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Severity of parkinsonism associated with
environmental manganese exposure
Brad A. Racette1,2*, Gill Nelson2,3, Wendy W. Dlamini1, Pradeep Prathibha4, Jay R. Turner4, Mwiza Ushe1,
Harvey Checkoway5, Lianne Sheppard6 and Susan Searles Nielsen1

Abstract

Background: Exposure to occupational manganese (Mn) is associated with neurotoxic brain injury, manifesting
primarily as parkinsonism. The association between environmental Mn exposure and parkinsonism is unclear. To
characterize the association between environmental Mn exposure and parkinsonism, we performed population-
based sampling of residents older than 40 in Meyerton, South Africa (N = 621) in residential settlements adjacent to
a large Mn smelter and in a comparable non-exposed settlement in Ethembalethu, South Africa (N = 95) in 2016–
2020.

Methods: A movement disorders specialist examined all participants using the Unified Parkinson Disease Rating
Scale motor subsection part 3 (UPDRS3). Participants also completed an accelerometry-based kinematic test and a
grooved pegboard test. We compared performance on the UPDRS3, grooved pegboard, and the accelerometry-
based kinematic test between the settlements using linear regression, adjusting for covariates. We also measured
airborne PM2.5-Mn in the study settlements.

Results: Mean PM2.5-Mn concentration at a long-term fixed site in Meyerton was 203 ng/m3 in 2016–2017 –
approximately double that measured at two other neighborhoods in Meyerton. The mean Mn concentration in
Ethembalethu was ~ 20 times lower than that of the long-term Meyerton site. UPDRS3 scores were 6.6 (CI 5.2, 7.9)
points higher in Meyerton than Ethembalethu residents. Mean angular velocity for finger-tapping on the
accelerometry-based kinematic test was slower in Meyerton than Ethembalethu residents [dominant hand 74.9 (CI
48.7, 101.2) and non-dominant hand 82.6 (CI 55.2, 110.1) degrees/second slower]. Similarly, Meyerton residents took
longer to complete the grooved pegboard, especially for the non-dominant hand (6.9, CI -2.6, 16.3 s longer).

Conclusions: Environmental airborne Mn exposures at levels substantially lower than current occupational
exposure thresholds in the United States may be associated with clinical parkinsonism.

Keywords: Case control studies, Parkinson disease, Parkinsonism, Manganese
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Background
Manganese (Mn) is an essential trace element [1] but
also a neurotoxin at higher levels. Routes of entry are
oral, respiratory, and, possibly, trans-olfactory. Mn that
bypasses the liver is actively transported across the
blood-brain barrier and appears to accumulate in the
basal ganglia [2]. Oral Mn uptake is tightly regulated to
maintain homeostatic Mn blood levels, so neurotoxicity
in adults appears to be related primarily to inhaled Mn
[3]. Millions of people worldwide are exposed to
airborne environmental Mn due to fossil fuel combus-
tion, air erosion of Mn-laden soils proximate to mining
operations, and industrial stack emissions from high
temperature industrial processes, such as smelting and
steelmaking. Numerous studies demonstrate an associ-
ation between occupational Mn exposure and motor
dysfunction [4–8]. There is also evidence of Mn-related
motor dysfunction [9–17], in relation to environmental
Mn exposure in adults, but fewer studies have found
clinically relevant motor health effects [12, 18]. We have
previously shown that Mn-exposed workers have Mn-
dose-dependent parkinsonism [7] and dopaminergic dys-
function [19–21], at estimated mean airborne Mn con-
centrations ranging from 0.0175 to 0.14 mg/m3 over the
course of a work shift. This and other studies [8, 22]
suggest that there are adverse neurologic health effects
from Mn exposures below the American Conference of
Governmental Industrial Hygienists (ACGIH) threshold
limit value for Mn of 0.1 mg/m3 [23]. The current
United States (U.S.) Environmental Protection Agency
(EPA) lowest observed adverse effect level (LOAEL) of
Mn is 0.05 mg/m3, and was derived from findings from
an occupational study [24]. We sought to examine
whether we could detect motor health effects from am-
bient industrial Mn exposure in South Africa. We hy-
pothesized that individuals with relatively high Mn
environmental inhalational exposures would have poorer
scores on clinically relevant measures of parkinsonism
than those with lower exposures.

Methods
Participants
All participants lived in one of two communities in Gau-
teng province, South Africa at the time of enrollment, be-
tween 2016 and 2020.Participants in the Mn-exposed
community, Meyerton, lived in one of three settlements
(Old Sicelo, New Sicelo, or Noldick). This community is
located in the Midvaal municipality, within 5 km of one of
the world’s largest Mn smelters, which has been in oper-
ation since 1951. Participants from the reference commu-
nity lived in Ethembalethu, a settlement located
approximately 70 km northwest of Meyerton, in the
Mogale City municipality, with no nearby Mn smelting or
mining operations. We chose Ethembalethu as the

reference settlement due to its location in a non-industrial
area, outside of Johannesburg, but otherwise largely simi-
lar sociodemographics (Table 1). Most notably, the se-
lected Meyerton-based and Ethembalethu settlements are
government-subsidized housing communities, so residents
must meet the same income criteria to be allowed to live
in these settlements.
Our research personnel recruited participants by visit-

ing a preselected, population-based sample of homes in
each settlement to attempt to recruit adults who met all
inclusion criteria, as detailed below. For two of the three
Meyerton-based settlements (New Sicelo and Noldick),
we preselected every other residence using a municipal-
ity map. Research personnel attempted to recruit eligible
adults in each residence to participate in the study. If no
one was home, or if there were no eligible adults in the
residence, the research personnel attempted to recruit
the residence to the left of the preselected home. If no
one was home or eligible in that residence, they pro-
ceeded to the next preselected home on the map. Be-
cause there were fewer residences in Old Sicelo than in
the other two areas, research personnel attempted to re-
cruit participants from every residence in that settle-
ment. The reference community, Ethembalethu, was
smaller than the Meyerton-based settlements, so we
attempted to recruit every adult resident who met the
study criteria, using the same door-to-door approach.
Inclusion criteria included current residence in the se-

lected Meyerton-based settlements or Ethembalethu,
age ≥ 40, and ability to provide informed consent. After
initial recruitment based upon these inclusion criteria,
and completion of grooved pegboard (GP) testing,
accelerometry-based kinematic testing, and the study
questionnaire in the home, participants were asked to
come for a second visit (“phase 2”) to a local community
center to be examined by a neurologist at a later time.-
After this clinical assessment phase 2 visit, enrolled par-
ticipants were then excluded if they had neurologic co-
morbidities that made testing unreliable or were using a
dopamine receptor blocking medication. Otherwise, we
did not select participants with regard to any health out-
comes or occupational exposures, and generally, partici-
pants only had non-occupational exposure to Mn.

Assessment of UPDRS3 score and subscores
One movement disorder specialist (B.A.R.) examined all
participants for Parkinson disease (PD) and, more gener-
ally, signs of parkinsonism, using the Unified Parkinson
Disease Rating Scale motor subsection part 3 (UPDRS3)
[25]. The complete examination occurred while blinded
to results on the GP test, accelerometry-based kinematic
testing, and cumulative Mn exposure, i.e., current resi-
dence location within the respective community, past
residential histories, and occupational histories. In
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addition to the UPDRS3 total score, we combined se-
lected UPDRS3 subscores [7], as secondary outcomes, to
determine if environmental Mn exposure was associated
with specific clinical signs. In order to ensure that par-
ticipants could be included even when a limb was se-
verely injured or missing, or had a medical condition
that precluded the pull test to assess balance, we im-
puted one or more missing subscores, when possible,
using other subscores as predictors in linear regression
models based on all participants with complete UPDRS3
subscores.

Grooved pegboard and kinematic testing
Participants completed selected motor tasks, as additional
secondary outcomes, in their home at the time of recruit-
ment. These included two tasks that assess fine motor func-
tion: the GP test and an accelerometry-based kinematic test
(hereafter “kinematic test”) that replicated the finger-tapping
task from the UPDRS3 exam. For GP testing, we used a
standard GP device (Lafayette Instrument Company, Lafa-
yette, Indiana) and followed published testing procedures
[26]. We recorded the time to place the 25 pegs for each
hand up to 300 s. Trained research personnel administered
the kinematic test by placing a wireless motion sensor (Kine-
sia™, Great Lakes NeuroTechnologies, Independence, Ohio)
[27–31] on the top of the participant’s index finger. The
Kinesia Motion Sensory device is comprised of a triaxial ac-
celerometer and triaxial gyroscope, allowing the measure-
ment of acceleration (linear) and velocity (angular),
respectively, along all three axes (x, y, and z) at 64 Hz. We re-
corded the digitized signals on a computer tablet, installed
with motion capture software (Great Lakes NeuroTechnolo-
gies, Independence, Ohio). Participants were asked to
complete three 12-second trials for each hand for a finger-
tapping task.Each participant tapped his/her index finger and
thumb together, while keeping the other fingers stable and
the elbow extended.Participants were instructed to perform
the finger-tapping task with as large an amplitude and as fast
as possible. We then processed the kinematic data using
code we developed in Stata version MP 14.2 (StataCorp, Col-
lege Station, Texas) [32] and validated this Stata processed
data against manually processed data (Spearman’s ρ > 0.99).
We used the mean angular velocity in degrees/second, here-
after referred to as mean velocity, across all three trials for
the respective hand (dominant or non-dominant). We used
self-reported handedness to classify the motor tasks as dom-
inant or non-dominant. Even after age-adjustment, both
motor tasks in each hand were strongly associated with the
UPDRS3 (all P values < 0.001).

Assessment of mn exposure
We used community (Meyerton, Ethembalethu) as an
indicator of Mn exposure status. To verify and quantify
potential differences in airborne Mn exposure, we

measured ambient Mn concentrations in both commu-
nities. We collected fine particulate matter (PM2.5, parti-
cles with aerodynamic diameter ≤ 2.5 μm) on Teflon®
filters (Measurement Technology Corporation, Minne-
apolis, MN) using air samplers with PM2.5 inlets (Model
PQ100, Mesa Labs, Butler, NJ) operating continuously
for two- to three-days for each sample. Long-term rou-
tine air sampling at a fixed site in the Meyerton settle-
ment of Noldick began in October 2015 and was
completed in May 2018. For the two-year period 2016–
2017, 47 % of all hours were represented (n = 158 filters).
We assessed spatial variability across the Meyerton-
based settlements by collecting samples concurrently in
Old Sicelo and Noldick (October 2018-February 2019,
n = 37 filters), and New Sicelo and Noldick (September
2017-May 2018 and October 2018, n = 55 filters). We
conducted air sampling in Ethembalethu in January-
October 2020 (n = 68 filters) with no concurrent sam-
pling in Meyerton. Filter membranes were digested using
a MARS 6™ microwave digestion system (CEM, Mat-
thews, NC) using a validated protocol [33]. We filtered
these digestates through 0.45 μm (pore size) nylon syr-
inge filters (VWR, Radnor, PA) and diluted them with
deionized water (≥ 18.2 MΩ/cm resistivity, MilliQ Water
Purification System, EMD Millipore, Burlington, MA).
Mn was quantified using an inductively coupled plasma-
mass spectrometer (NexION® 2000, Perkin-Elmer, Nor-
walk, CT). The limit of detection for Mn was 0.056 ng/
m3 in PM2.5 [34]. Instrument performance was validated
using NIST 1648a Urban Particulate Matter (Sigma-Al-
drich, St. Louis, MO), yielding Mn recovery of 96.9 ±
8.4 %.

Statistical analysis
We performed all statistical analyses using Stata version
MP 14.2 [32]. We used linear regression with each of
the motor outcomes as continuous dependent variables.
Mn exposure, as assessed by whether the residence was
in the exposed (Meyerton) or non-exposed (Ethemba-
lethu) community, was the independent variable of pri-
mary interest. Our primary motor outcome was the total
UPDRS3 score. Given the known strong, positive associ-
ation between age and both UPDRS3 scores [7] and
other motor outcomes, we adjusted a priori for age in all
models. We retained age as a continuous variable and
adjusted for age using natural cubic splines with five
knots, following Harrell’s placement method, i.e., knots
equally spaced at the 5th, 27.5th, 50th, 72.5th and 95th
percentiles [35]. In practice, five knots are considered a
good choice to model the overall shape of a parameter
for sample sizes ≥ 100 [35, 36]. We also examined the ef-
fects of adjustment for sex, cigarette smoking, and alco-
hol use, with the latter two as trichotomous variables
(never, former, current use). These demographic
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variables are associated with PD [37–39] and therefore
might also be associated with UPDRS3 scores and other
motor outcomes. We conducted three additional sensi-
tivity analyses. First, we excluded participants with im-
puted UPDRS3 subscores to assess the stability of the
results.Second, because kinematic test data were not
available for some participants, we repeated the kine-
matic analysis while applying inverse probability weight-
ing to give greater weight to participants with
characteristics associated with missing kinematic data
(as estimated by a logistic regression model that pre-
dicted missingness of kinematic data).Finally, we ex-
cluded participants with any current or previous
occupational Mn exposure.In addition, through explora-
tory analyses we investigated whether restriction of
Meyerton participants to those who had lived in the
same home in Meyerton since before 2008 (when Mn
production at the smelter decreased due to a recession)
revealed stronger associations for the motor outcomes.
For all analyses, we considered a two-sided P value of
0.05 as statistically significant, evidenced by the exclu-
sion of zero from the 95 % CI for the β coefficient, i.e.,
adjusted mean difference between Meyerton and
Ethembalethu.

Results
Out of the 666 homes we visited in Meyerton, 462
(69.4 %) had at least one eligible adult who agreed to
participate; and out of the 108 homes we visited in
Ethembalethu, 79 (73.1 %) had at least one eligible adult
who agreed to participate.Initially, we recruited 832 eli-
gible participants (732 in Meyerton, 100 in Ethemba-
lethu) (Fig. 1). The median time between the first and
second visits in Meyerton and Ethembalethu was 49 and
3 days, respectively. Of those who were enrolled at the
first visit, 629 (85.9 %) and 96 (96.0 %), respectively,
attended the phase 2 clinical assessment visit in Meyer-
ton and Ethembalethu. After excluding some partici-
pants for co-morbidities, we retained 621 (98.7 %) and
95 (99.0 %) eligible participants in each of the communi-
ties, respectively, who had complete UPDRS3 scores, fol-
lowing imputation of selected subscores for 17
individuals.We obtained GP testing data from both
hands for 605 (97.4 %) and 93 (97.9 %) participants, re-
spectively, and we obtained kinematic test data from
both hands for 346 (55.7 %) Meyerton participants and
91 (95.8 %) Ethembalethu participants.Most participants
in both communities were Black (98.9 % in Meyerton
and 97.9 % in Ethembalethu). Other demographic char-
acteristics of the participants and their communities are
in Tables 1 and 2, respectively.
In Meyerton, the two-year (2016–2017) mean PM2.5-

Mn concentration from the long-term particulate matter
air sampling in Noldick was 203 ng/m3. Based on the

Table 1 Characteristics of residents and households, by
municipalitya

Midvaal (includes Meyerton
settlements Noldick, Old Sicelo, New
Sicelo)

Mogale City
(includes
Ethembalethu)

Households

Formal
dwelling, %

80.2 73.5

Female-headed,
%

26.3 31.2

Owned,b % 42.6 39.0

Utilities, %

Piped water
inside dwelling

64.9 54.8

Flush toilet/
sewer

58.0 78.2

Electricity for
lighting

79.3 85.9

Weekly removal
of refuse

82.1 79.7

Residents

Total
population, N

95,301 362,422

Population
density, persons/
km2

55 270

Sex, %

Female 48.4 49.0

Male 51.6 51.0

Race, %

Black 58.4 75.6

White 38.7 21.0

Other 2.9 3.5

Age, years, %

0–14 23.2 23.7

15–64 70.5 71.7

≥65 6.3 4.6

Dependency
ratioc

41.9 39.4

Education (age ≥ 20 years), %

No schooling 5.2 4.7

Primary/
secondary

47.5 48.6

Matric (high
school)

32.1 32.6

Higher
education

15.2 14.1

Unemployed, %

Overall 18.8 24.6

Youth 25.4 32.3

No income, % 14.5 15.5
a Statistics South Africa, 2011 ()
b Owned includes “paying off” a loan for purchase of the home
c All ratios presented are multiplied by 100. The dependency ratio is the
number of residents’ age 0–14 or ≥ 65, divided by residents’ age 15–64
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concurrent sampling in Noldick and the other two set-
tlements in Meyerton, the mean was approximately
twice that for both Old Sicelo and New Sicelo; the
PM2.5-Mn ratio of means were 0.45 at Old Sicelo and
0.65 at New Sicelo, compared to Noldick. The PM2.5-
Mn mean concentration in Ethembalethu (year 2020)
was 10 ng/m3, i.e., ~ 20 times lower than the concentra-
tions in Noldick.
The mean UPDRS3 score was higher in Meyerton than

Ethembalethu residents (Fig. 2), with mean UPDRS3
scores of 9.3 (SD 7.2) in Meyerton and 3.7 (SD 4.1) in
Ethembalethu (Table 3). After accounting for the slightly
younger mean age of residents from Meyerton compared
to Ethembalethu, residents of Meyerton had a UPDRS3
score 6.6 (CI 5.2, 7.9) points higher than residents of
Ethembalethu, on average (Table 4). This difference was
driven by higher subscores for upper limb bradykinesia
and rigidity and lower limb bradykinesia and rigidity,
with each individual subscore in these categories con-
tributing approximately 0.5 points, on average, for
Meyerton vs. Ethembalethu residents (Table 4). The

association between community and total UPDRS3 score
was not changed materially with adjustment for factors
in addition to age, with only 4.5 % attenuation after ad-
justment for sex, smoking, and alcohol. Results were
consistent when excluding 17 participants with missing
UPDRS3 subscores and, separately, 14 participants with
any history of occupational Mn exposure. The associ-
ation between community and UPDRS3 did not differ
according to age, sex, smoking, or alcohol use (all inter-
action P values > 0.05). In addition to the differences in
UPDRS3 score by community, Meyerton residents had a
slower mean velocity on the kinematic test than Ethem-
balethu residents [74.9 (CI 48.7, 101.2) degrees/second
slower for the dominant hand, and 82.6 (CI 55.2, 110.1)
degrees/second slower for the non-dominant hand] (Ta-
bles 4 and 5). This association was attenuated somewhat,
but clearly remained, when we applied inverse probabil-
ity weighting to address missingness of kinematic test
data. Specifically, Meyerton residents were 58.7 (CI 27.6,
89.7) and 65.7 (CI 32.4, 99.1) degrees/second slower in
the dominant and non-dominant hand, respectively,

Fig. 1 Participating residents (N = 716) of Meyerton and Ethembalethu, Gauteng province, South Africa, 2016–2020. Eligible participants were
aged ≥ 40, and able to provide informed consent. Eligible participants with neurologic co-morbidities, and those without a phase 2 clinical
assessment and consequently did not have a UPDRS3 exam, were excluded.Abbreviations: UPDRS3 = Unified Parkinson Disease Rating Scale
motor subsection part 3.
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compared to Ethembalethu residents. Similarly, there
was a suggestion that Meyerton residents took longer to
complete the GP test, for the non-dominant hand (6.9,

CI -2.6, 16.3 s longer). As with the UPDRS3 scores, re-
sults for the kinematic test and GP test were not materi-
ally changed by adjusting for additional covariates

Table 2 Characteristics of participants, overall and by community, Gauteng province, South Africa, 2016–2020

All participants
N = 716

Mn smelter community (Meyerton)
N = 621

Reference community
(Ethembalethu)
N = 95

n (%) n (%) n (%)

Sex

Female 405 (56.6) 339 (54.6) 66 (69.5)

Male 311 (43.4) 282 (45.4) 29 (30.5)

Racea

Black 706 (98.7) 614 (98.9) 92 (97.9)

Other 9 (1.3) 7 (1.1) 2 (2.1)

Languageb

Sesotho 366 (51.3) 352 (57.0) 14 (14.7)

IsiXhosa 107 (15.0) 99 (16.0) 8 (8.4)

IsiZulu 107 (15.0) 91 (14.7) 16 (16.8)

Setswana 44 (6.2) 14 (2.3) 30 (31.6)

Sepedi 25 (3.5) 19 (3.1) 6 (6.3)

Other 64 (9.0) 43 (7.0) 21 (22.1)

Educationc

None/non-formal schooling 100 (14.6) 92 (15.5) 8 (8.9)

Primary 252 (36.8) 214 (36.0) 38 (42.2)

Secondary 226 (33.0) 198 (33.3) 28 (31.1)

Matric or higher 107 (15.6) 91 (15.3) 16 (17.8)

Unemployedd 354 (50.6) 317 (52.3) 37 (39.4)

Smoking cigarettese

Never 493 (69.3) 413 (66.6) 80 (87.9)

Former 57 (8.0) 56 (9.0) 1 (1.1)

Current 161 (22.6) 151 (24.4) 10 (11.0)

Alcohol use

Never 367 (51.3) 301 (48.5) 66 (69.5)

Former 113 (15.8) 101 (16.3) 12 (12.6)

Current 236 (33.0) 219 (35.3) 17 (17.9)

Ever Mn occupational exposure 14 (2.0) 14 (2.3) 0 (0.0)

Current Mn occupational exposure 2 (0.3) 2 (0.3) 0 (0.0)

Mean (SD) Mean (SD) Mean (SD)

Age, years 51.8 (9.2) 51.3 (9.2) 55.3 (8.7)

Minimum 40 40 40

Median 50 49 55

Maximum 97 97 84

Abbreviations: Mn manganese
a Percent excludes 1 participant from Ethembalethu with missing data. Other is White or of mixed race.
b Percent excludes 3 participants from Meyerton with missing data. Other languages are Xitsonga, Afrikaans, SiSwati, Tshivenda, and English.
c Percent excludes 31 participants with missing data (5 from Ethembalethu, and 26 from Meyerton); where primary is grades 1 – 7, secondary is grades 8 – 11,
and matric is grade 12.
d Percent excludes 16 participants with missing data (1 from Ethembalethu, and 15 from Meyerton).
e Percent excludes 5 participants with missing data (4 from Ethembalethu, and 1 from Meyerton).
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beyond age. Associations between community and each
of the motor outcomes were not markedly different
when we restricted the Meyerton residents to those who
had lived in their homes since before 2008.
Five (0.8%) participants from Meyerton and no partici-

pants from Ethembalethu had PD (Fisher’s exact two-sided P
value = 1.00, Fisher’s exact one-sided P value = 0.49).

Discussion
This study provides evidence of an association between
environmental Mn exposure and parkinsonian motor
dysfunction. We chose a clinically relevant primary
motor assessment of parkinsonism, the UPDRS3, which
we previously demonstrated to be associated with PD-
specific quality of life in language-adapted questionnaires
in this population [40]. Interestingly, the mean UPDRS3
in the Meyerton community was similar to that reported
in several occupationally exposed Mn populations [7, 8,
41]. This is notable because these contemporaneous
worker populations experience estimated 8-hour time-
weighted mean Mn exposures of 0.0175-0.23 ± 0.18 mg/
m3 [7, 8, 41], whereas ambient Mn concentration levels
in our environmentally exposed population appeared to
be substantially lower (0.00075–0.0026 mg/m3), at least
during the study period. The longer time that Meyerton
vs. Ethembalethu residents took to complete the GP test,
and the slower finger-tapping on the accelerometry-

based kinematic test, provide objective confirmation of
the primary UPDRS3 results. Strengths of our study in-
clude a rigorous population-based sampling approach in
the two similar communities and the use of standardized
and clinically relevant motor outcomes. Our large study,
with expert neurological assessments and measurement
of airborne Mn, provides evidence of an association be-
tween parkinsonism and environmental Mn exposure.
The neurologic health effects we observed in our Mn-

exposed community during the monitoring period oc-
curred in the setting of two-year (2016–2017) average
ambient PM2.5-Mn up to 215 ng/m3, with evidence that
ambient concentrations were approximately half this
value in the other two settlements from which we re-
cruited participants in the exposed community. These
ambient levels of Mn contrast with the U.S. EPA LOAEL
of 0.05 mg/m3 (50,000 ng/m3) and indicate there may be
neurologic health effects associated with exposures sub-
stantially lower than the LOAEL for PM2.5-Mn. One im-
portant caveat is that we measured PM2.5-Mn in
Meyerton from 2015 to 2019 and Mn production at the
smelter then was lower than it was before the 2008 re-
cession. As a result, we may be underestimating the air
concentrations to which our Meyerton participants were
exposed in earlier years. Nevertheless, even Mn exposure
an order of magnitude greater than our measured
PM2.5-Mn levels still represents an exposure level far

Fig. 2 Title: Box and whisker plot of UPDRS3 scores by community, Gauteng province, South Africa, 2016–2020. Figure demonstrates median,
interquartile range, and overall UPDRS3 score range, including outliers, and shows greater severity of parkinsonism in the Mn smelter community of
Meyerton (N = 621) as compared to the reference community of Ethembalethu (N = 95), Gauteng province, South Africa, 2016-2020. Abbreviations:
Mn = manganese; UPDRS3 = Unified Parkinson Disease Rating Scale motor subsection part 3.
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Table 3 UPDRS3 motor outcomes, overall and by community, Gauteng province, South Africa, 2016–2020

All participants
N = 716

Mn smelter community (Meyerton)
N = 621

Reference community
(Ethembalethu)
N = 95

n (%) n (%) n (%)

Total UPDRS3 score≥ 15a 123 (17.2 %) 120 (19.3 %) 3 (3.2 %)

Mean (SD) Mean (SD) Mean (SD)

UPDRS3a

Total score 8.5 (7.1) 9.3 (7.2) 3.7 (4.1)

Minimum 0 0 0

Median 7 8 2

Maximum 52 52 20

Upper limb bradykinesiab 3.7 (3.2) 4.0 (3.2) 1.5 (2.1)

Minimum 0 0 0

Median 3.5 4 1

Maximum 17 17 8

Upper limb rigidityc 1.0 (1.3) 1.1 (1.3) 0.4 (0.7)

Minimum 0 0 0

Median 0 0 0

Maximum 5 5 3

Lower limb bradykinesiac 0.7 (1.1) 0.8 (1.2) 0.3 (0.6)

Minimum 0 0 0

Median 0 0 0

Maximum 6 6 2

Lower limb rigidityc 1.0 (1.4) 1.1 (1.4) 0.3 (0.7)

Minimum 0 0 0

Median 0 0 0

Maximum 6 6.0 2.5

Rest tremord 0.04 (0.3) 0.1 (0.3) 0.0 (0.0)

Minimum 0 0 0

Median 0 0 0

Maximum 3 3 0

Action tremorc 0.1 (0.5) 0.2 (0.5) 0.04 (0.2)

Minimum 0 0 0

Median 0 0 0

Maximum 4 4 2

Axial signse 1.9 (2.4) 2.0 (2.4) 1.2 (1.9)

Minimum 0 0 0

Median 1 2 1

Maximum 24 24 13

Abbreviations: Mn manganese; UPDRS3 Unified Parkinson Disease Rating Scale motor subsection part 3
a Poorer motor performance is indicated by greater UPDRS3 scores.
b Sum of six UPDRS3 subscores: Finger-tapping, hand rotations, and rapid arm movements for each limb.
c Sum of the two UPDRS3 subscores (one for each limb).
d Sum of five UPDDRS3 subscores: Upper limbs, lower limbs, and face.
e Sum of eight UPDRS3 subscores: Speech, facial expression, neck rigidity, difficulty arising from a chair, posture, gait, postural instability, and global bradykinesia.
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below that measured in the occupational study on which
the current LOAEL for PM2.5-Mn is based [24].
Our study findings are consistent with several epide-

miologic studies, using various methods, which demon-
strate motor dysfunction in relation to environmental
Mn exposure [16]. The study most similar to ours meth-
odologically observed modest but significant differences
in UPDRS3 in residents of Marietta, OH, relative to a
reference community, of 0.22 points [42]. While other
prior studies used different methods of either assessing
Mn or motor outcomes, our study adds to the literature
by using a clinically valid and relevant quantitative meas-
ure of parkinsonism [25, 41]. One study in Canada dem-
onstrated an association between computer-based tests
of tremor, pointing, and pronation/supination hand
movements and blood Mn [10, 11]. In a follow-up study
of the Mn-exposed Ohio communities (Marietta and
East Liverpool), investigators reported an association be-
tween Mn exposure and a computer-based tremor and
finger-tapping performance (inverse) [14, 15]. Modeled
PM2.5-Mn exposures ranged from 1 to 340 ng/m3. An
Italian study of parkinsonism, defined by use of levo-
dopa, found that municipalities with historic industrial
Mn exposures and with higher soil concentrations of

Mn had higher standardized morbidity ratios for parkin-
sonism than other regions of Italy [12]. This same group
investigated motor function, using the motor coordin-
ation tests in the Luria Nebraska Neuropsychological
Battery, in residents from the same region of Italy, and
found an association with PM10-Mn, though the mean
PM10-Mn was similar between the Mn-exposed and ref-
erence regions [13]. While these environmental studies
provide consistent evidence of motor dysfunction in re-
lation to even lower level Mn exposures than found in
occupational settings, the pathophysiology of this motor
dysfunction is largely unknown. Studies in occupational
cohorts demonstrate evidence of a dose-dependent asso-
ciation between occupational Mn-dose exposure and
dopaminergic dysfunction [19, 20, 43] and thalamic
gamma aminobutyric acid (GABA) levels [8, 44]. The
mechanism of this dysfunction may be due to Mn-
induced neuroinflammation [45, 46]. Whether these
same mechanisms apply to the much lower environmen-
tal exposures will require further study.
We focused on parkinsonism instead of PD, given the

relatively low prevalence of PD.With that said, we did
identify five participants with PD from our randomly
sampled Meyerton population and no cases in

Table 4 Difference in motor outcomes associated with Mn exposure by community, Gauteng province, South Africa, 2016–2020

Mean difference between Mn smelter community vs. reference community in specified motor outcome
(95% CI)a

Unadjusted Age-adjusted Fully-adjusted

UPDRS3, total scoreb 5.6 (4.1, 7.1) 6.6 (5.2, 7.9) 6.3 (4.9, 7.7)

UPDRS3 subscoresb

Upper limb bradykinesiac 2.5 (1.8, 3.1) 2.9 (2.2, 3.5) 2.9 (2.2, 3.6)

Upper limb rigidityd 0.8 (0.5, 1.0) 0.8 (0.6, 1.1) 0.8 (0.5, 1.1)

Lower limb bradykinesiad 0.5 (0.2, 0.7) 0.6 (0.4, 0.8) 0.6 (0.3, 0.8)

Lower limb rigidityd 0.8 (0.6, 1.1) 0.9 (0.6, 1.2) 0.9 (0.6, 1.2)

Rest tremore 0.1 (-0.01, 0.1) 0.1 (-0.005, 0.1) 0.04 (-0.02, 0.1)

Action tremord 0.1 (0.01, 0.2) 0.1 (0.01, 0.2) 0.1 (-0.02, 0.2)

Axial signsf 0.8 (0.3, 1.3) 1.1 (0.7, 1.6) 1.0 (0.5, 1.5)

Grooved pegboard, time (seconds)b

Dominant hand -7.6 (-17.0, 1.9) 1.6 (-7.2, 10.5) 0.9 (-8.2, 10.0)

Non-dominant hand -4.0 (-14.3, 6.3) 6.9 (-2.6, 16.3) 7.5 (-2.2, 17.1)

Kinematic testing, finger-tapping mean velocity (degrees/second)b

Dominant hand -68.4 (-93.9, -43.0) -74.9 (-101.2, -48.7) -69.0 (-96.8, -41.3)

Non-dominant hand -72.8 (-99.6, -46.1) -82.6 (-110.1, -55.2) -70.6 (-99.6, -41.6)

Abbreviations: Mn manganese; UPDRS3 Unified Parkinson Disease Rating Scale motor subsection part 3
a Based on 716 participants (621 in Meyerton and 95 in Ethembalethu). Age adjustment was using age as a continuous variable with natural cubic splines with
five knots (5th, 27.5th, 50th, 72.5th, and 95th percentiles) as per Harrell’s placement method [35]. Fully adjusted means adjusted for age, sex, cigarette smoking
(ever, former, current), and alcohol use (ever, former, current) (with all results confirmed in models with smoking as a dichotomous variable due to the small
number of former smokers)
b Poorer motor performance is indicated by greater UPDRS3 scores, greater grooved pegboard times, and lower finger-tapping velocities
c Sum of six UPDRS3 subscores: Finger-tapping, hand rotations, and rapid arm movements for each limb
d Sum of the two UPDRS3 subscores (one for each limb).
e Sum of five UPDRS3 subscores: Upper limbs, lower limbs, and face
f Sum of eight UPDRS3 subscores: Speech, facial expression, neck rigidity, difficulty arising from a chair, posture, gait, postural instability, and global bradykinesia
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Ethembalethu, raising the possibility that PD may be
relatively common in this community with high levels of
inhalational Mn exposure relative to our reference re-
gion, in South Africa. However, our study was not pow-
ered to test that association, and any difference in PD
prevalence might represent a chance finding. Nonethe-
less, our results are consistent with a previous study in
which we used geographic information systems to inves-
tigate the geography of incident PD in the U.S. [18]. In
that study, we used Medicare claims data to identify PD
cases and calculated county-level PD incidence. We ob-
served a higher incidence of neurologist-diagnosed PD
in urban U.S. counties with high Mn release, compared

with urban counties with none, which was specific to
Mn emissions [18]. Using the 2005 EPA National-Scale
Air Toxics Assessment (NATA), we estimated that the
contemporary Mn exposures in these regions corre-
sponded to approximately 0.00005–0.0008 mg/m3, levels
substantially below the EPA LOAEL. The results of our
previous geographic study are largely consistent with the
estimates of environmental Mn exposure at which health
effects may be seen, based upon the findings in this
current study.
Our research participants reside in an environment of

poverty and social neglect. The adult residents of these
communities endure high rates of unemployment and

Table 5 Grooved pegboard and kinematic motor outcomes, overall and by community, Gauteng province, South Africa, 2016–2020

All participants
N = 716

Mn smelter community (Meyerton)
N = 621

Reference community
(Ethembalethu)
N = 95

Mean (SD) Mean (SD) Mean (SD)

Grooved pegboard test, time (seconds)a

Dominant hand 108.0 (43.1) 107.0 (43.0)b 114.6 (43.4)c

Minimum 43.2 43.2 59.2

25th percentile 80.2 79.9 82.0

Median 93.8 93.5 114.0

75th percentile 124.8 120.1 141.2

Maximum 300.0 300.0 300.0

Non-dominant hand 118.0 (47.1) 117.5 (47.4)b 121.4 (44.8)c

Minimum 51.4 51.4 60.0

25th percentile 86.9 87.1 85.1

Median 103.8 103.2 114.7

75th percentile 131.7 130.3 150.3

Maximum 300.0 300.0 241.1

Kinematic test – finger-tapping mean velocity (degrees/second)a

Dominant hand 312.4 (113.2) 298.2 (106.0)b 366.6 (123.5)c

Minimum 59.0 59.0 121.9

25th percentile 222.7 217.3 275.9

Median 302.7 289.7 355.8

75th percentile 384.6 362.2 445.5

Maximum 679.0 590.5 679.0

Non-dominant hand 353.3 (119.2) 338.2 (111.7)b 411.0 (129.5)c

Minimum 87.8 87.8 168.5

25th percentile 271.2 262.6 316.3

Median 342.7 326.8 412.9

75th percentile 426.3 399.4 509.4

Maximum 764.4 727.0 764.4

Abbreviations: Mn manganese
a Poorer motor performance is indicated by greater grooved pegboard times and lower finger-tapping velocities
b Excludes 16 participants (grooved pegboard in dominant hand and non-dominant hand) and 275 participants (kinematic test in dominant and non-dominant
hand) with missing data
c Excludes two participants (grooved pegboard in dominant and non-dominant hand) and four participants (kinematic test in dominant and non-dominant hand)
with missing data
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many had very little education due to Apartheid era pol-
icies. The location of the Meyerton settlement near a
source of industrial pollution is similar to the placement
of low-cost housing in the U.S. and throughout the
world. One unique aspect of our study is our success in
recruiting a population of Black African residents in
impoverished communities to investigate an environ-
mental parkinsonism hypothesis. While we encountered
many challenges, some unique to South Africa, when
implementing this protocol, we were able to recruit suc-
cessfully what is possibly the largest Black African par-
kinsonism cohort ever established. We anticipate future
studies will continue to build on this success.
As with any study, there are some limitations. First,

we only present mean community exposures. Ongoing
efforts to model individual level inhalational Mn expo-
sures from the smelter and other sources of airborne
Mn should provide further insight into dose-response
relations. Second, blinding the UPDRS3 to community
of residence (Meyerton vs. Ethembalethu), i.e., Mn ex-
posure status, was not possible, so we included add-
itional motor assessments as an objective means to
attempt to confirm the UPDRS3 results. These assess-
ments, the accelerometry-based kinematic and GP tests,
confirmed poorer motor performance among residents
from Meyerton vs. Ethembalethu. Third, while overall
recruitment was quite successful, not everyone invited
to participate was willing to participate in the study, so
there could be some bias toward those with or without
symptoms participating in our study.However, we are
not aware of incentives or disincentives for symptom-
atic or asymptomatic residents of Meyerton to partici-
pate and/or symptomatic or asymptomatic residents of
Ethembalethu to not participate. Although we found
that residents of both communities were overwhelm-
ingly supportive of the research, we did not include
anyone in the study who was not selected through the
population-based sampling method. Fourth, this study
focused on a specific Mn-exposed community; we do
not know if these results are generalizable to other
similar communities with environmental exposure to
Mn, even though the exposure levels overlap with those
in some U.S. populations. Finally, we acknowledge that
inter-individual variation in terms of actual Mn expo-
sures and other factors that might affect Mn dose
within the brain could be relevant to the motor out-
comes of interest in this study.
We observed a strong relation between residential ex-

posure to environmental Mn and parkinsonian motor
signs at air concentrations substantially lower than inter-
national occupational thresholds. Although further de-
tailed exposure quantification is ongoing, these results
suggest that current U.S. and international Mn exposure
limits may need to be revised.

Conclusions
In this large epidemiological study of environmental Mn
exposure in South Africa, airborne Mn exposures at
levels substantially lower than current occupational ex-
posure thresholds in the U.S. may be associated with
clinical parkinsonism.
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