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Abstract: Lipids represent a valuable target for metabolomic studies since altered lipid metabolism is
known to drive the pathological changes in cardiovascular disease (CVD). Metabolomic technologies
give us the ability to measure thousands of metabolites providing us with a metabolic fingerprint
of individual patients. Metabolomic studies in humans have supported previous findings into the
pathomechanisms of CVD, namely atherosclerosis, apoptosis, inflammation, oxidative stress, and
insulin resistance. The most widely studied classes of lipid metabolite biomarkers in CVD are phos-
pholipids, sphingolipids/ceramides, glycolipids, cholesterol esters, fatty acids, and acylcarnitines.
Technological advancements have enabled novel strategies to discover individual biomarkers or
panels that may aid in the diagnosis and prognosis of CVD, with sphingolipids/ceramides as the
most promising class of biomarkers thus far. In this review, application of metabolomic profiling for
biomarker discovery to aid in the diagnosis and prognosis of CVD as well as metabolic abnormalities
in CVD will be discussed with particular emphasis on lipid metabolites.

Keywords: metabolomics; lipidomics; biomarkers; cardiovascular disease; heart failure

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for
17.8 million deaths per year and its incidence rates are rising [1]. Dysfunctional cardiac en-
ergy metabolism is a major contributor to CVD. Specifically, lipids are of central importance
for the bioenergetic metabolism of the heart and are the primary focus of CVD metabolic
research. It is known that in the healthy heart, fatty acids (FAs) account for 60–90% of
ATP production while glucose provides the remainder [2]. The failing heart shifts away
from lipids toward a greater reliance on glycolysis, ketone body oxidation, amino acids
(e.g., branched-chain amino acids or BCAA), and lactate as sources of energy [3]. Despite
the many advancements in our understanding of cardiac metabolism, elucidation of these
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metabolic pathways remains a challenge, as well as the translation of metabolic findings to
the clinical setting, such as improved or novel diagnostic/prognostic biomarkers.

Metabolite profiling, or metabolomics, is the latest -omics approach for characterizing
small-molecule metabolite intermediates from canonical biochemical pathways and may
be a useful technology for dissecting biomarkers and mechanisms of metabolic dysfunction
in CVD. A metabolomic biomarker is different from a genomic, transcriptomic or pro-
tein biomarker, since metabolomic biomarkers typically comprise of groups of co-related
metabolites that change in concert, rather than the more independent changes observed
from other -omics biomarkers. The interdependence of metabolites results in a disease
signature which can be used to more precisely identify or predict disease states. It is
ultimately the metabolome, which provides biochemical feedback across all-omics layers,
which represents the closest link to the phenotype (Figure 1).

Figure 1. Overview of the -omic hieararchy and contributing factors to an individual’s phenotype.

The development of the lipidomics field, a subset of metabolomics which analyzes
lipid metabolites and related biochemical pathways, is particularly relevant as lipids
have previously shown to play a key role in the pathophysiology of CVD. Lipidomic
techniques use various methods such as nuclear magnetic resonance spectroscopy (NMR)
and mass spectrometry (MS) which can measure hundreds or even thousands of different
lipid metabolites. Despite the significant advantages of metabolomic biomarkers, no
diagnostic tests based on metabolomics have been introduced for clinical use; however,
several metabolomic prognostic biomarkers have been validated and one is recommended
by the Mayo Clinic (https://news.mayocliniclabs.com/ceramides-miheart/. Accessed

https://news.mayocliniclabs.com/ceramides-miheart/
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5 June 2021). Several challenges could explain this lack of clinically useful metabolomic
biomarkers in cardiology practice. Challenges such as designing prospective metabolomic
studies with sufficiently powered and representative cohorts, availability or cost of sample
analysis using the proper technical platforms, analysis of complex metabolomic and clinical
datasets with effective knowledge translation to identify candidate biomarkers, and finally,
external validation of putative biomarkers.

In this review we highlight these challenges as well as different approaches for the
development of lipid metabolite biomarkers, summarize the findings of recent lipidomic
studies in human CVD studies, and discuss and how these findings may or may not
contribute to our understanding of the pathophysiology of CVD.

2. Lipidomic Biomarker Discovery Approach and Summarized Findings

We searched cohort-based studies which reported on circulating lipid-based metabo-
lites and their association with CVD outcomes. Several layers of keyword search criteria
were used in PubMed, Web of Science, and Google Scholar databases in the date range
January 2010 to July 2021. The keywords ‘metabolomics’, ‘lipidomics,’ ‘lipid metabolite
biomarkers,’ ‘cardiovascular disease,’ ‘heart failure,’ and their synonyms (i.e., fatty acids,
metabolite profiling) were used. The results were filtered based on the following inclusion
and exclusion criteria:

Inclusion criteria:

• Metabolomics studies using MS or NMR approaches
• Lipid or lipid-related metabolites selected in final model
• Human blood samples
• CVD outcomes
• Exclusion criteria:
• Exclusively proteomic or other non-metabolomic studies which did not incorporate

MS or NMR approaches
• Non-lipid or lipid-related metabolites selected in the final model
• Meta-analyses or literature reviews
• Animal studies
• in vitro studies
• Non-CVD outcomes

A total of 57 studies met these criteria and are summarized in Table 1. The designs
of the studies, analytical techniques, data processing/analysis, biomarker validation, and
translation to CVD pathomechanism are illustrated in Figure 2 and briefly discussed below.
Some additional studies were included in the technical section as examples to demonstrate
the use of particular methods.
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Table 1. Study characteristics of lipidomic studies in cardiovascular disease.

First Author, Year Study Design Sample
Matrix Platform Targeted vs.

Untargeted Outcome Cohort Characteristics Candidate Lipid or Lipid-Related
Biomarkers

Ahmad, 2016 [4] Case-cohort Plasma FIA-MS/MS Not Specified CHF Death/Event CHF patients; 29% female; 64 mean age; 67%
white Long chain acylcarnitines

Alshehry, 2016 [5] Case-cohort Plasma LC-MS/MS Targeted Incident CVD in
T2DM

2 cohorts of T2DM patients; 39% female; 67
mean age; 20 countries from Asia, Australasia,

Europe, and North America

PC(O-36:1), CE(18:0), PE(O-36:4), PC(28:0),
LPC(20:0), PC(35:4), LPC(18:2),

DG(16:0_22:5), SM (34:1), PC (O-36:5)

Andersson, 2020 [6] Cohort,
prospective Plasma LC-MS/MS Targeted Incident HF Community-based cohort; 53% female; 55

mean age; MA, USA cohort PC 36:4, LPC 18:2

Anroedh, 2018 [7] Case-cohort Plasma LC-MS/MS,
FIA-MS/MS Targeted CVD event/death

Patients who underwent diagnostic CAG or
PCI for ACS or stable angina pectoris; 25%
female; 62 mean age; Netherlands medical

center

Cer(d18:1/16:0), Cer(d18:1/20:0),
Cer(d18:1/24:1), Cer(d18:1/24:0)

Cavus, 2019 [8] Case-cohort Serum LC-MS/MS,
FIA-MS/MS Targeted Incident CHD

Population-based cohort; 39% female; 57 mean
age; 6 European cohorts: Finland, 2 Italy
cohorts, Germany, Denmark, Scotland

acyl-alkyl-PC C40:6, diacyl-PC C40:6,
acyl-alkyl-PC C38:6, diacyl-PC C38:6, and

diacyl-PC

Cheng, 2015 [9] Case-control Plasma LC-MS/MS,
FIA-MS/MS

Untargeted and
Targeted CHF Diagnosis CHF patients; 27% female; 61 mean age;

Taiwan medical center PC C34:4

Cheng-Laaksonen,
2015 [10] Case-cohort Plasma LC-MS/MS Targeted CVD event/death

Patients who underwent diagnostic CAG or
PCI for ACS or stable angina pectoris; 25%
female; 62 mean age; Netherlands medical

center

Cer-d18:1/16:0

Delles, 2018 [11] Case-cohort Serum NMR Targeted Incident HF
hospitalization

Elderly individuals at high risk of CVD; 52%
female; 77 mean age; 1 Scotland, 1 Ireland, 1

Netherlands cohort
SCFA (acetate), phenylalanine

Fernandez, 2013 [12] Case-control Plasma FIA-MS/MS Targeted Incident CVD Population-based cohort; 47% female; 60 mean
age; Swedish cohort

LPC16:0, LPC20:4, SM 38:2, TG48:1, TG48:2,
TG48:3, TG50:3, TG50:4

Floegel, 2018 [13] Cohort,
prospective Plasma LC-MS/MS,

FIA-MS/MS Targeted Incident MI 2 Population-based cohorts; 61% female; 49
mean age; 2 German cohorts

Acylalkyl-PC (C36:3), diacyl-PC (C38:3 and
C40:4)

Ganna, 2014 [14] Cohort,
prospective Plasma LC-MS/MS Untargeted Incident CVD 3 Population-based cohorts; 37% female; 69

mean age; Northern European LPC-18:1, LPC-18:2, MG (18:2), and SM-28:1

Gao, 2017 [15] Case-control Plasma LC-MS/MS Untargeted Incident CAD Patients undergoing diagnostic CAG; 49%
female; 59 mean age; Chinese medical center

LPC (20:4), LPC (16:0), PG(18:0/0:0), elaidic
acid, MG (0:0/18:2(9Z,12Z)/0:0), DG
(20:2(11Z,14Z)/18:3(9Z,12Z,15Z)/0:0)

Havulinna, 2016 [16] Cohort,
prospective Serum LC-MS/MS Targeted Incident CVD Population-based cohort; 53% female; 49 mean

age; Finnish cohort Cer-d18:1/18:0

Hilvo, 2020 [17] Cohort,
prospective

Plasma
and

Serum
LC-MS/MS Targeted CVD event/death 3 CHD cohorts; 21% female; 65 mean age; 1

Norwegian, 1 German, 1 Australian cohort

Cer(d18:1/16:0), Cer(d18:1/18:0),
Cer(d18:1/24:1), Cer(d18:1/24:0),

PC(16:0/16:0), PC(16:0/22:5), PC(14:0/22:6)



Metabolites 2021, 11, 621 5 of 26

Table 1. Cont.

First Author, Year Study Design Sample
Matrix Platform Targeted vs.

Untargeted Outcome Cohort Characteristics Candidate Lipid or Lipid-Related
Biomarkers

Holmes, 2018 [18] Nested
case-control Plasma NMR Targeted Incident CVD Population-based cohort; 52% female; 45 mean

age; Chinese cohort Total FA, omega-6 FA, linoleic acid, PUFA

Jadoon, 2018 [19] Case-cohort Serum LC-MS/MS Targeted CKD + Incident
CVD

CKD patients; 49% female; 62 mean age; 70%
white SCFA (valerate)

Ji, 2018 [20] Case-control Serum LC-MS/MS Targeted CHF progression CHF patients; 20% female; 57 mean age; NY,
USA medical center

Cer16, Cer18, Cer20:1, Cer20, Cer22:1, and
Cer24:1

Kalim, 2013 [21] Nested
case-control Plasma LC-MS/MS Targeted CVD death Hemodialysis patients; 47% female; 70 mean

age; 69% white Oleoylcarnitine (C18:1)

Laaksonen, 2016 [22] Case-cohort Plasma LC-MS/MS Targeted CVD death
Patients undergoing CAG; 31% female; 69
mean age; Finnish, Norwegian, and Swiss

cohorts

Cer(d18:1/16:0), Cer(d18:1/24:1),
Cer(d18:1/16:0)/Cer(d18:1/24:0),
Cer(d18:1/18:0)/Cer(d18:1/24:0),
Cer(d18:1/24:1)/Cer(d18:1/24:0)

Lemaitre, 2019 [23] Cohort,
prospective Plasma LC-MS/MS Targeted Incident HF

Population-based cohort; 60% female; 76 mean
age; 16% black from 4 US communities NC,

CA, MD, PA

Cer-16, SM-16, Cer-22, SM-20, SM-22, and
SM-24

Lu, 2017 [24] Case-control Plasma LC-MS Untargeted and
Targeted MI MI and stable angina patients; 75% female; 59

mean age; China medical center

9 oxyphospholipids (HODA-PC, KDdiA-PC,
D2/E2-IsoP-PC, PEIPC, HETE-PC, IsoF-PC,

PECPC, F2-IsoP-PC, HODE-PC), 9
hydrolyzed FA (20-HETE, 11,12 DHET,

13-HODE, 5-HETE, D2/E2-IsoP, 14,15-DHET,
5,6-DHET, 14(15)-EET, 9-HODE)

Mayerhofer, 2020 [25] Case-control Plasma LC-MS/MS,
GC-MS Targeted

All-cause mortality
or listing for heart

transplant

CHF patients; 59% female; 59 median age;
Norway cohort TMAO, SCFA (butyrate)

McGranaghan, 2020,
2021 [26,27] Case-cohort Serum LC-MS/MS,

GC-MS
Untargeted and

Targeted CHF Death CHF patients; 26% female; 72 mean age;
German medical center

SM d18:1/23:1, SM d18:2/23:0, SM
d17:1/24:1, TG 18:1/18:0/18:0, PC 16:0/18:2

Meikle, 2011 [28] Cross-
sectional Plasma LC-MS/MS Targeted unstable

CAD/stable CAD
de Novo CAD patients; 22% female; 66 mean

age; Australian cohort 10 species of PE(O)

Miller, 2012 [29] Cohort,
prospective Plasma LC-MS/MS Not Specified Incident CAD Chest pain or angina patients; 38% female; 48

mean age; 72% white CE 16:1, CE 18:1

Mueller-Hennessen,
2017 [30]

Cohort,
prospective Plasma LC-MS/MS,

GC-MS
Untargeted and

Targeted Incident HF CHF patients; 30% female; 59 mean age; 3
German medical centers

SM d18:1/23:1, SM d18:2/23:0, SM
d17:1/24:1, TG 18:1/18:0/18:0, PC 16:0/18:2

Mueller-Hennessen,
2017 [31] Case-control Plasma LC-MS/MS,

GC-MS
Untargeted and

Targeted CHF Diagnosis CHF patients; 0% female; 50 mean age;
Germany medical center

Cholesterol, Behenic acid (C22:0), Lignoceric
acid (C24:0), Linoleic acid (C18:cis [9,12] 2),
Tricosanoic acid (C23:0), LPC (C17:0), LPC

(C18:0), LPC (C18:1), LPC (C18:2), PC (C16:1,
C18:2), 5-O-Methylsphingosine,

erythro-Sphingosine, Phytosphingosine
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Table 1. Cont.

First Author, Year Study Design Sample
Matrix Platform Targeted vs.

Untargeted Outcome Cohort Characteristics Candidate Lipid or Lipid-Related
Biomarkers

Mundra, 2018 [32] Case-cohort Plasma LC-MS/MS Targeted CVD event/death
Patients with MI or unstable angina; 18%

female; 63 median age; Australia and New
Zealand medical centers

PC (O-34:2), PC (38:5), PI (38:3), PC (O-36:1),
GM3(d18:1/16:0), PI (18:2/0:0), PE (38:6)

Nwabuo, 2019 [33] Cross-
sectional Plasma LC-MS/MS Targeted Echo measures

correlation
Community-based cohort; 65% female; 66

mean age; MA, USA community Cer16:0/Cer24:0

Ottosson, 2021 [34] Case-control Plasma FIA-MS/MS Untargeted Incident CAD Population-based cohort; 60% female; 58 mean
age; Swedish cohort

PC 15:0;0_18:2;0, PC 17:0;0_20:3;0, PC
16:0;0_20:1;0, PC O 16:2;0_18:0;0, SM 34:1;2,

DAG 18:1;0_18:3;0, PI 16:0;0_20:4;0; CE 18:0;0

Paapstel, 2017 [35] Case-control Serum LC-MS/MS,
FIA-MS/MS Targeted Atherosclerosis PAD and CAD patients; 0% female; 63 mean

age; Estonia medical center

PC-diacyl-28:1, PC-diacyl-30:0,
PC-diacyl-32:2, PC-acyl-alkyl-30:0,
PC-acyl-alkyl-34:2, LPC-acyl-18:2

Paynter, 2018 [36] Case-control Plasma LC-MS,
LC-MS/MS Untargeted Incident CVD Post-menopausal women cohort; 100% female;

67 mean age; 77% white Hydroxy-PC (C34:2)

Peterson, 2018 [37] Case-control Plasma LC-MS/MS Targeted Incident CVD; HF 2 Community-based cohorts; 53% female; 60
mean age; 2 US communities MO and MA C24:0/C16:0

Poss, 2020 [38] Case-control Serum LC-MS/MS Targeted Incident CAD CAD patients; 34% female; 55 mean age; UT,
USA medical center

dihydro-cer(d18:0/18:0), cer(d18:1/18:0),
cer(d18:1/22:0), cer(d18:1/24:0),

dihydro-SM(d18:0/24:1), SM(d18:1/24:0),
SM(d18:1/18:0), and sphingosine

Razquin, 2017 [39] Case-cohort Plasma LC-MS Untargeted Incident CVD Population-based cohort; 57% female; 67 mean
age; Spanish cohort

Polyunsaturated PCs, LPCs,
PC-plasmalogens, CEs, long TGs, short TGs

(saturated/monounsaturated), hPCs and,
MGs, DGs and PEs

Rizza, 2014 [40] Cohort,
prospective Serum LC-MS/MS,

FIA-MS/MS Targeted CVD event/death Geriatric ambulatory patients; 43% female; 77
mean age; Italian medical center

medium-long-chain acylcarnitines (acetyl
carnitine C2, C6, C8, C10, C10:1, C12, C12:1,
C14, C14:1, C14:2, C16, C16:1, C18:1, C18:2)

Seah, 2020 [41] Cohort,
prospective Plasma LC-MS/MS Targeted CVD event/death Population-based cohort; 53% female; 49 mean

age; Singapore Chinese cohort

total monohexoylceramides, total long-chain
sphingolipids (C16–C18), and total 18:1

sphingolipids

Shah, 2010 [42]
Cohort,

prospective
repository

Plasma LC-MS/MS Targeted CVD event/death Cardiac catheterization patients; 24% female;
46 mean age; 67% white

Short-chain dicarboxylacylcarnitines;
medium-chain acylcarnitines

Shah, 2012 [43] Cohort,
prospective Plasma LC-MS/MS Targeted All-cause mortality

or MI
Cardiac catheterization patients; 38% female;

62 median age; 73% white

Short-chain dicarboxylacylcarnitines,
Long-chain dicarboxylacylcarnitines, Fatty

acids

Sigruener, 2014 [44] Cohort,
prospective Plasma FIA-MS/MS Targeted Mortality Hospitalized coronary angiography patients;

30% female; 63 mean age; 100% white PC-32:0, SM-16:0, SM-24:1 and CM-24:1

Stegemann, 2011 [45] Case-control Plaque;
Plasma FIA-MS/MS Targeted Atherosclerosis Endarterectomy patients; 29% female; 69 mean

age; British cohort 10 CEs, 9 SMs, 8 LPCs, and 31 PCs
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Table 1. Cont.

First Author, Year Study Design Sample
Matrix Platform Targeted vs.

Untargeted Outcome Cohort Characteristics Candidate Lipid or Lipid-Related
Biomarkers

Stegemann, 2014 [46] Cohort,
prospective Plasma FIA-MS/MS Targeted Incident CVD Population-based cohort; 52% female; 66 mean

age; 100% white TG-54:2, CE-16:1, and PC-36:5

Stenemo, 2019 [47] Cohort,
observational

Plasma
and

Serum
LC-MS/MS Untargeted Incident HF 3 Community-based cohorts; 33% female; 70

mean age; 3 Sweden cohorts SM (30:1)

Sun, 2016 [48]
Nested

case-control,
prospective

Plasma GC-MS/MS Targeted Incident MI Population-based cohort; 35% female; 66 mean
age; Singapore Chinese cohort

Long-chain n-3 fatty acids, stearic acid, and
arachidonic acid

Syme, 2016 [49] Cohort,
observational Serum LC-MS/MS Untargeted Incident CVD Population-based cohort; 52% female; 15

median age; Canadian Cohort PC-16:0/2:0, PC-14:1/0:0

Tang, 2013 [50] Cohort,
prospective Plasma LC-MS/MS Targeted CVD event/death

Cardiac catheterization patients; 36% female;
63 mean age; Cleveland, Ohio USA Medical

Center
TMAO

Tang, 2014 [51] Cohort,
prospective Plasma LC-MS/MS Targeted All-cause mortality

IN CHF

Patients who underwent diagnostic CAG; 41%
female; 66 mean age; Cleveland, Ohio USA

Medical Center
TMAO

Tarasov, 2014 [52] Case-control Serum LC-MS/MS,
FIA-MS/MS Targeted CVD Death CAD patients; 0% female; 66 mean age;

German medical center

Cer(d18:1/16:0)/Cer(d18:1/24:0),
Cer(d18:1/20:0)/Cer(d18:1/24:0),
Cer(d18:1/24:0)/Cer(d18:1/24:1)

Tzoulaki, 2019 [53] Cohort,
prospective Serum NMR Untargeted Atherosclerosis/

Incident CVD
3 Population-based cohorts; 47% female; 63

mean age; 53% white Triglycerides, Phospholipids, CE

Vaarhorst, 2014 [54] Case-cohort,
prospective Plasma NMR Untargeted Incident CVD Population-based cohort; 51% female; 49 mean

age; Netherlands cohort TMAO, an unsaturated lipid structure

Vorkas, 2015 [55] Cross-
sectional Serum LC-MS/MS Untargeted Calcific CAD Exertional angina patients; 59% female; 65

mean age; Sweden medical center

PC(16:0/20:4), lysoPC(20:4), PI(18:2/18:0),
SM(d17:1/16:0), SM(d18:1/16:0),
SM(d17:1/22:0), SM(d18:1/23:0),
SM(d18:2/16:0), SM(d18:2/22:0),

SM(d18:2/24:1), TG(16:0/18:1/22:5),
TG(18:1/18:1/20:4), TG(16:0/18:1/18:1)

Wang-Dong, 2018
[56] Case-cohort Plasma LC-MS Untargeted Incident CVD Population-based cohort; 53% female; 69 mean

age; Spanish cohort
hPC, DG, MG, highly unsaturated

phospholipids, and CE

Wang-Hazen, 2011
[57] Case-control Plasma

LC-MS,
LC-MS/MS,

GC-MS, NMR
Targeted Incident CVD

Stable non-symptomatic subjects undergoing
elective cardiac evaluations; 51% female; 64

mean age; Cleveland, Ohio USA Medical
Center

TMAO, choline, betaine

Wang-Hu, 2017 [58] Case-cohort,
prospective Plasma LC-MS/MS Targeted Incident CVD Population-based cohort; 57% female; 67 mean

age; Spanish cohort Cer(16:0), Cer(22:0), Cer(24:0), Cer(24:1)
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Table 1. Cont.

First Author, Year Study Design Sample
Matrix Platform Targeted vs.

Untargeted Outcome Cohort Characteristics Candidate Lipid or Lipid-Related
Biomarkers

Wittenbecher, 2021
[59]

Nested
case-control,
prospective

Plasma LC-MS, FIA-
IM-MS/MS

Untargeted and
Targeted Incident HF 2 Population-based cohorts; 56% female; 72

mean age; 1 German and 1 Spanish cohort PC C16:0/C16:0 and CerC16:0

Würtz, 2015 [60] Cohort,
prospective Serum LC-MS/MS,

GC-MS, NMR
Untargeted and

Targeted Incident CVD 3 Population-based cohorts; 57% female; 56
mean age; 1 Finnish and 2 UK cohorts

MUFA, omega-6 fatty acid, docosahexaenoic
acids

Zordoky, 2015 [61] Case-control Plasma
LC-MS/MS,
FIA-MS/MS,

NMR

Untargeted and
Targeted HFrEF vs HFpEF CHF patients; 39% female; 65 mean age;

Canadian cohort

2-hydroxybutyrate, octadecenoylcarnitine
(C18:1), hydroxyprionylcarnitine (C3-OH),

SM(C24:1), octanoylcarnitine, and SM(C20:2)

Abbreviations: ACS, acute coronary syndrome; CA, California; CAD, coronary artery disease; CAG, coronary angiogram; CE, cholesterol ester; Cer, ceramide; CHF, congestive heart
failure; CVD, cardiovascular disease; DG, diglycerol; FA, fatty acid; FIA, flow injection analysis (used here for shotgun approaches); GC, gas chromatography; HF, heart failure; HFpEF,
heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; hPC, hydroxylated phosphatidylcholine; IM, Ion mobility; LC, liquid chromatography;
LPC, lysophosphatidylcholine; MA, Massachusetts; MD, Maryland; MG, monoglycerol; MI, myocardial infarction; MS, mass spectrometry; MUFA, monounsaturated fatty acid; NC,
North Carolina; NMR, nuclear magnetic resonance; NY, New York; PA, Pennsylvania; PAD, peripheral artery disease; PC, phosphatidylcholine; PCI, percutaneous coronary intervention;
PE, phosphatidylethanolamine; PE(O), alkylphosphatidylethanolamine; PG Phosphatidylglycerol; PI, phosphatidylinsitol; SCFA, short-chain fatty acids; SM, sphingomyelin; TG,
triacylglycerol; TMAO, trimethylamine-N-oxide; UK, United Kingdom; UT, Utah.
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Figure 2. General metabolomic approach for biomarker analysis.

2.1. Sample Selection

Metabolomic studies can be performed on a variety of biological matrices, including
serum, plasma, urine, cerebrospinal fluid, tissue extracts [62], and even on stool sam-
ples [63]. For CVD biomarker studies, plasma or serum is typically used since blood-based
biomarker tests are minimally invasive and the most practical to implement in the clinic.
Serum is devoid of clotting factors and has both a different metabolite profile and different
concentrations of individual metabolites than plasma, which is the cell free component of
blood and has been treated with an anticoagulant [64]. Plasma is more commonly used
in CVD metabolomic studies because of its quicker and simpler processing, better repro-
ducibility, and the lack of time-consuming and potentially variable clotting process [65].
When preparing the sample, there is potential for introducing confounding factors if blood
samples are collected and processed without proper standardized operating procedures
(e.g., fasting, standardized time and processing procedure of blood, same brand, batch and
type of anti-coagulant tubes). Where possible, confounding factors should be controlled
for as part of the design-of-experiment (DoE) including the type of anti-coagulant used,
hemolysis, excessive freeze-thaw cycles, storage time and excessive room temperature
exposure, or matching potential clinical confounding factors between groups (e.g., age, sex,
BMI, medication, smoking status, location) [66]. Specific metabolite biomarkers can also be
used to control for sample quality, for example, to see whether blood plasma or serum has
been appropriately collected and stored [67,68]. Some potential lipid biomarkers of disease
e.g., O-phosphoethanolamines in serum, are also reported to change with only six hours
storage at 4 ◦C [68]. Knowledge of such biomarkers enables certain samples to be flagged
for removal on quality grounds.

In this review, the most commonly analyzed biological matrix was plasma (n = 43),
and the next most common was serum (n = 17). There were 2 metabolomic studies which
used both serum and plasma [17,47]. Sample selection and storage specifications were not
consistently reported across the studies. In some cases, samples were stored for 15 years or
more prior to analysis [6,11,12,54] in which degradation of some metabolites is possible.
We are not aware of any of the studies from our review that reported on the measurement
of preanalytical quality markers or adjusted for sample preanalytical confounders. Most
studies (n = 37) included a majority white or European population, and most studies (n
= 35) included a majority male population. There was only one study which included an
all-female population [36]. About half (n = 25) of the studies included a population with a
mean/median age of 65 or older.
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2.2. Untargeted and Targeted Approaches

Both NMR and MS platforms can be used to characterize metabolite profiles either in
a targeted manner, or in an untargeted manner depending on the study design. Targeted
metabolomics measures a distinct, well characterized set of metabolites of known identity—
typically several dozen to hundreds. Mass spectrometers are more sensitive when operated
in targeted mode, acquiring data only for ions with specific pre-determined mass-to-charge
ratios (m/z) and their specific fragments. Although the targeted approach generates a
narrower view of the metabolome that is biased toward a predefined set of analytes,
researchers have more confidence in the output because they know the identity of the
signals, it enables full validation of a method, and absolute quantification is possible.

By contrast, untargeted metabolomics attempts to analyze all metabolites within a
sample in an unbiased manner mainly for hypothesis generating studies. In untargeted
metabolite profiling, hundreds to thousands of signals are analyzed, of which the identities
of most are unknown [69]. Although an untargeted approach can detect thousands of
signals, it requires more time and resources in order to identify unknown metabolites and
the m/z are often insufficient to confidently assign peak identities. Many detected signals
are also not of biological interest or reproducible, leading to an excess of noise in the data.
Some estimates put the number of molecular ion peaks to be as low as 5 to 10% of the
final total of detected peaks. To aid in metabolite identification, spectral and retention
time libraries of known analytical standards are typically used but many have typically
focused on polar metabolites and have not been so useful for lipids. This is beginning to
change. Available databases include ChemSpider (http://www.chemspider.com. Accessed
6 August 2021), METLIN [70], Human Metabolome DataBase (HMDB) [71], MassBank [72],
mzCloud (https://www.mzcloud.org. Accessed 6 August 2021), GNPS (http://gnps.
ucsd.edu/. Accessed 6 August 2021), LipidBlast [73], and NIST Mass Spectral Library
(http://chemdata.nist.gov. Accessed 6 August 2021)). Identification has been further
improved by the development of in-silico fragmentation tools for mass spectrometry
data such as LipidFrag [74], LipiDex [75] and LipidMatch [76] which normally pair in-
silico fragmentation with existing lipid databases to maximize coverage of lipid species
annotation. For targeted applications, the focus is on desired analytes with pre-defined
identities and external libraries are not required. The final selection of analytical platform
for a CVD study will depend on cost and time requirements, targeted vs untargeted
approach, and the identity of metabolites of interest.

In our review, there were n = 39 studies which used a targeted approach, n = 12 used
untargeted, and n = 9 used both [9,24,26,27,30,31,59–61]. The number of lipids analyzed
ranged between 3–400.

2.3. Analytical Platforms

Once the proper cohort, outcomes, targeting approach, and samples are prepared, a
metabolomic analytical platform should be selected. In metabolomic biomarker studies,
multiple platforms are ideally employed, such as MS or NMR, since no single analytical
method can accommodate the entire metabolome. Certain analytical platforms are advan-
tageous in some areas while they may also lack certain important capabilities. For instance,
NMR requires fewer sample preparation steps and is non-destructive, so samples can be
later used for further analysis. It is also highly reproducible. However, it is expensive, less
sensitive than other methods and will not detect some of the less abundant compounds
without further pre-analytical separation. Complex lipid mixtures also hold particular
challenges for NMR due to their very similar structures. MS can be coupled to a variety of
separation techniques including gas and liquid chromatography (GC and LC, respectively).
MS is more sensitive and can detect a wider range of metabolites but is less reproducible
compared to NMR. Although MS has been criticized to provide less information on chemi-
cal identity than NMR, MS fragmentation as well as recent advancements in bioinformatic
methods for the automatic annotation of chromatographic-mass spectral data can provide

http://www.chemspider.com
https://www.mzcloud.org
http://gnps.ucsd.edu/
http://gnps.ucsd.edu/
http://chemdata.nist.gov
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some structural information [77–80]. The advantages and disadvantages of NMR and MS
have been reviewed previously [66] and are briefly described below.

In lipidomics research the two main MS-based methods are LC-MS and shotgun
lipidomics. Both rely on electrospray ionization (ESI) technology to convert a liquid sample
into an ion spray which can then be directed into the mass spectrometer for analysis.
Shotgun lipidomics is a technique which was prevalent at the beginning of CVD lipidomics
research. This technique directly infuses an extracted and reconstituted sample into a mass
spectrometer (e.g., direct infusion mass spectrometry, DIMS, or flow injection analysis, FIA)
for the detection of lipid metabolites without any chromatographic or other forms of prior
separation. By contrast, LC-MS uses liquid chromatography to separate the lipid species
before they are analysed by the mass spectrometer. Shotgun lipidomics has the advantage
that it can analyze hundreds of lipids with relative simplicity of operation and shorter
run times than chromatographic techniques [81]. However, the lack of separation means
there are larger matrix effects such as ion suppression or ion enhancement often caused
by the alteration of ionization efficiency of target analytes in the presence of co-eluting
compounds in the same matrix. One probable cause of ion suppression is a result of
several species competing for charge in an electrospray droplet. This can decrease the
detection capability and measurement accuracy of affected compounds [82]. Another
matrix effect is ion enhancement, or an increase in ion efficiency [83]. Both matrix effects
can dramatically affect sensitivity and quantitation, therefore, they must be evaluated
when validating a lipidomic method. Correction for matrix effects can be performed
by using a specialized internal standard calibration procedure, such as using a stable
isotope-labelled (analogue) of the analyte as an internal standard. Other methods to
correct for matrix effects have been previously reviewed [84]. Though both LC-MS and
shotgun approaches can suffer from matrix effects, shotgun lipidomics is impacted more
due to the lack of prior separation, resulting in a more complex lipid mixture entering the
electrospray. For the same reason, shotgun lipidomics has a higher technical measurement
variability between samples than other methods. Another considerable drawback for
shotgun lipidomics as a method is the challenge of accurate identification of the various
lipid species which share the same theoretical accurate mass. On the one hand, different
strategies can be employed to mitigate for such shortcomings such as enhancing sensitivity
by the derivatization of the amino head group [85–87]. On the other hand, depending on
the method(s) used, differing amounts of structural information will be collected for each
analyte. Quantification is also a challenge for isobaric/isomeric mass overlap between
lipid species, which may or may not be from the same lipid class (e.g., the ammonium
acetate adduct of a phosphatidylcholine ion [PC + HAc−]− has the same mass as a negative
phosphatidylethanolamine ion [PE + H−]−). Even where fragmentation is used to identify
the head group, and thus the lipid class, some of the observed signal may still be due to
another lipid species, for example, isobaric phosphatidlycholine species with different fatty
acid chains and the same total number of double bonds (e.g., PC 16:0_22:6 and PC 18:2_20:4).
Despite the potential drawbacks, shotgun approaches are still employed, including in some
commercial kits (e.g., Biocrates GmBH, Innsbruck, Austria) which have reasonable success
with this approach [88].

Having a separation step prior to mass spectrometry improves the identification,
quantification accuracy and coverage of lipids. LC–MS is one of the most popular methods
for lipidomic research because of the relatively low cost, quick turn-around, and high
sensitivity. Due to its detection sensitivity, this platform can measure thousands of lipids
from a very small sample volume. LC separates lipids based on their interaction with a
stationary phase and into their respective physicochemical properties, i.e., carbon-chain
length and the number of double bonds, all of which affect the retention time on the LC
column. After chromatographic separation, the isolated lipids undergo ionization and
frequently also a controlled fragmentation step or steps (MS/MS or MSn), and the molecular
ions and/or their fragments are detected using a mass analyzer. LC-MS still suffers from
matrix effects and ion suppression, but to a lesser extent than shotgun lipidomics.
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NMR has increasingly been used in lipidomic studies. NMR exploits a property called
“spin” that exists in nuclei types (including 1H, 13C, 15N, and 31P) [89]. A magnetic field
briefly excites a specific nucleus type, and the resulting relaxation of the nuclei is then
measured. The resonance frequency of each nucleus is influenced by the shielding of
the magnetic field by its nearest neighbors and the couplings between nearby nuclear
spins. It is these properties that enables NMR to give structural information. However,
identification of individual lipid species in complex mixtures is more challenging and
may require samples of the pure compound. In complex mixtures, the 1H NMR signals
of other molecular species overlap in the same spectral regions as for lipids. In most
CVD metabolomic studies it is important to classify individual species, since the relevant
lipid classes are complex heterogenous groups of compounds with unique biological
mechanisms [90]. Various methods have been developed to improve the identification
e.g., 2D heteronuclear single quantum coherence (HSQC) [91,92], or aliphatic chain length
by isotropic mixing (ALCHIM) [93] but with the loss of quantification ability, but most
examples we give below have used variations of 1H NMR.

Using a separation method first, such as liquid chromatography (LC-NMR), could
solve the main drawback of signal complexity and allow structural elucidation [94]. This
technique has not gained much momentum in the field of CVD yet, although there are
some pre-clinical examples [95]. Moreover, compared to LC–MS and shotgun lipidomics,
NMR-based lipidomics is much less sensitive, requires relatively long measurement times
and has a low sample throughput.

In our review we found that most studies (n = 53) used MS-based platforms; while
shotgun lipidomics (i.e., FIA) was used in n = 6 studies, LC-MS was used in n = 36 studies
and n = 9 used a combination of both. NMR was used in n = 4 studies, and n = 3 used both
NMR and MS [57,60,61].

2.4. Data Processing and Analysis

Metabolomic analysis can generate hundreds to thousands of data points per sample.
Thus, the ability to interpret and analyze metabolomics data relies heavily on advanced
computational approaches. Considerations and challenges in metabolomics data processing
and analyses have recently been reviewed [96,97]. Other reviews detail the step-by-step pro-
tocols for metabolomics data processing [98,99]. Appropriate processing of metabolomics
data is essential to produce dependable and high-quality data sets that will ultimately be
used for analyses, as briefly described below.

After samples are chemically analyzed, raw data are typically pre-processed using soft-
ware from instrument companies or from open sources such as Skyline [100], XCMS [101],
MZmine [102], Metaboanalyst [103] or NMRProcFlow [104]. The process is a little different
for targeted and untargeted methods. The specificity of the data collected in targeted
metabolomics makes data processing and analysis less labor intensive than larger more
complex datasets of untargeted metabolomics. Crucially, it also allows for accurate absolute
quantification in some instances. For MS data, this process identifies and quantifies features
in the data (“peak picking”), aligns the same metabolic feature across different samples and
normalizes data to account for technical differences. Chemical identification of the features
may also take place at this point, and for targeted analysis, an absolute concentration can be
ascribed if a calibration curve and an internal standard (ISTD) have been used. Data may
also be corrected for inter and intra-batch drift, normally based on results from repeating
analyses of quality control (QC) samples. After this correction, a quality assurance (QA)
protocol is performed to remove metabolite features with poor repeatability across QC
samples.

Once data is processed and ready for analysis, the association of individual metabolites
with an outcome of interest is modeled using univariate and multivariate methods. Similar
to issues in data processing, there currently exists little uniformity in the biostatistical
analysis of metabolomics data. Where univariate methods are employed, false discovery
correction is an important step to adjust for multiple comparisons. Benjamini-Hochberg
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or Family wise error (FWE) are common methods. This reduces the likelihood of a false
association for each biomarker. Data reduction approaches (e.g., principal components
analysis (PCA)) are often applied to reduce the statistical burden of multiple comparisons,
given the collinearity between metabolites due to the shared biological pathways. An
advantage of data reduction approaches is that the identification of interrelated groups of
metabolites can highlight underlying biology in ways that selection of single metabolite
analysis cannot. Other commonly used methods to optimize biomarker identification in
high-dimensional metabolomic data include partial least squares-discriminant analysis
(PLS-DA), least absolute shrinkage and selection operator (LASSO), and rule-based ap-
proaches (e.g., random forests). The identified biomarkers, or groups of biomarkers can
then be used to build a parsimonious model to identify disease (diagnosis) or predict dis-
ease outcomes (prognosis). Newer approaches include the use of higher levels of machine
learning to identify important differences between groups [105].

Such multivariate approaches require stringent model validation for the results to be
robust and reproducible. Typically, the study population is randomly divided into two
groups, a training set and a validation set. The training set is used to build the model
and identify the most predictive biomarkers. The validation set is used to determine
whether the validity of the biomarkers/model is maintained. Cross-validation is usually
performed to test the biomarkers/model in multiple mutually exclusive training and
validation sets and is meant to compensate for overfitting. In the best studies, there is also
a third, independently collected and analyzed dataset, the test set. The test set is meant to
further validate the robustness of the model on new data and is considered gold standard
for a study. The predictive performance can be evaluated and compared in each data set
using discrimination statistics (sensitivity, specificity), using Harrell’s c-statistic [106] or
plotted on a receiver operative characteristic (ROC) curve. To measure risk reclassification
after adding the new biomarkers to a base model (e.g., incremental predictive value),
both net reclassification indexes as well as integrated discrimination improvement can be
calculated [107].

Following biomarker identification, external validation is essential in order to further
establish a biomarker’s performance and evaluate whether it can be generalized to other
populations other than the one used during development. Although internal validation
is also meant to establish a biomarker’s performance, it involves collecting, processing,
and analyzing samples under identical conditions, which could naturally carry biases
between the training and validation sets. Therefore, validation of the identified biomarkers
in large external cohorts which closely represent the discovery cohort should be carried out.
Following adequate validation, the next steps toward commercialization of the biomarker(s)
can be considered.

In our review we found that most metabolomic studies employed their own com-
bination of statistical models specific to their data, but some overlap can be noted. In
n = 24 studies multiple hypothesis testing was used to reduce the false discovery rate
(FDR). Some studies which did not perform multiple hypothesis testing were focused on
validating a previously discovered biomarker/model [17,26,50]. There were n = 21 studies
which used a dimensional reduction with the most common being PCA (n = 12 studies),
followed by LASSO (n = 6). Cox Regression was the most common method for evaluating
the association of a model with the outcome (n = 33). In n = 34 studies, a prediction model
with discrimination statistics was reported but only n = 15 were externally validated. Of
the validated biomarkers/models, the most common lipid metabolite class included in
the final model was phospholipids (n = 30 biomarkers across 10 studies), followed by
sphingolipids (n = 18 biomarkers across 9 studies). The most common outcome of the
externally validated studies was predicting incident heart failure (n = 6) as well as incident
composite CVD (n = 6).
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2.5. Diagnostic and Prognostic Value

Currently, the clinical standard for diagnosis and prognosis for CVD depend on
protein-based biomarkers such as troponins and N-terminal pro-B-type natriuretic pep-
tide (NT-proBNP) for diagnoses, and LDL or HDL for prognosis. Other protein and
hormonal biomarkers have been investigated [108–110]; however, these biomarkers might
not be as specific as metabolomic biomarkers. Unlike these conventional clinical analytes,
metabolomic biomarkers are heavily influenced by demographic, nutritional, medica-
tion, and environmental factors which may provide a more precise phenotype and add
diagnostic and/or prognostic value.

The added predictive value of different biomarkers was assessed in n = 31 studies
which reported discrimination statistics (c-statistic/AUC). Overall, the average increase
in c-statistics/AUC after adding metabolite biomarker to a base model was 0.0549 (SE
0.0141). The most common class of metabolite biomarkers used in the prediction models
was phospholipids (n = 53 biomarkers across 19 models), followed by sphingolipids
(n = 35 across 15 models). For congestive heart failure (CHF) prediction studies (n = 8),
the average increase in c-statistics/AUC was 0.0752 (SE 0.0460), with the most common
biomarker class of sphingolipids (n = 10 across 6 models), followed by phospholipids (n = 4
across 4 models). A major challenge with comparing metabolomic studies stems from
the variability of techniques and data reporting across studies, but it can be foreseen that
more commercialization efforts of metabolomic biomarkers will emerge as the number of
validation studies increases.

3. Lipid Metabolism Translation from Human CVD Studies

Lipids are essential for the short-term metabolic flexibility of the heart to consistently
generate the required energy to adequately function. Decreased fatty acid oxidation and a
greater reliance on glycolysis for ATP production is a major metabolic characteristic of the
failing heart [111]. The lipidome could represent the integration of information stemming
from the heart’s metabolic flexibility and the energy substrate availability. Even though
changes in the levels of numerous metabolites have been shown to occur in the failing
heart (BCAA, lactate, ketones), specific lipid metabolites appear to consistently change in
metabolomic profiles of CVD patients, namely sphingolipids, phospholipids, glycolipids,
cholesterol esters, fatty acids and acylcarnitines. Previous systematic reviews and a meta-
analysis of metabolomic prediction studies in CVD found the majority of studies reported
altered lipid metabolites [112,113].

In lipid metabolism, metabolically closely related compounds can have opposite
systemic effects, for example, initiating versus resolving inflammatory responses, likely
producing divergent disease associations of correlated metabolites. Therefore, distinction
of different metabolite species within a lipid class may be important to distinguish different
biological processes. For instance, cell experiments show that ceramide 16:0 is proapoptotic,
while ceramide 24:0 seems to be protective against apoptosis [114]. Alsehry et al. and
Fernandez et al. identified specific triacylglycerol (TG) species which were associated
with a decreased risk of CVD, even though the consensus is total increased plasma TG
concentration is considered a risk factor for CVD [12]. Conflicting results of lipid species
is also not unusual in human studies. For example, ceramide C24:0 was associated with
lower risk of CVD in the Framingham Heart Study and Study of Health in Pomerania [37]
but was associated with higher risk of CVD in the PREDIMED Trial [58]. A recent meta-
analysis of metabolomic biomarkers in CVD prognosis studies found opposing effect sizes
of metabolite biomarkers in all classes except for acylcarnitines [112].

Recently, Tomczyk et al. reviewed lipidomic findings from a variety of CVD models
in animal, in vitro, tissue, and human studies, and compared the direction of change of
biomarkers. We were not interested in the direction of the change of metabolites in this
review since we are not confident that useful information based on direction of change
can be extrapolated due to the layers of heterogeneity in human metabolomic studies. For
example, some studies include patients with complex syndromes such as type 2 diabetes
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which involve multiple organ systems that may affect the blood-based metabolomic profile.
It is possible that an aberrant metabolite concentration may be due to comorbidities,
disease severity, or medication effects that may influence different metabolic pathways
and be reflected in the blood profile. Therefore, human studies cannot be considered
definitive in informing us about pathomechanisms of CVD. Extrapolating information
of defective metabolic mechanisms based on blood samples must be interpreted with
caution. Regardless of these limitations, summarizing lipidomic findings in human studies
can enhance our understanding of disease pathomechanisms or help guide researchers
to discover more useful biomarkers, especially when considering a targeted approach or
specific cohorts.

3.1. Summary of Lipidomic Findings and Potential Pathomechanisms

From the n = 57 studies, there was a total of n = 298 lipid biomarkers across n = 6
lipid subclasses. The most commonly reported metabolite class was phospholipids with
n = 130 biomarkers across n = 30 studies, followed by sphingolipids n = 86 biomarkers
in n = 28 studies, glycolipids n = 23 biomarkers in 12 studies, cholesterol esters (CE)
n = 19 biomarkers in n = 9 studies, FA n = 30 biomarkers in n = 11 studies, acylcarnitines
n = 10 in n = 6 studies. In cohorts of coronary artery disease (CAD) and atherosclerosis
(n = 11), phospholipid biomarkers were most commonly reported (n = 59) followed by
sphingolipids (n = 40), CE (n = 10), and glycolipids (n = 3). In studies, which measured the
association with incident CVD (n = 20), phospholipid biomarkers were most commonly
reported (n = 35) followed by sphingolipids (n = 20), and glycolipids (n = 16). In studies
of incident CHF (n = 9) sphingolipids biomarkers were most commonly reported (n = 15)
followed by phospholipids (n = 10), and FA (n = 7). Possible mechanisms connected to
these findings include atherosclerosis, cardiomyocyte apoptosis, inflammation, oxidative
stress, and insulin resistance, briefly discussed below.

3.2. Acylcarnitines and Fatty Acids

The healthy heart is characterized by metabolic flexibility, that is, the ability to switch
between energy sources to adapt to changing physiological, environmental, or dietary
conditions, with the primary fuel source of long fatty acids. The failing heart develops a
metabolic inflexibility characterized by inefficient β-oxidation of FA and a switch to glucose
utilization as the primary energy source [2]. This impaired metabolic flexibility can lead to
an accumulation of FA oxidation intermediates such as acylcarnitines. The main function
of free carnitine (L-carnitine) is to transport long-chain fatty acids—as acylcarnitines—
across the inner mitochondrial membrane, thereby delivering these substrates for ATP
production [115,116]. Ahmad et al. found higher levels of long chain acylcarnitines (C16
and C18) in CHF patients, which then decreased with LVAD support [4]. Medium and long
chain acylcarnitines were previously found to be associated with CVD events [40,42,43].
Thus, these metabolites may reflect altered mitochondrial fatty acid oxidation in CVD,
although additional investigation is required to determine the mechanistic causes of the
increased circulating acylcarnitine pool.

Carley et al. recently found an unexpected preference for short chain fatty acids
(SCFAs) in the failing heart. SCFAs are products of fiber-rich diet degradation by the gut
microbiome. Particularly, butyrate showed a higher affinity in mitochondrial oxidation
than its ketone bodies counterpart [117]. Reduced butyrate production was previously
found in HF patients [118], while high levels of valerate have been correlated with CAD
events [19].

Myocardial fatty acid oxidation rates in the failing heart is still a controversial topic, with
some studies reporting an increase, decrease, or no change in fatty acid metabolism [119].
Polyunsaturated fatty acids (PUFAs) and their subclasses are the main type of fatty acids
of interest in CVD metabolomic studies. Long-chain n-3 PUFAs may have antiatherogenic
effects and improve endothelial function as observed in experimental and epidemiological
studies [120–122]. Würtz et al. observed higher concentrations of omega-6 FA, total PUFA’s,
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and docosahexaenoic acid (DHA; an omega-3 fatty acid) were associated with lower CVD
risk [60]. Results from other cohort studies suggest that PUFAs are associated with a lower
CVD risk [123], and dietary consumption of PUFAs can lower cardiovascular risk [124,125],
but intervention trials do not suggest risk reduction by PUFA supplementation [126,127].
The role of PUFAs in nutritional supplementation as well as other micro and macronutrients
have been previously reviewed [128], although controversy of the role of PUFAs and fatty
acid oxidation in CVD pathophysiology remains.

3.3. Phospholipids

Phospholipid species may represent biomarkers for the early detection of heightened
oxidative stress associated with CVD. Inefficient ATP production can lead to increased re-
active oxidative species (ROS) generation and further oxidation of phospholipids [129,130].
Oxidative stress can lead to myocardium impairment (e.g., hypoxia), accelerating the
progression of cardiovascular diseases [131]. Oxidation of phospholipids and cholesterol in
LDL plays an important role in the progression of atherosclerosis [132], and Lu et al. found
that oxidized phospholipids, were significantly elevated in plasma of MI patients [24].
Phospholipids are also important in maintaining HDL integrity and stability and prevent
HDL clearance from plasma [133]. In a recent review of lipidomic lipoprotein studies
in CVD, Ding et al. showed only the associations of phospholipids with CVD outcomes
remained after adjusting for HDL-c and LDL-c [134]. This indicates that phospholipids
may be a valuable biomarker independent of total cholesterol and HDL-c.

Phospholipid molecules are shown to be increased and decreased in different models
of CVD. The opposing sensitivity of different PC species to future cardiovascular events
may relate to the instability of the PC species under heightened oxidative stress or the
altered HDL composition and impaired function associated with CVD [135,136]. In general,
it has been observed that PC species containing long chain saturated and monounsaturated
FAs positively associate with mortality, while PC with long-chain PUFAs appeared to
be associated with a protective effect. One of the most studied phospholipid-related
metabolites is trimethylamine-N-oxide (TMAO), which is generated in the liver through
the oxidation of trimethylamine (TMA). TMA is produced by the gut microbiota in the
intestinal tract through a pathway involving dietary nutrients such as phosphatidylcholine,
choline, and carnitine [137]. High levels of TMAO are known to promote atherosclerosis
and thrombosis [138]. The link between TMAO and cardiovascular risk in humans was
first reported by Wang et al. 2011 [57] and further validated in different populations such
as CHF and CAD among others [50,51,139–143].

3.4. Glycolipids

Glycolipids comprises the bulk of storage fat in tissues. Esterification of one, two or
three fatty acyls to glycerol lead to the formation of monoacylglycerol (MG), diacylglycerol
(DG) and TG species. MGs and DGs represent intermediates in the biosynthesis and
hydrolysis of TGs and function as second messengers in signal transduction pathways such
as insulin-signaling pathway [144–147]. The molecules of TG suppress insulin receptors,
thus inducing peripheral insulin resistance [146,147]. DG accumulation has been linked to
impaired insulin-stimulated glucose oxidation in the heart [148] as well as insulin resistance
and mitochondrial dysfunction [149]. It has previously been shown that the breakdown
and synthesis of triglycerides by DG and MG have a causal effect on CVD risk [150].

The relationship between total TGs and CVD risk is well established; however, the
relationships between individual glycolipid species and CVD are not. Studies of individual
TGs may help better characterize insulin resistance and CVD better than total TGs. For
instance, Ganna et al. found that adding MG 18:2 to a model with main cardiovascu-
lar risk factors was a better predictor of CVD than total TGs [14]. As seen with other
metabolite classes and due to the heterogeneity of the glycolipid class, different species
can have opposing associations to CVD risk. It has been shown that saturated TG 16:0
fatty acid was positively associated with fasting serum insulin concentrations and but
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unsaturated TG 18:3 was negatively associated [146]. Kotronen et al. found that saturated
and monosaturated TG molecules (TG (16:0/16:0/18:1) and TG (16:0/18:1/18:0)) correlated
positively with insulin resistance, whereas those containing essential fatty acids, such as
TG (18:1/18:2/18:2), correlated negatively [147]. Moreover, in the prospective population-
based Bruneck study, a specific cluster of TGs with low carbon number and double-bond
content, (saturated and monounsaturated) was most consistently associated with CVD [46].
Applying a network-based analytical method, Wang et al. linked a DG and MG cluster
to increased CVD risk [56]. These findings may support the link of MGs, DGs, and short
saturated TGs to insulin resistance and associated CVD.

3.5. Cholesterol Esters

A variety of lipid particles enter and accumulate in the artery wall; however, choles-
terol esters and native cholesterol are the most common. Most of the CE enters the artery as
components of lipoproteins (LDL, VLDL, HDL) which have been identified in atheroscle-
rotic lesions. The relationship of the vascular matrix, deposits of CE in the arterial wall
and its contribution to atherosclerosis is well-documented [151–153]. The specific species
composition of the CE is likely to be an important atherogenic factor. Infiltrating LDL
particles containing a CE-rich core with linoleic acid [CE (18:2)] are thought to be less
atherogenic [154]. LDL particles enriched with monounsaturated CE (CE 18:1) are larger
and more active in binding to arterial proteoglycans, leading to the subsequent formation
of atherosclerotic lesions [155].

Altered levels of CE found in the blood may be due to deficient conversion of
free cholesterol to CE (catalyzed by Lecithin-Cholesterol-Acyl-Transferase (LCAT)). In
a lipidomic analysis of CVD patients it was found that the ratios of concentrations of CE to
free cholesterol were lower in the CVD cohorts than in the control cohort, indicating a defi-
cient conversion of free cholesterol to CE in the blood plasma [156]. In a population-based
lipidomic study, it was found that monounsaturated CE (16:1) was the most positively
associated with the risk of CVD [46]. In the PREDIMED trial it was found that highly
unsaturated CEs were inversely associated with CVD [39,56,58]. A previous prospective
cohort study also found CE (16:1) and (CE 18:1) to be positively associated with CAD in
acute coronary syndrome patients.

3.6. Sphingolipids/Ceramides

Sphingolipids and their precursors ceramides (Cer), may be involved in the pathogen-
esis of CVD through multiple pathways including inflammation [157], atherosclerosis [158],
and apoptosis [159]. In the failing heart, the heart shows remodeling with increased fi-
brosis in the matrix [160] with myocyte loss by apoptosis occurring in parallel with the
onset of fibrosis [161,162]. Increased ceramide species in plasma have been associated
with increased cardiac remodeling and cardiac dysfunction in humans [33]. The specific
ceramides Cer (d18:1/16:0), Cer (d18:1/18:0), and Cer (d18:1/24:1) were consistently found
to be associated with CVD outcomes in the FINRISK study [16], the Corogene study [22],
and the PREDIMED trial [58]. In the LURIC study, three sphingomyelin species were
associated with mortality [44]. The positive association between ceramide and risk in CVD
may also be due to the influence of ceramide on the function of LDLs, since ceramides
are primarily contained in LDLs. A previous study has shown that LDLs extracted from
human atherosclerosis lesions are highly enriched in ceramides [163].

Although, the biochemical pathways responsible for altered sphingolipid synthesis
and metabolism in CVD still incompletely understood, they have shown the best prog-
nostic value out of the other metabolite classes thus far. For instance, the ceramide score
CERT1 was originally developed for CAD patients by Zora Biosciences and validated in
multiple prospective clinical studies. It has since been updated to CERT2 [7,16,17,22,164].
Another sphingolipid-based score for CAD patients named the sphingolipid-inclusive
CAD (SIC) risk score outperformed the CERT1 score and conventional CVD biomarkers in
an exploratory analysis. The only metabolomics-based score recommended in the clinic is a
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ceramide-based score for the prediction of CVD events are in patients with established CAD
(https://news.mayocliniclabs.com/ceramides-miheart/. Accessed 5 June 2021). Thus,
through lipidomics studies, plasma ceramides have emerged as the most promising new
metabolite-based biomarker for CVD with clinical application.

4. Future Directions

Early detection and prevention of CVD could help reduce the socio-economic, psy-
chological, and physical burdens on patients. Several factors like the diversity of CVD
pathology and its preceding metabolic events make early CVD detection and preven-
tion challenging. Traditional lipid profiling that measures HDL-C, LDL-C, triglycerides
and total cholesterol, do not reflect precise molecular perturbations in lipid metabolism
associated with CVD onset and progression. Thus, early-stage or long-term prediction
scores incorporating metabolomic and traditional biomarkers are emerging as powerful
tools in CVD risk management. In addition, short-term prognostic biomarkers or scores
of hospitalized or acute care patients can help clinicians make more informed decisions.
The ability to detect blood or urine metabolites in near real-time could allow clinicians
to monitor worsening or improving clinical trajectories and to target early interventions.
Monitoring changes in metabolite profiles over time, with aging, pre/post-surgery, or
following medication administration could be used to define an individual’s predisposition
for disease or response to therapy. Identification of novel drug targets and customization
of drug dosing are also emerging applications of metabolomic technology [165,166].

In parallel and in support of future clinical applications is the ability of metabolomics
to help uncover biological mechanisms. Multiomic or panomic approaches integrate multi-
ple “omes”, such as the genome, proteome, transcriptome, epigenome and microbiome
and can provide more precise maps of physiological networks of CVD. For example, the
CardioNet study used this approach to map the metabolic network of human cardiomy-
ocytes and has the ability to model the flux rates under various conditions [167]. A major
challenge of multi-omics and systems biology approaches is the ability to integrate and
manage large diverse molecular datasets which require more sophisticated computational
and statistical approaches. As technology and methodologies evolve, the molecular com-
plexity of cardiovascular and other diseases will become more and more illuminated while
contributing to novel diagnostic, prognostic, or therapeutic strategies.

The future translation of metabolomics to the clinical setting will require significant
investment in infrastructure, protocol standardization, education of providers and patients,
regulatory and reimbursement structure [96]. Most importantly, metabolomic analyte
quantitation needs to first be standardized and then developed to clinical laboratory
standards. As throughput technologies have become more powerful and databases for
compound identification more robust, standardized procedures are increasingly being
applied to large clinical cohorts and we are beginning to see consistency in the findings
reported across different metabolomics studies. Ultimately, the goal is to efficiently and
effectively conduct molecular phenotyping to advance the goals of precision medicine,
thus analysis of biomarkers and mechanisms such as lipid metabolites in CVD is a step
toward that direction.

5. Conclusions

Our review shows that lipid-based metabolite biomarkers can assist in the diagnosis
and prognosis of CVD, but caution must be applied in how we infer the associated periph-
eral metabolic perturbations. Lipidomic results from human studies have not, thus far, been
able to provide detailed and consistent information on the underlying pathomechanisms
of CVD. Our review found conflicting results of changes of individual metabolite species
across studies, possibly due to high levels of heterogeneity in regard to study design and
analytical platforms/approaches. Therefore, our knowledge at the biological level of CVD
in humans is mostly related to the classes of lipids (acylcarnitines/fatty acids, phospho-
lipids, glycolipids, cholesterol esters, sphingolipids/ceramides) and their associations with
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outcomes, rather than single lipid species. The heterogeneity of the study designs and
analyses make comparison of results challenging and represent an opportunity for more
standardization in this emerging field.

Author Contributions: Conceptualization, P.M.; T.D.T.; literature review, P.M.; T.D.T.; S.A.; J.A.K.;
M.A.G.-R.; data curation, P.M. A.S.; M.R.; J.A.K.; M.A.G.-R.; original draft preparation, P.M.; T.D.T.;
review and editing, E.V.; F.B.; B.P.; F.E. T.D.T.; J.A.K.; M.A.G.-R. All authors have read and agreed to
the published version of the manuscript.

Funding: Kirwan and Garcia-Rivera have been funded by project code 01EA1801C by the Bundesminis-
teriums für Bildung und Forschung (German Federal Ministry of Education and Research, BMBF).

Acknowledgments: We would like to acknowledge Corinna Naujok for sketching of Figures 1 and 2.
Further we do thank Victoria and Annabel McGranaghan, Junio Valerio Barbato as well as Samuel
Carl and Carla Antonie Zeisler.

Conflicts of Interest: The authors declare no conflict of interest. J.A.K. has been an invited Biocrates
speaker in the past (travel expenses only) and is an external consultant for Centogene GmBH.

References
1. Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.;

Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation
2020, 141, e139–e596. [CrossRef] [PubMed]

2. Neubauer, S. The failing heart—An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [CrossRef]
3. Karwi, Q.G.; Uddin, G.M.; Ho, K.L.; Lopaschuk, G.D. Loss of Metabolic Flexibility in the Failing Heart. Front. Cardiovasc. Med.

2018, 5, 68. [CrossRef] [PubMed]
4. Ahmad, T.; Kelly, J.P.; McGarrah, R.W.; Hellkamp, A.S.; Fiuzat, M.; Testani, J.M.; Wang, T.S.; Verma, A.; Samsky, M.D.; Donahue,

M.P.; et al. Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory
Support. J. Am. Coll. Cardiol. 2016, 67, 291–299. [CrossRef]

5. Alshehry, Z.H.; Mundra, P.A.; Barlow, C.K.; Mellett, N.A.; Wong, G.; McConville, M.J.; Simes, J.; Tonkin, A.M.; Sullivan, D.R.;
Barnes, E.H.; et al. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of Cardiovascular Events in
Type 2 Diabetes Mellitus. Circulation 2016, 134, 1637–1650. [CrossRef]

6. Andersson, C.; Liu, C.; Cheng, S.; Wang, T.J.; Gerszten, R.E.; Larson, M.G.; Vasan, R.S. Metabolomic signatures of cardiac
remodelling and heart failure risk in the community. ESC Heart Fail. 2020, 7, 3707–3715. [CrossRef]

7. Anroedh, S.; Hilvo, M.; Akkerhuis, K.M.; Kauhanen, D.; Koistinen, K.; Oemrawsingh, R.; Serruys, P.; van Geuns, R.J.; Boersma,
E.; Laaksonen, R.; et al. Plasma concentrations of molecular lipid species predict long-term clinical outcome in coronary artery
disease patients. J. Lipid Res. 2018, 59, 1729–1737. [CrossRef] [PubMed]

8. Cavus, E.; Karakas, M.; Ojeda, F.M.; Kontto, J.; Veronesi, G.; Ferrario, M.M.; Linneberg, A.; Jorgensen, T.; Meisinger, C.; Thorand,
B.; et al. Association of Circulating Metabolites With Risk of Coronary Heart Disease in a European Population: Results From
the Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) Consortium. JAMA Cardiol. 2019, 4, 1270–1279.
[CrossRef] [PubMed]

9. Cheng, M.L.; Wang, C.H.; Shiao, M.S.; Liu, M.H.; Huang, Y.Y.; Huang, C.Y.; Mao, C.T.; Lin, J.F.; Ho, H.Y.; Yang, N.I. Metabolic
disturbances identified in plasma are associated with outcomes in patients with heart failure: Diagnostic and prognostic value of
metabolomics. J. Am. Coll. Cardiol. 2015, 65, 1509–1520. [CrossRef]

10. Cheng, J.M.; Suoniemi, M.; Kardys, I.; Vihervaara, T.; de Boer, S.P.; Akkerhuis, K.M.; Sysi-Aho, M.; Ekroos, K.; Garcia-Garcia,
H.M.; Oemrawsingh, R.M.; et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics
and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Atherosclerosis 2015, 243, 560–566. [CrossRef]

11. Delles, C.; Rankin, N.J.; Boachie, C.; McConnachie, A.; Ford, I.; Kangas, A.; Soininen, P.; Trompet, S.; Mooijaart, S.P.; Jukema, J.W.;
et al. Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure
hospitalisation: Results from PROSPER and FINRISK 1997. Eur. J. Heart Fail. 2018, 20, 663–673. [CrossRef] [PubMed]

12. Fernandez, C.; Sandin, M.; Sampaio, J.L.; Almgren, P.; Narkiewicz, K.; Hoffmann, M.; Hedner, T.; Wahlstrand, B.; Simons, K.;
Shevchenko, A.; et al. Plasma lipid composition and risk of developing cardiovascular disease. PLoS ONE 2013, 8, e71846.

13. Floegel, A.; Kühn, T.; Sookthai, D.; Johnson, T.; Prehn, C.; Rolle-Kampczyk, U.; Otto, W.; Weikert, C.; Illig, T.; von Bergen, M.; et al.
Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German
prospective cohorts. Eur. J. Epidemiol. 2018, 33, 55–66. [CrossRef]

14. Ganna, A.; Salihovic, S.; Sundstrom, J.; Broeckling, C.D.; Hedman, A.K.; Magnusson, P.K.; Pedersen, N.L.; Larsson, A.; Siegbahn,
A.; Zilmer, M.; et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS
Genet. 2014, 10, e1004801. [CrossRef]

15. Gao, X.; Ke, C.; Liu, H.; Liu, W.; Li, K.; Yu, B.; Sun, M. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early
Stage Coronary Atherosclerosis. Sci. Rep. 2017, 7, 11817. [CrossRef] [PubMed]

http://doi.org/10.1161/CIR.0000000000000757
http://www.ncbi.nlm.nih.gov/pubmed/31992061
http://doi.org/10.1056/NEJMra063052
http://doi.org/10.3389/fcvm.2018.00068
http://www.ncbi.nlm.nih.gov/pubmed/29928647
http://doi.org/10.1016/j.jacc.2015.10.079
http://doi.org/10.1161/CIRCULATIONAHA.116.023233
http://doi.org/10.1002/ehf2.12923
http://doi.org/10.1194/jlr.P081281
http://www.ncbi.nlm.nih.gov/pubmed/29858423
http://doi.org/10.1001/jamacardio.2019.4130
http://www.ncbi.nlm.nih.gov/pubmed/31664431
http://doi.org/10.1016/j.jacc.2015.02.018
http://doi.org/10.1016/j.atherosclerosis.2015.10.022
http://doi.org/10.1002/ejhf.1076
http://www.ncbi.nlm.nih.gov/pubmed/29226610
http://doi.org/10.1007/s10654-017-0333-0
http://doi.org/10.1371/journal.pgen.1004801
http://doi.org/10.1038/s41598-017-12254-1
http://www.ncbi.nlm.nih.gov/pubmed/28924163


Metabolites 2021, 11, 621 20 of 26

16. Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V. Circulating Ceramides Predict
Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2424–2430.
[CrossRef] [PubMed]

17. Hilvo, M.; Meikle, P.J.; Pedersen, E.R.; Tell, G.S.; Dhar, I.; Brenner, H.; Schottker, B.; Laaperi, M.; Kauhanen, D.; Koistinen, K.M.;
et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary
artery disease patients. Eur. Heart J. 2020, 41, 371–380. [CrossRef] [PubMed]

18. Holmes, M.V.; Millwood, I.Y.; Kartsonaki, C.; Hill, M.R.; Bennett, D.A.; Boxall, R.; Guo, Y.; Xu, X.; Bian, Z.; Hu, R.; et al. Lipids,
Lipoproteins, and Metabolites and Risk of Myocardial Infarction and Stroke. J. Am. Coll. Cardiol. 2018, 71, 620–632. [CrossRef]

19. Jadoon, A.; Mathew, A.V.; Byun, J.; Gadegbeku, C.A.; Gipson, D.S.; Afshinnia, F.; Pennathur, S. Gut Microbial Product Predicts
Cardiovascular Risk in Chronic Kidney Disease Patients. Am. J. Nephrol. 2018, 48, 269–277. [CrossRef]

20. Ji, R.; Akashi, H.; Drosatos, K.; Liao, X.; Jiang, H.; Kennel, P.J.; Brunjes, D.L.; Castillero, E.; Zhang, X.; Deng, L.Y.; et al. Increased
de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight 2017, 2, e82922. [CrossRef]

21. Kalim, S.; Clish, C.B.; Wenger, J.; Elmariah, S.; Yeh, R.W.; Deferio, J.J.; Pierce, K.; Deik, A.; Gerszten, R.E.; Thadhani, R.; et al.
A plasma long-chain acylcarnitine predicts cardiovascular mortality in incident dialysis patients. J. Am. Heart Assoc. 2013, 2,
e000542. [CrossRef] [PubMed]

22. Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; Marz, W.; Scharnagl,
H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary
syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [CrossRef]

23. Lemaitre, R.N.; Jensen, P.N.; Hoofnagle, A.; McKnight, B.; Fretts, A.M.; King, I.B.; Siscovick, D.S.; Psaty, B.M.; Heckbert, S.R.;
Mozaffarian, D.; et al. Plasma Ceramides and Sphingomyelins in Relation to Heart Failure Risk. Circ. Heart Fail. 2019, 12, e005708.
[CrossRef]

24. Lu, J.; Chen, B.; Chen, T.; Guo, S.; Xue, X.; Chen, Q.; Zhao, M.; Xia, L.; Zhu, Z.; Zheng, L.; et al. Comprehensive metabolomics
identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases. Redox Biol. 2017,
12, 899–907. [CrossRef]

25. Mayerhofer, C.C.K.; Kummen, M.; Holm, K.; Broch, K.; Awoyemi, A.; Vestad, B.; Storm-Larsen, C.; Seljeflot, I.; Ueland, T.; Bohov,
P.; et al. Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail. 2020, 7, 456–466.
[CrossRef]

26. McGranaghan, P.; Dungen, H.D.; Saxena, A.; Rubens, M.; Salami, J.; Radenkovic, J.; Bach, D.; Apostolovic, S.; Loncar, G.
Incremental prognostic value of a novel metabolite-based biomarker score in congestive heart failure patients. ESC Heart Fail.
2020, 7, 3029–3039. [CrossRef]

27. McGranaghan, P.; Saxena, A.; Dungen, H.D.; Rubens, M.; Appunni, S.; Salami, J.; Veledar, E.; Lacour, P.; Blaschke, F.; Obradovic,
D.; et al. Performance of a cardiac lipid panel compared to four prognostic scores in chronic heart failure. Sci. Rep. 2021, 11, 8164.
[CrossRef] [PubMed]

28. Meikle, P.J.; Wong, G.; Tsorotes, D.; Barlow, C.K.; Weir, J.M.; Christopher, M.J.; MacIntosh, G.L.; Goudey, B.; Stern, L.; Kowalczyk,
A.; et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31,
2723–2732. [CrossRef] [PubMed]

29. Miller, C.D.; Thomas, M.J.; Hiestand, B.; Samuel, M.P.; Wilson, M.D.; Sawyer, J.; Rudel, L.L. Cholesteryl esters associated with
acyl-CoA:cholesterol acyltransferase predict coronary artery disease in patients with symptoms of acute coronary syndrome.
Acad. Emerg. Med. 2012, 19, 673–682. [CrossRef]

30. Mueller-Hennessen, M.; Dungen, H.D.; Lutz, M.; Trippel, T.D.; Kreuter, M.; Sigl, J.; Muller, O.J.; Tahirovic, E.; Witt, H.; Ternes, P.;
et al. A Novel Lipid Biomarker Panel for the Detection of Heart Failure with Reduced Ejection Fraction. Clin. Chem. 2017, 63,
267–277. [CrossRef]

31. Mueller-Hennessen, M.; Sigl, J.; Fuhrmann, J.C.; Witt, H.; Reszka, R.; Schmitz, O.; Kastler, J.; Fischer, J.J.; Müller, O.J.; Giannitsis,
E.; et al. Metabolic profiles in heart failure due to non-ischemic cardiomyopathy at rest and under exercise. ESC Heart Fail. 2017,
4, 178–189. [CrossRef]

32. Mundra, P.A.; Barlow, C.K.; Nestel, P.J.; Barnes, E.H.; Kirby, A.; Thompson, P.; Sullivan, D.R.; Alshehry, Z.H.; Mellett, N.A.; Huynh,
K.; et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI
Insight 2018, 3, e121326. [CrossRef]

33. Nwabuo, C.C.; Duncan, M.; Xanthakis, V.; Peterson, L.R.; Mitchell, G.F.; McManus, D.; Cheng, S.; Vasan, R.S. Association of
Circulating Ceramides With Cardiac Structure and Function in the Community: The Framingham Heart Study. J. Am. Heart Assoc.
2019, 8, e013050. [CrossRef]

34. Ottosson, F.; Emami Khoonsari, P.; Gerl, M.J.; Simons, K.; Melander, O.; Fernandez, C. A plasma lipid signature predicts incident
coronary artery disease. Int. J. Cardiol. 2021, 331, 249–254. [CrossRef] [PubMed]

35. Paapstel, K.; Kals, J.; Eha, J.; Tootsi, K.; Ottas, A.; Piir, A.; Jakobson, M.; Lieberg, J. Inverse relations of serum phosphatidylcholines
and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr. Metab. Cardiovasc. Dis.
2018, 28, 44–52. [CrossRef] [PubMed]

36. Paynter, N.P.; Balasubramanian, R.; Giulianini, F.; Wang, D.D.; Tinker, L.F.; Gopal, S.; Deik, A.A.; Bullock, K.; Pierce, K.A.; Scott, J.;
et al. Metabolic Predictors of Incident Coronary Heart Disease in Women. Circulation 2018, 137, 841–853. [CrossRef]

http://doi.org/10.1161/ATVBAHA.116.307497
http://www.ncbi.nlm.nih.gov/pubmed/27765765
http://doi.org/10.1093/eurheartj/ehz387
http://www.ncbi.nlm.nih.gov/pubmed/31209498
http://doi.org/10.1016/j.jacc.2017.12.006
http://doi.org/10.1159/000493862
http://doi.org/10.1172/jci.insight.82922
http://doi.org/10.1161/JAHA.113.000542
http://www.ncbi.nlm.nih.gov/pubmed/24308938
http://doi.org/10.1093/eurheartj/ehw148
http://doi.org/10.1161/CIRCHEARTFAILURE.118.005708
http://doi.org/10.1016/j.redox.2017.04.032
http://doi.org/10.1002/ehf2.12596
http://doi.org/10.1002/ehf2.12928
http://doi.org/10.1038/s41598-021-87776-w
http://www.ncbi.nlm.nih.gov/pubmed/33854188
http://doi.org/10.1161/ATVBAHA.111.234096
http://www.ncbi.nlm.nih.gov/pubmed/21903946
http://doi.org/10.1111/j.1553-2712.2012.01378.x
http://doi.org/10.1373/clinchem.2016.257279
http://doi.org/10.1002/ehf2.12133
http://doi.org/10.1172/jci.insight.121326
http://doi.org/10.1161/JAHA.119.013050
http://doi.org/10.1016/j.ijcard.2021.01.059
http://www.ncbi.nlm.nih.gov/pubmed/33545264
http://doi.org/10.1016/j.numecd.2017.07.011
http://www.ncbi.nlm.nih.gov/pubmed/28986077
http://doi.org/10.1161/CIRCULATIONAHA.117.029468


Metabolites 2021, 11, 621 21 of 26

37. Peterson, L.R.; Xanthakis, V.; Duncan, M.S.; Gross, S.; Friedrich, N.; Volzke, H.; Felix, S.B.; Jiang, H.; Sidhu, R.; Nauck, M.; et al.
Ceramide Remodeling and Risk of Cardiovascular Events and Mortality. J. Am. Heart Assoc. 2018, 7, e007931. [CrossRef]

38. Poss, A.M.; Maschek, J.A.; Cox, J.E.; Hauner, B.J.; Hopkins, P.N.; Hunt, S.C.; Holland, W.L.; Summers, S.A. Machine learning
reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Investig. 2020, 130,
1363–1376. [CrossRef] [PubMed]

39. Razquin, C.; Liang, L.; Toledo, E.; Clish, C.B.; Ruiz-Canela, M.; Zheng, Y.; Wang, D.D.; Corella, D.; Castaner, O.; Ros, E.; et al.
Plasma lipidome patterns associated with cardiovascular risk in the, P.R.EDIMED trial: A case-cohort study. Int. J. Cardiol. 2018,
253, 126–132. [CrossRef] [PubMed]

40. Rizza, S.; Copetti, M.; Rossi, C.; Cianfarani, M.A.; Zucchelli, M.; Luzi, A.; Pecchioli, C.; Porzio, O.; Di Cola, G.; Urbani, A.; et al.
Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 2014, 232, 260–264.
[CrossRef]

41. Seah, J.Y.H.; Chew, W.S.; Torta, F.; Khoo, C.M.; Wenk, M.R.; Herr, D.R.; Choi, H.; Tai, E.S.; van Dam, R.M. Plasma sphingolipids
and risk of cardiovascular diseases: A large-scale lipidomic analysis. Metabolomics 2020, 16, 89. [CrossRef]

42. Shah, S.H.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Crosslin, D.R.; Haynes, C.; Dungan, J.; Newby, L.K.; Hauser, E.R.; Ginsburg,
G.S.; et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular
events. Circ. Cardiovasc. Genet. 2010, 3, 207–214. [CrossRef] [PubMed]

43. Shah, S.H.; Sun, J.L.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; Pieper, K.S.; Haynes, C.; Hauser, E.R.; Kraus, W.E.; Granger, C.B.;
et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. Heart J. 2012,
163, 844–850 e1. [CrossRef] [PubMed]

44. Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Glycerophospholipid and sphingolipid species and
mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS ONE 2014, 9, e85724. [CrossRef] [PubMed]

45. Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Comparative lipidomics profiling of human
atherosclerotic plaques. Circ. Cardiovasc. Genet. 2011, 4, 232–242.

46. Stegemann, C.; Pechlaner, R.; Willeit, P.; Langley, S.R.; Mangino, M.; Mayr, U.; Menni, C.; Moayyeri, A.; Santer, P.; Rungger, G.;
et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 2014,
129, 1821–1831. [CrossRef]

47. Stenemo, M.; Ganna, A.; Salihovic, S.; Nowak, C.; Sundström, J.; Giedraitis, V.; Broeckling, C.D.; Prenni, J.E.; Svensson, P.;
Magnusson, P.K.E.; et al. The metabolites urobilin and sphingomyelin (30:1) are associated with incident heart failure in the
general population. ESC Heart Fail. 2019, 6, 764–773. [CrossRef]

48. Sun, Y.; Koh, H.W.; Choi, H.; Koh, W.P.; Yuan, J.M.; Newman, J.W.; Su, J.; Fang, J.; Ong, C.N.; van Dam, R.M. Plasma fatty acids,
oxylipins, and risk of myocardial infarction: The Singapore Chinese Health Study. J. Lipid Res. 2016, 57, 1300–1307. [CrossRef]

49. Syme, C.; Czajkowski, S.; Shin, J.; Abrahamowicz, M.; Leonard, G.; Perron, M.; Richer, L.; Veillette, S.; Gaudet, D.; Strug, L.; et al.
Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation 2016,
134, 1629–1636. [CrossRef]

50. Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y. Intestinal microbial metabolism of phosphatidylcholine
and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [CrossRef]

51. Tang, W.H.; Wang, Z.; Fan, Y.; Levison, B.; Hazen, J.E.; Donahue, L.M.; Wu, Y.; Hazen, S.L. Prognostic value of elevated levels of
intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J.
Am. Coll. Cardiol. 2014, 64, 1908–1914. [CrossRef]

52. Tarasov, K.; Ekroos, K.; Suoniemi, M.; Kauhanen, D.; Sylvänne, T.; Hurme, R. Molecular lipids identify cardiovascular risk and
are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E45–E52. [CrossRef] [PubMed]

53. Tzoulaki, I.; Castagne, R.; Boulange, C.L.; Karaman, I.; Chekmeneva, E.; Evangelou, E.; Ebbels, T.M.D.; Kaluarachchi, M.R.;
Chadeau-Hyam, M.; Mosen, D.; et al. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent
cardiovascular disease. Eur. Heart J. 2019, 40, 2883–2896. [CrossRef] [PubMed]

54. Vaarhorst, A.A.; Verhoeven, A.; Weller, C.M.; Bohringer, S.; Goraler, S.; Meissner, A.; Deelder, A.M.; Henneman, P.; Gorgels, A.P.;
van den Brandt, P.A.; et al. A metabolomic profile is associated with the risk of incident coronary heart disease. Am. Heart J. 2014,
168, 45–52 e7. [CrossRef]

55. Vorkas, P.A.; Isaac, G.; Holmgren, A.; Want, E.J.; Shockcor, J.P.; Holmes, E.; Henein, M.Y. Perturbations in fatty acid metabolism
and apoptosis are manifested in calcific coronary artery disease: An exploratory lipidomic study. Int. J. Cardiol. 2015, 197, 192–199.
[CrossRef] [PubMed]

56. Wang, D.D.; Zheng, Y.; Toledo, E.; Razquin, C.; Ruiz-Canela, M.; Guasch-Ferre, M.; Yu, E.; Corella, D.; Gomez-Gracia, E.; Fiol, M.;
et al. Lipid metabolic networks, Mediterranean diet and cardiovascular disease in the PREDIMED trial. Int. J. Epidemiol. 2018, 47,
1830–1845. [CrossRef]

57. Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut
flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [CrossRef]

58. Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferre, M.;
et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevencion con Dieta
Mediterranea). Circulation 2017, 135, 2028–2040. [CrossRef]

http://doi.org/10.1161/JAHA.117.007931
http://doi.org/10.1172/JCI131838
http://www.ncbi.nlm.nih.gov/pubmed/31743112
http://doi.org/10.1016/j.ijcard.2017.10.026
http://www.ncbi.nlm.nih.gov/pubmed/29306452
http://doi.org/10.1016/j.atherosclerosis.2013.10.029
http://doi.org/10.1007/s11306-020-01709-8
http://doi.org/10.1161/CIRCGENETICS.109.852814
http://www.ncbi.nlm.nih.gov/pubmed/20173117
http://doi.org/10.1016/j.ahj.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22607863
http://doi.org/10.1371/journal.pone.0085724
http://www.ncbi.nlm.nih.gov/pubmed/24465667
http://doi.org/10.1161/CIRCULATIONAHA.113.002500
http://doi.org/10.1002/ehf2.12453
http://doi.org/10.1194/jlr.P066423
http://doi.org/10.1161/CIRCULATIONAHA.116.022993
http://doi.org/10.1056/NEJMoa1109400
http://doi.org/10.1016/j.jacc.2014.02.617
http://doi.org/10.1210/jc.2013-2559
http://www.ncbi.nlm.nih.gov/pubmed/24243630
http://doi.org/10.1093/eurheartj/ehz235
http://www.ncbi.nlm.nih.gov/pubmed/31102408
http://doi.org/10.1016/j.ahj.2014.01.019
http://doi.org/10.1016/j.ijcard.2015.06.048
http://www.ncbi.nlm.nih.gov/pubmed/26142205
http://doi.org/10.1093/ije/dyy198
http://doi.org/10.1038/nature09922
http://doi.org/10.1161/CIRCULATIONAHA.116.024261


Metabolites 2021, 11, 621 22 of 26

59. Wittenbecher, C.; Eichelmann, F.; Toledo, E.; Guasch-Ferre, M.; Ruiz-Canela, M.; Li, J.; Aros, F.; Lee, C.H.; Liang, L.; Salas-Salvado,
J.; et al. Lipid Profiles and Heart Failure Risk: Results From Two Prospective Studies. Circ. Res. 2021, 128, 309–320. [CrossRef]

60. Wurtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen,
M.; et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015,
131, 774–785. [CrossRef]

61. Zordoky, B.N.; Sung, M.M.; Ezekowitz, J.; Mandal, R.; Han, B.; Bjorndahl, T.C.; Bouatra, S.; Anderson, T.; Oudit, G.Y.; Wishart,
D.S.; et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE 2015, 10, e0124844. [CrossRef]

62. Bowling, F.G.; Thomas, M. Analyzing the metabolome. Methods Mol. Biol. 2014, 1168, 31–45. [PubMed]
63. Karu, N.; Deng, L.; Slae, M.; Guo, A.C.; Sajed, T.; Huynh, H.; Wine, E.; Wishart, D.S. A review on human fecal metabolomics:

Methods, applications and the human fecal metabolome database. Anal. Chim. Acta 2018, 1030, 1–24. [CrossRef] [PubMed]
64. Lind, M.V.; Savolainen, O.I.; Ross, A.B. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology:

Methodological and statistical considerations for application to large numbers of biological samples. Eur. J. Epidemiol. 2016, 31,
717–733. [CrossRef] [PubMed]

65. Yu, Z.; Kastenmüller, G.; He, Y.; Belcredi, P.; Möller, G.; Prehn, C.; Mendes, J.; Wahl, S.; Roemisch-Margl, W.; Ceglarek, U.; et al.
Differences between human plasma and serum metabolite profiles. PLoS ONE 2011, 6, e21230. [CrossRef]

66. Marchand, C.R.; Farshidfar, F.; Rattner, J.; Bathe, O.F. A Framework for Development of Useful Metabolomic Biomarkers and
Their Effective Knowledge Translation. Metabolites 2018, 8, 59. [CrossRef] [PubMed]

67. Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Häring, H.U.; Xu, G.; et al.
Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin. Chem. 2013, 59, 833–845.
[CrossRef]

68. Kamlage, B.; Neuber, S.; Bethan, B.; González Maldonado, S.; Wagner-Golbs, A.; Peter, E.; Schmitz, O.; Schatz, P. Impact of
Prolonged Blood Incubation and Extended Serum Storage at Room Temperature on the Human Serum Metabolome. Metabolites
2018, 8, 6. [CrossRef]

69. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The
Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [CrossRef]

70. Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A
metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [CrossRef]

71. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB
3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [CrossRef]

72. Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A
public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [CrossRef]

73. Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass spectrometry database for
lipid identification. Nat. Methods 2013, 10, 755–758. [CrossRef]

74. Witting, M.; Ruttkies, C.; Neumann, S.; Schmitt-Kopplin, P. LipidFrag: Improving reliability of in silico fragmentation of lipids
and application to the Caenorhabditis elegans lipidome. PLoS ONE 2017, 12, e0172311. [CrossRef] [PubMed]

75. Hutchins, P.D.; Russell, J.D.; Coon, J.J. LipiDex: An Integrated Software Package for High-Confidence Lipid Identification. Cell
Syst. 2018, 6, 621–625.e5. [CrossRef] [PubMed]

76. Koelmel, J.P.; Kroeger, N.M.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Cochran, J.A.; Beecher, C.W.W.; Garrett, T.J.; Yost,
R.A. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass
spectrometry data. BMC Bioinform. 2017, 18, 331. [CrossRef]

77. Xu, F.; Zou, L.; Ong, C.N. Multiorigination of chromatographic peaks in derivatized, G.C./MS metabolomics: A confounder that
influences metabolic pathway interpretation. J. Proteome Res. 2009, 8, 5657–5665. [CrossRef]

78. Xu, F.; Zou, L.; Ong, C.N. Experiment-originated variations, and multi-peak and multi-origination phenomena in derivatization-
based, G.C.-MS metabolomics. TrAC Trends Anal. Chem. 2010, 29, 269–280. [CrossRef]

79. Kanani, H.; Chrysanthopoulos, P.K.; Klapa, M.I. Standardizing GC-MS metabolomics. J. Chromatogr. B Analyt. Technol. Biomed.
Life Sci. 2008, 871, 191–201. [CrossRef]

80. Misra, B.B. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics 2021, 17, 49.
[CrossRef]

81. Hsu, F.F. Mass spectrometry-based shotgun lipidomics—A critical review from the technical point of view. Anal. Bioanal. Chem.
2018, 410, 6387–6409. [CrossRef]

82. Annesley, T.M. Ion suppression in mass spectrometry. Clin. Chem. 2003, 49, 1041–1044. [CrossRef] [PubMed]
83. Mei, H.; Hsieh, Y.; Nardo, C.; Xu, X.; Wang, S.; Ng, K.; Korfmacher, W.A. Investigation of matrix effects in bioanalytical high-

performance liquid chromatography/tandem mass spectrometric assays: Application to drug discovery. Rapid Commun. Mass
Spectrom. 2003, 17, 97–103. [CrossRef]

84. Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography-mass spectrometry.
Mass Spectrom. Rev. 2011, 30, 491–509. [CrossRef] [PubMed]

85. Hu, C.; Duan, Q.; Han, X. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics. Proteomics 2020, 20, e1900070.
[CrossRef]

http://doi.org/10.1161/CIRCRESAHA.120.317883
http://doi.org/10.1161/CIRCULATIONAHA.114.013116
http://doi.org/10.1371/journal.pone.0124844
http://www.ncbi.nlm.nih.gov/pubmed/24870129
http://doi.org/10.1016/j.aca.2018.05.031
http://www.ncbi.nlm.nih.gov/pubmed/30032758
http://doi.org/10.1007/s10654-016-0166-2
http://www.ncbi.nlm.nih.gov/pubmed/27230258
http://doi.org/10.1371/journal.pone.0021230
http://doi.org/10.3390/metabo8040059
http://www.ncbi.nlm.nih.gov/pubmed/30274369
http://doi.org/10.1373/clinchem.2012.199257
http://doi.org/10.3390/metabo8010006
http://doi.org/10.1093/nar/gkl923
http://doi.org/10.1097/01.ftd.0000179845.53213.39
http://doi.org/10.1093/nar/gks1065
http://doi.org/10.1002/jms.1777
http://doi.org/10.1038/nmeth.2551
http://doi.org/10.1371/journal.pone.0172311
http://www.ncbi.nlm.nih.gov/pubmed/28278196
http://doi.org/10.1016/j.cels.2018.03.011
http://www.ncbi.nlm.nih.gov/pubmed/29705063
http://doi.org/10.1186/s12859-017-1744-3
http://doi.org/10.1021/pr900738b
http://doi.org/10.1016/j.trac.2009.12.007
http://doi.org/10.1016/j.jchromb.2008.04.049
http://doi.org/10.1007/s11306-021-01796-1
http://doi.org/10.1007/s00216-018-1252-y
http://doi.org/10.1373/49.7.1041
http://www.ncbi.nlm.nih.gov/pubmed/12816898
http://doi.org/10.1002/rcm.876
http://doi.org/10.1002/mas.20298
http://www.ncbi.nlm.nih.gov/pubmed/21500246
http://doi.org/10.1002/pmic.201900070


Metabolites 2021, 11, 621 23 of 26

86. Ryan, E.; Reid, G.E. Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for “Shotgun”
Lipidome Analysis. Acc. Chem. Res. 2016, 49, 1596–1604. [CrossRef] [PubMed]

87. Han, X.; Yang, K.; Cheng, H.; Fikes, K.N.; Gross, R.W. Shotgun lipidomics of phosphoethanolamine-containing lipids in biological
samples after one-step in situ derivatization. J. Lipid Res. 2005, 46, 1548–1560. [CrossRef] [PubMed]

88. Thompson, J.W.; Adams, K.J.; Adamski, J.; Asad, Y.; Borts, D.; Bowden, J.A.; Byram, G.; Dang, V.; Dunn, W.B.; Fernandez, F.; et al.
International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis.
Anal. Chem. 2019, 91, 14407–14416. [CrossRef] [PubMed]

89. Li, J.; Vosegaard, T.; Guo, Z. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for
lipidomics studies. Prog. Lipid Res. 2017, 68, 37–56. [CrossRef]

90. Kirschenlohr, H.L.; Griffin, J.L.; Clarke, S.C.; Rhydwen, R.; Grace, A.A.; Schofield, P.M.; Brindle, K.M.; Metcalfe, J.C. Proton NMR
analysis of plasma is a weak predictor of coronary artery disease. Nat. Med. 2006, 12, 705–710. [CrossRef]
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