
1 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

FULL GPU Implementation of Lattice-Boltzmann
Methods with Immersed Boundary Conditions

for Fast Fluid Simulations

G Boroni1,2*, J Dottori1,2, P Rinaldi2,3
1. CONICET

2. PLADEMA UNCPBA
3. CICPBA

ABSTRACT
Lattice Boltzmann Method (LBM) has shown great potential in fluid

simulations, but performance issues and difficulties to manage complex

boundary conditions have hindered a wider application. The upcoming of

Graphic Processing Units (GPU) Computing offered a possible solution for

the performance issue, and methods like the Immersed Boundary (IB)

algorithm proved to be a flexible solution to boundaries. Unfortunately, the

implicit IB algorithm makes the LBM implementation in GPU a non-trivial task.

This work presents a fully parallel GPU implementation of LBM in

combination with IB. The fluid-boundary interaction is implemented via GPU

kernels, using execution configurations and data structures specifically

designed to accelerate each code execution. Simulations were validated

against experimental and analytical data showing good agreement and

improving the computational time. Substantial reductions of calculation rates

were achieved, lowering down the required time to execute the same

model in a CPU to about two magnitude orders.

1. INTRODUCTION
Fluid simulation is a computation-intensive task that can generally consume huge amounts
of time. However, recent hardware architectures can lead to substantial increases in
performance through many-core processors if appropriate schemes are applied. Many fluid
simulation models, like Lattice Boltzmann Methods, can be greatly accelerated by the use
of Graphic Processors Units (GPU).

These processors are optimized to execute single-instruction multiple-data operations,
namely a simple kernel over each element of a large set simultaneously, operating as a co-
processor of the host CPU [1]. Initially, developers could take advantage of the GPU power
through the graphics pipeline by means of shading languages [2]. Currently, there are
parallel computing architectures for GPU programming using high-level languages [3]. For
example, NVIDIA and the Portland Group (PGI) have worked in cooperation to develop
CUDA FORTRAN language [4].

In some cases the migration to GPU is a simple code translation, but in most cases a new
algorithm must be implemented. In particular, a simple Lattice Boltzmann Method (LBM)
fluid solver can be adapted to a GPU by translating some operations and replacing the main

*Corresponding Author: gboroni@gmail.com

2 FULL GPU Implementation of Lattice-Boltzmann Methods with
Immersed Boundary Conditions for Fast Fluid Simulations

loops by multiple threads. Several researchers have shown that the combination of GPU and
parallel LBM is an excellent tool for fast fluid simulations [5][6][7]. However, practical
LBM applications require flexible management of boundary conditions and this cannot be
achieved with basic LBM solver.

A more evolved method is needed to overcome boundary issues when the geometry of the
problem turns complex, like the Immersed Boundary Method (IB).

An efficient iteration procedure for combining LBM with the Immersed Boundary method
was presented showing good results for fluid-solid interactions while keeping a flexible
implementation [8]. Recent publications show promising results for the IB-LBM coupling on
GPU but, in most implementations, only LBM is run on GPU hardware leaving the IB part
for the CPU. Other solutions [9] use a single-step explicit IB algorithm [10] to couple with
LBM on GPU code.

In the present work, the algorithm combination was refined and implemented in GPU,
which considerably reduce simulation time.

2. MATERIALS AND METHODS
2.1. Lattice Boltzmann Method
LBM is basically a mesoscopic kinetic model with a discrete internal velocity variable,
whose average magnitudes obey some macroscopic field equations [11]. The method
represents the fluid by a set of particle populations that move between cells over a regular
grid. Fluid behavior is achieved by operations between these populations on each cell
locally. The most common model for 2D simulations is D2Q9 [12] that uses a square lattice
with 9 velocity directions (Fig. 1). In the present work, this model is used for solving 2D
Navier-Stokes equations [13].

The population particles in node x at time t having velocity eα, denoted by fα(x,t) follow
the evolution functions

() () () () ()01, , , ,f x t f x t f x t f x tα α α ατ
 ′ = + −

(1)

(2)

where the equilibrium function fα

(0)(x,t) determines the macroscopic equations that the
automata simulates. Equations (1) and (2) are called the collision and streaming step
respectively. In the called D2Q9 grid model the index α spans over nine discrete directions
(see Fig. 1).

The equilibrium function to simulate the Navier-Stokes through the Bhatnagar–Gross–
Krook (BGK) collision operator can be expressed as [11]

(3)

() (), ,tf x e t t f x tα α αδ δ ′+ + =

() () ()20 9 31 3
2 2

f w e u e u u uρα α α α

= + ⋅ + ⋅ − ⋅

3 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

where

(4)

and

(5)

are the macroscopic density and mass flux respectively. The fluid viscosity can be controlled
via the relaxation parameter τ, as

(6)

where e is the lattice velocity, δx/δt.
For problems with external forces, the following term is added to the right side of (2)

[14], as

(7)

(8)

where fbij is the force applied to each ij-cell. The external forcing term gα given by (7) and
(8) has first order convergence [15], which limits the solution to problems with slow moving
boundary or flexible boundary with small pressure gradient. For fast moving boundaries or
flexible boundaries with large pressure gradients, a higher order method is needed. Chen
and Doolen [11] proposed an alternative implicit second-order convergence scheme,
replacing (7) by

(9)

Owing to the use of this equation, the final numeric scheme becomes implicit.

0
4 1 1; , 1,3,5,7; , 2,4,6,8
9 9 36

w w wα αα α= = = = =

,f u f eα α α
α α

ρ ρ= =∑ ∑

()2 1 2
6

e t
τ

ν δ
 −

=

() () (), , ,ij t t ij t ijf x e t f x t g x tα α α αδ δ δ′+ + = +

() () (){ }, 3 3ij bij ij ijg x t w f e u e u eα α α α α
 = − ⋅+⋅

() ()
() ()

, ,

, ,
2

ij t t ij

t
ij ij t t

f x e t f x t

g x t g x e t

α α α

α α α

δ δ

δ
δ δ

′+ + =

 + + + +

4 FULL GPU Implementation of Lattice-Boltzmann Methods with
Immersed Boundary Conditions for Fast Fluid Simulations

Figure 1: Space of discrete velocities in LBM- d2Q9, corresponding to the
population functions fα.

2.2. The Immersed Boundary Method
The method of Immersed Boundary (IB) was initially developed to deal with flexible
boundaries in finite elements method. The boundary is represented by a set of massless
particles coupled by elastic forces to space points and between themselves, which moves
with the surrounding fluid. Conversely, the force generated by distortions of the boundary
is transferred to the fluid [16].

Figure 2 shows a 2D example with a closed immersed boundary. The boundary and the
fluid domain are denoted by Γb and Ωf, respectively. The state of the boundary is represented
by X(s,t), a Lagrangian vector function of arc length s and time t, which returns the location
of the boundary nodes on Γb. The influence action on the fluid is represented by a force density
F(s,t) at the boundary point X(s,t). Thus, F(s,t) is determined by the configuration of X(s,t)
and it is transferred into the force term g in (8), which determines the flow velocity and
pressure throughout domain Ωf.

For a boundary immersed in a viscous fluid the IB is given by the following set of equations
[17]

(10)

 (11)

(12)

(13)

0u∇⋅ =

()()t bu u u p u fρ µ+ ⋅∇ = −∇ + ⋅∆ +

() ()()

() ()()
Ω

,
, ,

, ,
f

dX s t
U X s t t

dt

u x t x X s t dxδ

=

= −∫

() (), ,fF s t S X s t=

5 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

(14)

where u is the flow velocity, ρ the fluid density, p the pressure, υ the fluid viscosity, fb the
external force, X the boundary coordinate, s the boundary fiber length, U the boundary
speed, x the fluid flow coordinate, Sf the boundary force generation operator, and δ(r) the
Dirac delta function. Equations (10) and (11) are the Navier–Stokes equations with external
force fb, while (12) and (13) are the IB equations. Equation (14) and the right part of (12)
represent the fluid-boundary interaction. The discretized version of (12) and (14) using a
regularized discrete delta function δh are

(15)

and

(16)

where h=Δx=Δy is the fluid node spacing and Δsk is the boundary segment length. The delta
function δh is an influence distribution given by [17]

 (17)

(18)

The force density F induced by the boundary over the fluid is determined by the position
of the nodes, and can be written in general as

(19)

where kc is the tension stiffness, kγ the bending rigidity, kf the fastening stiffness and Z the
target position of the boundary. The discretized equations of (16) can be expressed as

(20)

Two values of Fk corresponding to time in t-1 and t are needed in every step to calculate Fk
in an implicit way.

() () ()()
Γ

, , ,
b

bf x t F s t x X s t dsδ= −∫

()Δbij k h ij k k
k

f F x X sδ= −∑

()Δ Δk
k ij h ij k

ij

dX U u x X x y
dt

δ= = −∑

2(,) 1/ (/) (/)δ φ φ=h x y h x h y h

()
(1 cos(/ 2)) / 4 2

0 2

r r
r

r

π
φ

 + ≤=
>

()
2 4

2 4γ
∂ ∂

= − − −
∂ ∂c f

X XF k k k X Z
s s

()
1 1

2

2 1 1 2
4

2

4 6 4

k f

k k k
c

k k k k k

F k X Z

X X Xk
s

X X X X Xk
sγ

− +

− − + +

= − −

− + + ∆
− + − + − ∆

6 FULL GPU Implementation of Lattice-Boltzmann Methods with
Immersed Boundary Conditions for Fast Fluid Simulations

Figure 2: Closed immerse boundary in a 2D lattice.

2.3. GPU implementation of LBM-IB
Since the CPU implementation of LBM with IB was done using FORTRAN programing
language, the PGI CUDA FORTRAN compiler [4] was used for the full GPU
implementation.

2.3.1. GPU implementation of LBM-IB
The main program is a CPU code that calls the GPU subroutines, called kernels. The basic
LBM calculations are applied to each cell of the grid whereas the IB calculations are applied
to each point in the boundary [8]. Many authors have suggested that the way to achieve best
performances in GPU is by means of a single collide-stream loop [7], [18], [19], but this
was studied in the case of LBM with standard boundary conditions. However, when LBM
is combined with the IB method, there is a different situation. In effect, the IB coupling
introduces an internal iteration that can be combined with the streaming step, but the
collision step can be computed only once per time step [8]. Following these execution
structure, the proposed implementation of LBM-IB in CUDA pseudo- code is as follows:

Algorithm 1 Main Loop
1: Allocate memory
2: Initialize equilibrium system variables
3: Initialize executions configuration variables.
4: for each time step
5: Collide //typical LBM collision
6: convergence=1
7: while(convergence==0) //IB loop
8: Compute_IB_Points
9: Compute_LBM_Forces
10: Stream_And_Force
11: Compute_Boundaries_And_ Macroscopics

7 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

where Collide, Compute_IB_Points, Compute_LBM_Forces, Stream_And_Force and
Compute_Boundaries_And_Macroscopics are implemented as internal CUDA kernel
functions. The execution configuration for each kernel is detailed in the respectively
following sections. A global synchronization of threads is performed after each kernel,
maximizing parallelism in each computation by making wait the GPU for previous steps
data.

2.3.2. Collide kernel
The collision kernel calculates the operator of the LBM scheme given by (1). The execution
configuration used for the simulations is computed to maximize parallelism with a single
thread per LBM cell.

2.3.3. Compute_IB_Points kernel
This kernel calculates the effect of the fluid cells on the IB. Each boundary point has a 5×5
matrix to store the weight of the force on the neighbor cells (18). The kernel uses a 3D
matrix to store the boundary weight values for each boundary point. The matrix is called
BW(dx,dy,k), where k is the boundary IB-node index and (dx, dy) is the cell position respect
to the node. Each 2D sub-matrix has five cells in each direction, that is: [xn-2,yn-2 ; xn+2,yn+2]
for boundary point contained in the [Xn, Yn] cell.

There is one GPU thread for each IB-point, which calculates the force exerted to the fluid
by the node (15) and the new position of the node (16). The following pseudocode shows
the kernel scheme.

Kernel 1: Compute_IB_Points
1: //In each thread
2: Compute corresponding IB point
3: Compute new values of equation (20)
4: For each cell in near region //Define the lattice region near k
5: Compute BW Matrix
6: Compute new position (16)
7: if (Fk_ant-_Fk(k))>EPSILON) //compare guess of Fk (20)
8: convergence=0; //convergence not reached

2.3.4. Compute_LBM_Forces kernel
This kernel calculates the force exerted by each IB point on the fluid. It operates as a parallel
thread for each LBM cell adding the forces exerted by near IB-nodes (20) weighted with
the BW matrix. Finally, the kernel calculates the force g according to (8). The procedure is
as follows

Kernel 2: Compute_LBM_Forces
1: //In each thread
2: Compute corresponding LBM cell (15)
3: fbij = 0 //thread local variable

8 FULL GPU Implementation of Lattice-Boltzmann Methods with
Immersed Boundary Conditions for Fast Fluid Simulations

4: For each IB point
5: if affects the cell
6: fbij += Fk(k)*BW(k,floor(dx),floor(dy));
7: Compute equation (9) based on fbij

2.3.5. Stream_And_Force kernel
This function calculates the streaming step of the LBM scheme adding the force applied by
the boundary nodes (9). The execution is performed with a single thread per cell.

2.3.6. Compute_Boundaries_And_Macroscopics kernel
This solution kernel runs one thread per cell. Each thread applies standard bounce-back
boundary conditions [11] where necessary and calculates the macroscopic variables of the
fluid, ρ and u.

2.4. Remarks
The main difference with other IB implementations designed for CPU like the presented in
[8] is the convergence condition in the inner loop. Testing the mean error would imply an
extra reduction [20], so the maximum error metric is used as a convergence condition. Also
the BW(dx, dy, k) structure saves the time of computing the δ(x,y) of each IB point with its
surrounding neighborhood each iteration multiple times. In recent GPU implementations,
the IB part of the algorithm is processed in CPU [21] or a simplified explicit version is
executed in GPU [22].

2.5. Memory usage
Because of the implicit definition of IB algorithms, it is necessary to have memory
allocation for both actual time step and next time step. Variables must be minimized in GPU
to have double memory space because of limited memory. In this case, the minimum
variables are u, LBM forces and also IB Forces to check convergence. Other variables can
be avoided to duplicate their memory space.

3. RESULTS
The described IB-LBM algorithm was tested in a GPU NVIDIA GeForce GTX 580 with
3GB DDR5 SDRAM hosted by an AMD PHENOM II X6 2.81GHZ CPU. Two flow cases
were simulated to test the performance and accuracy of the scheme, namely, a Poiseuille
flow and the vortex shedding behind a solid obstacle.

3.1. Poiseuille flow
The first case is a standard Poiseuille flow between two parallel plates subjected to constant
pressure conditions at the inlet and the outlet. In fully developed flow, the velocity profile
is parabolic and the shear stress acting on the fluid is exactly balanced by the pressure
gradient (Fig. 3), which leads to an analytical solution (11).

Two straight immersed boundaries of 100 points each are located in a 110×61 lattice to
represent the channel walls as shown in Fig. 4. The IB lines are separated 5.5 cells away from
the grid limits, so they delimit a 50-cells wide channel between them.

9 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

Figure 3: Poiseuille flow in a rectangular channel.

Figure 4: Flow channel represented with IB.

The initial particle density ρ0 is 1.0 and the density drop between the inlet and the exit of
the channel Δρ is 10-5 corresponding to Δρ/Δx = 1/3 10-7. The relaxation parameter τ is set
in 1.5, corresponding to a cinematic viscosity ν = 1/3 in units of Δx2/Δt, giving a Reynolds
number of 46.87. Fig. 5 shows the excellent agreement between the calculated and analytical
velocity profile, with a total quadratic error of 3.3 10-8.

Figure 5: Velocity profile of a Poiseuille, analytical (points) and numerical (curve).

3.2. Vortex shedding

10 FULL GPU Implementation of Lattice-Boltzmann Methods with
Immersed Boundary Conditions for Fast Fluid Simulations

The second test case corresponds to a cylinder located in the center of a channel. At the
back of the obstacle, the fluid stream fails to stick to cylinder’s wall, and the boundary
layers separate from each side of the cylinder resulting in a Von Karman vortex train. A
detailed explanation of this case can be found in [8][23].

The channel was represented by a 900×128 lattice, as shown in Fig. 6. The obstacle is a
circle, 22-cells diameter, centered at position (64, 64) inside the channel. It is represented by
an IB of 200 points, which ensures the no-leakage between points criterion [16]. The channel
pressure drop is ∆p = 5 10-4, the average particle density is ρ0 = 0.05 and τ = 0.65. Fig. 7
shows the field of the velocity module at t=5000Δt steps. The wake of vortexes can be easily
recognized. The Strouhal number is St=fd/V where f is the vortex shedding frequency and V
the fluid velocity. The obtained St is 0.165, having a good agreement with available literature
[23].

Figure 6: Von Karman vortex street scheme represented with IB.

Figure 7: Von Karman vortex street, contour map of velocity module at time step
5000.

3.3. Performance
In order to assess the performance of the present implementation, a comparison was made
against an equivalent FORTRAN implementation running in a single thread on a CPU AMD
Phenom II X6 at 2.81 GHz. The main algorithm and subroutines are similar to those in GPU
code. The main difference is that in the CPU all the work is performed in a single thread
fashion. So the subroutines are built as two nested loops for each spatial direction and one
loop for the boundary points. Both implementations use single precision floating point
representations.

The most popular metric to assess the performance of LBM codes is the number of lattice

11 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

updates per second (LUPS) [19]. Tables 1 and 2 compare the performances of each
implementation for different platforms, scaling the problem to various domain grid sizes.
The simulation corresponds to Poiseuille flow case presented in Section 3.1 (Table 1) and
Vortex shedding case presented in Section 3.2 (Table 2). The number of boundary points
used in each case to simulate the channel wall is proportional to the grid length to ensure
the no-leakeage between points criterion [16] and it is shown in column 2 of Table 1. It can
be seen that the performance achieved with GPU is between 2 and 140 times faster than
with CPU. It can be seen that when domain size is increased, the global speed up does so
too. In part because the numbers of IB points per cell turns lower, lowering down the
computational cost proportion of IB in the whole process.

Table 1: Performance comparison between GPU and CPU codes simulating
Poiseuille flow, obtained over 1000 iterations.

Domain Size Boundary
Points

CPU
MLUPS

GPU CUDA
MLUPS Speedup

50×30 (1500) 80 1.21 2.71 2.23
100×60 (6000) 180 0.95 11.17 11.75
200×120 (24000) 380 0.65 20.68 31.81
400×240 (96000) 780 0.4 29.26 72.13
800×480 (384000) 1580 0.24 20.65 84.28

Table 2: Performance comparison between GPU and CPU codes simulating
Vortex shedding, obtained over 1000 iterations.

Domain Size Boundary
Points

CPU
MLUPS

GPU CUDA
MLUPS Speedup

521×74 (38554) 116 0.95 52.31 55.33
625×89 (55625) 139 0.90 61.64 68.85
750×107 (80250) 167 0.76 69.36 91.28
900x128 (115200) 200 0.65 74.09 113.76
1080×154 (166320) 240 0.57 80.26 140.72

The time consumption of each kernel was also assessed to identify the critical calculation
steps. It should be noted that these are just estimations, since the kernels are linked to each
other. Table 3 compares the resulting performances of each implementation discriminated
by kernels. The Compute_LBM_Forces kernel consumes 90% of the computing time, being
this the critical section of the process. Further optimization strategies can be applied, but
probably they will entail resigning some flexibility. For example, sequential kernels with
the same execution configuration could be combined like Stream_and_force and
Compute_Boundaries_And_Macroscopics but loosing decoupling of code.

12 FULL GPU Implementation of Lattice-Boltzmann Methods with
Immersed Boundary Conditions for Fast Fluid Simulations

Table 3: GPU individual kernel times obtained over 1.000 iterations simulating
Poiseuille flow in a grid of 400 x 240 cells.

Kernel Execution
Time (s)

Average
Iterations

Time per
iteration (ms.) Percent

Collide 0.098 1 0.098 3%
Compute_IB_Points 0.098 2 0.049 3%
Compute_LBM_Forces 2.952 2 1.476 90%
Stream_And_Force 0.033 2 0.016 1%
Compute_Boundaries_And_
Macroscopics 0.098 2 0.049 3%

Total 3.279 1 3.279 100%

4. CONCLUSIONS
A GPU implementation of the Lattice Boltzmann Method for fluid flow combined with
immersed boundaries capable of modelling complex and flexible boundary conditions was
presented. The IB method represents objects as force fields acting on local neighborhoods
around boundaries. On each time step of LBM, the algorithm executes an inner iteration to
solve the fluid-boundary interaction implicitly. Data locality and execution scheme are
different when standard boundary conditions are used. These are crucial aspects to GPU
implementations, so the combination of IB and LBM becomes less trivial to parallelize.

Two classical test case simulations were performed, Poiseuille flow and vortex shedding
behind a cylindrical obstacle. The algorithm on GPU can give satisfactory results in terms of
accuracy. Substantial reductions of the calculation rates were achieved, reducing up to 84
times the time required by a CPU to execute the same case. The GPU code reaches near 80
Mlups on Geforce GTX 580 desktop graphic board.

REFERENCES
[1] NVIDIA. NVIDIA CUDA C Programing Guide Version 4.0:

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_
Programming_Guide.pdf. 2010

[2] Mark WR, Glanville RS, Akeley K, Kilgard MJ. Cg: a system for programming
graphics hardware in a c-like language. ACM Trans. Graph. 2003; 22(3): 896–907.

[3] NVIDIA. NVIDIA CUDA Home Page :
http://developer.nvidia.com/category/zone/cuda-zone; 2007.

[4] PGI. PGI CUDA Fortran Compiler, The Portland Group:
http://www.pgroup.com/resources/cudafortran.htm; 2011.

[5] Zhao Y. Lattice Boltzmann based PDE Solver on the GPU. Vis. Comput. 2007; 24(5):
323-333.

[6] Tölke J. Implementation of a lattice Boltzmann kernel using the compute unified device
architecture developed by NVIDIA. Computing and Visualization in Science. 2010;
13(1): 29–39.

[7] Rinaldi PR, Dari EA, Vénere MJ, Clausse A. A Lattice-Boltzmann solver for 3D fluid
simulation on GPU. Simulation Modelling Practice and Theory. 2012; 25: 163-171.

13 Int. Jnl. of Multiphysics Volume 11 · Number 1 · 2017

[8] Boroni G, Dottori J, Dalponte D, Rinaldi P, Clausse A. An improved Immersed-
Boundary algorithm for fluid-solid interaction in Lattice-Boltzmann simulations. Latin
American Applied Research, accepted 2013.

[9] Valero-Lara P, Pinelli A, Prieto-Matias Manuel. Accelerating Solid-Fluid Interaction
using Lattice-Boltzmann and Immersed Boundary Coupled Simulations on
Heterogeneous Platforms. Procedia Computer Science. 2014; 29: 50-61

[10] C. S. Peskin. The immersed boundary method. Acta Numerica, 2002; 11, 479-517.
[11] Chen S, Doolen GD (1998). Lattice Boltzmann Methods for Fluid Flows, Annu. Rev.

Fluid Mech. 30: 329-364.
[12] Sukop M, Thorne D (2006). Lattice Boltzmann Modeling, 1st Edition. Springer.
[13] Qian YH, d’Humie`res D, Lallemand P (1992). Lattice BGK models for Navier–Stokes

equation. Europhys. Lett. 17: 479-484.
[14] Mohamad AA, Kuzmin A (2010). A critical evaluation of force term in lattice

Boltzmann method, natural convection problem. Internation Journal of Heat and Mass
Transfer 53(5-6): 990-996.

[15] Feng ZG, Michaelides EE (2004). The immersed boundary-lattice Boltzmann method
for solving fluid–particles interaction problems. J Comp Phy 195: 602–28.

[16] Cheng F, Zhang H (2010). Immersed boundary method and lattice Boltzmann method
coupled FSI simulation of mitral leaflet flow. Computers & Fluid 39: 871-881.

[17] Peskin CS (2002). The immersed boundary method. Acta Numer 11: 479–517.
[18] Kuznik F, Obrecht C, Rusaouën G, Roux JJ (2009). LBM based flow simulation using

GPU computing processor. Comput. Math. Appl. 59(7): 2380-2392.
[19] Lammers P, Küster U (2007). Recent Performance Results of the Lattice Boltzmann

Method. High Performance Computing on Vector Systems 2006 Part 2, Springer,
Stuttgart, 51-59.

[20] Kaminsky A (2015). Big CPU, Big Data. Rochester Institute of Technology.
[21] Fast Fluid-structure Interaction Using Lattice Boltzmann and Immersed Boundary

Methods, M. Mawson, P. V. Lara, J. Favier, A. Pinelli, A. Revell
[22] Accelerating Solid-Fluid Interaction using Lattice-Boltzmann and Immersed Boundary

Coupled. Simulations on Heterogeneous Platforms. Pedro Valero-Lara1, Alfredo
Pinelli2, and Manuel Prieto-Matias3

[23] Von Karman T (1964). Aerodynamics, 1st Edition. McGraw-Hill.

14

