
One of the most important challenges in the field of a software code audit is the presence of

vulnerabilities in software source code. Every year, more and more software flaws are found, either

internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead

to system compromise, data leakage, or denial of service. C and C++ open-source code are now

available in order to create a large-scale, machine-learning system for function-level vulnerability

identification. We assembled a sizable dataset of millions of open-source functions that point to

potential exploits. We created an efficient and scalable vulnerability detection method based on

deep neural network models that learn features extracted from the source codes. To remove the

pointless components and shorten the dependency, the source code is first converted into a minimal

intermediate representation. We keep the semantic and syntactic information using state-of-the-art

word embedding algorithms. The embedded vectors are subsequently fed into convolutional neural

networks to classify the possible vulnerabilities. Furthermore, we proposed a new neural network

model which seems to overcome issues associated with traditional neural networks. To measure the

performance, we used evaluation metrics such as f1 score, precision, recall, accuracy, and total

execution time.
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Considering the experimental results, the proposed model gives highest accuracy, 

f1-score, recall. GPT-2 model provides almost similar result as our proposed 

model but our model is more efficient in terms of execution time., 

Method           

Recent well-publicized exploits have demonstrated that these security flaws can have catastrophic

impacts on society and the economy in our healthcare, energy, defense other critical infrastructure
systems [2]. For instance, the ransomware Wannacry swept the globe by using a flaw in the
Windows server message block protocol [3]. According to the Microsoft Security Response Center,

half of 2015 had an industry-wide surge in high-severity vulnerabilities of 41.7%. This represents
41.8% of the total greatest proportion of software vulnerabilities in at least three years [4].

Furthermore, according to a Frost and Sullivan ( a global growth consulting company) analysis
released in 2018, there was an increase in severe and high severity vulnera-bilities, going from 693
in 2016 to 929 in 2017, with Google Project Zero coming in second place in terms of disclosing such

flaws. On August 14, 2019, Intel issued a warning on a high-severity vulnerability in software it uses
to identify the specifications of Intel processors in Windows PCs [5] . The paper claims that these

defects, including information leaking and denial of service assaults, might substantially affect
software systems. Although the company issued an update to remedy the problems, an attacker can
still use these vulnerabilities to escalate their privileges on a machine that has already been

compromised. We have come up with a solution for detecting software vulnerabilities using deep
neural networks such as Simple RNN, LSTM, BilSTM, BERT, GPT2, and LSTM-Autoencoder.

Moreover, we developed a neural network that worked best among all the models. All of the models
have been evaluated using evaluation metrics such as f1 score, precision, recall, accuracy, and total
execution time

Conclusion

The advancement of machine learning technology incorporates new approaches

to address the limitations of conventional approaches. One of the key research

directions is to develop intelligent source code-based vulnerability detection

systems. We developed a powerful and adaptable vulnerability detection

technique based on deep neural network models that take in information from

source code attributes. The source code is initially transformed into a minimum

intermediate representation in order to eliminate the unnecessary components

and reduce the dependency. Using cutting-edge word embedding methods, we

maintain the semantic and syntactic information. Convolutional neural

networks are then fed the embedded vectors to categorize the potential

vulnerabilities. Additionally, we put forth a novel neural network model that

appears to resolve problems with conventional neural networks. Evaluation

measures such the f1 score, precision, recall, accuracy, and total execution time

were utilized to gauge performance. We found that our proposed model

provides better accuracy and more efficient in terms of execution time.

Proposed Architecture

• Proposed model: We created a model using an autoencoder and LSTM. The
network aims to close the distance between the reconstructed representation
and the original input as it learns. We stacked the LSTM and autoencoder layers.
The term "stacked LSTM network" refers to an LSTM network that has many
stacked LSTM layers. The network becomes more complex and deeper when
LSTM layers are stacked. In a stacked LSTM encoder part, an LSTM layer below
offers several outputs to its above LSTM layer as opposed to a single output. In
other words, it generates one output for each input time step as opposed to one
output for all input phases.
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We chose to analyze software packages at the function-level because it is the lowest

granularity level that captures a subroutine’s overall flow. We compileda vast dataset of
millions of function level examples of C and C++ code from the SATE IV Juliet Test Suite,
Debian Linux distribution, and public Git repositories on GitHub described in the paper of

Russel [36]. In this project we have used CWE-119 vulnerability feature. This feature basically
indicates issues associated with buffer overflow vulnerability. A buffer overflow occurs when

data is written to the buffer that is longer than the buffer itself, overwriting storage units outside
the buffer in the process We first transformed the samples of source code into the minimum
intermediate representations through dependency analysis, program slicing, tokenization, and

serialization. Later, we extracted semantic features using word embedding algorithms such as
GloVe and fastText. After finishing the data preprocessing stage, we fed the input

representation to the deep neural networks for classification.

GloVe: is a language algorithm for prevailing vector representations of words. This is an

unsupervised learning algorithm; the training process has been performed on global word-word
co-occurrence statistics from a corpus.

FasText: is an embedding method that uses a word’s deep-down structure to improve the
vector representations acquired from the skip-gram method.

Classification Models: The vector representation of the software source code has been fed
to the LSTM, BiLSTM, LSTM-autoencoder, Word2vec, BERT, and GPT2 models. The dataset has
been divided into training and validation portions for the purpose of training the models.
Finally, the test dataset is used to evaluate each trained model.

- Previously, Zeng et al. [6] reviewed software vulnerability analysis and discovery using deep

learning techniques. They found four game changers who contributed most to the software

vulnerability using deep learn-ing techniques.

- Yamaguchi et al. [7] put forth an anomaly detection technique for taint-style vulnerabilities. It

groups the variables that pass on to functions with sensitive security. Then, the violation is

reported as a potential vulnerability by anomaly detection. This strategy works well with taint-

style vulnerability but not with all vulnerabilities.

- Wang et al. [8] proposed an automatic semantic learning process using deep learning models

for defect detection. They used DBN, a generative graphical model, capable of learning

representation that can reconstruct training data with a high probabilities.

- Kim et al. [9] proposed a technique for identifying vulnerabilities based on similarity.

Although, this approach is only effective against vulnerabilities brought on by code cloning
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Figure 1: An intra-procedural buffer overflow vulnerability
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