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Incremental prognostic value of a novel
metabolite‐based biomarker score in congestive heart
failure patients
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Radenkovic1,3, Doris Bach1,3, Svetlana Apostolovic4, Goran Loncar5,6, Marija Zdravkovic6,7, Elvis Tahirovic1,3,
Jovan Veskovic1, Stefan Störk8, Emir Veledar2, Burkert Pieske1,3,9, Frank Edelmann1,3,9 and Tobias Daniel
Trippel1,3*
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Abstract

Aims The Cardiac Lipid Panel (CLP) is a newly discovered panel of metabolite‐based biomarkers that has shown to improve
the diagnostic value of N terminal pro B type natriuretic peptide (NT‐proBNP). However, little is known about its usefulness in
predicting outcomes. In this study, we developed a risk score for 4‐year cardiovascular death in elderly chronic heart failure
(CHF) patients using the CLP.
Methods and results From the Cardiac Insufficiency Bisoprolol Study in Elderly trial, we included 280 patients with CHF aged
>65 years. A targeted metabolomic analysis of the CLP biomarkers was performed on baseline serum samples. Cox regression
was used to determine the association of the biomarkers with the outcome after accounting for established risk factors. A risk
score ranging from 0 to 4 was calculated by counting the number of biomarkers above the cut‐offs, using Youden index. During
the mean (standard deviation) follow‐up period of 50 (8) months, 35 (18%) subjects met the primary endpoint of cardiovas-
cular death. The area under the receiver operating curve for the model based on clinical variables was 0.84, the second model
with NT‐proBNP was 0.86, and the final model with the CLP was 0.90. The categorical net reclassification index was 0.25 using
three risk categories: 0–60% (low), 60–85% (intermediate), and >85% (high). The continuous net reclassification index was
0.772, and the integrated discrimination index was 0.104.
Conclusions In patients with CHF, incorporating a panel of three metabolite‐based biomarkers into a risk score improved the
prognostic utility of NT‐proBNP by predicting long‐term cardiovascular death more precisely. This novel approach holds prom-
ise to improve clinical risk assessment in CHF patients.
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Introduction

Chronic heart failure (CHF) is a leading cause of morbidity and
mortality. Its prevalence continues to rise in developed coun-
tries, partly because of a shift in the age distribution of the

population and improved treatment and care.1,2 Clinicians
should ensure that patients with CHF have the necessary
knowledge and resources to make the best health decisions.
Accurate and improved decision support methods, such as
tools to predict the risk of mortality and prognosis of
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patients, could help in making such shared decisions for treat-
ment plans and risk management strategies. Recently, there
has been an increase in the number of prognostic biomarkers
being tested for CHF such as growth differentiation factor‐
15,3,4 high‐sensitivity C‐reactive protein,5,6 galectin‐3,7–9 and
high‐sensitivity troponin T.10,11 However, the added value of
these markers is still under debate, and long‐term follow‐up
studies are lacking. Among biomarkers widely used in CHF,
N terminal pro B type natriuretic peptide (NT‐proBNP) is rec-
ognized as a standard reference for diagnosis and prognosis.
Despite the clinical utility of NT‐proBNP, some studies have
reported a high intraindividual variance and high reference
change values among patients with CHF.12–14

Metabolomic profiling, or metabolomics, can help meet
the need for more robust prognostic biomarkers. This ap-
proach provides a holistic signature of biochemical activities
in humans by detecting and quantifying low‐weight mole-
cules (<1500 Da) that could be associated with disease
progression.15–17 Studies of predictive metabolomic bio-
markers in CHF have been published previously that support
the overall hypothesis that circulating metabolites may be
used for risk assessment of cardiovascular (CV) disease
patients18‐20,21‐29. These studies appear promising, but valida-
tion and the additive value of these biomarkers are less
established.

In a discovery phase untargeted metabolomic study by
Mueller et al., comparing CHF patients to healthy controls,
a novel panel of metabolites known as the Cardiac Lipid Panel
(CLP) was found to improve the diagnostic performance over
NT‐proBNP alone.30 Its prognostic performance, however, is
unknown. Details of the CLP have been published
previously.30 In brief, the CLP is a biomarker panel consisting
of three specific metabolomic features: triacylglycerol (TAG)
18:1/18:0/18:0, phosphatidylcholine (PC) 16:0/18:2, and the
sum of the three isobaric sphingomyelin (SM) species SM
d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1.

In this study, the prognostic value of the CLP was analysed
in elderly patients with CHF. We developed a risk score for
predicting 4‐year CV death using cut‐offs for the CLP, which
improved predictive value of the standard reference bio-
marker, and traditional risk factors.

Materials and methods

Study population

The study sample was randomly selected from the Cardiac In-
sufficiency Bisoprolol Study in Elderly (CIBIS‐ELD) trial, a
multicentre, randomized, double‐blind trial with ≥65‐year‐
old patients with stable CHF. Details of the CIBIS‐ELD trial
have been published previously.31,32 In brief, elderly patients
with CHF were randomized in a 1:1 fashion to receive either
bisoprolol or carvedilol, up titrated every 2 weeks for

12 weeks and then followed for 4 years. We only considered
the baseline and 4‐year follow‐up time points for this study.
From the 589 subjects with available blood samplesfrom
CIBIS‐ELD trial, patients were randomly selected and studied
in a case cohort design. Following random selection, the co-
hort was filtered down based on the feasibility of performing
the biomarker test, for instance if there was sufficient quan-
tity of blood aliquot sample available for analysis, and
whether blood samples passed quality assurance33, resulting
in a final set of 280 cases. The investigation conformed to
the principles outlined in the Declaration of Helsinki.34 The
ethics committees of all participating centres approved the
study protocol, and informed consent was signed by all par-
ticipants prior to study participation.

Metabolite profiling

The serum samples were collected in 2006–2007 at the time
of the CIBIS‐ELD study initiation, stored at �80°C, and then
shipped on dry ice in 2014 to the metabolomics lab for anal-
ysis. Metabolite profiling of the serum samples was per-
formed using a kit developed for the routine measurement
of the CLP. The dedicated protocol was designed for utiliza-
tion in the clinical practice setting and based on a
one‐phase extraction of the samples using gas chromatogra-
phy mass spectrometry (GC‐MS), followed by liquid chroma-
tography tandem mass spectrometry (LC‐MS/MS) analysis
as previously described.30 Sample and metabolite analysis
quality assurance is part of the analytical protocol, so the
metabolomic data that did not pass quality assurance were
not included in this study33. The three CLP metabolomic fea-
tures were generated at baseline, only for the previously
mentioned samples.

Statistical analysis

Continuous variables were expressed as mean (standard devi-
ation) and compared using t‐test or Mann–Whitney U test,
according to normal or non‐normal distribution. Categorical
variables were expressed as number (%). Comparisons among
variables with more than two categories were performed
using Wilcoxon rank sum test for continuous variables and
Pearson’s χ2 test (or Fisher’s exact test) or Mantel–Haenszel
χ2 test for categorical and ordinal data, respectively. All con-
tinuous predictor variables were log transformed to allow for
direct comparison. Survival time was calculated from baseline
until CV death or censoring at 4‐year follow‐up. Univariate
Cox regression was performed on the CLP components and
NT‐proBNP, and multivariate Cox regression was also per-
formed to adjust for clinical covariates. The considered clini-
cal covariates were age, sex, body mass index, New York
Heart Association class, creatinine, LDL cholesterol, triglycer-
ides, left ventricular ejection fraction (LVEF), history of
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diabetes, history of myocardial infarction, smoking history,
hypertension, hyperlipidaemia, coronary artery disease, and
medication including beta‐blockers, aldosterone receptor
blockers, angiotensin‐converting enzyme inhibitors,
anti‐arrhythmic agents, aspirin, calcium channel blockers, di-
uretics, glycosides, nitrates, statins, sedative agents, and vita-
min K antagonists. Hazard ratios and 95% confidence
intervals were calculated for each univariate and multivariate
model. The survival function for each model was generated
using the predicted risk estimates following Cox regression.

To evaluate the predictive value of the CLP, three multivar-
iable prediction models were built using Cox regression. The
first model was built using the baseline clinical covariates only
(Model A). Then, NT‐proBNP was added to the first model
(Model B). Finally, the CLP risk score was added to Model B
(Model C). The CLP risk score was calculated as the sum of
biomarkers above the Youden index cut‐off.35 There were
four cut‐off values, because four biomarkers are included in
the score, three from the CLP and one from NT‐proBNP. Each
cut‐off was calculated using Youden’s index of the predicted
probability from the Cox multivariate regression. Supplemen-
tal Data (Data S1) shows the equation for calculating the
Youden cut‐off. Based on the Youden cut‐off, a value of 1
or 0 was assigned if the biomarker was above/below the
cut‐off value. A value of 1 was assigned in the direction of
higher risk, that is, if a biomarker was protective (hazard ra-
tio < 1), then a 1 value was assigned if the biomarker was be-
low the Youden cut‐off and vice versa. Then, all four values
were summed to generate the final score for each subject.
To measure the discrimination of each model, the area under
the receiver operating curve (AUROC)and Harrell’s concor-
dance statistics were calculated for the 4‐year survival of
Models A, B, and C. Differences in Uno’s concordance statis-
tics were calculated for hypothesis testing of the change in
AUROC of the three models.36

To measure risk reclassification, both continuous and cate-
gorical net reclassification indexes (NRIs) were calculated as
well as integrated discrimination improvement (IDI).37,38 The
categorical NRI used three categories of <60%, 60–85%,
and >85% corresponding to low, intermediate, and high risk,
respectively. The continuous NRI does not depend on the
choice of categories, but allocates any change in predicted
risk in the correct direction.39 IDI measures the ability of
the new model to increase average sensitivity without reduc-
ing average specificity.

For sensitivity analysis, we performed logistic regression in
addition to the Cox regression analysis, using the same inde-
pendent and dependent variables in order to assess whether
a different statistical model would yield similar results. We
also tested two additional outcomes: the first was major ad-
verse CV events defined as either myocardial infarction, tran-
sient ischaemic attack, stroke, or CV mortality, and the
second outcome was all‐cause mortality. Comparison of re-
ceiver operating curves following logistic regression was done

using the Mann–Whitney U test.To test the sensitivity of NRI
variation in risk categories, we used the same number of risk
categories (n = 3) but readjusted the cut‐off values using two
separate sets of cut‐offs, which still corresponded to high,
medium, and low. The first set was 70% and 90% followed
by the second set of 80% and 95%. Statistical analysis was
performed using SAS software version 9.4 and R software
version 3.6.1.400–42

Results

Baseline characteristics

Figure 1 shows the study rationale and selection of subjects
for this subcohort. The previously discovered CLP metabolites
found to improve diagnosis of CHF were studied to assess
their prognostic value. Table 1 shows the baseline character-
istics of the subsample population (n = 280) with a compari-
son to the source CIBIS‐ELD cohort (n = 589). Mean patient
age was 72.1 (4.9) years, 73.6% were men, 45% patients
had heart failure with reduced ejection fraction (LVEF< 35%),
49% had heart failure with mid‐range ejection fraction (LVEF
35–49%), 4% had heart failure with preserved ejection
fraction (LVEF ≥ 50%), and the majority of patients were in
New York Heart Association functional class II (67.5%). During
the follow‐up period (mean = 50 months, standard
deviation = 8; median = 46 months), 35 (13%) died from CV
causes.

Prognostic performance and risk reclassification

Table 2 shows the univariate (unadjusted) and multivariate
(adjusted) models of the CLP risk score components. In the
unadjusted model, two of the three CLP biomarkers (PC and
SM) were significantly associated as well as NT‐proBNP. In
the adjusted model, the same two CLP biomarkers remained
significant but NT‐proBNP did not. Supporting Information,
Table S1 shows the the hazard ratios for the clinical variables
included in the adjusted model. Figure 2 shows the measures
of discrimination (AUROC) for the three multivariable models
with a comparison to its preceding model to test the level of
significance after adding the respective covariate(s), and
Supporting Information, Table S2 shows Harrell’s concor-
dance statistics. The AUROC for Model A was 0.84, that of
Model B was 0.86, and the final adjusted Model C was 0.90.
The difference in AUROC after adding the CLP score (Model
B vs. C) was significant (P = 0.02), whereas the difference af-
ter adding NT‐proBNP to the clinical model (Model A vs. B)
was insignificant (P = 0.47).

Figure 3 shows the number of subjects reclassified into
each risk category for Model A to B to C. Table 2 shows the
risk reclassification of Models B and C as percentages of total
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with events and non‐events. Supporting Information, Table
S1a–b shows the frequency of cases per risk category strati-
fied by events and non‐events from Models B and C. The
overall categorical NRI was 0.25 using the three risk catego-
ries 0–60%, 60–85% and >85%, meaning 25% of the subjects
were reclassified into the respective correct risk category af-
ter adding the CLP (Table 3). Accordingly, 59% of the

reclassified cases were downgraded, and the other 41% were
upgraded. Among patients experiencing events, the overall
categorical NRI was 0.60, with 33% of those downgraded
and 67% upgraded. For non‐events, the categorical NRI was
0.19, with 70% of those downgraded and 30% upgraded.
The overall continuous NRI was 0.472 and the IDI was
0.019. The CLP model (Model C) showed that its high‐risk

FIGURE 1 Study rationale for the prognostic biomarker study. AUC, area under the curve; CHF, chronic heart failure; CIBIS‐ELD, Cardiac Insufficiency
Bisoprolol Study in Elderly; CLP, Cardiac Lipid Panel; IDI, integrated discrimination improvement; NRI, net reclassification index; NT‐proBNP, N terminal
pro B type natriuretic peptide.
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category contained predominantly subjects who experienced
an event (77%), whereas the respective fraction in the
NT‐proBNP model (Model B) was only 42%.

Results were consistent in the sensitivity analysis using lo-
gistic regression. We found that the differences in AUROC
values pointed in the same direction as the Cox regression
models (Model C AUROC = 0.90 vs. Model B AUROC = 0.86,
P = 0.02). The change in AUROC after adding NT‐proBNP to
the clinical model (Model A AUROC = 0.84) remained insignif-
icant (P = 0.47; Supporting Information, Figure S1). We found
similar results when testing the models using the two

additional outcomes, major adverse CV event and all‐cause
mortality (Supporting Information, Figures S2 and S3). Read-
justment of risk categories using the two different sets of
cut‐offs also showed similar results with the original set of
cut‐off values. The overall NRI for the first set of 70% and
90% cut‐offs was 0.28 (Supporting Information, Table S6),
and the second set of 80% and 90% cut‐offs was 0.36 (Sup-
plemental Information, Table S7). In addition, Model C was
still able to classify a higher proportion of cases with events
in the high‐risk group than Model B in each scenario
(Supporting Information, Tables S3–SS5).

Table 1 Baseline characteristics of the study participants compared with the source cohort

Characteristic n = 280 n = 589 P value

Age (years), mean ± SD 72 ± 4.9 72 ± 4.9 0.4190a

NYHA (II/III), n 188/91 374/183 0.5424c

Male, n (%) 206 (74) 412 (71) 0.1389b

Body mass index (kg/m2), mean ± SD 26.8 ± 3.4 26.9 ± 3.9 0.4296a

Heart rate (bpm), mean ± SD 73 ± 13 74.7 ± 14 0.0031a

Systolic blood pressure (mm Hg), mean ± SD 134 ± 19 134 ± 19 0.2490a

Diastolic blood pressure (mm Hg), mean ± SD 81 ± 11 81 ± 11 0.3402a

Laboratory, mean ± SD
Serum creatinine (μmol/l) 106 ± 29 107 ± 43 0.0096a

Haemoglobin (g/dL) 24.4 ± 34.8 14 ± 2 0.0325a

Sodium (mmol/L) 141.4 ± 3.3 141 ± 6.9 0.0765a

Uric acid (μmol/L) 273.2 ± 196.4 343 ± 121 0.0218a

Cholesterol (mmol/L) 5.5 ± 1.4 5.5 ± 1.4 0.2743a

HDL cholesterol (mmol/L) 1.2 ± 0.5 1.2 ± 0.5 0.4051a

LDL cholesterol (mmol/L) 3.4 ± 1.3 3.4 ± 1.2 0.348a

Triglycerides (mmol/L) 1.7 ± 1.0 1.8 ± 1.1 0.0283a

NT‐proBNP (pg/mL) 793 (331–1765)d 873 (350–1931)d 0.0485a

Cardiac imaging, mean ± SD
LVEF (%) 36 ± 9.5 37 ± 9.6 0.0899a

LVDed (mm) 58.8 ± 9.2 59.8 ± 9.3 0.0082a

LVDes (mm) 45.5 ± 9.7 46.5 ± 10.2 0.0089a

LVVed (mL) 152.7 ± 63.9 159 ± 67.7 0.0344a

LVVes (mL) 101.1 ± 51.6 105 ± 54.1 0.0705a

LAes (mm) 45.3 ± 7.2 45.2 ± 7.2 0.453a

E/e’ 8 ± 4.3 11.1 ± 8.5 0.0025a

E/A 1 ± 0.8 1.1 ± 0.9 0.2928a

Deceleration time (ms) 226 ± 80 225 ± 79 0.7198a

Comorbidities, n (%)
Diabetes 82 (29) 146 (25) 0.023b

Hypertension 224 (80) 469 (80) 0.7941b

Coronary artery disease 200 (71) 392 (67) 0.0382b

Smokers 125 (45) 257 (44) 0.7933b

Hyperlipidaemia 162 (58) 343 (59) 0.6822b

Medication, n (%)
ACE inhibitor 247 (88) 509 (87) 0.527b

ARB 115 (41) 240 (41) 0.9643b

Glycoside 59 (21) 101 (17) 0.0216b

Aspirin 216 (77) 433 (74) 0.1273b

Nitrate 146 (52) 253 (43) 0.001b

Anti‐arrhythmic agent 42 (15) 88 (15) 0.9512b

Statin 114 (41) 231 (40) 0.6044b

P values are compared with the available 589 subjects from the CIBIS‐ELD cohort, which included this cohort of 280 subjects.
ACE, angiotensin‐converting enzyme; ARB, angiotensin receptor blocker; E/A, ratio of the early (E) to late (A) ventricular filling velocities; E/
e’, ratio between early mitral inflow velocity and mitral annular early diastolic velocity; HDL, high‐density lipoprotein; LDL, low‐density li-
poprotein; NT‐proBNP, N‐terminal pro–B‐type natriuretic peptide; NYHA, New York Heart Association; LAes, left atrial end systole; LVEF,
left ventricular ejection fraction; LVDed, left ventricular diameter end diastole; LVDes, left ventricular diameter end systole; LVVed, left
ventricular volume end diastole; LVVes, left ventricular volume end systole.
aWilcoxon rank sum test.
bPearson’s χ2 test.
cMantel–Haenszel χ2.
dMedian (interquartile range).
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Discussion

In this post hoc analysis of the CIBIS‐ELD trial analysing 280
elderly patients with CHF, we showed that a risk score based
on a novel panel of metabolites added prognostic value for
the prediction of long‐term CV mortality. A previous study al-
ready had reported that the CLP may improve the early

detection and diagnosis of CHF.30 However, to the best of
our knowledge, the current study is first to estimate the prog-
nostic performance of the CLP. Risk prediction models allow
clinicians to accurately assess patient prognosis and facilitate
more effective risk stratification and, ideally, a personalized
treatment. Devising a more accurate biomarker panel for
CHF risk prediction may aid clinicians with the difficult

FIGURE 2 Discrimination analysis of the CLP biomarker risk score for 4‐year cardiovascular mortality. AUC, area under the curve; CLP, Cardiac Lipid
Panel; NT‐proBNP, N terminal pro B type natriuretic peptide.

Table 2 CLP risk score components and HRs

CLP component Unadjusted HR (95% CI) P value Adjusted HR (95% CI) P value

SM 0.36 (0.16–0.82) 0.0143 0.18 (0.04–0.76) 0.0039
PC 0.76 (0.64–0.89) 0.0007 0.53 (0.38–0.75) 0.0003
TAG 0.69 (0.47–1.02) 0.0644 0.67 (0.35–1.25) 0.2069
NT‐proBNP 1.49 (1.12–1.99) 0.007 1.60 (0.975–2.625) 0.0630

Adjusted Cox proportional hazard model considers the following clinical covariates: age, sex, body mass index, New York Heart Associa-
tion class, creatinine, LDL cholesterol, triglycerides, left ventricular ejection fraction, history of diabetes, history of myocardial infarction,
smoking history, hypertension, hyperlipidaemia, coronary artery disease, beta‐blockers, aldosterone receptor blockers,
angiotensin‐converting enzyme inhibitors, anti‐arrhythmic agents, aspirin, calcium channel blockers, diuretics, glycosides, nitrates,
statins, sedative agents, and vitamin K antagonists.
CI, confidence interval; CLP, Cardiac Lipid Panel; HR, hazard ratio; NT‐proBNP, N terminal pro B‐type natriuretic peptide; SM, sum of the 3
isobaric sphingomyelin species: SM d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1; PC, phosphatidylcholine 16:0/18:2; TAG, triacylglyc-
erol 18:1/18:0/18:0.

3034 P. McGranaghan et al.

ESC Heart Failure 2020; 7: 3029–3039
DOI: 10.1002/ehf2.12928



decisions surrounding the management of such high‐risk pa-
tients. Conversely, identifying patients at lower risk may help
reassure both clinicians and patients.

In the current study, two out of the three CLP components
as well as NT‐proBNP were independently associated with
the outcome, so our next step was to build a risk score using
these four components. The CLP risk score showed improved
discrimination and risk reclassification in comparison with
NT‐proBNP alone, which is the current reference standard.
Adding NT‐proBNP to the clinical model slightly but

insignificantly improved discrimination, while adding the CLP
yielded a significant change in AUROC. Risk reclassification
was improved by adding the CLP as it correctly identified a
higher proportion of high‐risk patients experiencing an event.
For non‐events, the majority of reclassified cases (70%) were
downgraded. This indicates that added information of CLP
also aided the proper classification of low‐risk patients. Al-
though both Models B and C misclassified some patients
who did not experience any event in the high‐risk group,
the model with CLP had higher specificity as it classified

FIGURE 3 Risk reclassification of subjects after adding N terminal pro B type natriuretic peptide to the clinical model followed by adding the Cardiac
Lipid Panel biomarker score.

Table 3 Risk reclassification of total subjects, cases, and non‐cases after adding the CLP risk score to the NT‐proBNP based model

Model B

Risk category Low Medium High Total

Model C Low 69%
96%, 4%

12%
84%, 16%

2%
71%, 29%

83%

Medium 5%
71%, 29%

5%
80%, 20%

1%
100%, 0%

11%

High 2%
33%, 67%

3%
25%, 75%

1%
0%, 100%

6%

Total 76% 20% 4% 100%

Percentage of subjects within each risk category of each Model A and B only. Events and non‐events are proportions of the group total
and are comma separated with red denoting events and blue denoting non‐events.
Model B is the clinical covariates + NT‐proBNP, Model C is clinical covariates + NT‐proBNP + CLP score. Total subjects, n = 280; total
events, n = 35.
The considered clinical covariates were age, sex, body mass index, New York Heart Association class, creatinine, LDL cholesterol,
triglycerides, left ventricular ejection fraction, history of diabetes, history of myocardial infarction, smoking history, hypertension,
hyperlipidaemia, coronary artery disease, and medication including beta‐blockers, aldosterone receptor blockers,
angiotensin‐converting enzyme inhibitors, anti‐arrhythmic agents, aspirin, calcium channel blockers, diuretics, glycosides, nitrates,
statins, sedative agents, and vitamin K antagonists.
Categorical net reclassification index was calculated according to risk cut‐offs of <60%, 60–85%, and >85% corresponding to risk cate-
gories low, medium, and high, respectively.
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35% more patients with an event into the high‐risk group.
The continuous NRI also showed that Model C, compared
with Model B, produced higher (i.e. more accurate) risk esti-
mates for patients experiencing an event and lower risk esti-
mates for those who are not.

Application of a single biomarker such as NT‐proBNP for
outcome prediction is primarily limited by insufficient speci-
ficity, resulting in a high false positive rate or low positive pre-
dictive value.43,44 Because NT‐proBNP is really a marker of
elevated atrial pressures and volume overload, it may be of
limited use in well‐compensated, clinically stable heart failure
patients. Hence, supporting this marker at the metabolic level
may provide additional prognostic value and potentially phe-
notypic information.A combination of several metabolomic
features into a biomarker panel or a risk score may provide
a better prognosis utility over single biomarkers. A systematic
review21 reported that 6 out of 12 articles22–27 developed a
score by combining between 4 and up to 16 metabolites to
predict CV risk. Recently, Lanfear et al. identified and then
validated a panel of 13 circulating metabolites as a predictor
of mortality risk in HF patients after accounting for conven-
tional clinical risk factors and NT‐proBNP levels.28 Another
prospective population‐based study deriving a risk score from
four metabolites and validating this score in two cohorts
found improved risk reclassification of CHF patients using
the biomarker score, although discrimination was not signifi-
cantly enhanced.29 A meta‐analysis of 18 metabolomic pre-
diction studies of CV disease outcomes reported an average
change in c‐statistic of 0.0417 (standard error 0.008) after
adding metabolite‐based information, which is consistent
with our results. Of note, the metabolite score subgroup per-
formed best (n = 5 studies),45 although publication bias and
heterogeneity were reported regarding variations in cohorts,
study design, and metabolite profiling approaches.

In addition to investigating the improvement of the prog-
nostic performance of CV outcomes, it is conceivable that
metabolomic findings may also foster a better understanding
of the pathophysiology and biological mechanisms involved in
the development of CHF events. Altered lipid metabolism and
dyslipidaemia are known to be associated with inflammation
and oxidative stress, which are primary drivers of the patho-
logical changes in CHF. The CLP metabolites belong to three
different lipid classes, sphingomyelin (SM) phosphatidylcho-
line (PC), and triglycerides (TAG), and may be involved in dif-
ferent dysregulated metabolic pathways in CHF such as cell
stress, inflammation, and atherosclerosis, although future
studies are needed to assess whether the CLP biomarkers
are representative of altered biological pathways. It has been
previously shown that pathway‐specific biomarkers/scores
consisting of high‐sensitivity C‐reactive protein (inflamma-
tion), soluble urokinase plasminogen activator receptor (in-
flammation), fibrin degradation products (thrombosis), and
heat shock protein 70 (cell stress) significantly improved the
prediction of adverse cardiac events in high‐risk populations.

These studies also reported similar increases in c‐statistics as
this study after adding the pathway‐specific biomarkers to
predictive models.46–48

The combination of the CLP’s metabolomic features with
NT‐proBNP may help overcome well‐known limitations of
NT‐proBNP regarding clinical risk factors like age, gender,
body mass index, and LVEF. A strength of this study is the
high mean age, because elderly patients are underrepre-
sented in CHF trials although CHF is responsible for a great
deal of morbidity and mortality in the aging population.49

Moreover, study samples were derived from a
well‐characterized cohort including high‐quality assessment
of outcome events. In future studies, we would like to
further elucidate the prognostic utility of the CLP and
externally validate its clinical effectiveness by including a
larger cohort with more women and patients with early
stage CHF and testing different biological matrices (e.g.
plasma). Following these studies and regulatory approval,
it is conceivable that this biomarker panel can be tested
alongside the standard NTpro‐BNP test in the clinical setting
for a more precise risk assessment of CHF patients
(Supporting Information, Figure S4).

Study limitations

Our findings can only be interpreted in the context of this
specific subcohort and the CLP metabolites, which limits the
generalizability of our findings. We were limited by the ability
to perform the CLP analysis on separate cohorts, but these
proof of concept data can be used as a reference point for ad-
ditional and larger validation cohorts in the future. The CLP
was originally discovered and intended as a diagnostic bio-
marker, and we cannot assume that it is also a powerful prog-
nostic algorithm as these are still preliminary findings needing
validation. Ideally, a prospective derivation validation design
using an untargeted metabolite profiling approach should
be used to discover a novel prognostic biomarker; however,
we were limited on available data and resources. Our findings
can only be interpreted as exploratory.

The sample selection criteria, based on the availability and
quality of blood samples, may have introduced selection bias
for subjects who were more willing or prone to have blood
withdrawn and may have excluded patients who were not
able to provide sufficient blood possibly due to other CV risk
factors, socio‐economic status, or comorbidities. The serum
samples used in this study may have been affected by the
long‐term storage prior to the CLP assay, as lipid parameters
are known to be subject to in vitro degradation. The quality
assurance methods used in this CLP protocol only apply to
the sample preparation and measurement requirements for
the identification and analysis of the CLP features and do
not adjust for any potential effects of prolonged storage. Al-
though NT‐proBNP is the gold standard biomarker for CHF
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patients, we did not find a significant increase in prognostic
power after adding this biomarker to the clinical model, pos-
sibly due to the homogeneity of our population of elderly,
stable CHF patients, in which it may be of limited use given
the fact that NT‐proBNP is a marker of volume overload
and elevated atrial pressures. Other common cardiac
biomarkers, such as troponins or C‐reactive protein, should
also be evaluated for their incremental prognostic power
because a more comprehensive biomarker profile for
prognosis may be a better solution than including only CLP
plus NT‐proBNP.

The samples from the population in this study may have
been affected by other medications or a combination of co-
morbidities that can affect the lipid metabolites in the CLP.
The cut‐off values used to generate the CLP risk score using
Youden’s index are specific to this cohort and not universally
applicable, as a large validation cohort(s) would be required
to create a generalized equation that could be used in the
daily routine management of CHF. The NRI as well as the
IDI can be affected by the event rate, which is low in our
study.. Although all biomarkers were log transformed, they
were not normally distributed, which could affect the concor-
dance of the NRI and IDI. The choice of cut‐offs for categori-
cal NRI to determine incremental predictive performance was
challenging, as there seems to be no standardized guideline
for choosing NRI cut‐offs. We found that the NRI was sensi-
tive to changes in the definition of risk categories; however,
results did not differ in the sensitivity analysis.

Although this biomarker was developed for routine clinical
use, it is currently only available in specialized labs equipped
with mass spectrometry equipment.While the CLP is still a re-
search tool awaiting further translation to the routine lab, as
an ELISA test for example, this study represents the first step
towards that direction.

Conclusions

Our findings demonstrate that the CLP risk score comprising a
panel of three lipid‐based metabolomic features meaningfully
improved the prediction of CV mortality and reclassified pa-
tients to their proper risk categories. This new panel of lipid
metabolites may complement currently used biomarkers
such as NT‐proBNP. Thus, the metabolomics approach may
potentially translate into clinical applications such as rou-
tinely applied risk stratification and targeted treatments for
CHF patients.
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