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SUMMARY
Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools
to study learned motor skill. While limb-basedmotor prosthetic systems have leveraged nonhuman primates
as an important animalmodel,1–4 speech prostheses lack a similar animalmodel and aremore limited in terms
of neural interface technology, brain coverage, and behavioral study design.5–7 Songbirds are an attractive
model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human
speech,8–10 and its study has yielded general insight into multiple mechanisms and circuits behind learning,
execution, and maintenance of vocal motor skill.11–18 In addition, the biomechanics of song production bear
similarity to those of humans and some nonhuman primates.19–23 Here, we demonstrate a vocal synthesizer
for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the
premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computa-
tional methods that are implementable in real time. Using a generative biomechanical model of the vocal or-
gan (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that
match the bird’s own song. These results provide proof of concept that high-dimensional, complex natural
behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to
prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure
of their output.
RESULTS AND DISCUSSION

We describe two methods for synthesizing realistic vocal signals

from neural activity recorded in a premotor nucleus of zebra

finches (Taeniopygia guttata). Each method exploits a different

trait of the vocal-motor process. First, we leverage understand-

ing of the biomechanics of birdsong production. We employ a

biomechanical model of the vocal organ that captures much of

the spectro-temporal complexity of song in a low-dimensional

parameter space.24 This dimensionality reduction, compared

to the full time-frequency representation of song, enables

training of a shallow feedforward neural network (FFNN) that

maps neural activity onto the model parameters. As a second

synthesis method, we capitalize on predictive components in

the temporal covariance between neural activity and song, which

can be learned by a recurrent, long-short-term memory neural

network (LSTM)25 trained directly on frequency domain repre-

sentations (spectrograms) of the vocal output.

Neuronal input for each synthesis comes from the sensory-

motor nucleus HVC, where neurons generate high-level com-

mands that drive the production of learned song. Adult male
Curren
zebra finches (Taeniopygia guttata) sing individually stereotyped

motifs comprising a sequence of 3–10 syllables. Activity in mul-

tiple HVC neuronal subtypes is modulated during singing: pro-

jection neurons targeting area X and RA (HVCx/RA) evince short,

precise, sparse activity bursts during the motif,15,17,26–30 while

inhibitory interneurons (HVCI) display more tonic activity during

singing.14,29,31,32 To obtain ensemble HVC activity and vocal

output, we implanted 16- or 32-channel Si probes in male, adult

(>120-day-old) zebra finches and recorded extracellular volt-

ages simultaneously while each bird sang (n = 4 birds, 70–120

vocal motifs per session). Neural recordings were sorted auto-

matically using Kilosort andmanually curated to exclude noise.33

Non-noise clusters were classified as single- or multi-unit activity

(SUA or MUA) based on the number of refractory period viola-

tions and putatively as projection or interneurons based on the

sparseness of the activity during singing. The recordings were

dominated by MUA clusters (n = 88) and HVC interneurons

(HVCI; n = 29), with relatively few putative projection neurons

(HVCx/RA; n = 15). Example song-aligned neural activity histo-

grams are shown in Figure 1A. Example rasters with the numbers

of clusters per bird are shown in Figure S1.
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Figure 1. A neural-network-based decoder

to synthesize birdsong from premotor neu-

ral activity

(A) Neural activity is collected from awake-singing

animals. Sorted, extracellularly recorded single- and

multi-units show different degrees of singing-related

sparseness, robustness, and spiking precision (4

example clusters; top traces: normalizedmean firing

rate over 70 repetitions of the bird’s motif; below:

spectrogram of the motif; see also Figure S1).

(B) Downstream of HVC, the posterior motor

pathway leads into nuclei that control the muscles

driving the sound production (nXII and RAm/

PAm).34 Syringeal and respiratory muscles act

coordinately to modulate the flow of air through

sets of labia and produce sound.35 The complex

labial motion is captured by the equations of a

nonlinear oscillator;23 parameters that define

acoustic properties of the sounds are surrogates of

the activities of syringeal and respiratory muscles.36

(C) To reproduce a particular vocalization (top)

from the biomechanical model, we fit the param-

eters (middle {a(t), b(t), e(t)}) such that, upon inte-

gration, the synthetic song (bottom) matches the

pitch and spectral richness.

(D) The input of the neural network is an array with

the values of a set of neural features (spike counts

of sorted units/multi-units) over a window of M

previous time steps.

(E) The hidden layer(s) of the network are

composed either by a densely connected layer

(FFNN) or two layers of LSTM cells.

(F) When training or reconstructing directly the spectral features of the song, the output of the network is a vector of powers across a range of frequency bands

at a given time; the generated spectral slices are then inverted to produce synthetic song (top). When training or reconstructing via the biomechanical model, the

output of the network at a given time is a 3-dimensional vector of parameters (as illustrated in C); the equations of the model are then integrated with these values

to produce synthetic song (bottom). Illustrations were taken from Arneodo.37
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Biomechanically meaningful compression enhances
neurally driven synthesis
Synthesizing a complex motor sequence from neural activity re-

quires mapping between two high-dimensional representations.

To reduce the dimensionality of the problem, we leveraged a

biomechanicalmodelof theavian vocal organ that transformsneu-

ral activity to vocal output. The model accounts for the syrinx and

the vocal tract.24,27,38 The syrinx contains labial folds that oscillate

when induced by the sub-syringeal air sac pressure andmodulate

the airflow to produce sound (Figure 1B).35 The dynamics of the

labia can be modeled after the motion equations of a nonlinear

oscillator, in which the features of the sounds produced are deter-

mined by two time-varying parameters,23,24,36 representing phys-

iologicalmotor instructions (thesub-syringealpressureand theac-

tivity of themuscles that tense the labia).24 In its simplest form, the

syrinxmodel iscomputable in real time toproducesynthetic vocal-

izations.38 We model the vocal tract (the trachea, the oropharyn-

geal-esophageal cavity, and the beak) as a passive acoustic filter

that determines species-specific spectral traits, such as the

timbre.24,27,39

To synthesize song from neural activity via the biomechanical

model, we first fit the parameters of the model to produce a syn-

thetic version of each vocalization.24,27,38 We searched for the

parameters that produce, upon integration of the equations of

the model, the closest match in pitch, spectral richness, and

amplitude of the target vocalization. This effectively compresses

each segment of a bird’s own song (BOS) into a time series in a
3420 Current Biology 31, 3419–3425, August 9, 2021
3D parameter space, which generates a corresponding segment

of synthetic song (SYN) (Figure 1C).36,38 For each session, we

randomly select 60% of the motifs for training, split each motif

into 5-ms bins, and train a one-hidden-layer FFNN to predict

the biomechanical model parameters corresponding to each

bin independently from the neural activity in a 50-ms, immedi-

ately preceding time window. The neural activity was repre-

sented by the average firing rate of each cluster, split into

1-ms bins. To avoid introducing temporal correlations, we ran-

domized the order in which each pair of neural activity window

and target model parameters was presented to the network.

After training, we predict the values of the biomechanical model

parameters corresponding to a test set of neural activity and

integrate the differential equations of the model to produce

each bin of neurally driven synthetic song. This yields synthetic

vocalizations that sound similar to the bird’s own. An example

motif from each bird is illustrated in Figure 2 (and Audio S1,

S2, S3, and S4).

Incontrast, implementingaFFNNtodirectlypredict thespectro-

temporal features of a song results in a low-quality synthesis. We

trained a similar network as before but with the spectral compo-

nents of the song, as represented by the power across 64 fre-

quency bands, as the targets. Examples of songs synthesized in

this way for each bird (Figure 3; Audio S1, S2, S3, and S4) show

how the FFNN fails to produce well-defined harmonic stacks

that are typical of the zebra finch song and to faithfully reproduce

vocal onsets and offsets.



Figure 2. Song synthesized from premotor neural activity via a biomechanical model of the vocal organ is similar to the recorded bird’s own

song

Spectrogram of one or two instances of a bird’s motif (BOS; upper) and corresponding song generated by inferring the biomechanical model parameters from

neural activity using a shallow FFNN and integrating the model, for four different birds (z007, z017, z020, and z028, respectively; see also Audio S1, S2, S3, and

S4, respectively, and Figures S2 and S4).
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The differing capacities for the FFNN to predict model param-

eters compared to spectro-temporal coefficients (Figures 2, 3,

and 4) suggest that reducing the dimensionality of the behavior

enhances prediction. To confirm, we trained the FFNN to repro-

duce a different ‘‘compression’’ of the behavior, namely the first

3 principal components (PCs) of the spectrogram. The perfor-

mance at predicting the values of the 3 PCs from the neural ac-

tivity is similar to that at predicting the biomechanical model pa-

rameters (Figure S4A). The advantage of the latter is in their

generative capacity to produce songs more similar to the BOS.

The biophysical model can be integrated in real time to produce

synthetic vocalizations online.38 This motivated us to skip the

spike-sorting step and use a representation of the neural activity

that requires cheaper computation and no manual curation.

Instead of representing the neural activity with clustered spikes,

we trained the FFNN to predict the biomechanical model parame-

ters directly from supra-threshold events in each electrode

signal.1,3,40–42 The results (Figures 4, S2, and S3) suggest that it

is plausible to replace the spike sorting by a computationally

cheaper representation of the neural activity without significant

deterioration of the synthesis.

Exploiting temporal structure
The failure of the FFNN to accurately predict the spectral coeffi-

cients of a bird’s motif may reflect the inability of this model to

capture more complex temporal dynamics across response

clusters that precede specific vocalizations. To capture these
dynamics, we trained an LSTM25 to predict the spectral compo-

nents of the song (64 frequency bands) directly from the preced-

ing 50ms of neural activity, using the same input and output data

as described in the previous section. Unlike the FFNN, the LSTM

yields a neurally driven song synthesis that sounds similar to the

intended bird’s own song (Figure 3; Audio S1, S2, S3, and S4).

Because zebra finch songs are highly stereotyped across ren-

ditions from the same singer, we wondered whether the LSTM

might be capturing a trivial correspondence between two syn-

chronized signals (the neuronal activity and the song). To rule

out this possibility, we independently shuffled the spectral coef-

ficients in each time slice of the spectrograms. This created a

novel stereotyped ‘‘song,’’ in which the explicit relationship be-

tween neural activity and any given acoustic feature varied

across time, but the temporal correlation between the average

neural activity and the waveform envelope was unchanged. After

normalizing the durations of all instances of the motif in a bird’s

own song through dynamic timewarping,43 we permuted the co-

efficients within each spectral time slice using the same pseudo-

random mask for each motif. The quality of the LSTM synthesis

dropped significantly for the pseudo-random stereotyped songs

(Figure S4C), indicating a non-trivial relationship between tem-

poral dynamics of HVC population responses and the spectro-

temporal characteristics of natural song.

To assess the relative similarity of all our syntheses to BOS

quantitatively, we compared the spectrograms of each synthe-

sized and target motif pair using two different metrics. We
Current Biology 31, 3419–3425, August 9, 2021 3421



Figure 3. Direct spectrogram synthesis

from neural activity

Spectrogram of a bird’s motif (BOS; upper), song

generated by inferring the spectrogram directly

from neural activity, after training an LSTM (mid-

dle), and song generated by feeding neural activity

and spectrograms to a FFNN of similar architec-

ture to the one used for Figure 2 (bird z007, z017,

z020, and z028, respectively, for each panel. See

also Audio S1, S2, S3, and S4, respectively, and

Figure S4).
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computed the mean distance between spectrograms as the

earth mover’s distance (dEMD)
44 between each pair of corre-

sponding spectral slices, averaged across time. Intuitively,

dEMD measures the work required to transform one distribution

of spectral power onto another and is sensitive to differences

in spectral richness (harmonic stacks versus pure tones or

broadband energy distribution) and vocalization onset or offset

timing. Figure 4A displays a summary of pairwise mean dis-

tances < dEMD > aggregated for all birds (Figure S3 shows data

grouped by bird). We show the distance between each motif of

BOS and the corresponding synthesis achieved with each

different strategy. For reference, we compute the distance be-

tween all pairs of motifs of BOS (bosi � bosj) and the distances

between pairs of BOS and conspecific birds’ motifs (bosi �
conj). We also computed the mean spectral correlation < r > be-

tween each synthetic motif and its target across the span of each

motif. Results are presented in the same manner in Figures 4B

and S3. Consistent with the intuition from Figures 2 and 3,

both measures show that an FFNN trained to directly predict

the spectrogram yields poorer song synthesis compared to the

LSTM and the biomechanical model-aided network, even

when trained with supra-threshold neural events.

We show that it is possible to synthesize a rich vocal behavior

from neural ensemble activity recorded in singing songbirds, a

well-established animal model for vocal communication. Similar-

ity of the synthesis with respect to the bird’s intended vocaliza-

tion is significantly enhanced by either compressing behavior

into a low-dimensional parameter space or by exploiting the

spectro-temporal correlation structure of song by the synthesis
3422 Current Biology 31, 3419–3425, August 9, 2021
algorithm. Our results provide insight

into how BMIs for complex behavior

may be enhanced through detailed un-

derstanding of the underlying biome-

chanics of motor control and the statisti-

cal structure of the target behavior.

Introducing a biomechanical model of

the vocal organ enables dimensionality

reduction and generativity. Compressing

thebehavior into a fewdimensions enables

the use of cheap computations that can be

implemented in real time38 with relatively

small training sets. As a compressive

model, the ‘‘latent’’ space provided by the

time-varying parameters of the biome-

chanical model is attractive in that it is a

proxy for muscular and respiratory activ-
ities.24 In principle, however, other low-dimensional representa-

tions of behavior should also be reconstructable fromneural activ-

ity. Indeed, the 3 strongest PCs of the spectrogram can be

predicted by a simple feedforward network almost as well as the

parameters of the biomechanical model (Figures S4A and S4B),

although these PCs yield poorer synthetic song (Figure S4A)

compared to the biomechanical model (Figures 4A and S4B). As

agenerativemodel, songsynthesizedby thebiomechanicalmodel

is similar to the BOS (Figure 2) and can evoke responses in neural

circuits that are highly selective to the BOS.27,45–47 It remains to be

tested whether the biomechanical model-generated song will be

sufficient for sensory feedback in closed-loop experiments where

neurally driven synthesis replaces BOS38 and whether the syn-

thetic vocalizations can drive naturalistic responses in females,

given the species’ ability todifferentiate songsbasedonfinediffer-

ences inspectro-temporal structure.39,48,49Perhapsmoredetailed

models are necessary to fulfill certain functions (BOS replacement

and successful courtship). It is also likely that a similar approach

can be translated to other species andmotor behaviors that admit

a low-dimensional, generative representation. This could be the

case when the biomechanics are sufficiently under-

stood6,22,41,50–56 or when there are enough examples of the

behavior to enable data-driven dimensionality reductions.6,7,57

The limited repertoire ofmale zebra finchesmight suggest that a

direct synthesis could be achieved by relatively simplemeans. Yet

the FFNN trained to predict spectral coefficients, which, because

of its loss function, is close to a regularized nonlinear regression,

yieldedpoor-quality songscompared toall othermethods (Figures

4 and S3). The reason for this is not entirely clear, but it may reflect



Figure 4. Performance comparisons aggregated for all birds

(A) Boxplots showing time-averaged earthmover’s distance (< dEMD > ; lower =

better). Neur-bos, distance between each pair of synthesized or target spec-

trograms in the test set. Ffnn and lstm indicate training directly with spectro-

gram via a FFNN and LSTM using sorted spikes, model indicates training or

synthesis via the biomechanical model of the vocal organ using sorted spikes,

and threshold indicates the same training or testing as in model, albeit using

supra-threshold activity instead of sorted spikes. Syn-neur indicates the dis-

tance between the synthetic instance of each motif in the testing set (the one

produced when fitting the parameters of the biomechanical model for a given

motif) and the one synthesized from neural activity. Bosi-bosj indicates dis-

tance between each pair of motifs of BOS. Bosi-conj indicates distance be-

tween pairs of bos and songs from a pool of conspecific birds.

(B) Boxplots showing time-averaged spectral correlation (< r > ; higher =

better); same pairs as in (A) (***p < 0.001; ****p < 0.0001; Mann-Whitney U test,

one sided against bosi-conj). Performance for each bird is shown in Figure S3.
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the neuronal subtype compositionsof our datasets.Unfortunately,

the relatively lowyield ofwell-isolated single units in our recordings

(Figure S1) prevents us from examining the contributions of HVC

interneurons and projection neurons directly. Most clusters in

our datasetswereMUA,which are likely dominated by interneuron

activity.29Although theprecise functionofHVC interneuronactivity

is not fully understood, it plays a prominent role inmultiplemodels

of HVC29,31,32 sequence generation, and fluctuations in the

average firing rates of interneurons are closely timed to bursting

in projection neurons.15 While one should not interpret our results

to support the presence of an explicit ‘‘motor code’’ in HVC

ensemble activity, employing a recurrent network that captures

the temporal structure of our neural population activity, rather

than a FFNN, nonetheless yields synthetic songs that are much

closer matches to the birds own song.

We have demonstrated a BMI for a complex communication

signal, using computation blocks that are implementable in real

time in an established animal model for production and learning

of complex vocal behavior. The strength of our approach lies in

the ability to find a low-dimensional parameterization of the

behavior in a manner that it can be driven with the activities
recorded from relatively small samples (by tens) of neurons. Doing

so with recordings from the superficially located nucleus HVC en-

ables accessibility by less invasive micro-electrode arrays,

capable of resolving not only LFP, which has been shown suitable

for BMI,41 but also SUA and MUA.1,3,40–42,58,59 This provides a

novel tool for probing the neural circuits underlying the production,

acquisition, andmaintenance of vocal communication signals and

unlocksaccess tonewmodelsandexperimentsdirectedatunder-

standing how neuronal activity is transformed into natural action

and how peripheral effectors shape the neural basis of action.22,54

Our approach also provides a proving ground for vocal prosthetic

strategies. While birdsong differs in important ways from human

speech, the two vocal systems have many similarities, including

features of the sequential organization and strategies for their

acquisition,60,61 analogies in neuronal organization and func-

tion,10,12 genetic bases,9 and physical mechanisms of sound pro-

duction.19,23 The experimental accessibility, relatively advanced

understanding of the neural and peripheral systems, and status

as a well-developed model for vocal production and learning

make songbirds an attractive animal model to advance speech

BMI, much like the nonhuman primate model for motor BMI.
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Other
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed and will be fulfilled by the lead contact, Timothy Q. Gentner

(tgentner@ucsd.edu).

Materials availability
Printable hardware and electronic designs developed for this work are available in the following github repository: https://github.

com/singingfinch/bernardo.

Data and code availability
Data generated in this study have been deposited to https://doi.org/10.6084/m9.figshare.14502198.

Code for data acquisition, processing pipeline and analysis developed for this work is available in the following github repositories:

https://github.com/zekearneodo/swissknife; https://github.com/kaichensh/curr_bio_2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Electrophysiology data was collected from n = 4 adult (> 120 dph) male zebra finches.62 Birds were individually housed for the entire

duration of the experiment and kept on a 14:10h light:dark cycle. The birds were not used in any other experiments.

Ethical note
All procedures were approved by the Institutional Animal Care and Use Committee of the University of California (protocol number

S15027).

METHOD DETAILS

Neural and audio recordings
We used 4-shank, 16/32 site Si-Probes (Neuronexus A4x2-tet-5mm-150-200-121 -PEDOT coated, bird z007-; Buzsaki32 -pedot

coated, bird z028-; A4x1-tet-3mm-150-121 -birds z017 & z020-). We mounted the probes on an in-house designed, printable micro-

drive and implanted them targeting nucleus HVC. Audio was registered with a microphone (Earthworks M30) connected to a pream-

plifier (ART Tube MP). Extracellular voltages and pre-amplified audio were amplified and digitized at 30kHz using an Intan RHD2000

acquisition system, Open ephys and custom software. Ref and gnd were shorted together via a 0 Ohm resistor on the headstage

(Intan RHD2132/RHD2116).

Electrode implant
Animals were anesthetized with a gaseousmixture of Isoflurane/oxygen (1%–2.5%, 0.7 lpm) and placed in a stereotaxic frame. Anal-

gesia was provided by means of a 2mg/kg dose of carprofen (Rimadyl) administered I.M. The scalp was partially removed and

the upper layer of the skull over the y-sinus was uncovered. The probe was attached to the shaft of a microdrive of our design
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(https://github.com/singingfinch/bernardo/tree/master/hardware/printable_microdrive) which was printed in-house using a B9

Creator printer and the BR-9 resin. A craniotomy site was open 2400 mm lateral to the y-sinus (right/left hemispheres). The dura

was removed, and the electrode array was lowered to a 300-500 mm depth. The opening was then covered with artificial dura

(DOWSIL 3-4680 Silicone Gel Kit) and the microdrive was cemented to the skull using dental cement (C&B Metabond). A reference

wire was made with a 0.5 mm segment of platinum-iridium wire (0.002’’) soldered to a silver wire lead and inserted between the dura

and the skull in through a craniotomy roughly 3mm medial (contralateral to the hemisphere where the electrode was inserted) and

1.5 mm anterior to the y-sinus. The reference electrode was cemented to the skull and the silver lead was soldered to the ref and

gnd leads of the Neuronexus probe. Most of the open area, including the electrode and the microdrive, was covered with a chamber

designed and 3D printed in house, which was cemented to the skull. The skin incision was sutured and glued to the chamber with

superglue. The mass of the probe, microdrive and protective chamber was 1.2-1.4g. Upon returning to a single-housing cage, a

weight reliever mechanismwas set up: an end of a segment of thin nylon wire (fishing line) was attached to an ad hoc pin in the cham-

ber; the other end routed through a set of pulleys and attached to a counterweight mass of ~1g.63

Dataset preparation
Song detection

A template matching filter written in python was used to find putative instances of the motif, and then curated manually to rule out

false positives.

Spike sorting

Spikes were detected and sorted using Kilosort; details of the procedure can be found in Pachitariu et al.33 The number of clusters

was initialized to 32/64 (twice the number of channels of the probe) and the algorithm was allowed to automatically merge similar

clusters. In post hoc curation, we removed the clusters that were visibly noise (as per the waveform) and labeled units as putatively

SUA/MUA depending on whether the fraction of refractory period (2ms) violations was below/above 3% respectively.

Single Unit type classification

SUA clusters were classified as putatively representing sparse firing projection neurons or tonically firing interneurons, based on their

base firing rate and their bursting behavior. We labeled a SUA cluster a putative projection neuron if its mean, spontaneous firing rate

was below 5Hz and it produced at most 4 bursts with a frequency of 100 Hz or higher during the motif.32

Supra-threshold event detection

We wrote scripts in Python to detect spiking events in each channel. First, the RMS of each channel was estimated using a running

window, over a period of time that ranged fromminutes to an hour. Then, events that deviated in absolute value more than a number

of RMS (2.5-5.5) were detected using the package peakutils (min_distance = 0.5ms).

Neural activity features

With all clusters spike-sorted or supra-threshold events, we extracted spike counts within each motif and collapsed them into 1ms

(30 samples at 30,000 samples/second) time bins.

Spectral features

When training the networks with spectral features, the target at each time step was a vector containing a spectrogram slice (in log

power scale). We generated the spectral slices using the spectrogram function of the signal module in the scipy package.64 We used

5ms windows (150 samples) and kept the 64 first bands above 300 Hz.

Biomechanical model of the vocal organ
Model

Amodel of the zebra finch vocal organ has been previously introduced and it is explained in detail in Perl et al.36 and Arneodo et al.38

This model considers mainly a sound source and a vocal tract that further shapes the acoustics of the vocalizations.

The source (syrinx) comprises two sets of tissues or labia that can oscillate induced by the sub-syringeal pressure and modulate

the airflow to produce sound.35 The motion of the labia is represented as a surface wave propagating in the direction of the airflow,

that can be described in terms of the lateral displacement of themidpoint of the tissue.23 Its mathematical form is themotion equation

of a nonlinear oscillator in which two parameters that determine the acoustic features of the solutions are controlled by the bird: the

sub-syringeal air sac pressure and the stiffness of the restitution (through the activity of syringeal muscles). In order to integrate the

model in real time, a set of equations was found that is computationally less expensive yet capable of displaying topologically equiv-

alent sets of solutions as the parameters are varied:658>><
>>:

dx

dt
= y

dy

dt
=g2a+g2bx +g2x2 � g2x3 � gxy � gx2y

where x represents the departure of themidpoint position of the oscillating labia, g is a time scaling factor, and the parameters a and b

are functions of the air sac pressure and the activity of the ventral syringeal muscle, respectively.

The upper vocal tract further shapes the sound produced by the source, determining spectral properties such as the timbre. We

used a model for the vocal that includes a tube, accounting for the trachea, followed by a Helmholtz resonator, accounting for the

oropharyngeal-esophageal cavity (OEC)66,67 (see Figure 1A in Arneodo et al.38). The pressure at the input of the tube that represents
Current Biology 31, 3419–3425.e1–e5, August 9, 2021 e2

https://github.com/singingfinch/bernardo/tree/master/hardware/printable_microdrive


ll
Report
the trachea is Pi tð Þ = ax tð Þ � r x t � tð Þ, where ax tð Þ is the contribution to the fluctuations by the modulated airflow, r is the reflection

coefficient at the opposing end of the tube of length L and t = 2L=c, with c the sound velocity. The pressure fluctuations at the output

of the trachea force the air at the glottis, approximated by the neck of the Helmholtz resonator that represents the OEC. The mass of

air at the glottis, forced into the cavity, is subject to a restitution force exerted by the larger mass of air in it.

In acoustics, it is common to write an analog electric computational model to describe a system of filters. The acoustic pressure is

represented by an electric potential and the volume flow by the electric current.68 In this framework, short constrictions are inductors,

and cavities (smaller than the wavelengths) are well represented by capacitors. The equations for the equivalent circuit of the post-

tracheal part of the vocal tract, (see Figure 1B in Arneodo et al.38) read:8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

di

dt
= U1;

dU1

dt
= � 1

LgCh

i1 � Rh

�
1

Lb

+
1

Lg

�
U1 +

+ i3

�
1

LgCh

� RbRh

LbLg

�
+
1

Lg

dVext

dt
+

Rh

LgLb

Vext;

di3
dt

= �Lg

Lb

U1 � Rb

Lb

i3 +
1

Lb

Vext;

where the electric components relate to geometric parameters of acoustic elements, and are described in detail in Perl et al.36 and

Arneodo et al.38 The pressure fluctuations at the glottal end of the trachea relate linearly to the electric tension Vext driving the circuit.

Following the same scheme, the electrical potential at the resistor standing for the beak Vb = i3Rb is the analog of the pressure fluc-

tuations at the output of the beak. In our model, this quantity is the sound radiated by the vocal organ.

Parameter fitting

In order to fit the parameter series that will lead to reconstruction of the song, we perform a procedure similar to that previously

described.27,36 Timescale parameter is set to a value of 23,500; a is set to �0.15 during vocalization and 0.15 otherwise, and b is

set in order to minimize the distance in the (pitch, spectral content) space between the synthesized and the recorded song seg-

ments;36 the envelope (e(t) in the main text) is obtained by rectifying and smoothing the recorded waveform; the parameters of

the vocal tract were fixed, in the same values as in Perl et al.36 In order to extract the pitch of the song, we follow a modification

of the automatic procedure presented in Boari et al.,69 and we add a layer of manual curation. When integrating the model, we apply

the extracted envelope (e(t)) as an extra multiplicative factor when computing ax tð Þ, since it recovers the amplitude fluctuations that

were discarded when reducing themodel to its normal form and driving it with the bi-valued parameter a. The parameters accounting

for the geometry of the vocal tract are constants and are set to the same values as in Perl et al.24

Neural network training

Neural network -based decoders were implemented in python 3.6, using Tensorflow 2.0 and Keras. They were run on Ubuntu 16.04

and 18.04 PCs equipped with NVidia GPUs (Tesla k40c, Titan Xp, and Titan X Pascal). CUDA version was 10.2.

LSTM network architecture

The network has 2 layers of LSTM cells, with Nx5 cells in the first layer and N in the second, where N is the number of clusters in the

neural data. The output layer has as many relu units as the target space (64 for the spectrogram bands). The input of the network is a

Nx50 array that contains the spike count of each cluster, in each of 50, 1ms bins preceding the output bin. The output of the network is

a 1x64 array containing the spectral bands corresponding to a 5ms bin. Both LSTM layers utilized 20% dropout and 0.001 L2 reg-

ularization during training to prevent overfitting.70

Feed-forward Network architecture

The network has 1 dense hidden layer of Nx25 relu units, where N is the number of clusters in the neural data. The output layer has as

many relu units as the target space (p = 64 for the spectrogrambands, p = 3 for the biomechanical model parameters). The input of the

network is a Nx50 vector that contains the spike count of each cluster, in each of 50, 1ms bins preceding the output bin. The output of

the network is a 1xP array containing the spectral bands (p = 64) or the biomechanical model parameters (p = 3) corresponding to a

5ms bin. The hidden layer utilized 20% dropout and 0.001 L2 regularization during training

Training procedure

We utilized a gradient-based optimizer (Adam/rmsprop71) and mean square error (MSE) as a loss function for LSTM/FFNN. We used

40% of all the motifs for testing and the rest motifs for training. We made 3 passes using non-overlapping motifs as a testing set, in

order to have as many decoded examples as the number of motifs in the session. In each pass, all of the neural-activity/decoder-

target pairs (one per bin) were fed in random order to the network, both when training and decoding. We reserved 10% of the training

set as a validation subset for early stopping, where the training session would be stopped if validation loss failed to decrease within 5/

10 training epochs. Figure 4 shows the results of this motif -based training averaged across all birds. As an alternative training

method, we masked a fraction of each motif (roughly 3.3%), trained on the complement, then generated the song corresponding

to the masked fraction. We repeated this piece-wise procedure tiling the whole motif, and generated entire motifs using segments

of data that were novel to the decoder. Figure S3 shows the results of both the motif-wise and piece-wise training for individual birds.
e3 Current Biology 31, 3419–3425.e1–e5, August 9, 2021
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Song waveform generation
Spectrogram inversion

We used LSEE-STFTM algorithm to invert spectrograms back to audio waves,72 as implemented in the librosa python package.73

The algorithm iteratively estimates a signal from the short-time Fourier transform magnitude (STFTM), through minimizing the

mean square error between the short-time Fourier transform (STFT) and the estimated STFT, and subsequently performs STFT

on the estimated signal, the magnitude of which will be passed on to the next iteration.

Within each iteration, a signal was approximated using the equation below:

xðnÞ =

PN
m=�NwðmS� nÞywðmS; nÞPN

m=�Nw2ðmS� nÞ
where xðnÞ denotes the estimated signal; wðnÞ denotes the analysis window used in STFT. The variable S is a positive integer, rep-

resenting the sampling rate of the STFT. Here, ywðmS; nÞ is the target signal corresponding to YwðmS; nÞ, which denotes the target

STFTM, in our case spectrogram powers. To calculate in each iteration, we used a sinusoidal window:72

wsðnÞ = 2wrðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 + 2b2

p
�
a + bcos

�
2pn

L
+ f

��

where L represents the length of the window. Here, wrðnÞ is a rectangular window with an amplitude of
ffiffiffiffiffiffiffiffiffi
S=L

p
within 0% n < L and

zero anywhere outside. A modified Hamming window can be obtained by setting a = :54, b = � :46, f = p
L. After obtaining an xðnÞ

value within each iteration, the STFT of xðnÞwas calculated, which was used in place of YwðmS; nÞin the next iteration. The squared

error between the target STFTM and the estimated STFTM is proven to decrease in each iteration of the algorithm.

Biomechanical model integration

Once themodel parameters are predicted by the decoder, they are re-sampled and fed to an ordinary differential equation integrator.

Resampling to 30 Khz is performed (with cubic interpolation). A fourth order runge-kutta ODE integrator (custom coded) integrates

then the equations of the model with a time step of (900 KHz)-1.

Synthesis through principal components

PC decomposition was made using the PCA module in the scikit-learn package.74 We obtained the principal component decompo-

sition of all the spectrograms of all the motifs sung by each bird during the length of the experiment. 512 frequency bins were used for

the spectrograms, which were concatenated and projected onto the N principal components TN = S WN, where S is the 512-dimen-

sion spectrum time series and WN the transformation matrix (the matrix of the L eigenvectors of SST with the largest eigenvalues) via

the pca.fit and pca.fit_transform methods. For reconstruction from principal components, the inverse transformation was applied by

means of the pca.inverse_transform method.

Spectrum shuffle mask
Time warping

Weadopted a simplified version of Dynamic TimeWarping (DTW75) specific to zebra finch songs. Instead of segmenting the song into

different syllables and matching each syllable to different syllable templates, we took advantage of the stereotypical nature of zebra

finch songs and directly computed minimal distance matrices (D) between each song-level spectrogram and a spectrogram tem-

plate. Starting at the first slice of each spectrogram,

Dði; jÞ = dði; jÞ+min
�
Dði� 1; jÞ iff wjðl� 1Þswjðl� 2Þ; Dði� 1; j� 1Þ; Dði� 1; j� 2Þ�

Where i indexes the time frames of the input pattern, j indexes the time frames of a single template, l indexes the ordered steps along a

specific path. d(i, j) is the local distance between slice i and slice j. wj(l) denotes the specific step at l in the space of j. Once a distance

matrix Dwas calculated, we determined an optimal pathwith the lowest cumulative distance between the input and the template, and

proceeded to stretch, delete or keep each input slice, depending on the path.

Masking

We applied a random yet consistent shuffling mask, P, to our entire warped spectrogram repertoire so that spectral consistency

across time is disrupted while the temporal pattern within each motif remains. For the i-th spectrogram slice in each warped

song, we shuffled all 64 spectral elements using the same shuffling pattern Pi. Treating all spectrograms with the same shuffling

mask P enabled us to determine whether our model is decoding the spectral information within birdsongs or recreating the same

pattern regardless of spectral consistency across time. In our shuffling training session, we used the shuffled spectrograms as

output.

Reordering mask

After training, we tested our model on novel neural data, the target of which were also shuffled spectrograms. In order to visually

compare our model’s performance with and without shuffling, we reordered the reconstructed shuffled spectrograms. We achieved

this by applying a reordering mask, R, that traces and reverses all the shuffling done through the aforementioned shuffling mask P.

For any spectrogram S, RðPðSÞÞ = S.
Current Biology 31, 3419–3425.e1–e5, August 9, 2021 e4
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QUANTIFICATION AND STATISTICAL ANALYSIS

Performance Evaluation
Root Mean Square Error (RMSE)

We used RMSE between each pair of original and predicted spectrogram magnitude as a metric to evaluate the performance of our

models.

Spectral correlation

To obtain the spectral correlation across time for a pair of spectrograms, we first computed the pearson correlation coefficient be-

tween each corresponding pair of spectral slices that conform the two spectrograms (via the function pearsonr from the stats module

of the scipy python package64). Then, we obtained the time-averaged value across the span of the motif.

Earth mover’s distance

To obtain the distance across time for a pair of spectrograms, we computed the earth mover’s distance (dEMD) or Wasserstein metric

between each pair of spectral slices that conform the two spectrograms (via the function wasserstein_distance from the statsmodule

of the scipy python package64). Prior comparison, each spectral slice was normalized such that the total area under the slice be 1; for

silences, a value of 1 was assigned to the first bin of the spectrogram. Then, we obtained the time-averaged value across the span of

the motif.

Spectrogram Normalization

In order to account for variations among motifs from different birds, we normalized spectrograms for each bird so that the collection

of original spectrograms for each bird had a maximum power of 1 and minimum power of 0:

bpi =
pi � pmax

pmax � pmin

Where pi is the power of a point on either an original spectrogram or a predicted spectrogram before normalization, while bpi is the

normalized power of the corresponding point. pmax denotes the maximum power of the entire set of original spectrograms, while pmin

represents the minimum power of the entire set of original spectrograms. With such normalization, we were able to account for var-

iations among motifs from different birds while keeping the variations within motifs from the same bird.

Pairwise performance comparisons

We performed comparisons among and between different sets of songbirds (displayed in Figure 4 boxplots for instance). BOS-BOS:

comparisons provide a baseline of the variability of the bird’s own motifs during the session: comparison across each pair of motifs.

neur-bos: comparison across each pair of natural motifs and it’s corresponding one decoded from neural activity.

In order to provide an extra control reference, we also computed spectrogram comparisons against a set of 47motifs from conspe-

cific birds (other zebra finches; about half of them from our colony and half from other colonies). This produced the sets: BOS-CON:

comparisons across each BOS motif and all of the conspecific (CON) motifs.
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