

λ,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
. (3.9)

Proof. σ2 = Var[X] = E[(X − µ)2] ≥ λ2σ2 Pr[|X − µ| ≥ λσ].

Apply Lemma 3.3.9 to zero(f), we can establish the following theorem.
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Theorem 3.3.10. For a random function f uniformly chosen from all possible Boolean

functions defined on f : {0, 1}n → {0, 1}, we have the following properties:

µ = E[zero(f)] = O(1 +
1√
2

)n)),

σ2 = Var[zero(f)] = O((
3

2
+

3

2
√

2
)n),

and by applying Lemma 3.3.9 we obtain that,

Pr[zero(f) ≥ 2µ] ≤ O(σ2/µ2) = O((
3

2 +
√

2
)n),

or more generally, zero(f) = (1 + o(1))E[zero(f)] almost surely, since Var[zero(f)] =

o(E2[zero(f)]).

3.4 Concluding remarks and Open Problems

In this chapter, we give several bounds and concentration results about the distribution of

the sparsity for the real polynomial representation of random Boolean functions. How-

ever, though the bound for expectation of sparsity is asymptotically tight, there still exists

a gap for variance. We conjecture that the variance Var[zero(f)] = O((3
2

+ 1√
2
)n), and

that will consequently lead to better concentration results.

A major motivation for this study is to find the exact distribution of sparsity. How-

ever, having only expectation and variance is not enough to characterize the distribution.

Another interesting question is to obtain an approximate distribution of spar(f).
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