Sergio CELANI and Ismael CALOMINO

ON HOMOMORPHIC IMAGES AND THE FREE DISTRIBUTIVE LATTICE EXTENSION OF A DISTRIBUTIVE NEARLATTICE

Abstract. In this paper we will introduce N-Vietoris families and prove that homomorphic images of distributive nearlattices are dually characterized by N-Vietoris families. We also show a topological approach of the existence of the free distributive lattice extension of a distributive nearlattice.
\square

1. Introduction and preliminaries

A correspondence between Tarski algebras, called also implication algebras, and join-semilattices with greatest element in which every principal filter is a Boolean lattice was developed by Abbott in [1]. The variety of Tarski algebras is the algebraic semantics of the $\{\rightarrow\}$-fragment of classical propositional logic and are a special case of more general algebraic structures

[^0]called nearlattices, i.e., join-semilattices with greatest element in which every principal filter is a bounded lattice. In [14] and [11] it is proved that the class of nearlattices forms a variety and in [2] proves that the variety of nearlattices is 2-based. An important class of nearlattices is the class of distributive nearlattices. These algebras have been studied in [12] and [14], and recently by several authors in [10], [9, [13], 8] and [5].

In [8], a full duality between distributive nearlattices with greatest element and certain topological spaces with a distinguished basis, called N spaces, was developed. The N-spaces are a generalization of Stone space, also called spectral space [16]. This paper has two objectives. First, motivated by similar results given in [4] and [7] and the duality developed in [8], we will show that the homomorphic images of a distributive nearlattice can be characterized in terms of families of basic saturated irreducible subsets of the N-space $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ endowed with a lower Vietoris topology. The second one is to give a topological approach, different from that given in [12], of the existence of the free distributive lattice extension of a distributive nearlattice.

In the remainder of this section we will recall some results and definitions on the representation and topological duality for distributive nearlattices. In Section 2 we will give the mentioned characterization of the homomorphic images of a distributive nearlattice. In Section 3 we shall give the topological proof of the existence of the free distributive lattice extension of a distributive nearlattice.

Let $\mathbf{A}=\langle A, \vee, 1\rangle$ be a join-semilattice with greatest element. In this paper and in order to shorten the terminology we will call them semilattices [9]. Recall that the binary relation \leq defined by $x \leq y$ if and only if $x \vee y=y$ is a partial order. A filter of \mathbf{A} is a subset $F \subseteq A$ such that $1 \in F$, if $x \leq y$ and $x \in F$ then $y \in F$ and if $x, y \in F$ then $x \wedge y \in F$, whenever $x \wedge y$ exists. The filter generated by a subset X of \mathbf{A}, in symbols $F(X)$, is the least filter containing X. A filter G is said to be finitely generated if $G=F(X)$ for some finite subset X of A. Note that if $X=\{a\}$ then $F(\{a\})=[a)$, called the principal filter of a. We will denote by $\operatorname{Fi}(\mathbf{A})$ and $\mathrm{Fi}_{f}(\mathbf{A})$ the set of all filters and finitely generated filters of \mathbf{A}, respectively. A subset I of A is called an ideal if for every $x, y \in A$, if $x \leq y$ and $y \in I$, then $x \in I$ and if $x, y \in I$, then $x \vee y \in I$. The set of all ideals of \mathbf{A} is denoted by $\operatorname{Id}(\mathbf{A})$. A non-empty proper ideal P is prime if for all $x, y \in A$, if $x \wedge y \in P$, whenever
$x \wedge y$ exists, then $x \in P$ or $y \in P$. We will denoted by $X(\mathbf{A})$ the set of all prime ideals of \mathbf{A}.

Definition 1.1. Let \mathbf{A} be a semilattice. Then \mathbf{A} is a nearlattice if for each $a \in A$ the principal filter $[a)=\{x \in A: a \leq x\}$ is a bounded lattice.

The Tarski algebras are examples of nearlattices where each principal filter is a Boolean lattice [1]. Nearlattices can be considered as algebras with one ternary operation: if $x, y, z \in A$, the element $m(x, y, z)=(x \vee z) \wedge_{z}$ $(y \vee z)$ is correctly defined since both $x \vee z, y \vee z \in[z)$ and [z) is a lattice, where \wedge_{z} denotes the meet in $[z)$. This fact was proved by Hickman in [14] and by Chajda and Kolařík in [11. In [2] Araújo and Kinyon found a smaller equational base.

Theorem 1.2. [2] Let \mathbf{A} be a nearlattice. The following identities are satisfied:

1. $m(x, y, x)=x$,
2. $m(m(x, y, z), m(y, m(u, x, z), z), w)=m(w, w, m(y, m(x, u, z), z))$,
3. $m(x, x, 1)=1$.

Conversely, let $\mathbf{A}=\langle A, m, 1\rangle$ be an algebra of type $(3,0)$ satisfying the identities (1)-(3). If we define $x \vee y=m(x, x, y)$, then \mathbf{A} is a semilattice and for each $z \in A,[z)$ is a bounded lattice, where for $x, y \in[z]$ their infimum is $x \wedge_{z} y=m(x, y, z)$. Hence \mathbf{A} is a nearlattice.

As in lattice theory, the class of distributive nearlattices is very important.

Definition 1.3. Let \mathbf{A} be a nearlattice. Then \mathbf{A} is distributive if for each $a \in A$ the principal filter $[a)=\{x \in A: a \leq x\}$ is a bounded distributive lattice.

Theorem 1.4. [11] Let \mathbf{A} be a nearlattice. Then \mathbf{A} is distributive if and only if it satisfies either of the following identities:

1. $m(x, m(y, y, z), w)=m(m(x, y, w), m(x, y, w), m(x, z, w))$,
2. $m(x, x, m(y, z, w))=m(m(x, x, y), m(x, x, z), w)$.

We denote by $\mathcal{D} \mathcal{N}$ the variety of distributive nearlattices. If $\mathbf{A} \in \mathcal{D} \mathcal{N}$, we note that from the results given in [12] we have the following characterization of the filter generated by a subset X of A :

$$
F(X)=\left\{a \in A: \exists x_{1}, \ldots, x_{n} \in[X)\left(x_{1} \wedge \ldots \wedge x_{n}=a\right)\right\}
$$

We note that in the characterization of $F(X)$ we suppose that there exists the meet of the set $\left\{x_{1}, \ldots, x_{n}\right\}$. The following result, analogue of the Prime Ideal theorem, was proved in [13].

Theorem 1.5. Let $\mathbf{A} \in \mathcal{D N}$. Let $I \in \operatorname{Id}(\mathbf{A})$ and let $F \in \operatorname{Fi}(\mathbf{A})$ such that $I \cap F=\emptyset$. Then there exists $P \in X(\mathbf{A})$ such that $I \subseteq P$ and $P \cap F=\emptyset$.

We recall some topological notions. A topological space with a base \mathcal{K} will be denoted by $\langle X, \mathcal{K}\rangle$. We consider the set $D_{\mathcal{K}}(X)=\left\{U: U^{c} \in \mathcal{K}\right\}$. A subset $Y \subseteq X$ is basic saturated if it is an intersection of basic open sets, i.e., $Y=\bigcap\left\{U_{i} \in \mathcal{K}: Y \subseteq U_{i}\right\}$. The basic saturation $\mathrm{Sb}(Y)$ of a subset Y is the smallest basic saturated set containing Y. If $Y=\{y\}$, we write $\operatorname{Sb}(\{y\})=\operatorname{Sb}(y)$. We denote by $\mathcal{S}(X)$ the family of all basic saturated subsets of $\langle X, \mathcal{K}\rangle$. On X is defined a binary relation \leq as $x \leq y$ if and only if $y \in \mathrm{Sb}(x)$. The relation \leq is reflexive and transitive, but not necessarily antisymmetric. It is easy to see that the relation \leq is a partial order if and only if $\langle X, \mathcal{K}\rangle$ is T_{0}. We note that $\mathrm{Sb}(x)=[x)$. Let Y be a non-empty subset of X. We say that Y is irreducible if for every $U, V \in D_{\mathcal{K}}(X)$ such that $U \cap V \in D_{\mathcal{K}}(X)$ and $Y \cap(U \cap V)=\emptyset$ implies $Y \cap U=\emptyset$ or $Y \cap V=\emptyset$. We say that Y is dually compact if for every family $\mathcal{F}=\left\{U_{i}: i \in I\right\} \subseteq \mathcal{K}$ such that $\bigcap\left\{U_{i}: i \in I\right\} \subseteq Y$ implies that there exists a finite family $\left\{U_{1}, \ldots, U_{n}\right\} \subseteq \mathcal{F}$ such that $U_{1} \cap \ldots \cap U_{n} \subseteq Y$. We denote by $\mathcal{S}_{\text {Irr }}(X)$ the family of all basic saturated irreducible subsets of $\langle X, \mathcal{K}\rangle$. The following definition is introduced in [8].

Definition 1.6. Let $\langle X, \mathcal{K}\rangle$ be a topological space. Then $\langle X, \mathcal{K}\rangle$ is an N-space if:

1. \mathcal{K} is a basis of open, compact and dually compact subsets for a topology $\mathcal{T}_{\mathcal{K}}$ on X.
2. For every $U, V, W \in \mathcal{K},(U \cap W) \cup(V \cap W) \in \mathcal{K}$.
3. For every irreducible basic saturated subset Y of X there exists a unique $x \in X$ such that $Y=\operatorname{Sb}(x)$.

If $\langle X, \mathcal{K}\rangle$ is an N-space, then the relation \leq is a partial order and $\langle X, \mathcal{K}\rangle$ is T_{0}.

Proposition 1.7. [8] Let $\langle X, \mathcal{K}\rangle$ be a topological space where \mathcal{K} is a basis of open and compact subsets for a topology $\mathcal{T}_{\mathcal{K}}$ on X. Suppose that $(U \cap W) \cup(V \cap W) \in \mathcal{K}$ for every $U, V, W \in \mathcal{K}$. The following conditions are equivalent:

1. $\langle X, \mathcal{K}\rangle$ is T_{0}, and if $A=\left\{U_{i}: i \in I\right\}$ and $B=\left\{V_{j}: j \in J\right\}$ are non-empty families of $D_{\mathcal{K}}(X)$ such that

$$
\bigcap\left\{U_{i}: i \in I\right\} \subseteq \bigcup\left\{V_{j}: j \in J\right\},
$$

then there exist $U_{1}, \ldots, U_{n} \in[A)$ and $V_{1}, \ldots, V_{k} \in B$ such that $U_{1} \cap \ldots \cap$ $U_{n} \in D_{\mathcal{K}}(X)$ and $U_{1} \cap \ldots \cap U_{n} \subseteq V_{1} \cup \ldots \cup V_{k}$.
2. $\langle X, \mathcal{K}\rangle$ is T_{0}, every $U \in \mathcal{K}$ is dually compact and the assignment $H: X \rightarrow X\left(D_{\mathcal{K}}(X)\right)$ defined by

$$
H(x)=\left\{U \in D_{\mathcal{K}}(X): x \notin U\right\},
$$

for each $x \in X$, is onto.
3. Every $U \in \mathcal{K}$ is dually compact and for every irreducible basic saturated subset Y of X, there exists a unique $x \in X$ such that $Y=\mathrm{Sb}(x)$.

If $\langle X, \mathcal{K}\rangle$ is an N-space, then $\left\langle D_{\mathcal{K}}(X), \cup, X\right\rangle$ is a distributive nearlattice. We note that if $\langle X, \mathcal{K}\rangle$ is an N-space then $X \in \mathcal{K}$ if and only if $D_{\mathcal{K}}(X)$ is a bounded distributive lattice. So, \mathcal{K} is the set of all compact and open subsets of X and we obtain the topological representation for bounded distributive lattices given by Stone in [16]. If $\langle X, \mathcal{K}\rangle$ is an N space, then the map $H: X \rightarrow X\left(D_{\mathcal{K}}(X)\right)$ defined in the Proposition 1.7 is a homeomorphism such that $x \leq y$ if and only if $H(x) \subseteq H(y)$.

Let $\mathbf{A} \in \mathcal{D N}$. Let us consider the poset $\langle X(\mathbf{A}), \subseteq\rangle$ and the mapping $\varphi_{\mathbf{A}}: A \rightarrow \mathcal{P}_{d}(X(\mathbf{A}))$ defined by $\varphi_{\mathbf{A}}(a)=\{P \in X(\mathbf{A}): a \notin P\}$. Let $\varphi_{\mathbf{A}}[\mathbf{A}]=\left\{\varphi_{\mathbf{A}}(a): a \in A\right\}$. Then \mathbf{A} is isomorphic to the subalgebra $\varphi_{\mathbf{A}}[\mathbf{A}]$ of $\mathcal{P}_{d}(X(\mathbf{A}))$ and the pair $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ is an N-space, called the dual space of \mathbf{A}, where the topology $\mathcal{T}_{\mathbf{A}}$ is generated by taking as base of opens the family $\mathcal{K}_{\mathbf{A}}=\left\{\varphi_{\mathbf{A}}(a)^{c}: a \in A\right\}$. Let $\mathbf{A}, \mathbf{B} \in \mathcal{D} \mathcal{N}$. A mapping $h: A \rightarrow B$ is a semi-homomorphism if $h(1)=1$ and $h(a \vee b)=h(a) \vee h(b)$
for all $a, b \in A$. A mapping $h: A \rightarrow B$ is a homomorphism if it is a semihomomorphism such that if $a \wedge b$ exists then $h(a \wedge b)=h(a) \wedge h(b)$. Note that if $a \wedge b$ exists, then $h(a) \wedge h(b)$ exists. If $h: A \rightarrow B$ is a onto homomorphism, then we shall say that \mathbf{B} is a homomorphic image of \mathbf{A}.

There exists a duality between homomorphisms of distributive nearlattices and certain binary relations. Let X_{1} and X_{2} be two sets, $\mathcal{P}\left(X_{1}\right)$ and $\mathcal{P}\left(X_{2}\right)$ the set of all subsets of X_{1} and X_{2}, respectively, and $R \subseteq X_{1} \times X_{2}$ be a binary relation. For each $x \in X_{1}$, let $R(x)=\left\{y \in X_{2}:(x, y) \in R\right\}$. We define the mapping $h_{R}: \mathcal{P}\left(X_{2}\right) \rightarrow \mathcal{P}\left(X_{1}\right)$ by

$$
h_{R}(U)=\left\{x \in X_{1}: R(x) \cap U \neq \emptyset\right\} .
$$

It is easy to verify that h_{R} is a homomorphism between $\mathcal{P}\left(X_{2}\right)$ and $\mathcal{P}\left(X_{1}\right)$.
Definition 1.8. Let $\left\langle X_{1}, \mathcal{K}_{1}\right\rangle$ and $\left\langle X_{2}, \mathcal{K}_{2}\right\rangle$ be two N-spaces. Let $R \subseteq$ $X_{1} \times X_{2}$ be a binary relation. Then R is an N-relation if:

1. $h_{R}(U) \in D_{\mathcal{K}_{1}}\left(X_{1}\right)$ for every $U \in D_{\mathcal{K}_{2}}\left(X_{2}\right)$.
2. $R(x)$ is a basic saturated subset of X_{2} for each $x \in X_{1}$.
3. $R(x) \neq \emptyset$ for each $x \in X$, i.e., R is serial.

We say that R is an N-functional relation if R is an N-relation satisfying that for each $x \in X_{1}$, there exists $y \in X_{2}$ such that $R(x)=\mathrm{Sb}(y)$.

Let $\mathbf{A}, \mathbf{B} \in \mathcal{D N}$ and $h: A \rightarrow B$ be a mapping. In [8] it was proved that h is a homomorphism if and only if the relation $R_{h} \subseteq X(\mathbf{B}) \times X(\mathbf{A})$ defined by $(P, Q) \in R_{h}$ if and only if $h^{-1}(P) \subseteq Q$ is an N-functional relation. We are interested here a particular class of N-relations.

Definition 1.9. Let $\left\langle X_{1}, \mathcal{K}_{1}\right\rangle$ and $\left\langle X_{2}, \mathcal{K}_{2}\right\rangle$ be two N-spaces. Let $R \subseteq$ $X_{1} \times X_{2}$ be an N-relation. Then R is $1-1$ if for each $x \in X_{1}$ and $U \in$ $D_{\mathcal{K}_{1}}\left(X_{1}\right)$ with $x \notin U$, there exists $V \in D_{\mathcal{K}_{2}}\left(X_{2}\right)$ such that $U \subseteq h_{R}(V)$ and $x \notin h_{R}(V)$.

If $\mathbf{A}, \mathbf{B} \in \mathcal{D N}$ and $h: A \rightarrow B$ a homomorphism, then h is onto if and only if R_{h} is 1-1. Also, if $\left\langle X_{1}, \mathcal{K}_{1}\right\rangle$ and $\left\langle X_{2}, \mathcal{K}_{2}\right\rangle$ be two N-spaces and $R \subseteq X_{1} \times X_{2}$ be an N-functional relation, then R is 1-1 if and only if h_{R} is onto (see [8]).

2. Homomorphic images

Let $\langle X, \mathcal{K}\rangle$ be a topological space and $\mathcal{C}(X)$ the family of all non-empty closed subsets of $\langle X, \mathcal{K}\rangle$. Let \mathcal{F} be a non-empty family of non-empty irreducible basic saturated subsets of $\langle X, \mathcal{K}\rangle$. For each $U \in \mathcal{C}(X)$ we consider the set

$$
M_{U}=\{Y \in \mathcal{F}: Y \cap U=\emptyset\}
$$

The lower Vietoris topology \mathcal{T}_{L} defined on \mathcal{F} is the topology generated by the collection of sets

$$
\mathcal{B}_{L}=\left\{M_{U}: U \in \mathcal{C}(X)\right\}
$$

as subbasis for \mathcal{T}_{L} [15].
Let $\mathbf{A} \in \mathcal{D N}$ and $\langle X, \mathcal{K}\rangle$ be an N-space. Let $R \subseteq X \times X(\mathbf{A})$ be an 1-1 N-functional relation and consider

$$
\mathcal{F}_{R}=\{R(x) \quad: x \in X\} .
$$

Since R is an N-functional relation, there exists $P \in X(\mathbf{A})$ such that $R(x)=\mathrm{Sb}(P)$ for each $x \in X$. It is easy to see that $\mathrm{Sb}(P)$ is irreducible and therefore $\mathcal{F}_{R} \subseteq \mathcal{S}_{\text {Irr }}(X(\mathbf{A}))$. For $a \in A$, we consider the set

$$
M_{a}=\left\{R(x) \in \mathcal{F}_{R}: R(x) \cap \varphi_{\mathbf{A}}(a)=\emptyset\right\} .
$$

Lemma 2.1. Let $\mathbf{A} \in \mathcal{D N}$ and $\langle X, \mathcal{K}\rangle$ be an N-space. Let $R \subseteq X \times$ $X(\mathbf{A})$ be an 1-1 N-functional relation. Then the family

$$
\mathcal{B}_{\mathbf{A}}=\left\{M_{a}: a \in A\right\}
$$

is a basis for the topology \mathcal{T}_{L} on \mathcal{F}_{R}.
Proof. First, we prove that $\mathcal{F}_{R}=\bigcup\left\{M_{a}: a \in A\right\}$. Let $x \in X$ and $R(x) \in \mathcal{F}_{R}$. Since \mathcal{K} is a basis of $\langle X, \mathcal{K}\rangle$, there exists $U \in D_{\mathcal{K}}(X)$ such that $x \notin U$. Then, as R is $1-1$, there exists $V \in D_{\mathcal{K}_{\mathbf{A}}}(X(\mathbf{A}))$ such that $U \subseteq h_{R}(V)$ and $x \notin h_{R}(V)$. So, as \mathbf{A} is isomorphic to $D_{\mathcal{K}_{\mathbf{A}}}(X(\mathbf{A}))$, there exists $a \in A$ such that $V=\varphi_{\mathbf{A}}(a)$. Then $x \notin h_{R}\left(\varphi_{\mathbf{A}}(a)\right)$, i.e., $R(x) \cap \varphi_{\mathbf{A}}(a)=\emptyset$ and $R(x) \in M_{a}$. Therefore $\mathcal{F}_{R}=\bigcup\left\{M_{a}: a \in A\right\}$.

Let $a, b \in A$ such that $M_{a} \cap M_{b} \neq \emptyset$. We prove that $M_{a} \cap M_{b}=M_{a \vee b}$. If $R(x) \in M_{a \vee b}$, then $R(x) \cap \varphi_{\mathbf{A}}(a \vee b)=R(x) \cap\left[\varphi_{\mathbf{A}}(a) \cup \varphi_{\mathbf{A}}(b)\right]=\emptyset$. It follows that $R(x) \cap \varphi_{\mathbf{A}}(a)=\emptyset$ and $R(x) \cap \varphi_{\mathbf{A}}(b)=\emptyset$, i.e., $R(x) \in M_{a} \cap M_{b}$. The other inclusion is similar. So, \mathcal{B}_{A} is a basis for the topology \mathcal{T}_{L} on \mathcal{F}_{R}.

Remark 2.2. Let $H_{a}=\left\{R(x) \in \mathcal{F}_{R}: R(x) \cap \varphi_{\mathbf{A}}(a) \neq \emptyset\right\}$. Then $H_{a}=\mathcal{F}_{R}-M_{a}=M_{a}^{c}$ and by Lemma 2.1, $H_{a} \cup H_{b}=H_{a \vee b}$. Also, since $R(x)$ is serial, $H_{1}=\mathcal{F}_{R}$. Therefore

$$
\left\langle D_{\mathcal{B}_{\mathbf{A}}}\left(\mathcal{F}_{R}\right), \cup, \mathcal{F}_{R}\right\rangle
$$

is a semilattice.
Let $\mathbf{A} \in \mathcal{D N}$ and $I \in \operatorname{Id}(\mathbf{A})$. In $[8]$ it was defined the set

$$
\alpha(I)=\{P \in X(\mathbf{A}): I \nsubseteq P\} .
$$

It is easy to prove that $\alpha(I)=\bigcup\left\{\varphi_{\mathbf{A}}(a): a \in I\right\}$. We have the following result.

Lemma 2.3. Let $\mathbf{A} \in \mathcal{D N}$ and $\langle X, \mathcal{K}\rangle$ be an N-space. Let $R \subseteq X \times$ $X(\mathbf{A})$ be an 1-1 N-functional relation.

1. $\left\langle\mathcal{F}_{R}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is T_{0}.
2. For every $a, b, c \in A,\left(M_{a} \cap M_{c}\right) \cup\left(M_{b} \cap M_{c}\right) \in \mathcal{B}_{\mathbf{A}}$.
3. $\operatorname{Let}\left\{H_{b}: b \in B\right\}$ and $\left\{H_{c}: c \in C\right\}$ non-empty families of $D_{\mathcal{B}_{\mathbf{A}}}\left(\mathcal{F}_{R}\right)$. Then

$$
\bigcap\left\{H_{b}: b \in B\right\} \subseteq \bigcup\left\{H_{c}: c \in C\right\}
$$

if and only if

$$
\bigcap\left\{h_{R}\left(\varphi_{\mathbf{A}}(b)\right): b \in B\right\} \subseteq \bigcup\left\{h_{R}\left(\varphi_{\mathbf{A}}(c)\right): c \in C\right\} .
$$

4. A subset $Y \subseteq \mathcal{F}_{R}$ is basic saturated of $\left\langle\mathcal{F}_{R}, \mathcal{B}_{\mathbf{A}}\right\rangle$ if and only if there exists $J \in \operatorname{Id}(\mathbf{A})$ such that $Y=\left\{R(x): R(x) \subseteq \alpha(J)^{c}\right\}$.

Proof. (1) Let $x, y \in X$ such that $R(x) \neq R(y)$. Suppose that there exists $P \in X(\mathbf{A})$ such that $P \in R(x)$ and $P \notin R(y)$. Since R is an N-relation, $R(y)$ is a basic saturated subset of $X(\mathbf{A})$ and there exists a subset $B \subseteq A$ such that

$$
R(y)=\bigcap\left\{\varphi_{\mathbf{A}}(b)^{c}: b \in B\right\} .
$$

As $P \notin R(y)$, there exists $b_{0} \in B$ such that $P \notin \varphi_{\mathbf{A}}\left(b_{0}\right)^{c}$, i.e., $P \in \varphi_{\mathbf{A}}\left(b_{0}\right)$. Then $P \in R(x) \cap \varphi_{\mathbf{A}}\left(b_{0}\right)$ and $R(x) \notin M_{b_{0}}$. On the other hand, if $Q \in R(y)$,
then $Q \in \bigcap\left\{\varphi_{\mathbf{A}}(b)^{c}: b \in B\right\}$ and in particular, $Q \in \varphi_{\mathbf{A}}\left(b_{0}\right)^{c}$, and this is true for all $Q \in R(y)$. So, $R(y) \cap \varphi_{\mathbf{A}}\left(b_{0}\right)=\emptyset$ and $R(y) \in M_{b_{0}}$. Therefore, $\left\langle\mathcal{F}_{R}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is T_{0}.
(2) Let $a, b, c \in A$. So, $M_{a}, M_{b}, M_{c} \in \mathcal{B}_{\mathbf{A}}$. By Lemma 2.1, $M_{a} \cap M_{b}=$ $M_{a \vee b}$ and $\left(M_{a} \cap M_{c}\right) \cup\left(M_{b} \cap M_{c}\right)=M_{a \vee c} \cup M_{b \vee c}$. Note that $(a \vee c) \wedge_{c}(b \vee c)$ exists in $[c)$. So, $\varphi_{\mathbf{A}}\left((a \vee c) \wedge_{c}(b \vee c)\right)=\varphi_{\mathbf{A}}(a \vee c) \cap \varphi_{\mathbf{A}}(b \vee c)$. We prove that $M_{a \vee c} \cup M_{b \vee c}=M_{(a \vee c) \wedge_{c}(b \vee c)}$. If $R(x) \in M_{(a \vee c) \wedge_{c}(b \vee c)}$, then

$$
R(x) \cap \varphi_{\mathbf{A}}\left((a \vee c) \wedge_{c}(b \vee c)\right)=R(x) \cap\left[\varphi_{\mathbf{A}}(a \vee c) \cap \varphi_{\mathbf{A}}(b \vee c)\right]=\emptyset .
$$

Since $R(x)$ is irreducible, $R(x) \cap \varphi_{\mathbf{A}}(a \vee c)=\emptyset$ or $R(x) \cap \varphi_{\mathbf{A}}(b \vee c)=$ \emptyset. So, $R(x) \in M_{a \vee c} \cup M_{b \vee c}$. The converse is similar, and $\left(M_{a} \cap M_{c}\right) \cup$ $\left(M_{b} \cap M_{c}\right) \in \mathcal{B}_{\mathbf{A}}$.
(3) Let $\left\{H_{b}: b \in B\right\}$ and $\left\{H_{c}: c \in C\right\}$ non-empty families of $D_{\mathcal{B}_{\mathbf{A}}}\left(\mathcal{F}_{R}\right)$ such that

$$
\bigcap\left\{H_{b}: b \in B\right\} \subseteq \bigcup\left\{H_{c}: c \in C\right\} .
$$

Let $x \in \bigcap\left\{h_{R}\left(\varphi_{\mathbf{A}}(b)\right): b \in B\right\}$. Then $x \in h_{R}\left(\varphi_{\mathbf{A}}(b)\right)$, i.e., $R(x) \cap$ $\varphi_{\mathbf{A}}(b) \neq \emptyset$ for every $b \in B$. So, $R(x) \in \bigcap\left\{H_{b}: b \in B\right\}$ and by hypothesis, $R(x) \in \bigcup\left\{H_{c}: c \in C\right\}$. Then there exists $c_{0} \in C$ such that $R(x) \in$ $H_{c_{0}}$. Therefore, $x \in h_{R}\left(\varphi_{\mathbf{A}}\left(c_{0}\right)\right)$ and $x \in \bigcup\left\{h_{R}\left(\varphi_{\mathbf{A}}(c)\right): c \in C\right\}$. The converse is analogous.
(4) Let $Y \subseteq \mathcal{F}_{R}$ be a basic saturated subset of $\left\langle\mathcal{F}_{R}, \mathcal{B}_{A}\right\rangle$. Then there exists a subset $B \subseteq A$ such that $Y=\bigcap\left\{M_{b}: b \in B\right\}$. Let us consider the ideal $J=I(B)$. It is easy to see that $Y=\bigcap\left\{M_{b}: b \in J\right\}$. If $R(x) \in Y$, then $R(x) \in M_{b}$, i.e., $R(x) \cap \varphi_{\mathbf{A}}(b)=\emptyset$ and $R(x) \subseteq \varphi_{\mathbf{A}}(b)^{c}$ for every $b \in J$. It follows that $R(x) \subseteq \bigcap\left\{\varphi_{\mathbf{A}}(b)^{c}: b \in J\right\}=\alpha(J)^{c}$. For the other inclusion is similar. Thus, $Y=\left\{R(x): R(x) \subseteq \alpha(J)^{c}\right\}$.

Reciprocally, suppose that $Y=\left\{R(x): R(x) \subseteq \alpha(J)^{c}\right\}$ for some $J \in$ $\operatorname{Id}(\mathbf{A})$. Then

$$
\begin{array}{rll}
R(x) \in Y & \text { iff } R(x) \subseteq \alpha(J)^{c} & \text { iff } R(x) \subseteq \bigcap\left\{\varphi_{\mathbf{A}}(b)^{c}: b \in J\right\} \\
\text { iff } \forall b \in J\left(R(x) \subseteq \varphi_{\mathbf{A}}(b)^{c}\right) & \text { iff } \forall b \in J\left(R(x) \cap \varphi_{\mathbf{A}}(b)=\emptyset\right) \\
\text { iff } \forall b \in J\left(R(x) \in M_{b}\right) & \text { iff } R(x) \in \bigcap\left\{M_{b}: b \in J\right\} .
\end{array}
$$

Therefore $Y=\bigcap\left\{M_{b}: b \in J\right\}$ and Y is a basic saturated subset of $\left\langle\mathcal{F}_{R}, \mathcal{B}_{\mathbf{A}}\right\rangle$.

Remark 2.4. Note that by item (2) of Lemma 2.3 it is easy to check that the structure $\left\langle D_{\mathcal{B}_{\mathbf{A}}}\left(\mathcal{F}_{R}\right), \cup, \mathcal{F}_{R}\right\rangle$ is a distributive nearlattice.

Theorem 2.5. Let $\mathbf{A}, \mathbf{B} \in \mathcal{D N}$. Let $h: A \rightarrow B$ be an onto homomorphism. Then $\left\langle\mathcal{F}_{R_{h}}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is an N-space which is homeomorphic to $\left\langle X(\mathbf{B}), \mathcal{K}_{\mathbf{B}}\right\rangle$.

Proof. By Lemmas 2.1 and 2.3, $\mathcal{B}_{\mathbf{A}}$ is a basis of open and compact subsets for a topology \mathcal{T}_{L} on \mathcal{F}_{R} such that $\left(M_{a} \cap M_{c}\right) \cup\left(M_{b} \cap M_{c}\right) \in$ $\mathcal{B}_{\mathbf{A}}$ for every $a, b, c \in A$. Also, by Lemma $2.3,\left\langle\mathcal{F}_{R_{h}}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is T_{0} and if $\left\{H_{b}: b \in B\right\}$ and $\left\{H_{c}: c \in C\right\}$ are non-empty families of $D_{\mathcal{B}_{\mathbf{A}}}\left(\mathcal{F}_{R}\right)$ such that $\bigcap\left\{H_{b}: b \in B\right\} \subseteq \bigcup\left\{H_{c}: c \in C\right\}$, then there exist $b_{1}, \ldots, b_{n} \in[B)$ and $c_{1}, \ldots, c_{k} \in C$ such that $H_{b_{1}} \cap \ldots \cap H_{b_{n}} \in D_{\mathcal{K}}(X)$ and $H_{b_{1}} \cap \ldots \cap H_{b_{n}} \subseteq$ $H_{c_{1}} \cup \ldots \cup H_{c_{k}}$. So, by Proposition $1.7,\left\langle\mathcal{F}_{R_{h}}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is an N-space.

Now, we prove that $\left\langle\mathcal{F}_{R_{h}}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is homeomorphic to $\left\langle X(\mathbf{B}), \mathcal{K}_{\mathbf{B}}\right\rangle$. We define the mapping $f: X(\mathbf{B}) \rightarrow \mathcal{F}_{R_{h}}$ by

$$
f(P)=R_{h}(P)
$$

Let $P, Q \in X(\mathbf{B})$ such that $R_{h}(P)=R_{h}(Q)$. Suppose that $P \nsubseteq Q$, i.e., $Q \notin \mathrm{Sb}(P)$. Then there exists $b \in B$ such that $P \in \varphi_{\mathbf{B}}(b)^{c}$ and $Q \notin \varphi_{\mathbf{B}}(b)^{c}$, i.e., $P \notin \varphi_{\mathbf{B}}(b)$ and $Q \in \varphi_{\mathbf{B}}(b)$. Since h is onto, R_{h} is $1-1$. As $P \notin \varphi_{\mathbf{B}}(b)$, there exists $a \in A$ such that $\varphi_{\mathbf{B}}(b) \subseteq h_{R_{h}}\left(\varphi_{\mathbf{A}}(a)\right)$ and $P \notin h_{R_{h}}\left(\varphi_{\mathbf{A}}(a)\right)$. So, $R_{h}(P) \cap \varphi_{\mathbf{A}}(a)=\emptyset$. On the other hand, $Q \in \varphi_{\mathbf{B}}(b) \subseteq h_{R_{h}}\left(\varphi_{\mathbf{A}}(a)\right)$ and $R_{h}(Q) \cap \varphi_{\mathbf{A}}(a) \neq \emptyset$. Since $R_{h}(P)=R_{h}(Q)$ we have that $R_{h}(P) \cap \varphi_{\mathbf{A}}(a) \neq \emptyset$, which is a contradiction. Then $P=Q$ and f is $1-1$. It is clear that f is onto. Thus, f is a bijection.

Let $a \in A$ and $P \in X(\mathbf{B})$. Then

$$
\begin{array}{llll}
P \in f^{-1}\left(M_{a}\right) & \text { iff } f(P) \in M_{a} & \text { iff } R_{h}(P) \in M_{a} \\
& \text { iff } R_{h}(P) \cap \varphi_{\mathbf{A}}(a)=\emptyset & \text { iff } P \notin h_{R_{h}}\left(\varphi_{\mathbf{A}}(a)\right) \\
& \text { iff } P \notin \varphi_{\mathbf{B}}(h(a)) & \text { iff } P \in \varphi_{\mathbf{B}}(h(a))^{c} .
\end{array}
$$

So, $f^{-1}\left(M_{a}\right)=\varphi_{\mathbf{B}}(h(a))^{c}$ and f is continuous.
We prove that f is an open map. Let $b \in B$. Since h is onto, there exists $a \in A$ such that $h(a)=b$. So,

$$
\begin{array}{llll}
R_{h}(P) \in f\left(\varphi_{\mathbf{B}}(b)^{c}\right) & \text { iff } P \in \varphi_{\mathbf{B}}(b)^{c} & \text { iff } P \in \varphi_{\mathbf{B}}(h(a))^{c} \\
& \text { iff } P \notin \varphi_{\mathbf{B}}(h(a)) & \text { iff } P \notin h_{R_{h}}\left(\varphi_{\mathbf{A}}(a)\right) \\
& \text { iff } R_{h}(P) \cap \varphi_{\mathbf{A}}(a)=\emptyset & \text { iff } R_{h}(P) \in M_{a} .
\end{array}
$$

Then $f\left(\varphi_{\mathbf{B}}(b)^{c}\right)=M_{a}$ and f is open. Therefore, f is a homeomorphism.

Definition 2.6. Let $\langle X, \mathcal{K}\rangle$ be an N-space. We say that a non-empty family \mathcal{F} of non-empty basic saturated irreducible subsets of $\langle X, \mathcal{K}\rangle$ is an N-Vietoris family if $\left\langle\mathcal{F}, \mathcal{B}_{L}\right\rangle$ is an N-space.

Let $\mathbf{A} \in \mathcal{D N}$ and $\mathcal{F} \subseteq \mathcal{S}_{\text {Irr }}(X(\mathbf{A}))$ be an N-Vietoris family. Then $\left\langle\mathcal{F}, \mathcal{B}_{\mathbf{A}}\right\rangle$ is an N-space and the structure $\left\langle D_{\mathcal{B}_{\mathbf{A}}}(\mathcal{F}), \cup, \mathcal{F}\right\rangle$ is a distributive nearlattice. We define a binary relation $R_{\mathcal{F}} \subseteq \mathcal{F} \times X(\mathbf{A})$ by

$$
(Y, P) \in R_{\mathcal{F}} \text { iff } P \in Y
$$

Lemma 2.7. Let $\mathbf{A} \in \mathcal{D N}$. Let \mathcal{F} be an N-Vietoris family of $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$. Then $R_{\mathcal{F}}$ is an 1-1 N-functional relation.

Proof. First we show that $R_{\mathcal{F}}$ is an N-functional relation. Let $a \in A$. Then

$$
h_{R_{\mathcal{F}}}\left(\varphi_{\mathbf{A}}(a)\right)=\left\{R_{\mathcal{F}}(Y) \in \mathcal{F}: R_{\mathcal{F}}(Y) \cap \varphi_{\mathbf{A}}(a) \neq \emptyset\right\}=H_{a} \in D_{\mathcal{B}_{\mathbf{A}}}(\mathcal{F}) .
$$

Let $Y \in \mathcal{F}$. By definition, $R_{\mathcal{F}}(Y)=Y$. Since $R_{\mathcal{F}}(Y)$ is a basic saturated irreducible subset of $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$, there exists $P \in X(\mathbf{A})$ such that $R_{\mathcal{F}}(Y)=\mathrm{Sb}(P)$. On the other hand, as \mathcal{F} is a family of non-empty subsets, $R_{\mathcal{F}}(Y) \neq \emptyset$ and $R_{\mathcal{F}}(Y)$ is serial. So, $R_{\mathcal{F}}$ is an N-functional relation. Finally, we show that $R_{\mathcal{F}}$ is 1-1. Let $a \in A$ and $Y \in \mathcal{F}$ such that $Y \notin H_{a}$. Then $Y \cap \varphi_{\mathbf{A}}(a)=\emptyset$. As $R_{\mathcal{F}}(Y)=Y$, we get $Y \notin h_{R_{\mathcal{F}}}\left(\varphi_{\mathbf{A}}(a)\right)$. It follows that $H_{a} \subseteq h_{R_{\mathcal{F}}}\left(\varphi_{\mathbf{A}}(a)\right)$, and therefore $R_{\mathcal{F}}$ is an 1-1 N-functional relation.

Lemma 2.8. Let $\mathbf{A} \in \mathcal{D N}$. Let $\langle X, \mathcal{K}\rangle$ be an N-space.

1. If $R \subseteq X \times X(\mathbf{A})$ is an 1-1 N-functional relation, then for each $x \in X$ and $P \in X(\mathbf{A})$ we have

$$
(x, P) \in R \text { iff }(R(x), P) \in R_{\mathcal{F}_{R}} .
$$

2. If $\mathcal{F} \subseteq \mathcal{S}_{\text {Irr }}(X(\mathbf{A}))$ is an N-Vietoris family, then $\mathcal{F}=\mathcal{F}_{R_{\mathcal{F}}}$.

Proof. (1) Let $x \in X$ and $P \in X(\mathbf{A})$. Then

$$
(R(x), P) \in R_{\mathcal{F}_{R}} \quad \text { iff } \quad P \in R(x) \quad \text { iff } \quad(x, P) \in R
$$

(2) Let $Y \in \mathcal{F}_{R_{\mathcal{F}}}$. Then there exists $G \in \mathcal{F}$ such that $Y=R_{\mathcal{F}}(G)$, but as $R_{\mathcal{F}}(G)=G$, we have that $Y \in \mathcal{F}$ and $\mathcal{F}_{R_{\mathcal{F}}}=\mathcal{F}$.

Since homomorphic images of a distributive nearlattice \mathbf{A} are dually characterized by 1-1 N-functional relations of $X(\mathbf{A})$, by Theorem 2.5 and Lemmas 2.7 and 2.8 we obtain the following result.

Theorem 2.9. Let $\mathbf{A} \in \mathcal{D N}$ and $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ be the dual space of \mathbf{A}. Then the homomorphic images of \mathbf{A} are dually characterized by N-Vietoris families of $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$.

3. The free distributive lattice extension

In 12 the authors proved that every distributive nearlattice has a free distributive lattice extension. In this section, following the duality developed in [8], we show a topological approach of the existence of the free distributive lattice extension. Also, we study the relation between the filters of a distributive nearlattice and the filters of its free distributive lattice extension.

Definition 3.1. Let $\mathbf{A} \in \mathcal{D N}$. A pair $\mathbf{L}=\langle L, e\rangle$, where L is a bounded distributive lattice and $e: A \rightarrow L$ a 1-1 homomorphism, is a free distributive lattice extension of A if the following universal property holds: for every bounded distributive lattice $\overline{\mathbf{L}}$ and every homomorphism $h: A \rightarrow \bar{L}$, there exists a unique homomorphism $\bar{h}: L \rightarrow \bar{L}$ such that $h=\bar{h} \circ e$.

Let $\mathbf{A} \in \mathcal{D N}$ and $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ be the dual space of \mathbf{A}. We will denote by $\mathcal{K} \mathcal{O}(X(\mathbf{A}))$ the family of all open and compact subsets of $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$. It follows that if $U \in \mathcal{K O}(X(\mathbf{A}))$, then there exist $a_{1}, \ldots, a_{n} \in A$ such that $U=\varphi_{\mathbf{A}}\left(a_{1}\right)^{c} \cup \ldots \cup \varphi_{\mathbf{A}}\left(a_{n}\right)^{c}$. Moreover, the structure $\mathcal{K} \mathcal{O}(X(\mathbf{A}))$ is a distributive lattice. We consider the family

$$
D_{\mathcal{K O}}[X(\mathbf{A})]=\left\{U: U^{c} \in \mathcal{K} \mathcal{O}(X(\mathbf{A}))\right\}
$$

So, $\left\langle D_{\mathcal{K O}}[X(\mathbf{A})], \cup, \cap, \emptyset, X(\mathbf{A})\right\rangle$ is a bounded distributive lattice. We take the 1-1 homomorphism $\varphi_{\mathbf{A}}: \mathbf{A} \rightarrow D_{\mathcal{K O}}[X(\mathbf{A})]$ defined by $\varphi_{\mathbf{A}}(a)=$ $\{P \in X(\mathbf{A}): a \notin P\}$ and prove that the pair $\left\langle D_{\mathcal{K O}}[X(\mathbf{A})], \varphi_{\mathbf{A}}\right\rangle$ is the free distributive lattice extension of \mathbf{A}.

Theorem 3.2. Let $\mathbf{A} \in \mathcal{D N}$ and $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ be the dual space of \mathbf{A}. Let \mathbf{L} be a bounded distributive lattice and $h: A \rightarrow L$ be a homomorphism. Then there exists a unique homomorphism $\bar{h}: D_{\mathcal{K O}}[X(\mathbf{A})] \rightarrow L$ such that $h=\bar{h} \circ \varphi_{\mathbf{A}}$. Moreover, h is 1-1 if and only if \bar{h} is $1-1$ and if h is onto, then \bar{h} is onto.

Proof. Let L be a bounded distributive lattice and $h: A \rightarrow L$ a homomorphism. We define $\bar{h}: D_{\mathcal{K O}}[X(\mathbf{A})] \rightarrow L$ by

$$
\bar{h}\left[\varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)\right]=h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right) .
$$

Let $U, V \in D_{\mathcal{K O}}[X(\mathbf{A})]$. Then there exist $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in A$ such that $U=\varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)$ and $V=\varphi_{\mathbf{A}}\left(b_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(b_{m}\right)$. We show that \bar{h} is well defined. If $U=V$, then $\varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)=\varphi_{\mathbf{A}}\left(b_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(b_{m}\right)$. We prove that $\bar{h}[U]=\bar{h}[V]$, i.e., $h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right)=h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right)$. Suppose that $h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right) \neq h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right)$. Then $h\left(a_{1}\right) \wedge \ldots \wedge$ $h\left(a_{n}\right) \not \leq h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right)$ or $h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right) \not \leq h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right)$. If $h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right) \not \leq h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right)$, then there exists $P \in X(\mathbf{L})$ such that $h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right) \in P$ and $h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right) \notin P$. Since P is prime, there exists $j \in\{1, \ldots, m\}$ such that $h\left(b_{j}\right) \in P$. On the other hand, $h\left(a_{i}\right) \notin P$ for all $i \in\{1, \ldots, n\}$. Thus, $b_{j} \in h^{-1}(P)$ and $a_{i} \notin h^{-1}(P)$ for all $i \in\{1, \ldots, n\}$. As h is a homomorphism, $h^{-1}(P) \in X(\mathbf{A})$. It follows that $h^{-1}(P) \notin \varphi_{\mathbf{A}}\left(b_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(b_{m}\right)$ and $h^{-1}(P) \in \varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)$, which is a contradiction.

We see that \bar{h} is a homomorphism. By definition, it is easy to see $\bar{h}[U \cap V]=\bar{h}[U] \wedge \bar{h}[V]$. Also, we have

$$
\begin{aligned}
\bar{h}[U \cup V] & =\bar{h}\left[\left(\varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)\right) \cup\left(\varphi_{\mathbf{A}}\left(b_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(b_{m}\right)\right)\right] \\
& =\bar{h}\left[\varphi_{\mathbf{A}}\left(a_{1} \vee b_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{1} \vee b_{m}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n} \vee b_{m}\right)\right] \\
& =h\left(a_{1} \vee b_{1}\right) \wedge \ldots \wedge h\left(a_{1} \vee b_{m}\right) \wedge \ldots \wedge h\left(a_{n} \vee b_{m}\right) \\
& =\left(h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right)\right) \vee\left(h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right)\right) \\
& =\bar{h}[U] \vee \bar{h}[V] .
\end{aligned}
$$

So, \bar{h} is a homomorphism.
To see that \bar{h} is unique, suppose there exists a homomorphism \widetilde{h} : $D_{\mathcal{K O}}[X(\mathbf{A})] \rightarrow L$ such that $h=\widetilde{h} \circ \varphi_{\mathbf{A}}$. Then $\bar{h}\left[\varphi_{\mathbf{A}}(a)\right]=\widetilde{h}\left[\varphi_{\mathbf{A}}(a)\right]$ for all $a \in A$. If $W \in D_{\mathcal{K O}}[X(\mathbf{A})]$, then there exists $c_{1}, \ldots, c_{k} \in A$ such that

$$
\begin{aligned}
W=\varphi_{\mathbf{A}}\left(c_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}} & \left(c_{k}\right) \text { So, } \\
\bar{h}[W] & =\bar{h}\left[\varphi_{\mathbf{A}}\left(c_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(c_{k}\right)\right] \\
& =\bar{h}\left[\varphi_{\mathbf{A}}\left(c_{1}\right)\right] \wedge \ldots \wedge \bar{h}\left[\varphi_{\mathbf{A}}\left(c_{k}\right)\right] \\
& =\widetilde{h}\left[\varphi_{\mathbf{A}}\left(c_{1}\right)\right] \wedge \ldots \wedge \widetilde{h}\left[\varphi_{\mathbf{A}}\left(c_{k}\right)\right] \\
& =\widetilde{h}\left[\varphi_{\mathbf{A}}\left(c_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(c_{k}\right)\right] \\
& =\widetilde{h}[W] .
\end{aligned}
$$

Therefore, \bar{h} is unique.
Now, we prove that h is $1-1$ if and only if \bar{h} is $1-1$. Suppose that h is 1-1 and suppose that $\bar{h}[U]=\bar{h}[V]$ such that $U \neq V$, i.e., there exists $P \in \varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)$ such that $P \notin \varphi_{\mathbf{A}}\left(b_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(b_{m}\right)$. Then $a_{i} \notin P$ for all $i \in\{1, \ldots, n\}$ and there exists $j \in\{1, \ldots, m\}$ such that $b_{j} \in$ P. Let us consider the set $h(P)=\{h(p): p \in P\}$ and we prove that $h(P) \in X(h(\mathbf{A}))$. It is obvious that $h(P)$ is a non-empty proper subset of $h(A)$. If $a, b \in h(A)$ are such that $a \leq b$ and $b \in h(P)$, then there exists $p_{1} \in A$ and there exists $p_{2} \in P$ such that $h\left(p_{1}\right) \leq h\left(p_{2}\right)$. Since h is $1-1, p_{1} \leq p_{2}$ and as P is a ideal, $p_{1} \in P$ and $a \in h(P)$. Let $a, b \in h(P)$. Then there exist $p_{1}, p_{2} \in P$ such that $h\left(p_{1}\right)=a$ and $h\left(p_{2}\right)=b$. Let $p=p_{1} \vee p_{2} \in P$. Since h is a homomorphism, $a \vee b=h(p)$ and $a \vee b \in h(P)$. Thus, $h(P) \in \operatorname{Id}(h(\mathbf{A}))$. Let $a, b \in h(A)$ such that exists $a \wedge b$ and $a \wedge b \in h(P)$. Then there exist $p_{1}, p_{2} \in A$ and there exists $p_{3} \in P$ such that $a=h\left(p_{1}\right), b=h\left(p_{2}\right)$ and $a \wedge b=h\left(p_{3}\right) . \operatorname{So}, h\left(p_{3}\right)=h\left(p_{1}\right) \wedge h\left(p_{2}\right)$. It follows that

$$
\begin{aligned}
h\left(p_{3}\right) & =\left[h\left(p_{1}\right) \wedge h\left(p_{2}\right)\right] \vee h\left(p_{3}\right) \\
& =\left[h\left(p_{1}\right) \vee h\left(p_{3}\right)\right] \wedge\left[h\left(p_{2}\right) \vee h\left(p_{3}\right)\right] \\
& =h\left(p_{1} \vee p_{3}\right) \wedge h\left(p_{2} \vee p_{3}\right) \\
& =h\left(\left(p_{1} \vee p_{3}\right) \wedge_{p_{3}}\left(p_{2} \vee p_{3}\right)\right)
\end{aligned}
$$

because $p_{1} \vee p_{3}, p_{2} \vee p_{3} \in\left[p_{3}\right)$ and $\left[p_{3}\right)$ is a bounded distributive lattice. As h is 1-1, $p_{3}=\left(p_{1} \vee p_{3}\right) \wedge\left(p_{2} \vee p_{3}\right) \in P$ and by the primality of $P, p_{1} \vee p_{3} \in P$ or $p_{2} \vee p_{3} \in P$. Then $p_{1} \in P$ or $p_{2} \in P$, i.e., $a \in h(P)$ or $b \in h(P)$. So, $h(P) \in X(h(\mathbf{A}))$. Since $h\left(b_{j}\right) \in h(P)$ and $h\left(b_{1}\right) \wedge \ldots \wedge h\left(b_{m}\right) \in h(P)$, we have that $h\left(a_{1}\right) \wedge \ldots \wedge h\left(a_{n}\right) \in h(P)$. Then, as $h(P)$ is a prime ideal, there exists $k \in\{1, \ldots, n\}$ such that $h\left(a_{k}\right) \in h(P)$, i.e., $a_{k} \in P$ which is a contradiction. Therefore, \bar{h} is 1-1. Reciprocally, if \bar{h} is $1-1$ and $a, b \in A$ such that $h(a)=h(b)$, then $\bar{h}\left[\varphi_{\mathbf{A}}(a)\right]=\bar{h}\left[\varphi_{\mathbf{A}}(b)\right]$ and $\varphi_{\mathbf{A}}(a)=\varphi_{\mathbf{A}}(b)$. Since $\varphi_{\mathbf{A}}$ is 1-1 it follows that $a=b$ and h is 1-1.

Suppose that h is onto. Let $b \in L$. Then there exists $a \in A$ such that $h(a)=b$. Thus, $\varphi_{\mathbf{A}}(a) \in D_{\mathcal{K O}}[X(\mathbf{A})]$ and $\bar{h}\left[\varphi_{\mathbf{A}}(a)\right]=h(a)=b$. Hence, \bar{h} is onto.

Theorem 3.3. Let $\mathbf{A} \in \mathcal{D N}$ and $\left\langle D_{\mathcal{K O}}[X(\mathbf{A})], \varphi_{\mathbf{A}}\right\rangle$ be the free distributive lattice extension of \mathbf{A}. Then the lattices $\operatorname{Fi}(\mathbf{A})$ and $\operatorname{Fi}\left(D_{\mathcal{K O}}[X(\mathbf{A})]\right)$ are isomorphic.

Proof. Let us consider the mapping $\Psi: \operatorname{Fi}\left(D_{\mathcal{K O}}[X(\mathbf{A})]\right) \rightarrow \operatorname{Fi}(\mathbf{A})$ defined by

$$
\Psi(G)=\left\{a \in A: \varphi_{\mathbf{A}}(a) \in G\right\}
$$

First, we prove that Ψ is well defined, i.e., if $G \in \operatorname{Fi}\left(D_{\mathcal{K O}}[X(\mathbf{A})]\right)$ then $\Psi(G) \in \operatorname{Fi}(\mathbf{A})$. If G is a filter of $D_{\mathcal{K O}}[X(\mathbf{A})]$, then $\varphi_{\mathbf{A}}(1) \in G$ and $1 \in$ $\Psi(G)$. Let $a, b \in A$ such that $a \leq b$ and $a \in \Psi(G)$. Then $\varphi_{\mathbf{A}}(a) \subseteq \varphi_{\mathbf{A}}(b)$ and $\varphi_{\mathbf{A}}(a) \in G$. Therefore $\varphi_{\mathbf{A}}(b) \in G$ and $b \in \Psi(G)$. If $a, b \in \Psi(G)$ are such that there $a \wedge b$ exists, then $\varphi_{\mathbf{A}}(a), \varphi_{\mathbf{A}}(b) \in G$. Since G is a filter, $\varphi_{\mathbf{A}}(a) \cap \varphi_{\mathbf{A}}(b)=\varphi_{\mathbf{A}}(a \wedge b) \in G$ and $a \wedge b \in \Psi(G)$. Therefore, $\Psi(G) \in \operatorname{Fi}(\mathbf{A})$.

We see that Ψ is a homomorphism. Let $G_{1}, G_{2} \in \operatorname{Fi}\left(D_{\mathcal{K O}}[X(\mathbf{A})]\right)$. It follows that $\Psi\left(G_{1} \cap G_{2}\right)=\Psi\left(G_{1}\right) \cap \Psi\left(G_{2}\right)$. Let $a \in \Psi\left(G_{1}\right) \vee \Psi\left(G_{2}\right)=$ $F\left(\Psi\left(G_{1}\right) \cup \Psi\left(G_{2}\right)\right)$. Then there exist $x_{1}, \ldots, x_{n} \in \Psi\left(G_{1}\right) \cup \Psi\left(G_{2}\right)$ such that $x_{1} \wedge \ldots \wedge x_{n}$ exists and $x_{1} \wedge \ldots \wedge x_{n}=a$. Thus $\varphi_{\mathbf{A}}\left(x_{1}\right), \ldots, \varphi_{\mathbf{A}}\left(x_{n}\right) \in G_{1} \cup G_{2}$ and $\varphi_{\mathbf{A}}\left(x_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(x_{n}\right)=\varphi_{\mathbf{A}}(a)$. It follows that $\varphi_{\mathbf{A}}(a) \in F\left(G_{1} \cup G_{2}\right)=$ $G_{1} \vee G_{2}$ and $a \in \Psi\left(G_{1} \vee G_{2}\right)$. So, $\Psi\left(G_{1}\right) \vee \Psi\left(G_{2}\right) \subseteq \Psi\left(G_{1} \vee G_{2}\right)$. Conversely, if $a \notin \Psi\left(G_{1}\right) \vee \Psi\left(G_{2}\right)=F\left(\Psi\left(G_{1}\right) \cup \Psi\left(G_{2}\right)\right)$, then for every subset $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \Psi\left(G_{1}\right) \cup \Psi\left(G_{2}\right)$ such that $x_{1} \wedge \ldots \wedge x_{n}$ exists we have $x_{1} \wedge \ldots \wedge x_{n} \neq a$. It follows that for every subset $\left\{\varphi_{\mathbf{A}}\left(x_{1}\right), \ldots, \varphi_{\mathbf{A}}\left(x_{n}\right)\right\} \subseteq$ $G_{1} \cup G_{2}$ such that $x_{1} \wedge \ldots \wedge x_{n}$ exists we have $\varphi_{\mathbf{A}}\left(x_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(x_{n}\right) \neq$ $\varphi_{\mathbf{A}}(a)$, i.e., $\varphi_{\mathbf{A}}(a) \notin F\left(G_{1} \cup G_{2}\right)=G_{1} \vee G_{2}$. Then $a \notin \Psi\left(G_{1} \vee G_{2}\right)$ and $\Psi\left(G_{1} \vee G_{2}\right) \subseteq \Psi\left(G_{1}\right) \vee \Psi\left(G_{2}\right)$. So, $\Psi\left(G_{1} \vee G_{2}\right)=\Psi\left(G_{1}\right) \vee \Psi\left(G_{2}\right)$.

We prove that Ψ is 1-1. Let $G_{1}, G_{2} \in \operatorname{Fi}\left(D_{\mathcal{K O}}[X(\mathbf{A})]\right)$ such that $\Psi\left(G_{1}\right)=\Psi\left(G_{2}\right)$. If $U \in G_{1}$, then there exist $a_{1}, \ldots, a_{n} \in A$ such that $U=\varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)$. So, $\varphi_{\mathbf{A}}\left(a_{i}\right) \in G_{1}$, i.e., $a_{i} \in \Psi\left(G_{1}\right)=$ $\Psi\left(G_{2}\right)$ for all $i \in\{1, \ldots, n\}$. Then $\varphi_{\mathbf{A}}\left(a_{i}\right) \in G_{2}$ for all $i \in\{1, \ldots, n\}$ and $\varphi_{\mathbf{A}}\left(a_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(a_{n}\right)=U \in G_{2}$. Similarly, if $U \in G_{2}$ then $U \in G_{1}$ and $G_{1}=G_{2}$. Thus, Ψ is 1-1.

Finally, we prove that Ψ is onto. Let $G \in \operatorname{Fi}(\mathbf{A})$ and we consider $\varphi_{\mathbf{A}}(G)=\left\{\varphi_{\mathbf{A}}(a): a \in G\right\}$. Then the filter generated $F\left(\varphi_{\mathbf{A}}(G)\right) \in$ $\operatorname{Fi}\left(\left(D_{\mathcal{K O}}[X(\mathbf{A})]\right)\right)$. We prove that $\Psi\left(F\left(\varphi_{\mathbf{A}}(G)\right)\right)=G$. If $a \in G$, then $\varphi_{\mathbf{A}}(a) \in \varphi_{\mathbf{A}}(G)$ and $\varphi_{\mathbf{A}}(a) \in F\left(\varphi_{\mathbf{A}}(G)\right)$. So, $a \in \Psi\left(F\left(\varphi_{\mathbf{A}}(G)\right)\right)$. Reciprocally, suppose that $a \notin G$. Then $\varphi_{\mathbf{A}}(a) \notin \varphi_{\mathbf{A}}(G)$. We see that $\varphi_{\mathbf{A}}(a) \notin F\left(\varphi_{\mathbf{A}}(G)\right)$. If $\varphi_{\mathbf{A}}(a) \in F\left(\varphi_{\mathbf{A}}(G)\right)$, then there exist $x_{1}, \ldots, x_{n} \in$ G such that $\varphi_{\mathbf{A}}\left(x_{1}\right) \cap \ldots \cap \varphi_{\mathbf{A}}\left(x_{n}\right)=\varphi_{\mathbf{A}}(a)$. On the other hand, since $a \notin G$, there exists $P \in X(\mathbf{A})$ such that $a \in P$ and $P \cap G=\emptyset$, i.e., $P \notin \varphi_{\mathbf{A}}(a)$ and $P \in \varphi_{\mathbf{A}}\left(x_{i}\right)$ for all $i \in\{1, \ldots, n\}$, which is a contradiction. Then $\varphi_{\mathbf{A}}(a) \notin F\left(\varphi_{\mathbf{A}}(G)\right)$ and $a \notin \Psi\left(F\left(\varphi_{\mathbf{A}}(G)\right)\right)$. Therefore $\Psi\left(F\left(\varphi_{\mathbf{A}}(G)\right)\right)=G$ and Ψ is onto.

Acknowledgements: We would like to thank the referee for the comments and suggestions on the paper. This research was supported by the CONICET under grant PIP 112-201501-00412.

References

[1] J. C. Abbott, Semi-boolean algebra, Mat. Vestnik 4 (1967), 177-198.
[2] J. Araújo and M. Kinyon, Independent axiom systems for nearlattices, Czechoslovak Mathematical Journal 61 (2011), 975-992.
[3] G. Bezhanishvili and R. Jansana, Priestley style duality for distributive meetsemilattices, Studia Logica 98 (2011), 83-122.
[4] G. Bezhanishvili and R. Jansana, Generalized Priestley quasi-orders, Order 28 (2011), 201-220.
[5] I. Calomino and S. Celani, A note on annihilators in distributive nearlattices, Miskolc Mathematical Notes 16 (2015), 65-78.
[6] S. Celani, Topological representation of distributive semilattices, Scientiae Math. Japonicae 8 (2003), 41-51.
[7] S. Celani and I. Calomino, Some remarks on distributive semilattices, Comment. Math. Univ. Carolin. 54 (2013), 407-428.
[8] S. Celani and I. Calomino, Stone style duality for distributive nearlattices, Algebra Universalis 71 (2014), 127-153.
[9] I. Chajda, R. Halaš, and J. Kühr, Semilattice Structures, Research and Exposition in Mathematics, Heldermann Verlag 2007.
[10] I. Chajda and M. Kolařík, Ideals, congruences and annihilators on nearlattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math 46 (2007), 25-33.
[11] I. Chajda and M. Kolařík, Nearlattices, Discrete Math. 308 (2008), 4906-4913.
[12] W. Cornish and R. Hickman, Weakly distributive semilattices, Acta Math. Acad. Sci. Hungar. 32 (1978), 5-16.
[13] R. Halaš, Subdirectly irreducible distributive nearlattices, Miskolc Mathematical Notes 7 (2006), 141-146.
[14] R. Hickman, Join algebras, Communications in Algebra 8 (1980), 1653-1685.
[15] P. Johnstone, Stone spaces, Cambridge University Press, 1982.
[16] M. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis pest. mat. fys. 67 (1937), 1-25.

CONICET and Departamento de Matemáticas
Facultad de Ciencias Exactas Univ. Nac. del Centro
Pinto 399, 7000 Tandil
Argentina
scelani@exa.unicen.edu.ar
calomino@exa.unicen.edu.ar

[^0]: Received 15 November 2015
 Keywords and phrases: Distributive nearlattice, prime ideal, homomorphic image. 2010 AMS Subject Classification: Primary 06A12; Secondary 03G10, 06D50

