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SUMMARY

We undertook a comprehensive proteogenomic
characterization of 95 prospectively collected endo-
metrial carcinomas, comprising 83 endometrioid and
12 serous tumors. This analysis revealed possible
new consequences of perturbations to the p53 and
Wnt/b-catenin pathways, identified a potential role
for circRNAs in the epithelial-mesenchymal transi-
tion, and provided new information about proteomic
markers of clinical and genomic tumor subgroups,
including relationships to known druggable path-
ways. An extensive genome-wide acetylation survey
yielded insights into regulatory mechanisms linking
Wnt signaling and histone acetylation. We also char-
acterized aspects of the tumor immune landscape,
including immunogenic alterations, neoantigens,
common cancer/testis antigens, and the immune
microenvironment, all of which can inform immuno-

therapy decisions. Collectively, our multi-omic ana-
lyses provide a valuable resource for researchers
and clinicians, identify new molecular associations
of potential mechanistic significance in the develop-
ment of endometrial cancers, and suggest novel
approaches for identifying potential therapeutic
targets.

INTRODUCTION

Endometrial carcinoma (EC) is the sixth-most-common cancer in

women globally (Bray et al., 2018), with an estimated 61,880 new

cases and 12,160 deaths in the United States in 2019 (Siegel

et al., 2019). Most women diagnosed with EC have early-stage

disease and favorable outcomes; this is particularly true for

well-differentiated cancers with endometrioid histology (Amant

et al., 2005). However, there is a subset of low-grade, early-

stage, well-differentiated endometrioid tumors in which unex-

pected recurrences and poor outcomes do occur. Clinical
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outcomes worsen considerably for women with recurrent or

advanced disease and for women diagnosed with a clinically

aggressive histologic subtype of the disease, such as the serous

histotype (Siegel et al., 2018;Walker et al., 2009). EC is one of the

few humanmalignancies for which mortality is increasing (Amer-

ican Cancer Society, 2017), which underscores the urgent need

to develop more effective strategies for the diagnosis and treat-

ment of this disease.

The Cancer Genome Atlas (TCGA) recently published a

comprehensive genomic study of serous and endometrioid EC

and reported four genomic subtypes: POLE, a rare ultramutated

subtypewith endometrioid histology and good prognosis; micro-

satellite instability (MSI), a hypermutated endometrioid subtype;

copy-number (CNV) low, which consists of most of the rest of the

endometrioid cases; and CNV-high, comprised of all serous and

the most aggressive endometrioid cancers (Kandoth et al.,

2013). To improve our understanding of the functional impact

of the genomic alterations characterized by TCGA, we con-

ducted an extensive multi-omic characterization of EC samples

and appropriate normal tissues from a prospective cohort of

95 EC patients, under the auspices of the National Cancer Insti-

tute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC).

Integrated measurements of DNA, RNA, proteins, and post-

translational modifications (phosphorylation and acetylation)

were used to identify novel regulatory relationships and potential

avenues for identifying therapeutic targets.

RESULTS

Overview of the Proteogenomic Landscape
We obtained 95 prospectively collected EC tumors (83 endo-

metrioid and 12 serous) and 49 normal tissue samples for

multi-omic characterization. The clinical and pathological char-

acteristics of the tumors are summarized in Table S1. Each sam-

ple underwent whole exome, whole genome, and total and

miRNA sequencing, along with DNA methylation analyses. In

addition, the relative levels of the proteins and post-translational

modification (PTM) sites across the tumor and normal tissue

samples were quantified (Figure 1; Figure S1A) by using isobaric

labeling with a universal reference strategy (Mertins et al., 2016;

Zhang et al., 2016a), applying a stringent 1% false discovery rate

(FDR) cutoff at the protein level. The methods and results, quan-

tification results, and normalization methods were carefully eval-

uated to confirm data quality (STAR Methods; Figures S1B–1L).

Processed data tables are available in Table S2, the cptac Py-

thon package, and LinkedOmics (Vasaikar et al., 2018); raw

data are available via the Genomic Data Commons (GDC) and

CPTAC Data Portal (STAR Methods).

Tumors were classified into the four genomic subtypes out-

lined in the TCGA EC landmark study (Kandoth et al., 2013):

POLE, MSI, CNV-low (also called endometrioid-like), or CNV-

high (also called serous-like) (STAR Methods; Figure 1; Table

S3). Note that the endometrioid histological subtype mostly seg-

regates into the POLE, MSI, and CNV-low genomic subtypes,

whereas CNV-high consists of all serous tumors and a small

number of endometrioid tumors. Our cohort included 7 POLE,

25MSI, 43 CNV-low, and 20 CNV-high tumors (Figure 1). Protein

and PTM levels differing between genomic subtypes (FDR <

0.05, Wilcoxon rank-sum test) are shown in Figure 1 (also see

Table S3). Functional analysis of protein levels by subtype indi-

cated a relative downregulation of cell cycle proteins and phos-

phorylation in the CNV-low subtype, associated with an increase

in cell transport and metabolism proteins. Furthermore, phos-

phorylation on proteins related to DNA double-strand break

repair was decreased without a corresponding protein level

change (Table S3). Conversely, the CNV-high subtype had

increased phosphorylation on proteins involved in ATM

signaling. As expected, mismatch repair was generally sup-

pressed in POLE, MSI, and CNV-high subtypes. Serous samples

have the highest upregulation of ribosome biogenesis, which has

been associated with poor cancer prognosis (Pelletier

et al., 2018).

Roughly 61% of all somatic mutations were found in the seven

POLE tumors (n = 32,340; 32,188 point mutations and 152
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Marcin Jędryka,18,19 Rafa1 Matkowski,18,19 Maciej Wiznerowicz,20,21,22 Tara Hiltke,23 Emily Boja,23

Christopher R. Kinsinger,23 Mehdi Mesri,23 Ana I. Robles,23 Henry Rodriguez,23 David Mutch,24 Katherine Fuh,24

Matthew J. Ellis,1,2,3 Deborah DeLair,25 Mathangi Thiagarajan,26 D.R. Mani,10 Gad Getz,10 Michael Noble,10

Alexey I. Nesvizhskii,14,27 Pei Wang,15 Matthew L. Anderson,28 Douglas A. Levine,29 Richard D. Smith,8

Samuel H. Payne,13 Kelly V. Ruggles,9 Karin D. Rodland,30,31,* Li Ding,6,7,* Bing Zhang,1,2,3,* Tao Liu,8,* David Fenyö4,5,33,*
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indels), five of which harbored the known recurrent hotspot mu-

tation P286R in the catalytic subunit of DNA polymerase epsilon

(POLE). MSI tumors carried 88% of all indels in the cohort

(n = 5,061), and a focused analysis on microsatellite indels found

higher mutation rates for significantly mutated genes (SMGs) in

this subtype than previously reported, including PTEN (92%),

ARID1A (76%), and RPL22 (64%) (all FDR = 0, STAR Methods).

We additionally identified INPPL1 (56%), KMT2B (56%), and

JAK1 (44%) as putative SMGs in the MSI subtype, which were

not reported in the TCGA study (Figure S2A) (FDR = 0, 0.001,

and 6.4e-07, respectively, STAR Methods). Of note, all of the

JAK1 frameshift mutations were in MSI samples and were

derived from microsatellite indels (Figure S2B). JAK1mutations,

which are associated with high tumor grade (Figure S2C), could

promote immune evasion in MSI samples (see Antigen Process-

ing and Presentation Deficiency). Using a conservative proteo-

genomics approach (STAR Methods), we were able to confirm

206 putative somatic coding variants at the protein level, along

with 85 novel splice junctions (Table S4). The set of genes

frequently altered by copy number variation, including ERBB2,

CCNE1, FGFR3, and IGF1R, was similar to that in the TCGA

cohort.

In summary, the genomic characteristics of our prospective

EC cohort are consistent with those of the prior TCGA study,

with the exception of some increases in observed mutations

that could be attributable to differences in the DNA sequencing

platforms used.

Somatic Drivers Impact the Cancer Proteome and
Phosphoproteome
We examined the impact of somatic driver mutations on the

proteome and phosphoproteome, both cis-acting (acting on

the gene in which the mutation occurs) and trans-acting (acting

on other genes), focusing on 18 SMGs (STAR Methods). Of

these 18 SMGs, we identified 7 and 6 genes with cis and trans

effects, respectively (FDR < 0.05, Wilcoxon rank-sum test). We

Figure 1. Proteogenomic Summary of the Cohort

Samples are ordered by genomic subtype and then by histology. Representative pathways are shown for geneswith the greatest variation between subtypes. For

each sample, we display mutation load, copy number indices (at both global and arm levels), and mutation status in SMGs.

See also Figure S2; Table S3.
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found a total of 143 trans associations (71 at the protein level

and 72 phosphosites) spanning 49 interacting proteins. The

largest trans associations at both protein and phosphorylation

levels involved mutations in ARID1A, TP53, and CTNNB1, likely

in connection with their known regulatory roles (STAR Methods,

Figure 2A) (Bailey et al., 2018). As expected, in tumors with

TP53 mutations, we observed an increase in levels of p53 itself,

as well as in other proteins in the p53 pathway (e.g., CDK1 and

CHEK1). Through a similar process, we observed reduced

levels of phosphorylated ARID1A, MAP3K4, KMT2D, and

INPPL1 in cis but increased levels of phosphorylated b-catenin

and p53 (Figure 2A).

By assessing truncating and missense mutations separately,

we detected distinct effects of the two mutation types on RNA,

protein, and phosphoprotein levels of several key genes (Fig-

ure 2B). Missense mutations can either promote or stifle gene

expression at the protein level, though this was rarely reflected

at the RNA level. As observed previously, there was an increase

in protein levels of b-catenin and p53 associatedwith known hot-

spot mutations (Gao et al., 2017; Suad et al., 2009) and a

D E

C

A

B

Figure 2. Effects of Somatic Mutations

(A) Cis and trans effects of mutations in EC SMGs. Affected proteins and phosphoproteins are grouped by pathway.

(B) Effects of missense and truncation mutations.

(C) Effects of CTNNB1 mutations.

(D) p53 binds DNA as a tetramer. Highlighted in red is a mutation-phosphosite cluster that directly affects the DNA binding domain of p53.

(E) Effects of TP53 mutations.

See also Figure S3.
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decrease in PIK3CA and SYNE1. The effect of mutations on pro-

tein levels in our cohort tended to correlate well with phospho-

protein levels; taken together with the lack of variance in RNA

levels, this suggests strong translational and protein-stability-

related regulation, especially as these patterns persist even

when the hypermutated POLE and MSI tumors are removed

from the analysis (Figure S3A). Truncating mutations, mean-

while, led to decreases in ARID1A, INPPL1, JAK1, PTEN, and

RBM27 protein levels.

Effects of CTNNB1 Mutations
Exon 3 of CTNNB1, an SMG that codes for the protein b-cate-

nin, is known to have several mutational hotspots at or near

phosphorylation sites that, when altered, lead to constitutive

b-catenin activation. Altered b-catenin is thought to drive

tumorigenesis in multiple cancers (Gao et al., 2017), notably

colorectal cancer (Wong and Pignatelli, 2002) and EC (Machin

et al., 2002). EC patients with low-stage, low-grade endome-

trioid tumors, who would normally have a good prognosis,

have a much higher chance of recurrence when CTNNB1 is

mutated, although the reason for this is unclear (Kurnit et al.,

2017; Myers et al., 2014). To understand the underlying mech-

anism, we analyzed the impact of hotspot CTNNB1 mutations,

which were found in 23 tumors in the cohort, on the proteome

and phosphoproteome (Figure 2C; Figure S3B). Of these 23 tu-

mors, all but two are CNV-low or MSI, none are higher than

grade 2, and only three are stage III; the rest are stage II or

lower. We observed increased protein and phosphoprotein

levels of known physically interacting complex partners and up-

stream regulators of b-catenin in tumors with hotspot mutations

(Figure 2C; Figures S3C and S3D). b-catenin, APC, and AXIN1

form the b-catenin destruction complex that serves as a major

mediator within the Wnt signaling pathway; APC and AXIN1

protein levels were also upregulated in CTNNB1-mutated tu-

mors (Figure S3E). In fact, tumors with CTNNB1 hotspot muta-

tions had higher Wnt signaling pathway activity (STAR

Methods) than did their WT MSI and CNV-low counterparts

(Figure S3F) (p = 2.5e-3, Student’s t test). This study marks

the first instance of co-identification of CTNNB1 complex part-

ners and upstream regulators via global mass spectrometry-

based proteomics.

We used HotSpot3D (Niu et al., 2016) to assess whether 3D

proximity of a mutation to a PTM can affect the protein. Indeed,

the CTNNB1 exon 3 hotspot region (centered at S33) formed a

3D cluster, consisting of the phosphosites at Y30, S33, and

T40, as well as recurrent mutations at D32 and G34 (Figure 2C).

This suggests a possible reason why mutated non-phosphosite

residues in this region result in the same phenotype asmutations

directly in the phosphosite codons.

An alternative upstream mechanism for b-catenin overex-

pression in EC involves the deactivation of APC, which normally

promotes phosphorylation of b-catenin, leading to b-catenin

degradation. In the 11 tumors without mutation-phosphosite

overlaps in CTNNB1 but with mutations in APC, we observed

reduced levels of APC and higher levels of b-catenin, although

this increase was much less pronounced than that observed

in tumors with CTNNB1 exon 3 mutations. Conversely, when

considering CTNNB1 exon 3 mutants on their own, we

observed regular protein levels of APC (Figure S3E). By ac-

counting for the proximity of mutations to phosphosites, we

found that our results were consistent with the two mutually

exclusive mechanisms for increasing b-catenin levels: either

somatic mutation in CTNNB1 hotspots or mutational inactiva-

tion of APC.

To summarize, we observed co-regulation ofCTNNB1 and key

interacting proteins, including reciprocal activating mutations of

CTNNB1 and inactivating mutations of APC as modulators of

b-catenin levels, as well as providing mechanistic insight into

the roles of specific CTNNB1 mutations.

Effects of TP53 Mutations
TP53 is the most commonly mutated gene in human cancers

(Hainaut and Pfeifer, 2016). TP53 mutations were observed in

23 tumors in our cohort, including all serous carcinomas. Instead

of grouping all TP53-mutated tumors together and looking for a

single molecular phenotype, we segregated them by mutation

type and location.We identified several proteomic and phospho-

proteomic signatures that are consistent with the emerging hy-

pothesis of neofunctionalization for hotspot missense mutations

(Kim et al., 2015; Lang et al., 2004). Eleven tumors harbored

missense mutations in a spatially clustered hotspot in p53’s

DNA-binding domain (Suad et al., 2009) (Figure 2D), which led

to elevated protein levels (Figure 2E). This cluster included the

highly recurrent mutated residues R248 and R273 that interfere

with p53’s ability to bind DNA (Mello and Attardi, 2013) and

cause cascading dysregulation of downstream proteins

including AURKA (Nikulenkov et al., 2012) and XRN2 (p = 7.8e-

06, t test), an exoribonuclease that promotes the epithelial-

mesenchymal transition (EMT) and metastasis (Zhang et al.,

2017a). A variety of truncating TP53 mutations were found in

seven tumors. Although the observed truncating mutations did

not alter p53 protein levels (p = 0.082, t test), they were neverthe-

less associated with downstream effects, including increased

phosphorylation of PLK1-T210, which triggers recovery from

the G2 DNA damage checkpoint (Mac�urek et al., 2008; Paschal

et al., 2012) and mitotic entry (Vigneron et al., 2018). Indeed, tu-

mors with truncating TP53 mutations are enriched for mitotic

cells; among 14 mitotic marker proteins (Ly et al., 2017), most

showed increased levels in tumors with TP53 mutations (Fig-

ure S3G). This is likely caused by aberrant p53 function in mutant

samples allowing cells to enter mitosis despite having DNA dam-

age that would be detected in TP53WT tumors. A third subset of

p53 interacting proteins, including CDK1, XPO1, and TPX2, was

dysregulated whenever TP53 was mutated regardless of the

specific type of mutation.

Although TP53 hotspot mutations have been extensively stud-

ied, including the likely differential functional consequences be-

tween truncating mutations and neofunctionalization hotspot

mutations, the actual effects of distinct TP53 mutations on the

protein level of trans-interacting proteins in specific cancers

have not been well described prior to this study. The mutation-

type-specific effects described above appear to be unique to

EC; we examined the CPTAC data for ovarian and colon cancer,

where TP53 mutations are very common, but observed no

change in AURKA, CDK1, XPO1, or STK11 protein levels associ-

ated with the type of TP53 mutation (Figure S3H).
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Regulation of Histone Acetylation
Characterization of the patient-derived cancer tissue acetylome

has been limited. Similar to previous work in cell lines (Choudh-

ary et al., 2009, 2014), we observed an enrichment in EC tumors

of acetylated proteins involved with splicing, RNA transport, pro-

tein synthesis and degradation, and metabolic pathways (Fig-

ure S4A). We observed a large degree of heterogeneity in histone

acetylation patterns across tumor samples (Figure S4B) but no

strong association with discrete genomic subtypes or clinical

features. We found positive associations between BRD3 protein

levels and several H2B N-terminal acetylation sites, as well as

negative associations between SIRT1, SIRT3, BRD4 protein

levels, and H3K27 and K36 acetylation levels (Figure 3A; Fig-

ure S4C). This suggests that BRD3 can potentially bind to H2B

N-terminal acetyl residues, which could make them less acces-

sible to erasers and prevent their deacetylation. In addition,

negative correlations between SIRT1 and SIRT3 and H3 acetyla-

tion indicate that these histone deacetylases couldregulate

H3K27 and K36 acetylation levels. Overall, we identified 322

sites that are upregulated (n = 216) or downregulated (n = 106)

in tumor samples as compared with normal samples (Figure 3B;

STAR Methods).

We assessed how histone acetylation is affected bymutations

in EC and found upregulation of H2B N-terminal acetylation sites

K16, K20, and K24 in samples with CTNNB1 hotspot mutations

(Figures 3C and 3D; Figure S4D) and upregulation of H3 sites,

including K27 and K36, in both ARID1A- and KRAS-mutated

samples (Figures 3E and 3F). Previous reports have underscored

the importance of acetylation-driven mechanisms in Wnt

signaling (Alok et al., 2017; Lévy et al., 2004; Wolf et al., 2002);

we observed increases in BRD3 and SIRT1 protein levels in

CTNNB1 hotspot mutants that were consistent with the

observed effects of CTNNB1 hotspot mutations on H2B acetyla-

tion (Figure S4D). Additionally, we observe an upregulation of

gene expression in several Wnt pathway genes in samples with

high H2B acetylation levels (Figure S4E).

We identified 56 downregulated sites and 16 upregulated sites

in the CNV-low subtype as comparedwith the CNV-high subtype

(Figure S4F). One upregulated site, FOXA2-K274, has been

found, when deacetylated, to decrease FOXA2 stability (van

Gent et al., 2014). FOXA2 itself has been linked to increased

cell proliferation and invasion in colon cancer (Wang et al.,

2018). Hence, the increased FOXA2 acetylation could indicate

improved stability and activity of the protein, which might pro-

mote proliferation of CNV-low EC tumors. However, FOXA2

has also been found to inhibit metastasis in lung adenocarci-

nomas (Li et al., 2015; Tang et al., 2011), so further work is

required to define the role of FOXA2 acetylation in EC.

Our observations highlight the heterogeneity of the acetylome

in EC and the potential impact of mutations in SMGs on histone

acetylation levels, which could have overarching effects on tu-

mor biology via newly identified interactions with the Wnt

signaling pathway, BRD proteins, and methylation proteins.

The extent to which these relationships are specific to EC or a

general effect of CTNNB1 mutations on histone acetylation will

require similar comprehensive studies of the acetylome in other

cancers. Additionally, we identify tumor-specific upregulation of

acetylation levels in translation elongation factors and methyl-

transferase proteins, as well as a potential role for FOXA2 in

the more aggressive CNV-high subtype.

Multi-omic Analysis Reveals DNA Methylation and
Somatic Copy Number Alteration Drivers
DNA methylation (DNAme) analysis revealed elevated genome-

wide CpG island DNAme in MSI tumors (Figure S5A), which is

consistent with previous reports (Horowitz et al., 2002; Tao

and Freudenheim, 2010). Methylation-silenced genes include

MLH1, an essential component of the DNA mismatch repair

(MMR) machinery (Figure 4A; Figure S5B). We also found that

several HOX family members were silenced by DNAme (Fig-

ure 4A). HOX genes have been previously connected to dou-

ble-strand DNA break (DSB) repair (Feltes, 2019). We identified

an anticorrelation between HOX protein levels and H2AX protein

phosphorylation, a molecular indicator of DSBs. There has been

speculation that tumors with MMR defects are also more prone

to have DSBs (Nowosielska andMarinus, 2008). Our results sug-

gest that increased methylation of the relevant factors could

partially account for the dampening of both of these DNA repair

pathways (Figure S5B).

Integrated analysis of somatic copy-number alterations

(SCNAs) with transcriptomic and proteomic data revealed that

14% of all SCNAs were associated with cis effects (FDR <

0.01, Spearman’s test). The SCNAs with the strongest trans ef-

fects (i.e., demonstrating a broader impact on global gene

expression) were centered on chromosomes 1q, 3q, 4q, and

20q (Figure 4B; Table S5) and were identified in the CNV-high

tumors (Figure S5C). Proteins whose levels were positively

associated with 3q amplification included DNA replication and

cell cycle proteins, such as cyclin-dependent kinases and mini-

chromosome maintenance family members (FDR < 0.05, hyper-

geometric test, Figure S5D). The pathways most impacted by 4q

loss included cytoskeleton and cilium assembly (Figure S5E);

interestingly, ciliopathy has recently emerged as an indicator of

tumor onset (Sánchez and Dynlacht, 2016).

Chromosome 1q amplification was the only SCNA commonly

observed in both MSI and microsatellite stable (MSS) tumors.

Consistent with previous findings (Horowitz et al., 2002; Tao

and Freudenheim, 2010), we confirmed that 1q amplification

was anticorrelatedwith p53 pathway activity (p < 0.01, Pearson’s

correlation, Figure 4C; STAR Methods). Because TP53

Figure 3. Acetylation

(A) Associations of the levels of key acetylation enzymes with histone acetylation sites.

(B) Change in acetylation levels between tumor samples and normal endometrium samples. The horizontal line denotes an FDR cutoff of 0.05, and the vertical

lines denote a fold change of 0.4. Grey points represent sites whose acetylation change is explained by a change in protein levels.

(C) Association between histone acetylation sites and mutated SMGs. The acetylation change is shown for the most significant site in each histone protein.

(D–F) Acetylation-level changes in specific histone sites in WT and mutated samples for CTNNB1 (D), ARID1A (E), and KRAS (F).

See also Figure S4.
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Figure 4. Proteomics Data Reveal SCNA and DNA Methylation Drivers of Tumor Progression

(A) MLH1 and HOX family genes are directly affected by DNA methylation. Samples are ranked from lowest (left) to highest (right) DNA methylation levels.

(B) Effects of SCNA on mRNA and protein levels. Top: copy number correlation with mRNA (left) and protein (right). Positive and negative correlations are

indicated in red and blue, respectively. Bottom: the frequency of correlations. Blue bars represent copy number correlation with mRNA (left) and protein (right),

and black bars represent copy number correlation to both mRNA and protein.

(legend continued on next page)
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mutations are rare in MSI tumors, we speculated that 1q ampli-

fication could be a major mechanism in repression of p53

pathway activity in these tumors. We confirmed that the mRNA

levels ofMDM4, a gene located in 1q that codes for a previously

reported p53 inhibitor (Depreeuw et al., 2017), were increased

along with its copy number (p < 0.01, Spearman’s correlation).

However, we did not detect the MDM4 protein, likely due to

low abundance. To identify potential p53 pathway inhibitors

with protein evidence, we ranked all genes based on the anticor-

relation between their protein level and p53 activity and high-

lighted the ones with SCNA cis effects (Figure 4D). As expected,

genes mapping to 1q exhibited stronger negative correlation

with p53 pathway activity than did other genes (p = 3.4e-4,

STAR Methods). That negative correlation was even stronger

for 1q genes with SCNA-protein correlation than for other 1q

genes (p = 1.1e-4, GSEA), suggesting a role for SCNA-driven

overexpression of 1q genes in repressing p53 pathway activity.

The top-ranked genes included many histone modifiers

including SETDB1, SDE2, PARP1, and GATAD2B (Figures 4D

and 4E). SETDB1, the strongest candidate, showed

anticorrelation to p53 pathway target proteins, including the

cell cycle repressor CDKN1A and the apoptotic protein

TNFRSF10B (Figure 4F; Figure S5F) (Pappas et al., 2017). Our

analysis supports the possibility that the SCNA driver genes en-

coded on chromosome 1q inhibit p53 activity by repressing p53

pathway components or downstream target genes.

Discovery of a Potential Role for circRNAs in EMT
Regulation
Circular RNAs (circRNAs) have recently drawn interest for their

role in tumor biology (Chen et al., 2019; Dragomir and Calin,

2018; Hansen et al., 2013; Kristensen et al., 2018; Vo et al.,

2019). We identified 234 recurrent circRNAs (see Figure S6A

for the ten most commonly observed). The circRNA from the tu-

mor-suppressor gene FBXW7 can be translated into a protein

product that can reduce the half-life of c-Myc (Yang et al.,

2018); two other circRNAs, circHIPK3 and circDOCK1, are

known to regulate cell growth and serve as cancer biomarkers

(Zhang et al., 2017b; Zheng et al., 2016). We observed an overall

positive correlation among circRNAs; such correlation was not

observed among their host genes (Figure 5A), suggesting core-

gulation of circRNAs at the global level. To identify possible

regulators, we correlated the protein levels of all RNA-binding

proteins (RBPs) with circRNA levels (Figure 5B; Table S5). The

protein level of QKI, a recently reported circRNA regulator

(Conn et al., 2015), was positively correlated with 35 circRNAs,

whereas the protein level of ESRP2 was negatively correlated

with 20 circRNAs. These RBPs might serve as master regulators

of circRNAs. QKI is upregulated during EMT and can promote

EMT by regulating hundreds of alternative splicing targets

(Conn et al., 2015; Nieto et al., 2016; Pillman et al., 2018). We

found a positive correlation between relative QKI protein level

and EMT score (Figure 5C; STARMethods) and with the EMT ac-

tivators ZEB1 and ZEB2 (Krebs et al., 2017; Zhang et al., 2015)

(Figures S6B and S6C). The level of ESRP2, which plays an

important role in maintaining epithelial features (Warzecha and

Carstens, 2012; Warzecha et al., 2009), was negatively corre-

lated with QKI level, as previously reported (Conn et al., 2015;

Ishii et al., 2014; Mizutani et al., 2016) (Figure 5D).

Because miRNAs play critical roles in EMT (Zaravinos, 2015),

and circRNAs can serve as miRNA sponges to regulate miRNA

activity, we predicted miRNA binding sites in the 35 circRNAs

that were correlated with QKI level, finding potential binding sites

for 36miRNAs (p < 0.02, Figure S6D; STARMethods). We further

predicted sample-specific activities of these miRNAs based on

the level of their known mRNA targets (STAR Methods). We

found that the activities of these miRNAs were negatively corre-

lated with QKI expression, although their abundances showed

varying relationships with QKI levels (Figure 5E). This suggests

that the activity of these miRNAs might be opposed by QKI,

possibly through QKI-mediated expression of circRNAs. Inter-

estingly, we found known QKI regulators miR-200c and miR-

221 (Cochrane et al., 2009; Mukohyama et al., 2017; Pillman

et al., 2018) among the miRNAs with the strongest negative cor-

relations between their activity andQKI levels; this set of miRNAs

also includedmiR-130a, miR-130b, andmiR-183, which are pre-

dicted QKI regulators (Figures S6E–S6I) (Dweep et al., 2011;

Lewis et al., 2005). In summary, the observed positive correlation

between QKI and circRNAs, and the negative correlation of QKI

with the activity of specific miRNAs, suggests a mechanism pro-

moting the EMT in EC (Figure 5F).

Proteomic Markers of Clinical and Genomic Tumor
Subtypes
We compared proteomic and transcriptomic changes between

subtypes (Table S6). Protein and mRNA changes were highly

correlated for all subtypes (Figures S7A–S7C). When comparing

MSI to MSS tumors, we confirmed that MLH1 and EPM2AIP1

were downregulated in MSI samples at both the protein and

mRNA levels (Figure 6A), likely due to methylation of their shared

promoter (Figure 4A), a common cause of microsatellite insta-

bility (Simpkins et al., 1999). However, PMS1 and PMS2, two

binding partners of MLH1, were downregulated only at the pro-

tein level (Figure 6A; Figure S7D). The stability of these proteins

is known to decrease in the absence of MLH1 (Chang et al.,

2000). We further identified upregulation of RPL22L1 in MSI

(C) 1q amplification is anticorrelated with p53 pathway activity. The samples are ranked based on their inferred p53 pathway activity. The triangles denote

recurrent TP53 mutations across multiple cancer types.

(D) Identifying novel p53 inhibitors encoded on 1q. On the top, all quantifiable genes in proteomics, transcriptomics, and copy number alterations are ranked

based on the correlation between the protein level and p53 activity. On the bottom, from top to bottom, 1q genes, 1q genes with SCNA cis effects, and 1q histone

modifiers with SCNA cis effects are highlighted.

(E) The correlation between SCNAs, mRNA level, and protein levels for 1q histone modifiers. Samples are ranked from lowest (left) to highest (right) copy number

values.

(F) SETDB1 protein levels showed anticorrelation with CDKN1A RNA.

See also Figure S5; Table S5.
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tumors at both the mRNA and protein levels. Its paralog gene,

RPL22, is mutated inmany of theMSI tumors, and RPL22L1 pro-

tein levels were highest in these tumors (Figure 6B, p = 0.002,

rank-sum test). MSI tumors could upregulate RPL22L1 to

compensate for the loss of RPL22; indeed, it has been shown

that RPL22 and RPL22L1 share a synthetic lethal relationship

(McDonald et al., 2017).

When comparing serous to endometrioid tumors, the most

striking observation was that TP53BP1-S1763 and CHEK2-

S163 were highly phosphorylated in serous tumors (Figure 6C).

These sites are among those phosphorylated by PLK1 to inacti-

vate the DNA damage response (DDR) and drive progression

through the G2M checkpoint (van Vugt et al., 2010). The levels

of phosphorylated TP53BP1-S1763 and CHEK2-S163 were

correlated with PLK1 protein levels (Figures 6D and 6E),

which correlated in turn with G2M checkpoint score (Figure 6F,

R = 0.67, p = 7.9e-14), indicating progression through the G2M

checkpoint. These results are consistent with previous studies

showing that overexpression of PLK1 is a driver of chromosomal

instability (de Cárcer et al., 2018) and that DDR and G2M check-

point activation areclosely linked (Liu et al., 2000;Matsuokaet al.,

1998; Sancar et al., 2004; Wang et al., 2015). We generated a
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Figure 5. Discovery of circRNAs and Their

Potential Roles in EMT Regulation

(A) Distributions of correlations between pairs of

circRNAs and between circRNAs and their host

genes.

(B) Numbers of circRNAs correlated to RBPs.

(C) Positive correlation is found between QKI pro-

tein level and EMT score.

(D) Negative correlation is found between QKI and

ESRP2 protein levels.

(E) Correlation between QKI protein level and

miRNA expression/activity.

(F) Schematic of our model shows QKI, circRNAs,

and miRNAs forming a positive feedback loop to

promote EMT in EC.

See also Figure S6; Table S5.

DDR score for our samples based on

known DDR marker phosphoproteins

(Matsuoka et al., 2007) (STAR Methods;

Figure S7E). As expected, we found that

PLK1 protein level (Figure 6G; and Fig-

ure S7F) and G2M protein level (Fig-

ure S7H) were higher in samples with a

high DDR score, as was phosphorylation

on CHEK2-S163 (Figure S7G), even

though neither protein was incorporated

into the DDR score. DDR-high samples

were enriched for serous tumors and

therefore the CNV-high subtype, but the

DDR-high endometrioid tumors came

from the CNV-high, POLE, and MSI

genomic subgroups (Figure S7E), indi-

cating that active DNA damage signaling

is largely independent of genomic

subtype.

In order to nominate new chemotherapeutic targets for DDR-

high tumors, we compared hyperphosphorylation, a proxy for

abnormally high activity (Huang et al., 2017; Mertins et al.,

2016; Mundt et al., 2018), between DDR-high and DDR-low tu-

mors, and found that several proteins that have known interac-

tions with FDA-approved drugs were hyperphosphorylated in

DDR-high samples (Figure 6H). In particular, DNMT1 is a protein

that was hyperphosphorylated in both endometrioid and serous

DDR-high tumors. This protein has several known inhibitors,

including azacitidine and decitabine (Hollenbach et al., 2010),

that have demonstrated use in treating several myelodysplastic

syndromes and other blood cancers. This finding highlights the

potential for personalized therapy beyond traditional PARP in-

hibitors in tumors with elevated DNA damage.

The subset of endometrioid samples that are CNV-high have a

prognosis that is similar to the more aggressive serous histotype

(Kandoth et al., 2013). It is useful to determine whether they are

also similar to serous tumors at a molecular level and therefore

susceptible to the same treatments. It is also critical to determine

what molecular underpinnings differentiate these tumors from

the more treatable endometrioid tumors in the other three

genomic subgroups, both in order to facilitate early diagnosis
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Figure 6. Proteomics-Driven Clinical Utility

(A) Differential levels of protein (green), phosphorylation sites (maroon), and acetylation sites (yellow) between MSI and MSS tumors.

(B) Comparison of RPL22L1 protein levels between MSI tumors with and without RPL22 indel and MSS tumors.

(C) Differential levels of protein (green), phosphorylation sites (maroon), and acetylation sites (yellow) between serous and endometrioid tumors.

(D–F) Correlation between PLK1 level and the levels of its substrates TP53BP1-S1763 (D) and CHEK2-S163 (E) and G2M checkpoint protein level (F).

(G) Dependence of PLK1 level on DNA damage signaling. * indicates p < 0.05

(H) Proteins with drug interactions that are enriched in DDR-high endometrioid and/or DDR-high serous samples (outlier analysis FDR < 0.05).

(I) Proteins with drug interactions that are enriched in serous or endometrioid CNV-high samples (outlier analysis FDR < 0.05).

See also Figure S7; Table S6.
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and to pinpoint possible therapeutic targets. Although no pro-

teins were differentially expressed between CNV-high endome-

trioid and non-CNV-high samples or between CNV-high serous

and non-CNV-high samples, a subset of proteins were differen-

tially hyperphosphorylated; 45 proteins were hyperphosphory-

lated in both endometrioid and serous CNV-high samples,

whereas 479 proteins were hyperphosphorylated exclusively in

the serous comparison and 53 exclusively in the endometrioid

comparison (Figure S7I). Because patients with CNV-high tu-

mors have a particularly poor prognosis regardless of histology,

we focused on identifying promising targets for future studies

developing new chemotherapy drugs by finding proteins that

are likely to be hyperactivated in CNV-high samples (Blumen-

berg et al., 2019). Of the proteins found in both comparisons,

A B

C

D

Figure 7. Immune Landscape of EC

(A) Putative neoantigens and CT antigens.

(B) Tumor samples are divided into four immune

subtypes by TMB and APM efficiency.

(C) Immune profiles of each immune subtype.

(D) Comparison of the JAK/STAT pathway be-

tween TMB-H/APM-H and TMB-H/APM-L groups.

* indicates p < 0.05; *** indicates p < 0.001.

See also Table S7.

six have potentially useful known drug in-

teractions; two of these, CDK12 and

SMARCA4, are targeted by FDA-

approved drugs (Figure 6I). Of the pro-

teins differentially phosphorylated only in

endometrioid CNV-high samples, six

additional proteins have known drug in-

teractions, including one protein (PML)

that is the target of an FDA-approved anti-

neoplastic drug (Figure 6I). As a specific

example, CDK12 is known to modulate

the susceptibility of ovarian cancer to

the PARP inhibitor olaparib (Bajrami

et al., 2014); the hyperphosphorylation of

CDK12 in EC suggests potential utility as

a target for sensitization of EC to PARP in-

hibitors. In addition, targeting of CDK12

has been shown to enhance responses

to immune checkpoint blockade (Omar

and Tolba, 2019), suggesting utility as an

adjunct to immunotherapy. Finally,

kinase activity inferred from phosphopro-

teomic data identified several kinases

activated in CNV-high endometrioid tu-

mors compared to CNV-low tumors,

including CDK4, which can be targeted

by multiple FDA-approved drugs (Fig-

ure S7J; Table S6).

TumorAntigens asPutative Vaccine
Antigens
Tumor antigens, including cancer/testis

(CT) antigens and neoantigens derived

from somatic mutations, can serve as candidates for vaccine

development in cancer immunotherapy (Almeida et al., 2009;

Lee et al., 2003). We found protein evidence for putative neoan-

tigens in 49.3% of the samples. The POLE molecular subtype

contained the highest number of neoantigens per sample, fol-

lowed by the MSI subtype (Figure 7A). Eight known CT antigens

were observed inR10%of tumors using a cutoff ofR3-fold level

increase in tumor samples as compared with normal tissue (Fig-

ure 7A). Overall, 59% of tumors contained at least one CT anti-

gen. Unlike neoantigen expression, CT antigen expression was

independent of POLE and MSI status. CT antigen IGF2BP3

was highly upregulated in serous tumors as compared with en-

dometrioid; it has been identified as a biomarker of serous histol-

ogy (Mhawech-Fauceglia et al., 2010; Zheng et al., 2008). We
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also observed overexpression of ATAD2 or PBK CT antigens,

both of which have also been suggested as potential clinical bio-

markers for EC (Berg et al., 2017; Krakstad et al., 2015). In addi-

tion to serving as cancer biomarkers, CT antigens are inherently

immunogenic. For example, peptides derived from IGF2BP3

have been shown to be immunogenic in vitro (Suda et al.,

2007) and in vivo in human esophageal cancer (Kono et al.,

2009). Overall, 78% of tumors had either evidence of a neoanti-

gen or high expression of a common CT antigen (Figure 7A;

Table S7), demonstrating the utility of proteogenomics in identi-

fying potential tumor antigens for vaccine development in cancer

immunotherapy.

Antigen Processing and Presentation Deficiency
Immune checkpoint inhibition is an increasingly successful cancer

immunotherapy. Higher tumor-mutation burden (TMB) has been

shown to predict clinical benefit of immune checkpoint inhibition

across human cancers (Samstein et al., 2019). However, effective

immune targeting of tumor cells also requires that the cellular an-

tigen processing and presentation machinery (APM) effectively

displays the tumor antigens that allow T cells to recognize and

kill tumor cells (Baxevanis et al., 2019; Eggermont et al., 2014).

We found high variation in APM efficiency (estimated based on

APM protein levels, see STAR Methods) that was independent

of TMB (Figure 7B). We divided the tumors into four groups based

on TMB and APM scores (STARMethods).We then quantified the

immune-cell infiltration scores of each tumor with single sample

gene-set enrichment analysis based on recently published im-

mune-cell signatures (STAR Methods; Table S7) (Charoentong

et al., 2017). Cell-type immune scores (p < 0.05, one-way

ANOVA) are shown in Figure 7C. Consistent with the inference

above, the TMB-high and APM-low (TMB-H/APM-L) group had

a relatively lower immune score for most of the immune cells

than the TMB-high and APM-high (TMB-H/APM-H) group,

including cytotoxic CD8+ T cells. Interestingly, TMB-low and

APM-high (TMB-L/APM-H) had the highest immune score despite

its low TMB.However, the high score appears to be dependent on

high levels of suppressive immune cells, including myeloid-

derived suppressor cells and regulatory T cells (Bianchi et al.,

2011; Wang et al., 2017); this group had lower infiltration of acti-

vated CD8+ and CD4+ T cells than did TMB-H/APM-H, which is

suggestive of an immunosuppressive microenvironment. These

results indicate that TMB and APM act independently to shape

the tumor immune microenvironment in EC and could indepen-

dently recruit different populations of immune cells.

Although recent studies have shown TMB to be an indepen-

dent predictor of response to immunotherapy (Goodman et al.,

2017; Samstein et al., 2019), our results showed that high-TMB

tumors have diverse APM efficiency and immune microenviron-

ments. Based on the prevalence of microsatellite indel-derived

JAK1 mutations in MSI EC samples (Figure 1) and a correlation

between the presence of microsatellite indel-derived JAK1 mu-

tations and higher tumor grade in both this and the TCGA cohort

(Figure S2C), we focused our analysis on the JAK/STAT

pathway, which activates interferon (IFN) pathways to regulate

antigen presentation (Aaronson and Horvath, 2002; Schindler

et al., 2007). We observed that the TMB-H/APM-L group had

lower IFNg and IFNa activity than the TMB-H/APM-H group (Fig-

ure 7C). The two POLE samples in the TMB-H/APM-L group had

truncation mutations in JAK1 and STAT1, respectively (Fig-

ure 7D); we also found enrichment of JAK1 truncation mutations

in the TMB-H/APM-L group. Because most of the JAK1 trunca-

tion mutations in MSI tumors are derived from microsatellite

indels, which are much more common in EC than in the MSI

subtype of colon cancer (Kim et al., 2013) (Figure S2B), JAK1mi-

crosatellite indels could represent a major immune evasion

mechanism in MSI EC, a theory which has also been considered

in other cancer types (Shin et al., 2017; Stelloo et al., 2016).

TMB-H/APM-L tumors without JAK1/STAT1 mutations had

lower protein levels of antigen peptide transporters including

TAP1, TAP2, and TAP2BP, providing an alternative mechanism

for repressing antigen presentation and suppressing anti-tumor

immune response (Harel et al., 2019). Moreover, HLA protein

levels were lower in TMB-H/APM-L tumors than in TMB-H/

APM-H tumors. In summary, these results suggest several

possible mechanisms by which EC cells could suppress the

APM, leading to immune evasion. Although the FDA has

approved MSI as a marker of immunotherapy for solid tumors

(Lemery et al., 2017), our results suggest that JAK1/STAT1 mu-

tations and TAP levels, which are markers of APM deficiency,

should also be taken into account when selecting EC patients

for treatment with immune checkpoint inhibitors.

DISCUSSION

This study provides a comprehensive overview of the molecular

systems of EC at the genomic, transcriptomic, and proteomic

levels. We confirmed protein-level expression of predicted events

previously described at the genomic and transcriptomic level.

Beyond that, we clearly demonstrated that distinct EC subtypes

can be reliably distinguished by their patterns of protein levels

and subsequent post-translational modifications. Although it is

currently unclear how the distinct genomic subtypes defined by

TCGA can best be leveraged to improve outcomes for women

diagnosedwith EC, the functional information providedby proteo-

mic measurements, including protein phosphorylation and acety-

lation, provides a basis for a deeper understanding of EC biology

and new approaches to clinical management.

A perennial issue has been the identification of the subset of

low-grade, low-stage EC with paradoxically poor outcomes.

Constitutive b-catenin activation through CTNNB1 mutations

and other mechanisms has previously been associated with

less favorable outcomes in low-grade, low-stage endometrioid

EC (Liu et al., 2014). In this paper, we identify collaborating

mechanisms of pathway activation arising when the known ef-

fects of CTNNB1 somatic mutations are coupled with APC mu-

tations. These findings could help refine which tumors will

behave in a more aggressive manner than expected and expand

the range of biomarkers used for adjuvant therapies.

The consequences of various common TP53 mutations are

thought to affect treatment outcomes (Meng et al., 2018); here

we describe the effect of gain-of-function TP53 mutations on

the Aurora kinase pathway, supporting reported associations

between AURKA expression and poor outcomes in EC (Umene

et al., 2015) and providing a theoretical basis for the use of

AURKA inhibitors in these tumors. On a related note, 1q
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amplification has been associated with poor outcomes in seem-

ingly favorable endometrioid EC (Depreeuw et al., 2017). These

observations could be used to stratify treatment for more

aggressive EC tumors.

EMT is an important component of EC progression with prog-

nostic implications (Tanaka et al., 2013). In this study we uncov-

ered evidence for a novel regulatory pathway involving QKI,

circRNA, and ESRP2. ESRP2 regulates alternative splicing

events associated with epithelial phenotypes of cells (Ishii

et al., 2014) and plays a critical role during EMT by regulating iso-

forms of FGFR2, CD44, CTNND1, and ENAH (Lamouille et al.,

2014; Warzecha et al., 2009). Through its known function in iso-

form regulation, ESRP2 could also directly regulate circRNA

levels, and, if so, it could compete with QKI in circRNA-mediated

gene regulation. Further work is needed to investigate the inter-

play of ESRP2 with circRNAs in EMT.

High-grade endometrioid and serous EC are associated with

frequent recurrences and poor clinical outcomes even when

diagnosed at early stages; unfortunately, consistently effective

therapeutic options for these cancers are limited. We have iden-

tified multiple gene products that are highly expressed in the

CNV-high subset of ECs that includes all serous EC and many

of the high-grade ECs profiled. One of these gene products,

CDK12, can be targeted to enhance clinical responses to im-

mune checkpoint blockade (Omar and Tolba, 2019), providing

an opportunity for improved selection of EC patients for check-

point blockade immunotherapy. Long-term, these observations

posit multiple strategies potentially useful for clinically managing

CNV-high and other EC subtypes. It will be important to deter-

mine whether the distinguishing features we have observed are

associated with distinct rates of tumor recurrence, response to

therapy, and clinical outcomes as the demographic data avail-

able for this prospective cohort continues to mature.

Although immunotherapy approaches, including checkpoint

inhibition and tumor vaccination, have been highly successful

as cancer treatments, a significant proportion of patients fail to

respond to these therapies. Our results indicate that measuring

the capability of the tumor to process and present antigens

would provide additional and possibly more effective criteria

for the selection of patients for immunotherapy beyond the sim-

ple measurement of tumor mutation burden.

Integrating comprehensive quantitative measurements of pro-

tein, phosphorylation, and acetylation with genomic and tran-

scriptomic measurements not only has provided novel insights

into fundamental biological processes associated with carcino-

genesis but also has provided intriguing leads for new therapeu-

tic approaches in EC, including potential criteria for selecting the

most appropriate therapies. Although the results presented

herein are predominantly observational, they provide the basis

for multiple hypotheses of clinical relevance that can and should

be further explored by the scientific community.
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Machin, P., Catasus, L., Pons, C., Muñoz, J., Matias-Guiu, X., and Prat, J.

(2002). CTNNB1 mutations and b-catenin expression in endometrial carci-

nomas. Hum. Pathol. 33, 206–212.

Mac�urek, L., Lindqvist, A., Lim, D., Lampson, M.A., Klompmaker, R., Freire, R.,

Clouin, C., Taylor, S.S., Yaffe, M.B., and Medema, R.H. (2008). Polo-like ki-

nase-1 is activated by aurora A to promote checkpoint recovery. Nature

455, 119–123.

Mak, M.P., Tong, P., Diao, L., Cardnell, R.J., Gibbons, D.L., William, W.N.,

Skoulidis, F., Parra, E.R., Rodriguez-Canales, J., Wistuba, I.I., et al. (2016). A

Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alter-

ations and Immune Target Enrichment Following Epithelial-to-Mesenchymal

Transition. Clin. Cancer Res. 22, 609–620.

Maruvka, Y.E., Mouw, K.W., Karlic, R., Parasuraman, P., Kamburov, A., Polak,

P., Haradhvala, N.J., Hess, J.M., Rheinbay, E., Brody, Y., et al. (2017). Analysis

of somatic microsatellite indels identifies driver events in human tumors. Nat.

Biotechnol. 35, 951–959.

Matsuoka, S., Huang, M., and Elledge, S.J. (1998). Linkage of ATM to cell cycle

regulation by the Chk2 protein kinase. Science 282, 1893–1897.

Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov,

K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., et al.

(2007). ATM and ATR substrate analysis reveals extensive protein networks

responsive to DNA damage. Science 316, 1160–1166.

McConechy, M.K., Talhouk, A., Leung, S., Chiu, D., Yang, W., Senz, J., Reha-

Krantz, L.J., Lee, C.-H., Huntsman, D.G., Gilks, C.B., and McAlpine, J.N.

(2016). Endometrial Carcinomas with POLE Exonuclease Domain Mutations

Have a Favorable Prognosis. Clin. Cancer Res. 22, 2865–2873.

Cell 180, 729–748, February 20, 2020 745

http://refhub.elsevier.com/S0092-8674(20)30107-0/sref61
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref61
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref61
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref61
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref62
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref62
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref62
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref62
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref63
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref63
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref63
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref63
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref64
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref64
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref65
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref65
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref65
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref66
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref66
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref67
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref67
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref68
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref68
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref68
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref68
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref69
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref69
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref69
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref69
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref69
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref70
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref70
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref70
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref70
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref71
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref71
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref71
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref71
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref72
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref72
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref72
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref73
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref73
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref73
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref73
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref74
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref74
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref75
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref75
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref75
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref75
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref76
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref76
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref77
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref77
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref77
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref78
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref78
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref78
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref79
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref79
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref79
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref80
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref80
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref80
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref81
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref81
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref81
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref82
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref82
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref83
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref83
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref83
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref83
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref84
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref84
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref84
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref84
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref85
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref85
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref85
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref86
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref86
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref87
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref87
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref87
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref88
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref88
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref88
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref88
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref89
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref89
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref89
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref89
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref90
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref90
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref90
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref90
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref91
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref91
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref91
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref92
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref92
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref92
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref92
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref92
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref93
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref93
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref93
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref93
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref93
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref94
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref94
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref94
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref94
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref95
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref95
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref96
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref96
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref96
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref96
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref97
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref97
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref97
http://refhub.elsevier.com/S0092-8674(20)30107-0/sref97


McDonald, E.R., 3rd, de Weck, A., Schlabach, M.R., Billy, E., Mavrakis, K.J.,

Hoffman, G.R., Belur, D., Castelletti, D., Frias, E., Gampa, K., et al. (2017). Proj-

ect DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal

Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 170,

577–592.e10.

Mello, S.S., and Attardi, L.D. (2013). Not all p53 gain-of-function mutants are

created equal. Cell Death Differ. 20, 855–857.

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier,

L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al. (2013). Circular

RNAs are a large class of animal RNAs with regulatory potency. Nature 495,

333–338.

Meng, X., Yang, S., Li, Y., Li, Y., Devor, E.J., Bi, J., Wang, X., Umesalma, S.,

Quelle, D.E., Thiel, W.H., et al. (2018). Combination of Proteasome andHistone

Deacetylase Inhibitors Overcomes the Impact of Gain-of-Function p53 Muta-

tions. Dis. Markers 2018, 3810108.

Mertins, P., Mani, D.R., Ruggles, K.V., Gillette, M.A., Clauser, K.R., Wang, P.,

Wang, X., Qiao, J.W., Cao, S., Petralia, F., et al.; NCI CPTAC (2016). Proteoge-

nomics connects somatic mutations to signalling in breast cancer. Nature

534, 55–62.

Mhawech-Fauceglia, P., Herrmann, F.R., Rai, H., Tchabo, N., Lele, S., Izev-

baye, I., Odunsi, K., and Cheney, R.T. (2010). IMP3 distinguishes uterine se-

rous carcinoma from endometrial endometrioid adenocarcinoma. Am. J.

Clin. Pathol. 133, 899–908.

Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.-S., Tam,W.-L., Thomson, A.M., Lim,

B., and Rigoutsos, I. (2006). A pattern-based method for the identification of

MicroRNA binding sites and their corresponding heteroduplexes. Cell 126,

1203–1217.

Mizutani, A., Koinuma, D., Seimiya, H., and Miyazono, K. (2016). The Arkadia-

ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell

carcinoma. Oncogene 35, 3514–3523.

Monroe, M.E., Shaw, J.L., Daly, D.S., Adkins, J.N., and Smith, R.D. (2008). MA-

SIC: a software program for fast quantitation and flexible visualization of chro-

matographic profiles from detected LC-MS(/MS) features. Comput. Biol.

Chem. 32, 215–217.

Mukohyama, J., Shimono, Y., Minami, H., Kakeji, Y., and Suzuki, A. (2017).

Roles of microRNAs and RNA-Binding Proteins in the Regulation of Colorectal

Cancer Stem Cells. Cancers (Basel) 9, 9.

Mundt, F., Rajput, S., Li, S., Ruggles, K.V., Mooradian, A.D., Mertins, P., Gil-

lette,M.A., Krug, K., Guo, Z., Hoog, J., et al. (2018). Mass Spectrometry-Based

Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to

PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res. 78, 2732–2746.

Myers, A., Barry, W.T., Hirsch, M.S., Matulonis, U., and Lee, L. (2014). b-Cat-

enin mutations in recurrent FIGO IA grade I endometrioid endometrial cancers.

Gynecol. Oncol. 134, 426–427.

Nieto, M.A., Huang, R.Y.-J., Jackson, R.A., and Thiery, J.P. (2016). EMT: 2016.

Cell 166, 21–45.

Nikulenkov, F., Spinnler, C., Li, H., Tonelli, C., Shi, Y., Turunen, M., Kivioja, T.,

Ignatiev, I., Kel, A., Taipale, J., and Selivanova, G. (2012). Insights into p53

transcriptional function via genome-wide chromatin occupancy and gene

expression analysis. Cell Death Differ. 19, 1992–2002.

Niu, B., Ye, K., Zhang, Q., Lu, C., Xie, M., McLellan, M.D., Wendl, M.C., and

Ding, L. (2014). MSIsensor: microsatellite instability detection using paired tu-

mor-normal sequence data. Bioinformatics 30, 1015–1016.

Niu, B., Scott, A.D., Sengupta, S., Bailey, M.H., Batra, P., Ning, J., Wyczalkow-

ski, M.A., Liang, W.-W., Zhang, Q., McLellan, M.D., et al. (2016). Protein-struc-

ture-guided discovery of functional mutations across 19 cancer types. Nat.

Genet. 48, 827–837.

Nowosielska, A., and Marinus, M.G. (2008). DNA mismatch repair-induced

double-strand breaks. DNA Repair (Amst.) 7, 48–56.

O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R.,

Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016). Refer-

ence sequence (RefSeq) database at NCBI: current status, taxonomic expan-

sion, and functional annotation. Nucleic Acids Res. 44 (D1), D733–D745.

Omar, H.A., and Tolba, M.F. (2019). Tackling molecular targets beyond PD-1/

PD-L1: Novel approaches to boost patients’ response to cancer immuno-

therapy. Crit. Rev. Oncol. Hematol. 135, 21–29.

Onuchic, V., Hartmaier, R.J., Boone, D.N., Samuels, M.L., Patel, R.Y., White,

W.M., Garovic, V.D., Oesterreich, S., Roth, M.E., Lee, A.V., and Milosavljevic,

A. (2016). Epigenomic Deconvolution of Breast Tumors Reveals Metabolic

Coupling between Constituent Cell Types. Cell Rep. 17, 2075–2086.

Pappas, K., Xu, J., Zairis, S., Resnick-Silverman, L., Abate, F., Steinbach, N.,

Ozturk, S., Saal, L.H., Su, T., Cheung, P., et al. (2017). p53 Maintains Baseline

Expression of Multiple Tumor Suppressor Genes. Mol. Cancer Res. 15,

1051–1062.

Paschal, C.R., Maciejowski, J., and Jallepalli, P.V. (2012). A stringent require-

ment for Plk1 T210 phosphorylation during K-fiber assembly and chromosome

congression. Chromosoma 121, 565–572.

Pelletier, J., Thomas, G., and Volarevi�c, S. (2018). Ribosome biogenesis in

cancer: new players and therapeutic avenues. Nat. Rev. Cancer 18, 51–63.

Perfetto, L., Briganti, L., Calderone, A., Cerquone Perpetuini, A., Iannuccelli,

M., Langone, F., Licata, L., Marinkovic, M., Mattioni, A., Pavlidou, T., et al.

(2016). SIGNOR: a database of causal relationships between biological en-

tities. Nucleic Acids Res. 44 (D1), D548–D554.

Pillman, K.A., Phillips, C.A., Roslan, S., Toubia, J., Dredge, B.K., Bert, A.G.,

Lumb, R., Neumann, D.P., Li, X., Conn, S.J., et al. (2018). miR-200/375 control

epithelial plasticity-associated alternative splicing by repressing the RNA-

binding protein Quaking. EMBO J. 37, 37.

Ruepp, A., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C.,

Stransky, M., Waegele, B., Schmidt, T., Doudieu, O.N., Stümpflen, V., and
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Further information and requests for resources should be directed to the LeadContact, David Fenyö (david@fenyolab.org). This study

did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient Selection
The tumor, normal tissue, and whole blood samples used in this manuscript were prospectively collected between April 2016 and

May 2017 for the CPTAC project. There are three types of normals were included in our analysis which are adjacent normal tissue

without specific enrichment (adjacent normal), enriched endometrium normal (enriched normal), and adjacent normal without endo-

metrium (myometrium normal). Biospecimens were collected from newly diagnosed patients with endometrial cancer (EC) who were

undergoing surgical resection and had received no prior treatment for their disease, including chemotherapy or radiotherapy, and

Continued
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were collected independent of grade or stage. EC cases were graded using the FIGO (International Federation of Gynecology and

Obstetrics) system or the American Joint Committee on Cancer TNM staging system, which are functionally identical.

METHOD DETAILS

Sample Collection
TheCPTACBiospecimen Core Resource (BCR) at the Pathology and Biorepository Core of the Van Andel Research Institute in Grand

Rapids, Michigan manufactured and distributed biospecimen kits to the Tissue Source Sites (TSS) located in the US, Europe, and

Asia. Each kit contained a set of pre-manufactured labels for unique tracking of every specimen respective to TSS location, disease,

and sample type, used to track the specimens through the BCR to the CPTAC proteomic and genomic characterization centers.

Tissue specimens averaging 250 mg were snap-frozen by the TSS within a 30 min cold ischemic time (CIT) (CIT average = 18 min)

and an adjacent segment was formalin-fixed paraffin-embedded (FFPE) and H&E stained by the TSS for quality assessment to meet

the CPTAC EC requirements. Routinely, several tissue segments for each case were collected. Tissues were flash frozen in liquid

nitrogen (LN2) then transferred to a liquid nitrogen freezer for storage until approval for shipment to the BCR.

Specimens were shipped using a cryoport that maintained an average temperature of under �140�C to the BCR with a time and

temperature tracker to monitor the shipment. Receipt of specimens at the BCR included a physical inspection and review of the time

and temperature tracker data for specimen integrity, followed by barcode entry into a biospecimen tracking database. Specimens

were again placed in storage at LN2 temperatures until further processing. Acceptable EC tumor tissue segments were determined

by TSS pathologists based on the percent viable tumor nuclei (> 80%), total cellularity (> 50%), and necrosis (< 20%). Segments

received at the BCR were verified by BCR and Leidos Biomedical Research (LBR) pathologists and the percent of total area of tumor

in the segment was also documented. Additionally, disease-specific working group pathology experts reviewed the morphology to

clarify or standardize specific disease classifications and correlation to the proteomic and genomic data.

Specimens selected for the discovery set were determined on themaximal percent in the pathology criteria and best weight. Spec-

imens were pulled from the biorepository using an LN2 cryocart to maintain specimen integrity and then cryopulverized. The

cryopulverized specimen was divided into aliquots for DNA (30mg) and RNA (30mg) isolation and proteomics (50mg) for molecular

characterization. Nucleic acids were isolated and stored at �80�C until further processing and distribution; cryopulverized protein

material was returned to the LN2 freezer until distribution. Shipment of the cryopulverized segments used cryoports for distribution

to the proteomic characterization centers and shipment of the nucleic acids used dry ice shippers for distribution to the genomic

characterization centers; a shipment manifest accompanied all distributions for the receipt and integrity inspection of the specimens

at the destination. The DNA sequencing was performed at the Broad Institute, Cambridge, MA and RNA sequencing was performed

at the University of North Carolina, Chapel Hill, NC. Material for proteomic analyses was sent to the Proteomic Characterization Cen-

ter (PCC) at Pacific Northwest National Laboratory (PNNL), Richland, Washington.

Sample Processing for Genomic DNA and Total RNA Extraction
Our study sampled a single site of the primary tumor from surgical resections, due to the internal requirement to process a minimum

of 125mg of tumor issue and 50mg of adjacent normal tissue. DNA and RNA were extracted from tumor and adjacent normal spec-

imens in a co-isolation protocol using QIAGEN’s QIAsymphony DNA Mini Kit and QIAsymphony RNA Kit. Genomic DNA was also

isolated from peripheral blood (3-5mL) to serve as matched normal reference material. The Qubit dsDNA BR Assay Kit was used

with the Qubit� 2.0 Fluorometer to determine the concentration of dsDNA in an aqueous solution. Any sample that passed quality

control and produced enough DNA yield to go through various genomic assays was sent for genomic characterization. RNA

quality was quantified using both the NanoDrop 8000 and quality assessed using Agilent Bioanalyzer. A sample that passed RNA

quality control and had aminimumRIN (RNA integrity number) score of 7 was subjected to RNA sequencing. Identity match for germ-

line, normal adjacent tissue, and tumor tissue was assayed at the BCR using the Illumina Infinium QC array. This beadchip contains

15,949 markers designed to prioritize sample tracking, quality control, and stratification. The genomic DNA and total RNA extraction

were only applied to a subset of adjacent normal tissues without enrichment for endometrium.

Whole Exome Sequencing
Library Construction

Library construction was performed as described in (Fisher et al., 2011), with the following modifications: initial genomic DNA input

into shearing was reduced from 3mg to 20-250ng in 50mL of solution. For adaptor ligation, Illumina paired-end adapters were replaced

with palindromic forked adapters, purchased from Integrated DNA Technologies, with unique dual-indexed molecular barcode se-

quences to facilitate downstream pooling. Kapa HyperPrep reagents in 96-reaction kit format were used for end repair/A-tailing,

adaptor ligation, and library enrichment PCR. In addition, during the post-enrichment SPRI cleanup, elution volume was reduced

to 30mL to maximize library concentration, and a vortexing step was added to maximize the amount of template eluted.

In-solution Hybrid Selection

After library construction, libraries were pooled into groups of up to 96 samples. Hybridization and capture were performed using the

relevant components of Illumina’s Nextera ExomeKit and following themanufacturer’s suggested protocol, with the following excep-

tions.First, all libraries within a library construction plate were pooled prior to hybridization. Second, the Midi plate from Illumina’s
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Nextera ExomeKit was replacedwith a skirted PCRplate to facilitate automation. All hybridization and capture stepswere automated

on the Agilent Bravo liquid handling system.

Preparation of Libraries for Cluster Amplification and Sequencing

After post-capture enrichment, library pools were quantified using qPCR (automated assay on the Agilent Bravo) using a kit pur-

chased from KAPA Biosystems with probes specific to the ends of the adapters. Based on qPCR quantification, libraries were

normalized to 2nM.

Cluster Amplification and Sequencing

Cluster amplification of DNA libraries was performed according to the manufacturer’s protocol (Illumina) using exclusion amplifica-

tion chemistry and flowcells. Flowcells were sequenced utilizing sequencing-by-synthesis chemistry. The flowcells were then

analyzed using RTA v.2.7.3 or later. Each pool of whole exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index

reads across the number of lanes needed tomeet coverage for all libraries in the pool. Pooled libraries were run onHiSeq4000 paired-

end runs to achieve a minimum of 150x on target coverage per each sample library. The raw Illumina sequence data were demulti-

plexed and converted to fastq files; adaptor and low-quality sequences were trimmed. The raw reads were mapped to the hg38

human reference genome and the validated bams were used for downstream analysis and variant calling.

PCR-Free Whole Genome Sequencing
Preparation of Libraries for Cluster Amplification and Sequencing

An aliquot of genomic DNA (350ng in 50mL) was used as the input into DNA fragmentation (aka shearing). Shearing was performed

acoustically using a Covaris focused-ultrasonicator, targeting 385bp fragments. Following fragmentation, additional size selection

was performed using a SPRI cleanup. Library preparation was performed using a commercially available kit provided by KAPA Bio-

systems (KAPAHyper Prep without amplification module) andwith palindromic forked adapters with unique 8-base index sequences

embedded within the adaptor (purchased from IDT). Following sample preparation, libraries were quantified using quantitative PCR

(kit purchased from KAPA Biosystems), with probes specific to the ends of the adapters. This assay was automated using Agilent’s

Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 1.7nM and pooled into 24-plexes.

Cluster Amplification and Sequencing (HiSeq X)

Sample pools were combined with HiSeqX Cluster Amp Reagents EPX1, EPX2, and EPX3 into single wells on a strip tube using the

Hamilton Starlet Liquid Handling system. Cluster amplification of the templates was performed according to the manufacturer’s pro-

tocol (Illumina) with the Illumina cBot. Flowcells were sequenced to a minimum of 15x on HiSeqX utilizing sequencing-by-synthesis

kits to produce 151bp paired-end reads. Output from Illumina softwarewas processed by the Picard data processing pipeline to yield

BAM files containing demultiplexed, aggregated, aligned reads. All sample information tracking was performed by automated LIMS

messaging.

Illumina Infinium MethylationEPIC BeadChip Array

The MethylationEPIC array uses an 8-sample version of the Illumina Beadchip capturing > 850,000 methylation sites per sample.

250ng of DNA was used for the bisulfite conversation using InfiniumMethylationEPIC BeadChip Kit. The EPIC array includes sample

plating, bisulfite conversion, and methylation array processing. After scanning, the data was processed through an automated ge-

notype calling pipeline. Data generated consisted of raw idats and a sample sheet.

RNA Sequencing
QA and QC of RNA Analytes

All RNA analytes were assayed for RNA integrity, concentration, and fragment size. Samples for total RNA-seq were quantified on a

TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs > 8.0 were considered high quality.

Total RNA-seq Library Construction

Total RNA Libraries were prepared on an Agilent Bravo Automated Liquid Handling System. Quality control was performed at every

step, and the libraries were quantified using a TapeStation system.

Total RNA Sequencing

Indexed libraries were prepared and run on HiSeq4000 paired-end 75 base pairs to generate a minimum of 120 million reads per

sample library with a target of greater than 90%mapped reads. The raw Illumina sequence data were demultiplexed and converted

to fastq files, and adaptor and low-quality sequences were quantified. Samples were then assessed for quality by mapping reads to

hg38, estimating the total number of mapped reads, amount of RNA mapping to coding regions, amount of rRNA in sample, number

of genes expressed, and relative expression of housekeeping genes. Samples passing this QA/QC were then clustered with other

expression data from similar and distinct tumor types to confirm expected expression patterns. Atypical samples were then SNP

typed from the RNA data to confirm source analyte. FASTQ files of all reads were then uploaded to the GDC repository.

miRNA-seq Library Construction

miRNA-seq library construction was performed from the RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer, Wal-

tham, MA) and barcoded with individual tags following the manufacturer’s instructions. Libraries were prepared on Sciclone Liquid

HandlingWorkstation. Quality control was performed at every step, and the libraries were quantified using a TapeStation system and

an Agilent Bioanalyzer using the Small RNA analysis kit. Pooled libraries were then size selected according to NEXTflex Kit specifi-

cations using a Pippin Prep system (Sage Science, Beverly, MA).
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miRNA Sequencing

Indexed libraries were loaded on the HiSeq4000 to generate a minimum of 10 million reads per library with a minimum of 90% reads

mapped. The raw Illumina sequence data were demultiplexed and converted to FASTQ files for downstream analysis. Resultant data

were analyzed using a variant of the small RNA quantification pipeline developed for TCGA (Chu et al., 2016). Samples were assessed

for the number of miRNAs called, species diversity, and total abundance. Samples were uploaded to the GDC repository.

MS Sample Processing and Data Collection
Protein Extraction and Lys-C/Trypsin Tandem Digestion

The cryopulverized tumor and normal uterine tissue samples were obtained through the CPTAC Biospecimen Core Resource.

Approximately 50 mg of each of the pulverized uterine tumor and normal tissues were homogenized separately in 200 mL of lysis

buffer (8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 mg/mL aprotinin, 10 mg/mL leupeptin, 1 mM PMSF, 10 mM

NaF, 1:100 v/v Sigma phosphatase inhibitor cocktail 2, 1:100 v/v Sigma phosphatase inhibitor cocktail 3, 20 mM PUGNAc, and

5 mM sodium butyrate). Lysates were precleared by centrifugation at 20,000 g for 10 min at 4�C and protein concentrations were

determined by BCA assay (ThermoFisher Scientific) and adjusted to 8 mg/mL with lysis buffer. Proteins were reduced with 5 mM di-

thiothreitol for 1 h at 37�Cand subsequently alkylated with 10mM iodoacetamide for 45min at 25�C in the dark. Samples were diluted

1:3 with 50 mM Tris, pH 8.0 and digested with Lys-C (Wako) at 1:50 enzyme-to-substrate ratio. After 2 h of digestion at 25�C, an
aliquot of the same amount of sequencing-grademodified trypsin (Promega, V5117) was added to the samples and further incubated

at 25�C for 14 h. The digested samples were then acidified with 100% formic acid to 1% of the final concentration of formic acid and

centrifuged for 15 min at 1,500 g at 4�C before transferring samples into new tubes leaving resulted pellet behind. Tryptic peptides

were desalted on C18 SPE (Waters tC18 SepPak, WAT054925) and dried using Speed-Vac.

TMT-10 Labeling of Peptides

Desalted peptides from each sample were labeled with 10-plex TMT reagents according to the manufacturer’s instructions

(ThermoFisher Scientific). Peptides (400 mg) from each of the tumors were dissolved in 400 mL of 50 mM HEPES, pH 8.5 solution,

and mixed with 3.2 mg of TMT reagent that was dissolved freshly in 164 mL of anhydrous acetonitrile. Channel 126 was used for la-

beling the internal reference sample (pooled from all tumor and normal samples) throughout the sample analysis. After 1 h incubation

at RT, 32 mL of 5% hydroxylamine was added and incubated for 15 min at RT to quench the reaction. Peptides labeled by different

TMT reagents were then mixed, dried using Speed-Vac, reconstituted with 3% acetonitrile, 0.1% formic acid and desalted on tC18

SepPak SPE columns.

Peptide Fractionation by Basic Reversed-Phase Liquid Chromatography (bRPLC)

Approximately 3.5 mg of 10-plex TMT labeled sample was separated on a reversed phase Agilent Zorbax 300 Extend-C18 column

(250 mm 3 4.6 mm column containing 3.5-mm particles) using the Agilent 1200 HPLC System. Solvent A was 4.5 mM ammonium

formate, pH 10, 2% acetonitrile and solvent B was 4.5 mM ammonium formate, pH 10, 90% acetonitrile. The flow rate was 1 mL/min

and the injection volume was 900 mL. The LC gradient started with a linear increase of solvent B to 16% in 6 min, then linearly

increased to 40%B in 60min, 4 min to 44%B, 5min to 60%B and another 14 of 60% solvent B. A total of 96 fractions were collected

into a 96 well plate throughout the LC gradient. These fractions were concatenated into 24 fractions by combining 4 fractions that are

24 fractions apart (i.e., combining fractions #1, #25, #49, and #73; #2, #26, #50, and #74; and so on). For proteome analysis, 5% of

each concatenated fraction was dried down and re-suspended in 2% acetonitrile, 0.1% formic acid to a peptide concentration of

0.1 mg/mL for LC-MS/MS analysis. The rest of the fractions (95%) were further concatenated into 12 fractions (i.e., by combining

fractions #1 and #13; #3 and #15; and so on), dried down, and subjected to immobilized metal affinity chromatography (IMAC) for

phosphopeptide enrichment.

Phosphopeptide Enrichment Using IMAC

Fe3+-NTA-agarose beads were freshly prepared using the Ni-NTA Superflow agarose beads (QIAGEN, #30410) for phosphopeptide

enrichment. For each of the 12 fractions, peptides were reconstituted in 500 mL IMAC binding/wash buffer (80% acetonitrile, 0.1%

trifluoroacetic acid) and incubated with 20 mL of the 50%bead suspension for 30min at RT. After incubation, the beads were sequen-

tially washed with 50 mL of wash buffer (1X), 50 mL of 50% acetonitrile, 0.1% trifluoroacetic acid (1X), 50 mL of wash buffer (1X), and

50 mL of 1% formic acid (1X) on the stage tip packed with 2 discs of Empore C18 material (Empore Octadecyl C18, 47 mm; Supleco,

66883-U). Phosphopeptides were eluted from the beads on C18 using 70 mL of elution buffer (500 mM K2HPO4, pH 7.0). Sixty micro-

liter of 50% acetonitrile, 0.1% formic acid was used for elution of phosphopeptides from the C18 stage tips after two washes with

100 mL of 1% formic acid. Samples were dried using Speed-Vac and later reconstituted with 10 mL of 3% acetonitrile, 0.1% formic

acid for LC-MS/MS analysis.

Immunoaffinity Purification of Acetylated Peptides

Tryptic peptides from the flow-through of IMAC were combined into four samples follow concatenation scheme and dried down

using Speed-Vac. The dried peptides were reconstituted in 1.4 mL of the immunoaffinity purification (IAP) buffer (50 mM

MOPS/NaOH pH 7.2, 10 mM Na2HPO4 and 50 mM NaCl). After dissolving the peptide, the pH of the peptide solution was checked

using pH indicator paper. The amount of reconstituted peptides was quantified via BCA assay and concatenated into 4 fractions by

combining 3 fractions that were 4 fractions apart (i.e., combining fractions #1, #5 and #9 as a new fraction). The antibody beads from

PTMScan� Acetyl-Lysine Motif [Ac-K] Kit (Cell Signaling, #13416) were freshly prepared. Briefly, the antibody beads were centri-

fuged at 2,000 x g for 30 s and all buffer from the beads were removed; the antibody beads were then washed with 1 mL of IAP buffer
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for four times and finally resuspend in 40 mL of IAP buffer. For each fraction, half of the antibody in each tube was transferred to the

peptide solution and incubated on a rotator overnight at 4�C. After removing the supernatant, the reacted beads were washed with

1mL of PBS buffer five times. For the elution of acetylated peptides, the antibody beads were incubated 2 times each with 50 mL of

0.15% TFA at room temperature for 10 min. The eluted peptides were transferred to the stage tip packed with two discs of Empore

C18material. The C18 stage tips were washed by 1% formic acid and 50% acetonitrile, and 0.1% formic acid was used for elution of

peptides from the C18 stage tips. The eluted peptides were dried using Speed-Vac, and reconstituted with 13 mL of 3% acetonitrile,

0.1% formic acid right before the LC-MS/MS analysis.

The acetylated peptides prepared by IP from the IMAC flow-through may very well miss those peptides that are both phosphor-

ylated and acetylated. Splitting the samples for independent IP and IMAC may improve the chance of recovering such peptides,

assuming having both PTMs on the same peptide does not impact the affinity of either the IP or IMAC process. However, acetylated

peptides are estimated to be 10 times lower in abundance than the phosphopeptides, hence much larger input may be needed to

recover the dual-modified peptides. Given the extremely low stoichiometry of these dual-modified peptides and the sample size lim-

itations, it was not pursued in this work.

LC-MS/MS Analysis

Fractionated samples prepared for global proteome, phosphoproteome, and acetylome analysis were separated using a

nanoACQUITY UPLC system (Waters) by reversed-phase HPLC. The analytical column was manufactured in-house using

ReproSil-Pur 120 C18-AQ 1.9 mm stationary phase (Dr. Maisch GmbH) and slurry packed into a 25-cm length of 360 mm o.d. x

75 mm i.d. fused silica picofrit capillary tubing (New Objective). The analytical column was heated to 50�C using an AgileSLEEVE col-

umn heater (Analytical Sales and Services). The analytical column was equilibrated to 98%Mobile Phase A (MP A, 0.1% formic acid/

3% acetonitrile) and 2% Mobile Phase B (MP B, 0.1% formic acid/90% acetonitrile) and maintained at a constant column flow of

200 nL/min. The sample was injected into a 5 mL loop placed in-line with the analytical column which initiated the gradient profile

(min:%MP B): 0:2, 1:6, 85:30, 94:60, 95:90, 100:90, 101:50, 110:50. The column was allowed to equilibrate at start conditions for

30 min between analytical runs.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer (ThermoFisher Scientific). The global proteome

and phosphoproteome samples were analyzed under identical conditions. Electrospray voltage (1.8 kV) was applied at a carbon

composite union (Valco Instruments) coupling a 360 mm o.d. x 20 mm i.d. fused silica extension from the LC gradient pump to the

analytical column and the ion transfer tube was set at 250�C. Following a 25-min delay from the time of sample injection, Orbitrap

precursor spectra (AGC 4x105) were collected from 350-1800m/z for 110 min at a resolution of 60K along with data dependent Orbi-

trap HCDMS/MS spectra (centroid) at a resolution of 50K (AGC 1x105) andmax ion time of 105ms for a total duty cycle of 2 s. Masses

selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and fragmented using a collision energy of 30%. Peptide mode

was selected for monoisotopic precursor scan and charge state screening was enabled to reject unassigned 1+, 7+, 8+, and > 8+

ions with a dynamic exclusion time of 45 s to discriminate against previously analyzed ions between ± 10 ppm. The acetylome sam-

ples were analyzed under similar conditions except that the max ion time was 200 ms.

Construction and Utilization of the Comparative Reference Samples

As a quality control measure, two ‘‘Comparative Reference’’ (‘‘CompRef’’) samples were generated as previously described (Li et al.,

2013; Tabb et al., 2016) and used to monitor the longitudinal performance of the proteomics workflow throughout the course of this

study. Briefly, patient-derived xenograft (PDX) tumors from established basal and luminal breast cancer intrinsic subtypes were

raised subcutaneously in 8-week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Laboratories, Bar Harbor, ME) using proced-

ures reviewed and approved by the Institutional Animal Care and Use Committee at Washington University in St. Louis. Xenografts

were grown in multiple mice, pooled, and cryopulverized to provide a sufficient amount of uniform material for the duration of the

study. Full proteome, phosphoproteome and acetylome process replicates of each of the two CompRef samples were prepared

and analyzed as standalone 10-plex TMT experiments alongside every 4 TMT-10 experiments of the study samples, using the

same analysis protocol as the patient samples. These interstitially analyzed CompRef sampleswere evaluated for depth of proteome,

phosphoproteome, and acetylome coverage and for consistency in quantitative comparison between the basal and luminal models.

QUANTIFICATION AND STATISTICAL ANALYSIS

Tumor Exclusion Criteria
In the PCA analysis of proteomics (Figures 1D and 1E) and RNA-Seq data, three tumor samples were grouped with normal tissues.

We estimated tumor purity using amethylation-based deconvolution method (Onuchic et al., 2016). The three samples were found to

have tumor purity < 10% and were excluded from downstream analysis. Six more samples were excluded for other reasons,

including four from histologic types where there were too few tumors for meaningful statistical analysis (three carcinosarcoma

and one clear cell), one which was not treatment-naive, and one which was a tumor that was analyzed twice (the lower quality repli-

cate was excluded).
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Genomic Data Analysis
Copy Number Calling

Copy number variation was detected using BIC-seq2 (Xi et al., 2016), a read depth–based CNV calling algorithm forWGS tumor data.

Briefly, BIC-seq2 divides genomic regions into disjoint bins and counts uniquely aligned reads for each bin. It then combines neigh-

boring bins into genomic segments with similar copy numbers iteratively based on Bayesian information criteria (BIC). We used

paired-sample CNV calling that takes a pair of samples as inputs and detects genomic regions with different copy numbers between

the two samples.We used a bin size of 100bp and a lambda of 3 (smoothing parameter for CNV segmentation). Segmentswere called

as copy gain or loss when their log2 copy ratios were larger than 0.2 or smaller than�0.2, respectively. These cutoffs were obtained

by comparing the proportion of amplifications and deletions in the EC TCGA study and adjusting the cutoffs to match the proportions

in our cohort. To further summarize the arm-level copy number change, we used a weighted sum approach (Vasaikar et al., 2019), in

which the segment-level log2 copy ratios for all the segments located in the given armwere added upwith the length of each segment

being weighted.

Somatic Variant Calling

We called variants using paired tumor and blood normal fromWXS data. Somatic variants were called by Strelka v.2 (Saunders et al.,

2012), MUTECT v.2 (Cibulskis et al., 2013), VarScan v.2.3.8 (Koboldt et al., 2012), and Pindel v.0.2.5 (Ye et al., 2009). We kept SNVs

called by any 2 callers among MUTECT v.2, VarScan v.2.3.8, and Strelka v.2 and indels called by any 2 callers among MUTECT v.2,

VarScan v.2.3.8, Strelka v.2, and Pindel v.0.2.5. For the merged SNVs and indels, we applied a 14X and 8X coverage cutoff for tumor

and normal, separately. We also filtered SNVs and indels by a minimal variant allele frequency (VAF) of 0.05 in tumors and a maximal

VAF of 0.02 in normal samples. Finally, we filtered any SNV which was within 10bp of an indel found in the same tumor sample.

We identified a total of 52,630 somatic mutations, of which 5,757 were indels and 46,873 were point mutations. Specifically, there

were 4,430 frameshift deletions, 1,035 frameshift insertions, 258 in-frame deletions, 34 in-frame insertions, 41,127 missense muta-

tions, 4,580 nonsense mutations, 63 nonstop mutations, and 1,103 splice site mutations. We use MuSiC v0.4 in order to infer SMGs

based on background mutation rate, coverage, gene length, etc. (Dees et al., 2012).

We cataloged PTM-overlapping mutations (mutations located at most two amino acids away from a known PTM site) in all genes;

genes with the most overlapping mutations were PTEN, MUC16, CTNNB1, MKI67, and TP53. When restricting to only phosphosites

detected in our EC cohort, CTNNB1 had the most PTM-overlapping mutations.

Mutational Signatures

We use SignatureAnalyzer v0421-2017 (Tan and Févotte, 2013) in order to infer mutational signatures for our cohort. We identified 6

signatures, which were mapped to the 30 mutational signatures from the Stratton study (Alexandrov et al., 2013).

Methylation Analysis

The raw data from Illumina’s EPIC methylation arrays were available as IDAT files from the CPTAC consortium. The methylation

analysis was performed using the cross-package workflow ‘‘methylationArrayAnalysis.’’ Briefly, the raw data files (IDAT files) were

processed to obtain the methylated (M) and unmethylated (U) signal intensities for each locus. The processing step included an un-

supervised normalization step called functional normalization that has been previously implemented for Illumina 450K methylation

arrays (Fortin et al., 2014). A detection p value was also calculated for each locus to capture the quality of detection at the locus

with respect to negative control background probes included in the array. Loci having common SNPs (MAF > 0.01) (as per dbSNP

build 132 through 147 via the UCSC snp132common track through snp147common track) were removed from further analysis.

Beta values were calculated as M/(M+U); that is, the fraction methylated for each locus. Beta values of loci whose detection

p values were > 0.01 were assigned values of NA in the output file. All loci were annotated with the annotation information from

‘MethylationEPIC_v-1-0_B2.csv’ from the zip archive ‘infinium-methylationepic-v1-0-b2-manifest-file-csv.zip’ from https://www.

illumina.com through the IlluminaHumanMethylationEPICanno.ilm10b2.hg19 package on Bioconductor. For downstream integrated

analysis, we focused only on the methylation levels (represented as beta values) of the probes located both in the CpG island and the

promoter (including 50UTR) regions. The gene-level methylation was derived by averaging these probe-level methylation values.

Microsatellite Instability Prediction

We used 5 criteria to predict microsatellite instability status: mutation load, mismatch repair (MMR) gene mutation status, MSIsensor

(v0.2) score, MSMuTect (version 1.0) score, andMLH1methylation. K-Means clusteringmethodwith 2 cluster centers was applied to

mutation load, MSIsensor, MSMuTect, andMLH1methylation. For each tool, samples in the higher group were assigned as MSI-H.

Six MMR genes,MLH1,MLH3,MSH2,MSH3,MSH6, and PSM2, were considered in the analysis. Samples with a mutation in any of

these genes were labeled as MSI-H for the MMR gene criterion. A sample was officially called MSI-H if it was predicted to be MSI-H

by no fewer than 3 of 5 methods (Table S3).

Copy Number Classification

The copy number subtypes weremainly characterized byCNV deletion events. A sample was defined as CNV-highmore than 10%of

its genome was deleted, regardless of the number of CNV-independent events. However, a CNV event, defined by the minimal copy

number change (in log2 scale), is dependent on the tumor purity. A sample with low purity will have a smaller change than samples

with high purity. Here we defined the per-sample threshold as 0.3 times the sample purity. Purity was estimated using ABSOLUTE

(Carter et al., 2012).
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TCGA Subtype Classification

TCGA identified four subtypes of endometrial cancer: POLE, MSI, CNV-high, and CNV-low.We replicated this subtyping for the sam-

ples in our study.

The MSI subtype consists of all samples called MSI-H, as described in the Microsatellite Instability Prediction section.

To identify the POLE subtype, which has better survival than other subtypes, we looked for samples with mutations in the POLE

exonuclease domain (McConechy et al., 2016; Stelloo et al., 2015; Talhouk et al., 2017). There were 8 samples carrying exonuclease

domain mutations (EDM) in the cohort, including 7 missense mutations and 1 splice site mutation from the sample C3L-01253. How-

ever, this sample failed to pass the criteria [CA] signature > 20% and [CG] signature < 3%. Thus, seven samples were classified

as POLE.

Samples identified as having high CNV, as described in the Copy Number Classification section, were assigned to the CNV-high

subgroup. All remaining samples not classified as MSI, POLE, or CNV-high were classified as CNV-low.

HotSpot3D

We conducted 3D structural clustering using HotSpot3D v1.8.2 with recurrence as the vertex type and a clustering distance of 10Å

(Niu et al., 2016).

JAK1 Mutation Determination

Gene level microsatellite instability (MSI) events from MSMuTect and gene mutation calling results were integrated to determine the

JAK1MS insertion/deletion status. There were nine MSI events from eight samples identified by both MSMuTect and mutation call-

ing. Three JAK1 MSI events, which failed to pass filtering steps from MSMuTect but had mutation calling evidence, were also clas-

sified as MS insertion/deletion.

RNA Quantification & Analysis
RNA Quantification and Circular RNA Prediction

The Hg38 reference genome and RefSeq annotations were used for the RNaseq data analysis. They were downloaded from the

UCSC table browser. First, CIRI (v2.0.6) was used to call circular RNA with default parameters and BWA (version 0.7.17-r1188)

was used as the mapping tool. The cutoff of supporting reads for circRNA was set to 10. Then we used a pseudo-linear transcript

strategy to quantify gene and circular RNA expression (Li et al., 2017). In brief, for each sample, linear transcripts of circular RNAs

were extracted and 75bp (read length) from the 30 end was copied to the 50 end. The modified transcripts were called pseudo-linear

transcripts. Transcripts of linear genes were also extracted and mixed with pseudo-linear transcripts. RSEM (version 1.3.1) with

Bowtie2 (version 2.3.3) as the mapping tool was used to quantify gene and circular RNA expression based on the mixed transcripts.

After quantification, the upper quantile method was applied for normalization. The normalized matrix was log2-transformed and

separated into gene and circular RNA expression matrices.

miRNA-Seq Data Analysis

Adapters of miRNaseq reads were trimmed using TRIMMOMATIC (version 0.38). The following constraints were used during trim-

ming: 1) HEADCROP and TAILCROP were set to 4bp; 2) Average read quality was set to 30; 3) Average base quality was set to

20 with a sliding window of 10bp; 4) Trimmed reads shorter than 15 nucleotides in length were excluded from further analysis. Re-

maining reads were then mapped to the human genome hg38 using BWA aln, allowing 0 mismatch and up to 10 mappings. 3 bp

extension / shorten were allowed in both upstream and downstream regions of mature miRNA annotation to accommodate inaccu-

rate processing of precursor miRNAs. Multiple aligned reads were equally distributed in counting. Then read counts were converted

to RPM (reads permillion) values using (raw counts)3 106 / (total count), where total count is the number of reads aligned tomature or

precursor miRNAs.

miRNA Binding Site Prediction

RNA22 was used to predict miRNA binding sites on circRNAs with default parameters (Miranda et al., 2006). The circRNA

circCDR1as, which has 74 confirmed miR-7 binding sites, was used to determine the p value cutoff (Memczak et al., 2013).

RNA22 reported 49 potential binding sites of miR-7 on this circRNA. The third quartile of p values, 0.0207, was used as the cutoff

for miRNA binding sites prediction. miRNAs with binding sites but without miRNA activity scores (see Inferred Immune, EMT,

APM, and miRNA Activity Scores) were excluded from further analysis. After the filtering, there were binding sites for 36 miRNAs

from 16 of 35 QKI regulated circRNAs (Figure S4C).

Pathway Activity

The PROGENy R package was applied to the log2 transformed RSEM mRNA matrix to estimate activity of 11 cancer related path-

ways: EGFR, Hypoxia, JAK/STAT, MAPK, NFkB, PI3K, TGFb, TNFa, Trail, VEGF, p53 (Schubert et al., 2018).

MS Data Interpretation
Quantification of TMT Global Proteomics Data

LC-MS/MS analysis of the TMT10-labeled, bRPLC fractionated samples generated a total of 408 global proteomics data files. The

Thermo RAW files were processed with mzRefinery to characterize and correct for any instrument calibration errors, and then with

MS-GF+ v9881 (Gibbons et al., 2015; Kim and Pevzner, 2014; Kim et al., 2008) to match against the RefSeq human protein sequence

database downloaded on June 29, 2018 (hg38; 41,734 proteins), combinedwith 264 contaminants (e.g., trypsin, keratin). The partially

tryptic search used a ± 10 ppm parent ion tolerance, allowed for isotopic error in precursor ion selection, and searched a decoy

e8 Cell 180, 729–748.e1–e13, February 20, 2020



database composed of the forward and reversed protein sequences. MS-GF+ considered static carbamidomethylation

(+57.0215 Da) on Cys residues and TMT modification (+229.1629 Da) on the peptide N terminus and Lys residues, and dynamic

oxidation (+15.9949 Da) on Met residues for searching the global proteome data.

Peptide identification stringency was set at a maximum false discovery rate (FDR) of 1% at peptide level using PepQValue < 0.005

and parent ion mass deviation < 7 ppm criteria. A minimum of 6 unique peptides per 1000 amino acids of protein length was required

for achieving 1%at the protein level within the full dataset. Inference of parsimonious protein set resulted in the identification of a total

of 12,153 protein groups covering 11,099 genes.

The intensities of all ten TMT reporter ions were extracted using MASIC software (Monroe et al., 2008). Next, PSMs passing the

confidence thresholds described above were linked to the extracted reporter ion intensities by scan number. The reporter ion inten-

sities from different scans and different bRPLC fractions corresponding to the same gene were grouped. Relative protein abundance

was calculated as the ratio of sample abundance to reference abundance using the summed reporter ion intensities from peptides

that could be uniquely mapped to a gene. The pooled reference sample was labeled with TMT 126 reagent, allowing comparison of

relative protein abundances across different TMT-10 plexes. The relative abundances were log2 transformed and zero-centered for

each gene to obtain final relative abundance values.

Small differences in laboratory conditions and sample handling can result in systematic, sample-specific bias in the quantification

of protein levels. In order tomitigate these effects, we computed themedian, log2 relative protein abundance for each sample and re-

centered to achieve a common median of 0.

Evaluation of TMT Proteomics Data

Coupled with extensive fractionation and tandem affinity enrichment of the phosphopeptides and acetylated peptides, our 10-plex

TMT-basedMS/MSworkflow provided comprehensive proteomic coverage, confidently identifying a total of 12,153 proteins (11,099

genes), 73,212 phosphosites, and 10,862 lysine acetylation sites across all tumors and an average of 10,088 proteins (9,765 genes),

29,710 phosphosites, and 3,821 lysine acetylation sites per tumor (Table S2). Stable longitudinal performance and low technical

noise of the integrated proteomics platform were demonstrated by repeated interspersed analyses of QC samples (Figures S1B

and S1C). Principal component analysis clearly separated the tumors and normal endometrium tissue based on the TMT global pro-

teome, phosphoproteome, or acetylome data and no batch effect was observed in the TMT plexes (Figures S1D–S1F) (Wen et al.,

2017). Steady-state mRNA and protein abundance showed a strong positive correlation (median 0.48) (Figure S1G). This average

correlation was higher than the previous reported CPTAC colorectal (r = 0.23), breast (r = 0.39), and ovarian (r = 0.45) mRNA-protein

correlations. Around 78% of all mRNA-protein pairs across the 95 samples showed significant correlation (adj p value < 0.01).

Eight normalization methods were tested for global proteomics matrix: 1) median normalization followed by batch correct; 2) me-

dian normalization; 3) Median polish followed by batch correction; 4) median polish; 5) subtracted mean for each batch; 6) median

normalization; 7) filtering missing by batch followed bymedian normalization and batch correct; 8) filtering missing by batch followed

bymedian normalization. The 50%missing values cutoff for the whole cohort was used for methods 1-6 and the same cutoff for each

TMT batch was used for methods 7-8. The correlation in abundance between proteins from the same protein complex was used as a

criterion to evaluate these methods and the performances are shown in Figure S1H. Methods 4 and 8 have the same performance

and outperform other methods by the same criterion. However, method 4 has better classification between serous and endometrioid.

In sum, method 4 has the best performance for proteomics data.

Similarly, six normalization methods were applied to the phosphoproteomics matrix: 1) median normalization with factor from pro-

teomics data followed by batch correction; 2) median normalization with factor from proteomics data; 3) median normalization fol-

lowed by batch correction; 4) median normalization; 5) median polish followed by batch correction; 6) median polish. The 50%

missing values cutoff for the whole cohort was used for the analysis. The correlation between sites (substrates) from the same kinase

was used as the criterion to evaluate these methods and performances are shown in Figure S1I. Method 6 outperforms other

methods by the criterion.

Quality Control via Machine Learning

We also selected three clinically distinct phenotypes with at least 10 samples per group and compared the utility of multi-omics data

to identify the phenotype of individual tumors using machine learning. Global proteomics data performed as well as most other tran-

scriptomic and genomic data to distinguish between the histological serous and endometrioid subtypes (Figure S1J). Similarly in

identification of samples with MSI, proteomics, RNA, and methylation data demonstrated comparable ability (Figure S1K). While

these phenotypes are visually or genomically distinct, low-grade FIGO stage 1B and 1A samples can be hard to differentiate,

although pre-surgical classification determines the necessity of lymphadenectomy (Zhu et al., 2017). Proteomics data performed

significantly better (median AUROC of 0.73) than any other data type in predicting whether a sample was stage 1B or stage 1A

(Figure S1L).

Creation of a Patient-Specific Protein Sequence Database

The proteogenomic database tool pyQUILTS (Ruggles et al., 2016), available at http://quilts.fenyolab.org, was used to incorporate

the germline and somatic single nucleotide variants (SNVs), RNA-seq predicted junctions and fusion genes into a searchable protein

database. The human RefSeq protein database (downloaded 2018/06/29) was used as a reference for the hg38 proteome and

genome.
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Protein-Peptide Identification and Quantification with Patient-Specific Sequence Database

Protein sequences output from pyQUILTS were digested in-silico to generate all unique tryptic peptides with up to onemissed cleav-

age allowing for N-terminal methionine cleavage. Isoleucine residues were then replaced with leucines to avoid I/L variants. The

CPTAC3 reference proteome (along with the human proteome downloaded from UniProt on 2016/07/29) were similarly processed

to remove any possible reference peptides from the list of candidates, resulting in 5,295,726 unique peptide sequences.

Candidate peptides were submitted to the Pepcentric search engine (http://pepcentric.arsci.com:8080/) for peptide-centric

searching against the whole proteome EC dataset. For each peptide, the PSM with the lowest expectation value was selected as

a representative and expectation values were converted to p values using a permutation test with twenty million randomly-permuted

decoy peptides. TMT channel intensities were extracted from each spectra and intensities were summed across all PSMs associated

with a particular candidate peptide sequence for quantitation at the sample level.

A very stringent thresholding was performed tominimize the chance of false positive peptide identification. First, all peptides with a

q-value > 0.05 were removed, as were any peptides which had a lower expectation value than the best peptide in the closed (exact

match) or open (allowing for onemodification) UniProt search. Next, all matches with a TMT intensity below 20,000 or lower than 80%

of the max TMT value for that peptide were removed, as these were more likely to be overflow from other channels. After that, all

peptides with genomic or peptide evidence in more than a third of the dataset were removed, the rationale being that these would

not have been rare variants andwere therefore likely false positives that should have been classified as a reference peptide. Finally, all

peptides that lacked genomic evidence in any of the samples in which the peptide was found were removed. Although this thresh-

olding method is likely to remove many true positives, the objective was to be as certain as possible about the peptides that

remained.

Quantification of Phosphopeptides

Phosphopeptide identification for the 204 phosphoproteomics data files were performed as in the global proteome data analysis

described above (e.g., peptide level FDR < 1%), with an additional dynamic phosphorylation (+79.9663 Da) on Ser, Thr, or Tyr res-

idues. The phosphoproteome data were further processed by the Ascore algorithm (Beausoleil et al., 2006) for phosphorylation site

localization, and the top-scoring sequences were reported. For phosphoproteomic datasets, the TMT-10 quantitative data were not

summarized by protein, but left at the phosphopeptide level. All peptides (phosphopeptides and global peptides) were labeled with

TMT-10 reagent simultaneously. Separation into phospho- and non-phosphopeptides using IMAC was performed after the labeling.

Thus, all the biases upstream of labeling are assumed to be identical between global and phosphoproteomics datasets. Therefore, to

account for sample-specific biases in the phosphoproteome analysis, we applied the correction factors derived from median-

centering the global proteomic dataset.

Quantification and Analysis of Acetylated Peptides

Acetylated peptide identification for the 68 acetylome data files were performed as in the global proteome data analysis described

above, with additional dynamic acetylation (+42.0105 Da) and carbamylation (+43.0058 Da) on Lys residues. The acetylation site

localization, protein inference, and quantification of the acetylome data were performed in identical fashion as in the phosphopro-

teome data.

Theoretically, the IMAC-enriched phosphopeptide sample (or, less likely, the acetylpeptide sample enriched by IP from the IMAC

flow-through) could still contain the dual-modified peptides. However, it is currently difficult to use the protein sequence database

searching algorithms to identify such peptides, because a rather large number of ‘‘dynamic’’ modifications need to be considered

during the database search (dynamic phosphorylation on Ser, Thr, or Tyr residues, dynamic acetylation and carbamylation on Lys

residues, dynamic oxidation on Met residues, and dynamic deamidation at the N-terminal), leading to unreliable estimation of the

FDR. As a result, this was not pursued in this study.

Histone acetylation values from one functional site but encoded for different histone genes paralogs were averaged. For example,

reported peptides HIST1H2BH_K12 and HIST1H2BD_K12 were averaged to obtain the acetylation value for the H2B_K12 site. To

test the association between HATs/HDACs protein and acetylation levels of histone sites, we fitted Lasso regression model with

HATs/HDACs and histone protein expression as independent variables and a histone acetylation site as a dependent variable. Lasso

regression has been chosen because it takes expression of all enzymes into account simultaneously and is insensitive to highly corre-

lated dependent variables. We performed 300 bootstraps with 80% training data and 20% testing data, and reported averaged

coefficients returned by the model across 300 iterations. Differentially acetylated sites between tumor and enriched normal endome-

trium samples were found using Wilcoxon rank sum test with at least 6 samples in both groups. The p values were FDR-corrected

using the Benjamini-Hochberg procedure. Upregulated sites were defined as ones with FDR-corrected p value < 0.05 and median

difference > = 0.4, while the corresponding protein change was either not significant (FDR > 0.05), or median difference < 0.5.

Other Proteogenomic Analyses
Phenotype Prediction

We used XGBoost (v0.81) (Chen and Guestrin, 2016) to develop models for predicting clinical phenotypes using seven types (muta-

tion, copy number alteration, methylation, mRNA abundance, miRNA abundance, protein abundance, and phosphoprotein abun-

dance) of omics data. For each data type, we first split the data into training and test (80%/20%) sets. We then tuned the model’s

hyperparameters to improve its generalization performance using the training set. For XGBoost, there are two important parameters:

the maximum number of nodes allowed from the root to the farthest leaf of a tree, max_depth and the number of trees in the forest,
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n_estimators.We used grid searchwith cross validation to find the best parameters, using the area under the receiver operating char-

acteristic (AUROC) as the evaluation metric. A grid of 4 different n_estimators values (10, 20, 50, 100) and 5 different max_depth

values (2, 4, 6, 8, 10) was created and each combination was evaluated using 3-fold cross validation within the training data. Finally,

we fit a new model on the whole training set with the parameters that yielded the best cross validation performance. For each data

type, we repeated the entire procedure 10 times to capture the performance variation.

Mutation Impact on the Proteome and Phosphoproteome

We aggregated a set of interacting proteins (e.g., kinase/phosphatase-substrate or complex partners) from Omnipath (downloaded

on 03/29/18) (Türei et al., 2016), DEPOD (03/29/18) (Duan et al., 2015), CORUM (downloaded 06/29/18) (Ruepp et al., 2008), Signor2

(10/29/18) (Perfetto et al., 2016), and Reactome (11/01/18) (Fabregat et al., 2018). We focus our analyses on 18 EC SMGs previously

reported in the literature (ARID1A, CTCF, CTNNB1, FBXW7, FLNA, GENE, HUWE1, INPPL1, JAK1, KMT2B, KMT2D, KRAS,

MAP3K4, PIK3CA, PIK3R1, PTEN, RPL22, and TP53) (Bailey et al., 2018; Kandoth et al., 2013).

For each interacting protein pair, we split samples with and without mutations in partner A and compare expression levels (both

protein and phosphosites) both in cis (partner A) and in trans (partner B), calculating a median difference in expression and testing

for significance with the Wilcoxon rank sum tests, with the Benjamini-Hochberg multiple test correction. We further refine the list of

trans interactions by filtering proteins that are not part of oncogenic processes identified in TCGA (Sanchez-Vega et al., 2018).

Fusion Calls

We use three callers to call consensus fusion/chimeric events in our samples (STAR-Fusion, INTEGRATE, and ericscript). Calls by

each tool using tumor and normal RNA-Seq data are then merged into a single file and extensive filtering is done. As STAR-Fusion

has higher sensitivity, calls made by this tool with higher supporting evidence (defined by fusion fragments per million total reads, or

FFPM> 0.1) is required, or a given fusionmust be reported by at least 2 callers. We then remove fusions present in our panel of black-

listed or normal fusions, which include uncharacterized genes, immunoglobin genes, mitochondrial genes, and others, as well as fu-

sions from the same gene or paralog genes (https://www.genenames.org/cgi-bin/statistics) and fusions reported in TCGA normal

samples (Gao et al., 2018), GTEx tissues (reported in STAR-Fusion output), and non-cancer cell studies (Babiceanu et al., 2016).

Finally, we remove normal fusions from the tumor fusions to curate the final set.

PTMcosmos

We gathered 438,983 human PTM sites from PTMcosmos (https://ptmcosmos.wustl.edu/). PTM sites from PTMcosmos were

retrieved from UniProt Knowledge Base (UniProtKB) version 2019.01, PhosphoSitePlus (snapshot on the date 2018-02-14), and

CPTAC phosphorylation and acetylation mass spectrometry data. A PTM site from UniProtKB was included if it was reported in

at least one publication or by sequence similarity. A PTM site from PhosphoSitePlus was included if it was reported in at least

one publication or validated internally by Cell Signaling Technology. A PTM site from CPTAC experiments was included if it was de-

tected in at least one of the samples.

We used genome-wide point mutations (n = 46,031) and PTMs from the PTMcosmos database (n = 363,670), in order to account

for both detected and undetected PTM sites in our cohort. We obtained 5,120 (11% of point mutations) PTM-overlapping mutations:

1,083 directly within the PTM site and 4,037 within two residues of the PTM site.

Inferred Immune, EMT, APM, Wnt Pathway, and miRNA Activity Scores

All scores were inferred by single sample gene set enrichment analysis (ssGSEA) method from the GSVA R package (Barbie et al.,

2009; Hänzelmann et al., 2013). The EMT gene signature set is from (Mak et al., 2016), immune signatures are from (Charoentong

et al., 2017), and the KEGG antigen processing and presentation pathway gene set is used as the APM signature. The KEGG Wnt

Signaling Pathway gene set was used to analyze the Wnt pathway signatures for our CTNNB1-mutated and WT tumors. mRNA

expression was used to infer EMT and immune scores and protein abundance was used to infer the APM score. Targets of miRNAs

were downloaded from themiRNA targets databasemiRTarBase and only themiRNA/target pairs with strong experimental evidence

were retained (Chou et al., 2018). miRNA target sets with fewer than 10 genes were removed. The -log2 transformed ssGSEA score

was used as the miRNA activity score.

TMB and APM Subtyping

The value of log2 transformed variants per million bp was used as TMB for the analysis. The k-means algorithm with two centers was

applied to TMB and APM Z-score independently. The initial cluster centers were set as the mean values of the top 5 and bottom 5

samples. The classification results reported by the k-means algorithm were directly used for tumor subtyping.

Differential Proteomic Analysis

TMT-based global proteomic, phosphoproteomic, and acetylation data were used to perform pairwise differential analysis between

groups of samples. AWilcoxon rank-sum test was performed to determine differential abundance of proteins and PTMs. At least four

samples in both groups were required to have non-missing values and the p value was adjusted using the Benjamini-Hochberg

method. For phosphorylation markers in each genomic subtype, the adjusted p value for the protein change was required to

be > = 0.05. Over-representation analysis ofWikipathways genesets was performedwith the proteins containing the phosphorylation

markers. Pathways were considered significant with FDR < 0.05.

Kinase Activity Analysis

Phosphoproteomic data for unique thirteenmer sequence motifs (±6 amino acids from the phosphorylated site) were combined by

median for each sample. Differential abundance was performed as above and thirteenmers were ranked by the signed log p value.

Pre-rankedGSEAwas performed usingWebGestaltR (Liao et al., 2019) with substrates collected fromPhosphoSitePlus, Swiss-Prot,
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and HPRD. A minimum of 10 substrates per kinase was required. Kinases were considered significantly differentially active with an

FDR < 0.05.

Phosphoproteome Outlier Analysis

We performed outlier analysis using the BlackSheep package (Blumenberg et al., 2019). Briefly, we calculated the median and inter-

quartile range (IQR) values for each phosphopeptide using TMT-based global phosphoproteomic data. Outliers were defined for

each phosphopeptide as any value higher or lower than the median plus or minus 1.5x IQR, respectively. Phosphopeptide data

was then aggregated into genes by summing outlier and non-outlier values per sample. Outlier counts were used to determine en-

riched genes in a group of samples. First, genes without an outlier value in at least 30% of samples in the group of interest were

filtered out. Additionally, genes with a lower average fraction of outlier sites in the group of interest than in the rest of the samples

were also filtered out. Then the group of interest was compared to the rest of the samples using a Fisher’s exact test on the sum

of outlier and non-outlier values per group. Resulting p values were corrected for multiple comparisons using the Benjamini-Hoch-

berg correction. Druggability was determined for each gene using the drug-gene interaction database (DGIdb) (Cotto et al., 2018).

DNA Damage Response Score

Phosphoproteome outlier analysis was used to construct a DNA damage response (DDR) score. To isolate well-established phos-

phorylation substrates during DNA damage, we focused on genes listed in Table S3 from (Matsuoka et al., 2007). These proteins had

SQ/TQ sites that were found to be phosphorylated by ATM, ATR or DNAPK in response to DNA damage, and had also been identified

in previous literature as phosphorylation substrates. To calculate the DDR score, we standardized the fraction of phosphosites per

gene across samples, and averaged values of this subset of genes per sample. We defined DDR-high samples as all samples with a

DDR score more than 1.5 IQR above the median DDR score.

Cancer/Testis Antigens

We downloaded cancer/testis antigens from CTdatabase (http://www.cta.lncc.br) (Almeida et al., 2009). The database consists of

269 cancer-testis antigens with carefully curated and annotated literature-derived information. The CT antigens present in the pro-

teomics dataset were selected and z-scores were calculated for each sample compared to the abundance distribution in all normal

samples. Tumor samples with a z-score greater than 3 were considered to have high expression of that CT antigen. Only CT antigens

with high abundance in at least 10% of the tumors samples were retained.

Variant Peptide Identification and Neoantigen Prediction

We used NeoFlow (https://github.com/bzhanglab/neoflow) for neoantigen prediction. Specifically, Optitype (Szolek et al., 2014) was

used to find human leukocyte antigens (HLA) in the WXS data. Then we used netMHCpan (Jurtz et al., 2017) to predict HLA peptide

binding affinity for somatic mutation–derived variant peptides with a length between 8-11 amino acids. The cutoff of IC50 binding af-

finity was set to 150 nM. HLA peptides with binding affinity higher than 150 nM were removed. Variant identification was also per-

formed at both mRNA and protein levels using RNA-Seq data and MS/MS data, respectively. To identify variant peptides, we

used a customized protein sequence database approach (Wang et al., 2012). We derived customized protein sequence databases

from matched WXS data and then performed database searching using the customized databases for individual TMT experiments.

We built a customized database for each TMT experiment based on somatic variants from WXS data. We used Customprodbj

(https://github.com/bzhanglab/customprodbj) for customized database construction. MS-GF+ was used for variant peptide identi-

fication for all global proteome, phosphorylation and acetylation data. Results fromMS-GF+ were filtered with 1% FDR at PSM level.

Remaining variant peptides were further filtered using PepQuery (http://www.pepquery.org) (Wen et al., 2019) with the p value

cutoff% 0.01. The spectra of variant peptides were annotated using PDV (http://www.zhang-lab.org/) (Li et al., 2019) and the anno-

tated spectra are shown in Table S7.

mRNA and Protein and Protein and Phosphoprotein Correlation

To compare mRNA expression and protein abundance across samples we focused on the 9575 genes with RNA-Seq based RSEM

measurement and proteomics data. The analyses were carried out on normalized data where RSEM count data was upper-quartile

normalized, while proteomics data was quantile normalized. Correlation was performed by Spearman’s correlation method. Both

correlation coefficient and p value were computed. Furthermore, p values were adjusted by the Benjamini–Hochberg procedure.

The same procedure of mRNA-protein correlation was applied to protein-phospho cis pairs. Sorted Spearman’s correlation coeffi-

cients were further used for ssGSEA analysis with default settings.

SCNA Cis and Trans Effect Identification

The correlations between copy number (gene level), RNA expression, and protein expression were performed using Spearman’s rank

correlation for 9377 genes with quantified data from all three platforms. We defined the SCNA cis effect as the significant association

(FDR < 0.01, Spearman’s rank test) between a given copy number and the gene expression at both protein and RNA levels from the

same genome loci, and the SCNA trans effect as the significant association (FDR < 0.01, Spearman’s rank test) between a given locus

and global gene expression (Zhang et al., 2014).

Anti-p53 Pathway Driver Gene Prioritization

The p53 pathway activity was inferred from known p53 transcription targets (MSigDB INGA_TP53_TARGETS, (Inga et al., 2002)) us-

ing ssGSEA (Barbie et al., 2009) implemented in the R packageGSVA (Hänzelmann et al., 2013). In order to prioritize the genes whose

protein expression is associated with p53 pathway activity, we used the following linear regression:

p53_pathway_score = b1 X IðTP53 mutationÞ + b2 X ProExprs
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Where the I(TP53 mutation) denotes the indicator function (1 if TP53 is mutated or 0 if TP53 is wild type), and ProExprs denotes the

protein expression of the given gene. The association between protein expression and p53 activity was ranked based on the

statistical significance of b2. Furthermore, to summarize whether a given gene set (e.g., all qualified genes in 1q) was significantly

associated with p53 activity, the ranking metric derived above for all the genes and the gene set was tested using the GSEA method

implemented in the R package fgsea (Sergushichev, 2016).

DATA AND CODE AVAILABILITY

Processed data tables are available in Table S2. Data used for the manuscript are also available through a Python package called

‘cptac’ (https://pypi.org/project/cptac/, install via pip) to allow programmatic access and LinkedOmics (http://www.linkedomics.

org/) (Vasaikar et al., 2018) to allow association and pathway analysis. Raw genomic data is available from the Genomic Data Com-

mons (https://gdc.cancer.gov/) or upon request from dbGaP (https://www.ncbi.nlm.nih.gov/gap/, phs001287) and proteomic data is

available via the CPTAC Data Portal (https://cptac-data-portal.georgetown.edu/cptacPublic/).
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Supplemental Figures

Figure S1. Integrated Proteomics Workflow and Longitudinal Data Generation Quality Control, Related to STAR Methods

(A) TMT-10 based global proteome, phosphoproteome, and acetylome analysis workflow. The EC tumors and normal tissues were analyzed in 17 TMT 10-plex

experiments, each with 9 study samples and a common internal reference sample created by pooling all study samples (equal contribution). The TMT10-labeled

samples were then fractionated, split (with 5% peptide mass analyzed directly for global proteome), and subjected to tandem enrichment of phosphopeptides

and acetylated peptides. Peptides were detected and quantified using information from the TMT-10 MS/MS spectra.

(legend continued on next page)



(B) Distribution of sequence coverage of the identified proteins with tryptic peptides detected by MS/MS in each TMT-10 plex; whiskers show the 5–95

percentiles.

(C) Robust and precise proteomics platforms. Longitudinal performancewas tested by repeated proteome, phosphoproteome and acetylome analysis of aliquots

of the same patient-derived xenograft QC samples in standalone TMT-10 plexes, along with the EC study samples; scatterplots and Pearson correlations

comparing individual replicate measurements are shown.

(D–F) Principal component analysis separated the tumors and normal endometrium tissue based on the TMT global proteome, phosphoproteome, or acetylome

data and no batch effect was observed in the TMT plexes.

(G) mRNA and protein abundance showed a strong positive correlation (median 0.48). Around 78% of all mRNA-protein pairs across the 95 samples showed

significant correlation.

(H and I) Evaluation of proteomics and phosphoproteomics normalization methods by correlation in abundance between proteins from the same protein complex

or same substrates.

(J–L) Multi-omics data was used to identify the phenotype of individual tumors using machine learning. Global proteomics data performed as well as most other

transcriptomic and genomic data to distinguish between the histological serous and endometrioid subtypes. It performances better than other platforms in

predicting FIGO stage 1B and 1A samples which are hard to differentiate.



Figure S2. Profiles of Significantly Mutated Genes, Related to Figure 1

(A) Mutation, CNA, RNA, protein, and phosphoprotein profiles of several significant genes.

(B) Endometrial cancer has distinct microsatellite indel patterns compared to colon cancer. JAK1 microsatellite indels are unique for EC compared to colon

cancer as reported before.

(C) JAK1 mutation promotes grade of MSI-H tumors in both CPTAC and TCGA cohorts.



Figure S3. Mutation Effects on Protein and Phosphoprotein Levels, Related to Figure 2

(A) Missense and truncation mutations and their respective effects without hyper- and ultramutated samples.

(B) Mutations and phosphosites mapped to the CTNNB1 gene. Hotspot3d mutations that target the known exon 3 locus in our cohort are shown in purple.

(legend continued on next page)



(C) CTNNB1 mutated tumors have higher phosphorylation in APC site S2106 (left) and S2278 (right).

(D) CTNNB1 mutated tumors have higher phosphorylation in AXIN1 site S77 (left) and S493 (right).

(E) Samples with CTNNB1 overlap mutations have higher CTNNB1 protein levels but not significantly different APC protein levels.

(F) There is a significant difference in Wnt signaling pathway signatures between CTNNB1 hotspot mutants and WT patients.

(G) The upregulation of protein abundance of selected genes are correlated with P53 mutated types

(H) TP53 mutation types specific protein abundance of AURHA, CDK1, STK11, TP53 in Ovarian cancer.



Figure S4. Pathway, Histone, and SMG Relationships to Acetylation, Related to Figure 3

(A) KEGG pathways enriched in acetylated genes in our cohort.

(B) Histone protein levels and acetylation levels of specific histone sites.We detect four clusters of sampleswith differential H2B andH3 andH4 acetylation levels.

(legend continued on next page)



(C) Associations between histone acetylases and deacetylases and histone acetylation levels. We generally observe positive associations with H2B sites and

negative associations in H3 and H4 sites.

(D) Relationship of CTNNB1 hotspot mutants and acetylation levels of key acetylation-related enzymes.

(E) WNT pathway genes were upregulated in samples with high H2B acetylation.

(F) FOXA2 acetylation to be upregulated in the CNV-Low subtype compared to the CNV-High subtype.



Figure S5. Multi-omic Analysis Reveals DNA Methylation and Somatic Copy Number Alteration Drivers, Related to Figure 4

(A) Global DNA methylation analysis reveals higher genome-wide CpG island DNA methylation in MSI samples. Shown are the top 500 genes with most variable

DNA methylation levels across the cohort.

(B) Heatmap showing the association between DNA methylation ofMLH1 and mismatch repair (MMR) defects and the association between DNA methylation of

HOX genes and double strand DNA break (DSB). Pearson correlation coefficients were shown for the associations of indicatedmolecular phenotypes. *p < 0.001,

**p < 0.0001.

(legend continued on next page)



(B) The overall copy number landscape was mostly consistent with the TCGA findings. The CNV-high samples had a high number of SCNAs and endometrioid

samples had much fewer.

(C) The global protein expression positively associated with 3q amplification implicated genes involved in DNA replication and cell cycle pathways. On the other

hand, the most significant pathways impacted by 4q loss include cytoskeleton and cilium assembly.

(D) A significant anticorrelation was found between SETDB1 protein level and TNFRSF10B RNA expression.



Figure S6. Proteomics Data Identifys Putative EMT Regulation via circRNA, Related to Figure 5

(A) The top 10most abundant identified circRNAs in the cohort, including circHIPK3 and circDOCK1, which are known to regulate cell growth and serve as cancer

biomarkers.

(B) Significant positive correlations were found between QKI protein abundance and the EMT marker ZEB1.

(legend continued on next page)



(C) Significant positive correlations were found between QKI protein abundance and the EMT marker ZEB2.

(D) There are 36 predicted miRNAs binding sites from 16 QKI regulated circRNAs (p < 0.0207).

(E–I) Correlations between QKI mRNA expression and regulator miRNA activity and QKI mRNA expression and regulator miRNA abundance. While the predicted

activity of these miRNAs showed strong negative correlations with QKI abundance, their abundance was not negatively correlated with QKI mRNAs.
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Figure S7. Proteomic Markers of Clinical and Genomic Tumor Subtypes, Related to Figure 6

(A) Correlation between significant differential abundance change in four data types in MSI versus MSS samples.

(B) Correlation between significant differential abundance change in four data types between samples with serous and endometrioid histological type.

(C) Correlation between significant differential abundance change in four data types between CNV-high and CNV-low endometrioid samples.

(D) Heatmap of MLH1, PMS1, and PMS2 RNA, proteomic, and PTM data.

(E) Heatmap showing each sample’s phosphorylation status for the set of phosphoproteins used to determine DDR score.

(F) Scatterplot of DDR score against PLK1 protein abundance.

(G) Scatterplot of DDR score against CHEK2-S163 phosphoprotein abundance.

(legend continued on next page)



(H) Scatterplot of DDR score against G2M score.

(I) Venn diagram of the number of phosphoproteins differentially expressed in CNV-high endometrioid and serous samples.

(J) Kinase activity in CNV-high endometrioid samples compared to CNV-low endometrioid samples. Red points indicate kinases targeted by an FDA-

approved drug.
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