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Abstract: In every electric power system, power transformers (PT) play a critical role. Under ideal
circumstances, PT should receive the utmost care to maintain the highest operative condition during
their lifetime. Through the years, different approaches have been developed to assess the condition
and the inherent risk during the operation of PT. However, most proposed methodologies tend to
analyze PT as individuals and not as a fleet. A fleet assessment helps the asset manager make sound
decisions regarding the maintenance scheduling for groups of PT with similar conditions. This paper
proposes a new methodology to assess the risk of PT fleets, considering the technical condition and
the strategic importance of the units. First, the state of the units was evaluated using a health index
(HI) with a fuzzy logic algorithm. Then, the strategic importance of each unit was assessed using a
weighting technique to obtain the importance index (II). Finally, the analyzed units with similar HI
and II were arranged into a set of clusters using the k-means clustering technique. A fleet of 19 PTs
was used to validate the proposed method. The obtained results are also provided to demonstrate
the viability and feasibility of the assessment model.

Keywords: risk assessment; health index; power transformers; fuzzy logic; importance index

1. Introduction

At present, as a result of the constant grown of societies, the physical assets on electric
power systems suffer a continuous demand for high system reliability, power quality and
cost benefits. Under these circumstances, physical assets should be maintained in optimal
condition. PT constitutes a vital component in the electric power system [1]. Due to the
high replacement and maintenance cost, as well as catastrophic failure consequences, a
proper assessment of the condition of the units should be done [2].

An asset manager needs to justify all the maintenance or replacement decisions. To
achieve this goal, it is necessary to count on reliable information about the condition and
the importance of the unit in the context of the whole system. A set of diagnostic analyses
can be carried out to understand the physical condition of the PT [3–5]. As for the strategic
importance of the unit, it is necessary to know technical and operative characteristics, such
as loading, geographic location, or the existence of critical loads. Once this information
has been obtained, the acquired data need to be processed in a way that enables the asset
manager to draw conclusions about the state of the unit. Different methodologies have
been developed to assess the condition of PT, mostly known as health indices (HI) [6–8],
and when the importance of the unit or the consequences of failure is also taken into
account, the assessment methodology is known as risk index (RI). The RI is a measure that
integrates several pieces of information regarding condition, probability of failure and the
importance of the transformer in a power system [9]. The main goal of the RI outcome is to
serve as an indicator of the need of acting either in maintenance or inspection, especially
when the company has adopted a scheme of reliability-based maintenance (RBM) and/or
condition-based maintenance (CBM) [10].
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In the literature, there are many methodologies to assess the risk of PTs [11–14]. What
differentiates one from the other is the technique used to process the data and the entry
criteria. While most of the experts consider the HI to evaluate the risk, some authors also
consider the consequences of failure [15], the probability of shutdown [16], the technical
condition [17] or the strategic importance of the PT [18].

It should be noted that the RI is an indicator that enables an influential prioritiza-
tion/ranking of the assets to support maintenance and replacement decisions [19,20].
However, when dealing with a set of transformers, more than a ranking, an asset manager
needs to categorize the units in groups with similar characteristics to apply maintenance
actions. Most of the current methodologies to assess the risk in PT analyze one unit at a
time or use a ranking system. This paper proposes a practical application to determine the
RI in fleets of PT and then categorize the units in groups of similar RI using the k-means
clustering technique. This, in order to be a support tool for improving the efficiency of PT
maintenance. The contributions of this work can be listed as:

• An up-to-date approach to determine the degree of polymerization (DP) of the insu-
lating paper and the HI.

• A standardized procedure to assess the strategic importance of the PT.
• A new method to categorize the risk in PT fleets employing a clustering technique

The following sections introduce a description of the methodology developed to
calculate the HI, the strategic importance of the asset or II, and the RI. Next, a fleet of
19 PTs is analyzed to validate the proposed method. Finally, the results, discussions and
conclusions are presented.

2. Materials and Methods: Risk Assessment Algorithm
2.1. Health Index Calculation

The health index (HI) is an indicator that quantifies and provides an undemanding
understanding of the general condition of a PT. Most of the methodologies developed to cal-
culate the HI employ weighting techniques [21,22]. However, in recent years new methods
based on Markov chains [23], fuzzy logic systems [24] and artificial neural networks [25]
have been developed.

Some authors [26–28], take into account the uncertainty, vagueness, or impreciseness
of the available information. Derived from this approach, they consider the fuzzy inference
systems (FIS) to be the most appropriate method to calculate the HI. The use of the FIS
methodology requires the fuzzification of all the input data, which is often given in numeri-
cal values. The fuzzification process involves the conversion of those numerical values into
linguistic functions which is accomplished with the modeling of membership functions.

The proposed method has its roots in the works in Ref. [29] and Ref. [9]. The original
methodology uses six entry criteria to calculate the final value: breakdown voltage, mois-
ture content (humidity), acidity, power factor, furan content and dissolved gas analysis
(DGA). The furan content analysis is carried out to assess the degree of degradation of the
winding’s insulating paper. However, recent studies have proven that the furan content
may be inaccurate to properly evaluate the state of the insulating paper [30–32]. Taking into
account the facts stated above, this paper proposes the replacement of the furan content
criterion for the DP one. The degree of polymerization (DP) value is usually estimated
from the proportion of 2-FAL found in the furan content analysis., Chendong’s Equation (1)
is one of the most widely accepted methods to calculate the DP value.

DPvalue =
1.51− log(2-FAL)

0.0035
(1)

Established equations for the DP only evaluate the 2-FAL content to calculate its esti-
mates. The imprecise outcomes from considering only the 2-FAL content were suggested in
researches conducted by [33–35]. Moreover, they highlight the importance of the CO2/CO
ratio to estimate the real degree of degradation of the insulating paper. This work imple-
ments a FIS approach to calculate the DP value, and entry parameters for this system are
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the furan content and the CO2/CO ratio. The membership functions of the entry criteria
and the output of the FIS process are presented in Figures 1–3.
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According to the authors of [4], for the CO2/CO ratio, the respective values of CO2 and
CO should exceed 5000 µL/L (ppm) and 500 µL/L (ppm) in order to improve the certainty
factor. Additionally, a normal CO2/CO ratio should be around 7. Abu-Elanien et al. [29]
state that a DP value higher than 700 represents an insulating paper with its mechanical
properties closer to 100%.

The set of membership functions for the breakdown voltage, moisture content, acidity,
power factor, DGA and the final HI value, were taken from Ref. [9] and are shown in
Figures 4–9.
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Figure 9. Membership functions for the final HI.

Using the Mamdani FIS methodology the linguistic entry values are integrated with
the linguistic output using fuzzy inference rules. For the DP value, the methodology
developed a set of 20 inference rules. Meanwhile, for the final HI value, a group of 80 rules
was implemented. Once the output membership function is obtained, a defuzzification
process takes place to convert the linguistic result into a numerical value. One can observe
the complete HI fuzzy model in Figure 10.
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2.2. Importance Index Estimation

The importance index (II) of a PT indicates the strategic relevance of the asset within
the reliability context of the electrical power distribution system. It considers the unit’s
technical parameters, the operational environment, and the penalties imposed by regulatory
entities. For this work, there are a set of 11 criteria to determine the II; each criterion can
take an integer value between 1 and 3. The final value for the II can be inferred using
Equation (2).

I I =

p
∑

ii=1
(Sii ×Wii)

p
∑

ii=1
(Smaxii ×Wii)

(2)

where II indicates the importance index of the PT, Sii is the score assigned to each criterion,
Smaxii represents the maximum possible value, in this case, a value of three, and Wii is the
respective weight of each entry parameter. As stated before, those criteria can only take
integer values between 1 and 3. For this reason, a normalizing process was carried out to
obtain an II value between zero and one. For that purpose, Equation (3) was used.

I IN =
I I − I Imin

I Imax − I Imin
(3)

where IImax and IImin represent the maximum and minimum values that II can take, for this
work, those values are one and one-third. Values close to zero indicate the low strategic
importance of the PT, whereas values close to one denote a high relevance of the asset. The
11 criteria chosen for this method and their respective weights are presented in Table 1.

The N-1 criterion indicates the ability of the system to handle a sudden disconnection
of the PT and supply the demanded load. The critical loads’ criterion refers to essential
loads such as hospitals, airports and continuous production factories, powered by the
evaluated trans-formation unit. Mean load is the estimated average power provided by the
transformer in the last 30 days, while the unavailability penalty criterion will depend on
the regulations of each country. For this work, the measure is based on Argentina’s energy
regulator provisions.
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Table 1. Criteria and score for the II.

Criteria
Score

Weight
Low (1) Medium (2) High (3)

Manufacturer Well Known Known Unknown 1
Type/Application Mobile Standby In-service 3

Load Factor <0.6 0.6–1.0 >1.0 4
Voltage (kV) 132/33 or 132/13,2 220/132 500/220 4
N-1 Criterion Yes N/A No 5

Location Rural Urban Industrial 3
Critical Loads None A Few Several 3

Rated Power (MW) <30 30–50 >50 3
Mean Load (MW) <10 10–30 >30 4

Security Level
1. Alarm system

2. Oil Pitch
3. Distance between

transformers more than 11
m or no transformers

nearby
4. Fire extinguisher

available
5 = None

1&2&3&4 1, 2, 3, 4, 1&2, 1&3, 1&4, 2&3, 2&4,
3&4, 1&2&3, 1&2&4, 1&3&4, 2&3&4 5 3

Unavailability penalty 20 to 30 times 50 times 60 times 4

2.3. Risk Assessment

Once the HI and II have been calculated, the risk of the unit can be found. Traditionally,
the risk index (RI) is obtained by multiplying the HI and the II, then, a list or ranking is
generated to determine which assessed units should be prioritized. However, under the
context of fleet analysis, an asset manager goal’s is to arrange the units in groups with
similar conditions to implement suitable maintenance strategies. To achieve this goal, risk
matrices whose axes are the HI and the II will be used. The k-means clustering technique
is applied to establish the groups or clusters of PT.

K-means is considered one of the simplest unsupervised learning algorithms that
solve the well-known clustering problem [36]. The procedure follows a simple and easy
way to classify a given data set through a certain number of clusters (assume k-clusters)
fixed a priori. This algorithm has as a goal the minimization of an objective function known
as the mean square error (MSE) and it is given by (4).

J(V) =
c

∑
i=1

cj

∑
j=1

(
‖xi − vj‖

)2

(4)

where ‖xi−vj‖ is the Euclidean distance between xi and vj, cj corresponds to the number
of data points in the cluster ith and c is the number of centroids.

In this paper, three groups or clusters will be designated to assess the risk of units with
similar HI and II as a means to define proper maintenance schemes. Cluster 1 indicates the
PT with the lower risk meanwhile Cluster 3 encloses the units that should be prioritized.

Figure 11a,b presents a data set example before and after the k-means clustering
technique is applied.
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3. Case Study, Results and Discussion

Researchers tested the proposed methodology presented in the previous sections in a
PT fleet composed of 19 units. Table 2 summarizes the main results of the diagnostic tests,
meanwhile, Table 3 presents the operative features of the whole fleet.

Table 2. Transformers fleet diagnostic test results.

Health Index Criteria

PT Moisture
(ppm)

Acidity
(ppm)

Breakdown
Voltage

(kV)

Power
Factor

DGA
(ppm)

CO2
(ppm)

CO
(ppm)

Furan
(ppm)

1 22 0.07 52 0.14 671 700 5495 0.25
2 23 0.13 44 0.264 1053 189 2011 1.37
3 16.5 0.058 61 0.174 142.15 697 3685 0.49
4 28 0.18 40 0.266 822 8197 22789 4.5
5 19 0.15 38 0.185 360 582 4567 1.1
6 26 0.09 48 0.249 359 892 7038 0.1
7 23.2 0.251 51.7 0.458 1690 1843 2492 5.76
8 33 0.19 35 0.593 2637 1582 12371 3.9
9 9 0.08 49 0.1 2608 669 6764 0.83

10 42 0.22 46 0.221 2093 299 2348 4.48
11 6 0.13 64 0.566 328 297 2323 0.22
12 11 0.05 70 0.113 1409 162 1139 0.16
13 9 0.04 71 0.068 1642 242 1883 0.03
14 6 0.03 66 0.207 1083 356 3347 0.09
15 10 0.03 55 0.15 37 902 7135 0.1
16 32 0.25 55 0.328 1309 1695 13345 5.1
17 19.46 0.139 33 0.9 103 964 4002 0.033
18 12.4 0.025 44.4 0 49 102 1274 0.036
19 13.6 0.085 30 0.2 66 542 2346 0.066
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Table 3. Transformers fleet operative features.

Importance Index Criteria

Manufacturer Type/
Application

Load
Factor Voltage N-1

Criterion Location Critical
Loads

Rated
Power
(MVA)

Mean
Load

(MVA)

Security
Level

Unavailability
Penalty

Known In-service 0.922 132/33 Yes Urban Several 85 59 1&4 20 to 30 times
Well-Known In-service 0.283 132/33 Yes Urban Several 85 73 2&3 20 to 30 times
Well-Known In-service 0.828 132/13.2 Yes Rural Several 20 16 1&2 20 to 30 times
Well-Known In-service 0.539 500/220 No Rural Several 50 25 2&3 60 times

Unknown In-service 1.183 132/13.2 Yes Urban A few 70 63 2 20 to 30 times
Well-Known In-service 0.371 132/33 Yes Industrial Several 45 18 1&4 20 to 30 times

Unknown Standby 0.000 500/220 Yes Urban None 55 39 1 60 times
Known In-service 0.585 220/132 Yes Rural A few 85 24 5 50 times
Known In-service 0.784 132/33 No Industrial Several 65 24 1&2&3&4 20 to 30 times

Well-Known In-service 0.361 132/33 Yes Rural A few 75 43 1&2&3 20 to 30 times
Known Mobile 0.269 132/13.2 Yes Urban A few 75 74 5 20 to 30 times
Known In-service 0.306 220/132 N/A Urban None 25 24 4 50 times

Well-Known In-service 0.657 500/220 Yes Industrial A few 100 87 4 60 times
Known In-service 0.268 132/13.2 Yes Industrial Several 85 32 3&4 20 to 30 times
Known In-service 0.236 132/33 Yes Urban None 65 31 3 20 to 30 times
Known In-service 0.844 220/132 Yes Urban Several 75 19 3 50 times

Well-Known In-service 0.648 132/13.2 N/A Urban Several 100 84 3 20 to 30 times
Well-Known In-service 0.294 220/132 Yes Industrial A few 75 36 1&2&3 50 times

Known In-service 0.350 220/132 Yes Rural Several 50 22 1&2&3 50 times

Once the results for the HI and the II were obtained, the risk was assessed with
the k-means technique, and, as a means of comparison; the RI and DP values were also
calculated employing the HI*II approach and Chendong’s equation.

The corresponding scores calculated as per values of transformer parameters for the
DP value, HI, II, cluster membership and the RI using the HI*II approach are shown in
Table 4.

Table 4. Transformers fleet assessment results.

PT DP Chendong’s
DP HI II Cluster RI = HI*II

1 705.077 603.446 0.4269 0.5000 2 0.21346
2 466.627 392.366 0.5288 0.4324 2 0.22867
3 1015.149 519.944 0.2830 0.3108 1 0.09324
4 228.619 244.796 0.8021 0.6486 3 0.52025
5 502.092 419.602 0.3389 0.5270 1 0.17863
6 725.149 717.143 0.3383 0.3784 1 0.12800
7 109.921 214.165 0.9392 0.5541 3 0.52038
8 262.539 262.553 0.9392 0.4595 3 0.43152
9 514.341 454.549 0.5250 0.5811 2 0.30507

10 234.680 245.349 0.9392 0.3514 3 0.32999
11 725.197 619.308 0.3360 0.3649 1 0.12260
12 725.077 658.823 0.5250 0.4054 2 0.21284
13 992.940 866.537 0.5250 0.7027 2 0.36892
14 725.077 730.216 0.5154 0.4865 2 0.25075
15 725.151 717.143 0.3200 0.3649 1 0.10946
16 217.397 229.266 0.9372 0.5541 3 0.51924
17 1015.149 854.710 0.2500 0.5541 1 0.16622
18 525.065 843.914 0.1979 0.5405 1 0.10699
19 1015.149 768.702 0.3000 0.4189 1 0.12568

In accordance with Teymouri and Vahidi, who in their work [35] indicated that a good
DP estimator should fall within ±20% of the measured DP value or the calculated DP
employing Chendong’s equation, it can be noted that the proposed method agrees with
this condition. There are four exceptions, units 3, 7, 18 and 19; whose DP values differ
more than ±20 percent compared with Chendong’s estimates. For units 3 and 19, their
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values are greater than Chendong’s method; that can be explained by the low furan content
and the good CO2/CO ratio of the PT. Meanwhile, for units 7 and 18 whose values are
lower than Chendong’s, their respective CO2/CO ratios are 1.35 and 12.49. According
to [4] CO2/CO ratios lower than 3 may be an indication of a fault in the insulating paper,
while CO2/CO ratios higher than 10 may indicate accelerated thermal degradation at
low temperature. The proposed method for the DP includes these considerations in its
algorithm, thus the differences with Chendong’s equation are justified. It also serves as an
indicator of the importance of the CO2/CO relationship in determining the real state of the
insulating paper. The proposed methodology ensures a more comprehensive estimate of
the condition of the insulating paper. However, it was noted a certain degree of inelasticity
in the results. This can be attributable to the nature of the trapezoidal fuzzy membership
functions (TFMF), where they maintain the same value unless the input value moves to an
interception zone between membership functions or another function at all.

For the technical condition of the PT, those units 3, 17, 18 and 19 were the units with
the most satisfactory HI results. Similarly, the units with the worst condition were PTs
number 7, 8, 10 and 16. For the rest of the assessed fleet, the HI values vary from 0.35 to
0.8 indicating an intermediate condition. Furthermore, most of the transformers with high
HI values present very low DP estimations. This is in agreement with [37] who states that
once a unit has reached DP values lower than 250, it is considered that it has entered the
end-of-life stage.

The II assessment results for the PT fleet show a certain degree of uniformity in the
final results, with II values between 0.3 and 0.7. It can be noted that unit 10 which presents
a high HI value has a relatively low strategic importance. Meanwhile, unit 18, which has
the best technical condition in the fleet, also presents a higher II than unit 10. This can be
explained by the independence in the calculation of indices, as well as the location and
operative voltage of the units. PT number 10 has a voltage of 132/33 kV and operates in a
rural environment. In contrast, PT number 18 works in a more demanding urban setting
and has an operative voltage of 220/132 kV. Therefore, the critical condition of the asset
in the system is higher. Units 4 and 13 have the highest II value operating at extra-high
voltages (EHV) of 500/132 kV.

The risk of the fleet can be assessed with the HI and II calculated. As stated before,
three groups or clusters were defined using the k-means clustering technique. Out of the
19 units, 8 were placed in cluster number one, 6 in cluster number two and the remaining
5 PT in cluster number three. The units in the risk matrix are presented in Figure 12a, while
the cluster arrangements are displayed in Figure 12b.
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The placement of the units on the risk matrix in Figure 12a allows a better understand-
ing of the HI and II when combined. Also, it can be discerned how a high percentage of
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the units are concentrated in the lower left quadrant. An objective categorization of the
units in groups using traditional methods might be challenging. Therefore, to solve this
obstacle the proposed k-means technique is applied.

Figure 12b shows that the k-means technique defined three clusters, in which the PT
belonging to cluster number three was the easiest to disaggregate from the rest of the units.
Furthermore, cluster three represents the units with the highest risk. Hence the units where
the most thorough and immediate maintenance measures will be needed.

As for clusters number one and two, the units were closer to each other and the manual
allocation could be difficult. However, with the k-means technique as a non-supervised ML
method, the allocation of units in a particular cluster is done automatically by comparing
Euclidean distances and the minimization of the MSE. This allocation of units is mainly
observed in units 1 and 5 which were close to both centroids number one and number two.
Nevertheless, unit 5 was allocated in cluster number one and unit 1 was allocated in cluster
number two.

The RI using the HI*II approach was plotted in Figure 13. The units with higher risk
were PT 4, 7, 8 and 16. The method failed to categorize PT 10 as a unit with high risk,
moreover, the classification of the remaining units becomes fuzzy and subjective.
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The main advantage of the proposed methodology is its capacity to categorize the
PT according to their condition into groups. This is particularly useful when dealing with
large fleets of PT. In case an individual assessment is required, the use of the traditional
RI calculation technique is advised. In view of these findings, it can be assumed that
the proposed method has the capabilities of estimating the risk in PT fleets that can be
embraced by utility expects for asset management.

4. Conclusions

This paper proposes a new approach to assess the risk in power transformer fleets.
This approach examines the technical condition and the strategic importance of the units to
create clusters of PTs with similar risks. The researchers have tested a fleet of 19 units to
validate the proposed method, and the results showed the method’s viability.

Additionally, a new fuzzy-based approach was developed to improve the accuracy
and consistency of the transformer insulation estimation. It considers the furan content
and the CO2/CO ratio, which several studies have proven to play a critical role in correctly
assessing the DP in the insulating paper. The results showed an accurate assessment of
the condition of the insulation paper. Although the fuzzy-based approach exhibited a
certain degree of inelasticity, this can be reduced by using a higher number of member-
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ship functions by criterion or by replacing the trapezoidal with triangular or Gaussian
distribution functions.

The technical condition was estimated using a fuzzy-based HI proposed in the lit-
erature with the DP calculation method. The strategic importance was measured with a
weighting technique and taking into consideration critical operative aspects of the units,
such as location, voltage, rated power, the existence of critical loads and security levels.

Finally, the assessed units were plotted in the risk matrix and classified into clusters
using the k-means clustering technique. This novel approach proved superior to the classi-
cal RI calculation to support asset managers in the maintenance decision-making process.
Given the ability of the k-means technique to categorize the units, not as individuals but
as groups. From which it is possible to make joint maintenance decisions. A reasonable
risk assessment tool can facilitate PT reliability, enhance its residual life span, and also be a
preventive indicator of the need for replacement.

As a continuation of this research, the authors recommend that future investigations
should be aimed at the development of an asset management algorithm that combines
the risk assessment method proposed in this work and other references, using data fusion
techniques. In addition, risk assessment techniques should be combined with analysis and
decision-making methodologies, for example, to define maintenance strategies based on
the found TP clusters.
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