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 Abstract   

Fuel  cell  vehicles  (FCVs)  have  been  broadly  considered  substitutes  for  traditional 

internal combustion engine (ICE) vehicles. It is crucial to efficiently and healthily use 

hydrogen-powered power sources to diminish FCVs' operating costs. It can be fulfilled 

through well-designed energy management strategies (EMSs), which organize the energy 

sources  to  generate  the  requested  power.  The  hardware  modularity  has  already  been 

investigated in the multi-stack FCVs (MFCS), while the software modularity has escaped 

the  attention.  The  hardware  modularity  aspect  of  the  MFCSs  is  related  to  having 

flexibility  and  reconfiguration  in  different  electrical  and  fluidic  structures.  Literature 

consideration shows that most of the existing power splitting approaches are centralized. 

Moreover, some issues regarding efficiency, availability, modularity, flexibility (plug & 

play),  robustness,  durability,  and  cost  need  to  be  addressed.  In  this  respect,  a  new 

direction  called  decentralized  power  allocation  strategy  has  come  under  close 

consideration in this Ph.D. thesis to overcome the limitations and increase the decision-

making  scheme's  reliability  and  scalability.  Unlike  the  typical  centralized  power 

management  approaches,  a  decentralized  control  scheme  comprises  light-connected 

control  units  instead  of  a  big  centralized  one  to  augment  reliability  and  scalability. 

Several decentralized EMSs are established to provide a robust and modular powertrain 

system.  The  thesis's  main  contributions  are  outlined:  First,  a  decentralized  power-

splitting strategy based on the auxiliary problem principle (APP) decomposition method 
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is developed to prove the concept stage. Next, a comprehensive comparison between the 

consensus  alternating  direction  method  of  multipliers  (C-ADMM)  and  the  Proximal 

Jacobian  alternating  direction  method  of  multipliers (PJ-ADMM)  is  conducted  to 

demonstrate the main characteristics of the decentralized optimization algorithms in the 

EMS field. Finally, decentralized model predictive control (MPC) is introduced for real-

time  decision-making  because  it  can  handle  time-varying  constrained  systems  and  is 

suited  for  the  integration  of  driving  predictive  information.  Additionally,  a  learning-

based tuning method is integrated to seek the optimal hyperparameters of the suggested 

EMS. 
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Chapitre 1 - Introduction 

1.1 Introduction 

   An introduction to the Ph.D. thesis is presented in this chapter. Firstly, the research 

gap in existing studies is specified. Then, the corresponding solutions, specifically modular 

energy systems (MESs) and decentralized optimization algorithms, are discussed accordingly 

to highlight the main contributions of this thesis. Single-stack fuel cell systems (FCSs) face 

several challenges, such as efficiency, availability, durability, and cost. In the FCS, each cell 

needs  appropriate  distribution  of  humidification,  hydrogen,  water,  and  temperature.  In 

malfunctioning cell/cells, uneven heating and variations in cell voltages can happen, and, as 

a result, continuing operation under this condition may be non-appropriate. 

Furthermore, the traction power of buses, trucks, trailers, trains, and ships can reach high-

level capacity, so it is necessary to shift to big-size FCS, generating higher power. However, 

stacking  more  cells  declines  the  reliability  of  the  powertrain  systems.  A  modular  energy 

system (MES) is introduced in the literature to address these deficiencies and imperfections. 

In [1], Marx et al. provided a survey of multi-stack FCSs with different architectures. It has 

been concluded that a more reliable system is obtained by utilizing a parallel configuration 

by enabling the degraded mode of operation. Garnier et al. [2] analyzed a multi-stack FCS 

with  a  power  converter  architecture  for  transportation  applications.  Candusso et  al.  [3] 

investigated  the  electrical  operation  equipped  with  an  anti-parallel  diode  under 

malfunctioning conditions. A survey of variant power conditioning topologies is provided in 
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[4].  Thounthong et  al.  [5]  reviewed  different  methods  regarding  the  power-conditioning 

systems for the single-stack and multi-stack FCSs. Palma and Enjeti [6] suggested a modular 

multi-stack  FCS  powered  by  a  modular  power  conditioning  system.  There  are  several 

advantages for the MES compared to the single-stack ones. One of the main advantages of 

multiple FCSs is the accessibility to several maximum efficiency operating points, as shown 

in Figure 1-1 [1]. 

 

Figure 1-1 Efficiency curves comparison. (a) Single high-power source, and (b) 
Modular energy system composed of four parallel low-power sources. 

Additionally,  a  MES  can  increase  availability  and  durability  by  providing  a  redundancy 

function to the system [7, 8]. A MES can operate in a degraded mode if one or more modules 

break  down  due  to  malfunction  [7,  9,  10].  A  simple  reconfiguration  and  replacing  of  the 

components without changing the entire system or pausing the operation can revert the power 

system  to  continue  in  its  normal  state  [11].  The  flexible  configuration  of  these  systems 

provides modularity as well as function partitioning. The modularity rules out the probability 

of cascading failure occurrence in the system and assures a nonstop operation of the system 

in  various  operating  modes  [11].  If  only  one  or  few  FC  modules  are  used  in  low  power 

requirements, the unused FC modules do not degrade. This way of operation prolongs the 

lifetime of the system [12]. A flexible architectural arrangement is another strength of MESs. 
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Adjusting  the  position  of  the  center  of  gravity  can  be  done  through  various  architectural 

configurations  of  powertrain  components  and  their  subsystems,  which  impact  the  mass 

distribution of the vehicle [13]. 

Another fundamental advantage of utilizing the MESs is reaching the economy of scale and 

large-scale production volumes in the intended power source. By acting on the number of 

modules,  the  MESs  make  the  same  elementary  module  possible  for  a  wide  range  of 

applications in terms of power demand. This characteristic is because several similar modules 

manufactured by one production line can meet the power demand. In this way, the average 

costs  start  reducing  as  the  output,  the  customers'  needs  for  the  particular  manufactured 

product, escalates. This is when the economies of scale and series production happen. From 

another perspective, the required initial price of designing and implementing a MES is higher 

than a single-source system. However, in the long term, the modularity could compensate for 

this cost since the price of replacing one low-power component is much less than a high-

power one. It is worth mentioning that the economy of scale is valid for a niche market and 

small series vehicles. Till the production reaches a high number of units/year of a given car, 

the design and the production of a reliable single source will probably be more attractive 

from an economic perspective. The modularity of the developed method is connected to the 

fact that mass manufacture of a modular energy system will reduce FCV final cost. It will be 

more  cost-effective  to  have  a  modular  energy  module  adaptable  to  various  vehicle 

applications, from light-duty to heavy-duty. Thus, combining several modules may handle a 

broad range of transportation applications. 

Contrary to the benefits mentioned above, the modular system encounters various drawbacks. 

First, because of several connected power units, the initial expense of a MES is higher than 
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a centralized energy system. Additionally, the maintenance cost to keep the system functional 

increases because of its multi-structure. Another point to mention is that it is more difficult 

to  use  several  power  sources  effectively.  Thus,  management  and  designing  an  effective 

control strategy for such a system are challenging. Additionally, compared to the centralized 

energy system, the configuration and sizing methods will be more complex in the modular 

system design. The advantages and disadvantages of the MESs are summarized in Table 1-I. 

Table 1-I A detailed comparison between the advantages and disadvantages of the 
modular energy system. 

Advantages Disadvantages 

Efficiency improvement  

The  economy  of  scale,  series  production,  and 

overall cost decline  

Flexible architecture (mass distribution)  

Availability and durability 

High initial ancillary cost 

High maintenance expense 

More  challenging  to  deploy  and  design 

(architecture and dimensioning) 

Coordination and control problem  

1.2 Different applications of the modular energy system 

Based on the aforementioned benefits and drawbacks, it is clear that the modular system 

may be effective in various applications. Thus, MESs are required for transportation other 

than  rail,  road,  sea,  and  air.  The  following  sections  show  some  of  the  most  essential 

applications for each group. 

1.2.1 Rail application 

The  enhancement  of  MES  technologies  has  paved  the  way  for  applying  these 

configurations  in  rail  transportation  applications  [14].  In  [15],  different  energy 

management  methods  are  proposed  to  control  the  power  flow  among  the  powertrain 
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components  in  a  low-floor  light  rail  vehicle  (LF-LRV)  tramway.  This  tramway's 

powertrain,  shown  in  Figure  1-2,  comprises  two  PEMFCs,  two  battery  packs,  two 

supercapacitors,  four  bidirectional  DC/DC  converters,  two  unidirectional  DC/DC 

converters,  an  auxiliary  service  module,  and a braking  resistor.  The  battery  packs  are 

connected in parallel by a converter. In this way, the output voltage of each battery pack 

is isolated, which leads to more flexibility in the inverter input voltage, the topology of 

each  package,  and  operation  management.  Since  the  utilized  FCSs  are  arranged  in  a 

parallel configuration, the isolation and reconnection procedure can be conducted with 

minimum stress on the other components. This configuration is also more beneficial in 

degraded mode operation and reduces the average degradation per cycle than series one. 

 

Figure 1-2 Powertrain configuration of the developed modular tramway  [15]. 

1.2.2 Road transport 

Several examples of utilizing modular FCS and batteries for road vehicles can be found 

in  the  literature.  The  German  multinational  automotive  corporation,  Daimler,  has 

announced  the  emergence  of  a  FC  hybrid  bus  in  Hamburg  with  the  capability  of  250 

kilometers operating range and almost 50 percent less hydrogen consumption than the 
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last generation. The powertrain of this bus is practically maintenance-free with a long 

operating life thanks to the provided modularity by its FCS configuration in which two 

FCSs  are  connected  to  the  DC  bus  [16].  In  [17],  to  increase  power,  availability,  and 

durability, two PEMFCs are connected in series, and the connection with the batteries is 

parallel  to  control  a  heavy-duty  vehicle.  The  most  significant  advantages  of  this 

configuration are simplicity and low cost. The DC-bus of the car is directly connected to 

a pack of lead-acid batteries. The batteries act as an electrical source buffer coupled to 

the DC converter in a parallel configuration in the explained vehicle. In [18], two 40-kW 

FCS stacks are connected in a parallel configuration. The whole drive train is controlled 

through an adaptive supervisory control strategy. The power train configuration of this 

bus is presented in Figure 1-3. 

 

Figure 1-3 Powertrain of the hybrid modular source city bus [18]. 

1.2.3 Maritime application 

Numerous examples of modular FCS and batteries for navigational purposes can be found 

in the scientific literature. For instance, a 92-meter-long vessel, with the help of several 

gas-electric propulsion systems (Gensets) next to FCS and battery systems, brings about 
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a safer level, lower noise and vibrations, and lower cost maintenance necessities [19]. 

Because  of  the  parallel  arrangement  of  the  MES,  the  FCS  system  has  prevented  from 

being  degradation  after  one  year.  In  [20],  several  alternative  powertrains  based  on 

different configurations of FCSs and batteries for an electric ship are studied. The power 

for the electric boat was provided by 12 packs of batteries (650 kW) and a 250 kW Genset. 

The research stated that the FCSs powertrain is more beneficial than others. Five Ballard 

HD6  FCS  modules  have  been  used  in  a  parallel  structure  to  satisfy  the  required  high 

power current with a fixed voltage to implement this powertrain.  Figure 1-4 demonstrates 

a hydrogen-powered vessel. The consumed hydrogen of two 30-kW FCSs is produced by 

electrolyzing seawater  [21].  The  primary  feature  of  this  vessel  is  that  the  hydrogen 

storage is ten times lighter than the storage by a battery pack, and it can be stored for a 

long  time  without  any  drop.  Additionally,  this  forward-looking  concept  offers  low 

hydrogen consumption, zero emission, zero noise, efficient energy storage, and backup 

power [21]. 

 

Figure 1-4 Configuration of the modular hybrid-electric boat [21]. 
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1.2.4 Submarines application 

Immersion  autonomy  and  discretion  (heat  and  sound)  must  be  fulfilled  in  military 

submarines. The submarines with batteries have a very low immersion autonomy since 

they need to come back up to the water's surface to use the diesel engines to recharge the 

batteries.  Integrating  FCSs  with  batteries  leads  to  a  drastic  increase  in  immersion 

performance. Moreover, noise and heat generation is much less in this way. For instance, 

the Class 212 submarine designed by Siemens is equipped with nine modules of 30 kW 

FCSs,  in  which  one  FCS  is  used  as a backup.  A lead-acid  battery  has  been  added  to 

improve the total performance [22]. 

1.2.5 Air transportation 

In [23], research in an uncrewed aerial vehicle (UAV) application stated that modular-

stack  configuration  performs  way  better  than  single  stack  in  terms  of  efficiency  and 

availability.  In  [24], a hydrogen-powered  four-seater  passenger  aircraft  is  introduced. 

This aircraft produces no local air pollution and has shown good prospects to make future 

transport more sustainable. The powertrain comprises four low-temperature FCSs (T<70 

°C) placed in the center capsule, as shown in Figure 1-5. This aircraft can cruise up to 

750 kilometers. By using liquid hydrogen, this range can be doubled at the cost of more 

complicated infrastructure [24]. 
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Figure 1-5 Powertrain configuration of the uncrewed aerial vehicle [24] 

1.3 Possible prospects of modular-based powertrain systems 

Concerning the discussed MES concept in the thesis, different possible research areas can 

be pointed out as worthy of attention. One of the essential research directions would be 

to create an advanced EMS for the modular system. A suitable and well-design EMS can 

make most of the previously discussed advantages of MESs viable. Another direction is 

to  design  an  appropriate  architecture  and  sizing  of  powertrain  components  for  such  a 

modular  architecture.  In  this  Ph.D.  thesis,  due  to  the  importance  of  power  decision-

making strategy, the primary focus is designing and developing forward-thinking EMS 

control  methods.  In  this  regard,  to  investigate  the  design  of  the  EMS  part,  a FCV 

architecture composed of two FC modules and one battery pack is selected, as shown in 

Figure  1-6.  As  can  be  observed,  the  two  open-cathode PEMFCs  are  paralleled  and 

connected to a DC bus to supply the requested power. The battery pack is placed to tackle 

the FCS's slow response characteristic, and the purpose of the regenerative braking is to 

improve FCV efficiency. In this regard, a modular test bench based on an electric vehicle 

is  established  [25].  The  developed  small-scale test  bench  comprises  two  modules,  a 
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battery pack, a programmable DC electronic load, and a multi-range programmable DC 

power supply for simulating the requested load profile. The critical components of each 

module  are  a  500-W  open-cathode  PEMFCS  (H-500),  a  smoothing  inductor,  and  an 

adjustable unidirectional boost DC-DC converter. Six series 12-V 18-Ah battery packs 

give the voltage of the DC bus. Each module has its autonomous Dec-MPC inside of a 

National Instrument CompactRIO. The optimal reference of each module is calculated at 

every control instant with an interval of 10 Hz. 

To achieve this thesis's primary goal, which is to apply a decentralized power allocation 

strategy,  the  presented  figure  makes  it  easier  for  the  readers  to  understand  the  main 

powertrain configuration. The complete structure includes the local fuel cell system and 

powers  electronic  components.  It  is  common  to  use  such  a  presentation  in  different 

articles [18, 26, 27]. In the thesis, regenerative braking is not considered.  The vehicle is 

equipped with a typical braking system, in which surplus kinetic energy is converted to 

wasted heat because of friction in the brakes. 

 

Figure 1-6 Scheme of the selected modular FCV powertrain architecture. 
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1.4 Different energy management strategies for modular fuel cell vehicles 

Developing  a  promising  energy  management  strategy  (EMS)  to  coordinate  multiple 

power sources is of great importance to efficiently use the FCV with a modular powertrain. 

The  possible  control  and  management  strategy  configurations  for  a  modular  FCV  can  be 

categorized  into  three  primary  forms:  centralized,  distributed,  and  decentralized,  as 

demonstrated in Figure 1-7. 

   

(a) (b) (c) 

Figure  1-7  Different  forms  of  developing  control  strategy  unit  for  a  module  FCV:  a) 

centralized, b) distributed, and c) decentralized. 

 

1.4.1 Centralized-based control structure 

All  power  modules  are  linked  to  a  central  control  unit  in  this  type  of  controller.  The 

management  unit  collects  detailed  information  about  the  modular  system  and  provides 

control  signals.  This  centralized  decision-making  structure  is  easy  to  set  up  and  can  be 

developed  quickly.  Somaiah  and  Agarwal  [28]  recommended  implementing  power  point 

tracking  in  a  multi-stack  FCS  using  a  power  conditioning  unit  for  each  FCS.  In  [27], 

efficiency optimization and an instantaneous optimization-based EMS are suggested by Han 

et al. for a dual-stack FCS. Ramadan et al. [29] provided a thermal management strategy to 

reduce startup duration, heating/cooling, and cycling problems. Each FCS is activated based 
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on the demanded power and temperature. The multi-stack FCS useful life is influenced by 

each  FCS  useful  life,  operating  conditions,  and  schedule  in  this  work.  Herr et  al.  [30] 

proposed a EMS based on the MILP method to prolong the powertrain systems’ useful life 

through a prognostics and health management approach (PHM). Marx et al. [31] investigated 

the impact of components sizing of a multi-stack FCS. The obtained results demonstrated an 

improvement  in  hydrogen  consumption  and  degradation  rate  in  a  high  hybridization  rate. 

Fernandez et  al.  [32]  introduced  a  EMS  based  on  an  adaptive  state  machine  to  improve 

hydrogen consumption and lifespan. The suggested approach is integrated with a Kalman 

filter  identification  method  to  determine  each  FCS’s  maximum  power  and  efficiency.  To 

enhance the multi-stack FCS parameters estimation accuracy, Wang et al. [33] put forward 

a EMS based on a forgetting factor recursive least square online identification algorithm. In 

another study, Yan et al.[34] suggested a hierarchical control method based on an equivalent 

fitting circle strategy. Zhang et al. [35] proposed a hysteresis-based EMS to make activation 

time  evenly  distributed  and  decrease  the  number  of  switching  over  three-stack  FCS.  It  is 

important  to  mention  that  all  the  existed  EMSs  for  the  multi-stack  FCS  are  based  on  the 

centralized configuration. These centralized managements are not fault tolerant and do not 

provide the modularity from the software perspective. 

1.4.2 Distributed-based control structure 

As its name implies, the distributed structure does not require a central management unit. 

Instead,  this  configuration  uses  several  coordinators,  each  managing  a  part  of  the  power 

system’s  modules.  Each  power  module  only  exchanges  information  with  the  coordinator 

units that operate each energy module independently. When one or more units fail, the other 

collaborating units can continue their operations and provide control signals to the functional 
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modules.  Concerning  overall  powertrain  system  uptime,  this  distributed-based  control 

system significantly improves over a centralized one. Furthermore, while their fault tolerance 

is higher than the centralized one, this comes at a maintaining price in a distributed-based 

control system. 

1.4.3 Decentralized-based control structure 

A decentralized strategy is similar to a distributed one in that it does not require a central 

control unit. However, going a step further in modularity eliminates the need to have multi 

coordinator units. Each control unit of the power modules directly exchanges data with its 

neighbor  control  units.  The  control  units  (software  part)  are  allocated  between  the  power 

modules (hardware part), improving the control strategy’s performance. This decentralized-

based  scheme  enables  the  modular  controllers  to  share  their  control  management 

responsibilities. Such a control system is safer than the centralized and distributed structures 

from  the  independent  failure  of  power  system  components  (hardware  and  software 

perspectives), improving its effective uptime considerably. Furthermore, the decentralized 

control  structure  is  more  scalable  and  flexible  (plug-and-play)  concerning  changes  in  the 

modular power system [36, 37]. Another point to mention is that due to the ability to offer 

parallel processing and calculations, the decentralized-based EMS can reduce computational 

complexity  more  than  the  previous  control  structures,  forming  the  solution  speed  and  the 

maximum size perspectives. 

While the decentralized-based strategy can bring several unique advantages for modular 

powertrain applications, there are also several disadvantages to this type of control strategy. 

In  the  modular  powertrain  system,  a  control  strategy  needs  to  be  working  toward  the 

predefined  common  goals.  Since  the  power  decision-making  strategy  is  delegated  in  a 



14 
 

decentralized  control  layer,  ensuring  that  all  control  units  consistently  pursue  the  main 

powertrain  objectives  is  more  challenging.  In  this  regard,  addressing  the  coordination 

problems  effectively  requires  receiving  considerable  attention.  In  addition,  since  several 

similar  parallel  control  decisions  need  to  be  made  simultaneously,  the  decentralized  and 

modular structure is more susceptible to duplicating efforts, which results in inefficiency and 

extra costs. 

Additionally, each module’s control strategy may be tempted to modify its operation in 

an incongruity effort to maximize efficiency selfishly. Putting local goals above global goals 

is essential to make sure that one module's policy and control management does not interfere 

with  or  disrupt  the  work  of  other  modules.  Furthermore,  external  factors  and  unknown 

disturbances might make it impossible to benefit from the decentralization concept. 

1.4.4 Comparison between centralized, distributed & decentralized control strategies  

As mentioned above, there are several benefits and downsides to every control strategy 

configuration. To sum up all the discussions regarding different management structures, a 

thorough comparison among these control strategies is presented in Table 1-II. As can be 

obviously observed from Table 1-II, with less prone to malfunction and offering flexibility 

(plug-and-play),  the  decentralized  decision-making  structure  has  important  characteristics 

compared  to  others.  In  addition,  the  reconfiguration  and  adaptive  capabilities  of  the 

decentralized-based control will assist in declining its deployment and maintenance costs in 

the future. In this regard, the decentralized control configuration will likely prove an inspired 

direction in the years to come for the modular powertrain. Based on the provided discussion, 

the  decentralized  power  splitting  strategy  is  chosen  to  control  the  selected  modular  FCV 

powertrain configuration. 
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Table 1-II Comparison between centralized, distributed & decentralized control 
strategies 

Methods Pros Cons 

Centralized Simple management algorithm 

Fast developed process 

Reasonable maintenance cost 

Likely to malfunctions  

High computational time 

Expensive and extremely 
reliable processor unit 

Distributed Less  likely  to  fail  than  a  centralized 
control unit  

Better performance 

Allows  for  a  more  flexible  control 
strategy  

More expensive maintenance  costs 
than a centralized one 

Irregular  performance  when  not  well 
optimized 

Decentralized Parallelizable and  needs  low 
computational efforts 

Best performance 

Fault-tolerant 

Higher level of security  

Highly plug-and-play and scalable  

Several cheap possessor units 

More  challenging  to  coordinate  and 
design the control units 

Higher maintenance costs 

1.5 Decentralized convex-based optimization (DCO) approaches 

Based on the previous explanation, in this subsection, a comprehensive literature review of 

the decentralized methods is given to select the most suitable approach. As mentioned earlier, 

the multi-stack powertrains bring about modularity and reliability from electrical and fluidic 

perspectives.  They  do  not  guarantee  these  aspects  in  their  management  and  control  units. 

Therefore, there has been a growing trend in the literature to shift from centralized power 

allocation  strategies  (Cen-PASs)  to  decentralized  power  allocation  strategies  (Dec-PASs). 

For instance, in [38, 39], two Dec-PASs based on game theory are proposed. However, the 

main drawback of these strategies is that the players are selfish and may not converge to their 

optimal results. 
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Furthermore, these Dec-PASs cannot entirely satisfy the nonlinearities in the behavior and 

the constraints of different sources. Another significant problem with these strategies is that 

they need a lot of data exchange, which is not feasible for the onboard applications. In [40], 

a  droop-based Dec-PAS  is  proposed  for  seeking  optimal  power-sharing.  However,  this 

approach  cannot  perform  well  in  a  wide  range  of  operations  and 

does not consider the powertrain system's lifespan. To evade the problems mentioned above 

in other domains with multi-source systems, such as smart grids [41, 42], special attention 

has been given to decentralized convex optimization (DCO) algorithms [43]. In the DCO 

methods, the central complex optimization problem is decomposed and then reformulated for 

each small subproblem regarding shared information and newly defined constraints. One of 

the most famous classical decomposition methods is introduced in [44] based on Lagrangian 

Relaxation with slow convergence. Several other ways, such as auxiliary problem principle 

(APP) [45], consensus-based algorithm [46], Karush-Kuhn-Tucker (KKT) conditions [47], 

and alternating direction method of multipliers (ADMM) [48, 49], have been proposed to 

enhance the convergence rate. ADMM has attracted much attention since it can guarantee 

global convergence and does not require a significant amount of data exchange despite other 

algorithms. This method amalgamates dual decomposition with the multipliers technique and 

the  augmented  Lagrangian  approach.  ADMM  decomposition-based  method  can  be 

categorized  into  Gauss-Seidel  ADMM  (GS-ADMM),  Variable  Splitting  ADMM  (VS-

ADMM), and Jacobian ADMM (J-ADMM) [50]. GS-ADMM cannot be straightforwardly 

applied  to  an  optimization  problem  with  more  than  three  subproblems  and  hence  cannot 

guarantee the convergence in this case [50]. VS-ADMM is also not practical for large-size 

optimization  problems,  and  J-ADMM  may  diverge  for  various  problems  although  its 

updating procedure is parallel. In this regard, J-ADMM and GS-ADMM have been advanced 
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to  Proximal  Jacobian  ADMM  (PJ-ADMM)  and  Consensus  ADMM  (C-ADMM), 

respectively,  to  be  more  practical  for  the  distributed  optimization  problems.  The  update 

processes of PJ-ADMM and C-ADMM are parallel, and convergence performance can be 

guaranteed simultaneously [51]. These two DCO-based algorithms offer several advantages 

compared  to  centralized  ones.  Firstly,  parallel  execution  feature  enables  them  to  solve 

complex  optimization  problems  with  less  computational  effort.  Secondly,  they  can 

autonomously adapt to new changes, which provides robustness in any subsystem failure. 

In a modular energy system, robustness may be defined as a system's ability to withstand a 

sudden failure and continue operating normally in the case of an electrical fault. In [52, 53], 

two  classic  ADMM  algorithms  are  suggested  for  solving  Cen-PASs  in  hybrid  electric 

vehicles. However, their central control units do not offer modularity, plug & play aspects, 

and  robustness  in  terms  of  software.  [42]summarizes  different  notable  applications  of  the 

DCOs,  such  as  direct  current  optimal  power  flow  (DC-OPF),  alternative  current  optimal 

power  flow  (AC-OPF), and unit  commitment  (UC),  in  the literature. Different  connection 

topologies for the DCOs to share information among the subproblems are shown in Figure 

1-8.  The results in [54] showed that the star-connection would lead to a faster convergence 

rate than the ring-connection strategy. Similar research in [55] investigated the advantages 

of the ring-connection topology as compared to the star-connection topology, including (1) 

the  reduced  amount  of  data  to  be  communicated,  (2)  higher  level  of  security,  (3)  more 

robustness, and (4) privacy protection of individual agents since the data are not shared in a 

central controller. The complete connection offers the fastest convergence rate between all 

types  of  connection  forms  compared  to  the  other  configurations.  From  a  contradictory 

perspective,  a  high  range  of  data  exchange  among  the  adjacent  modules  is  needed  in  this 
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topology. To do so, a ring configuration is employed to form the shared information between 

the modules. A comparison of different types of communication is presented in Table 1-III.  

 

Figure  1-8  Popular  communication  and  sharing  information  topologies  for  the 

decentralized optimization algorithms. 

 

Table 1-III A comparison of different types of communication 

Type Convergence speed Data Security Privacy Robustness 
Star Medium  Medium Medium  Medium Medium 
Ring Low Low High High Higher 
Full High High Medium Medium Medium 

 

Depending  on  the  decomposition  techniques  and  shared  information,  the  DCOs  can  be 

classified into two main categories, as shown in Figure 1-9 and Figure 1-10. Table 1-IV is 

compared  the  five  most  important  characteristics  of  the  Lagrangian-based  and  consensus-

based DCOs. 

 
Figure 1-9 Classified the DCOs based on the decomposition methods. 
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Figure 1-10 The decentralized methods according to the type of the pooled information 

 

Table 1-IV Comparison between the Lagrangian-based and Consensus-based DCOs. 

Algorithm Method Type of 
information 

Data Iteration Computational 
effort 

Lagrangian-
based 

Leaving each entity with 
an optimization problem 

to solve 

Physical 
variables of 
the boundary 
system 

High Low High 

Consensus-
based 

Solves a set of a linear 
combination of gradient 
terms per iteration 

Cost of 
subproblem 

Low High Low 

 

 

To investigate in detail, Table 1-V and Table 1-VI summarize the features of Lagrangian 

and consensus-based methods. 

Considering  the  discussed  DCOs  in  the  previous  studies,  it  is  reasonable  to  select  the 

Lagrangian-based  schemes  to  tackle  the  real-time  decentralized  EMS  application  of  the 

thesis. A real-time system can generate accurate outputs from the computations based on the 

logical results and the physical time when those results are generated [56]. When a controller 

responds to a request, its response time typically falls into a variation interval, also known as 

latency  jitter.  A  powertrain  system  can  only  allow  a  certain  amount  of  latency  without 

damage or failure. The latency of a control unit should be at least five times smaller than the 

latency  of  the  process  the  controller  is  meant  to  control  to  provide  a  reliable  automation 

Decentralized 
optimization  Algorithms

Decomposition-based

Dual Decomposition 

ADMM

consensus multi-block ADMM (C-ADMM)

Proximal Jacobian multi-block ADMM (PJ-ADMM)
APP
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Consensus-based ICC

Flooding-based Consensus Approach

Marginal Equivalent (ME) 

Game Theory (GT)
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solution. For appropriate hardware selection, requirements should include handling processor 

interrupts in real-time and providing a development and runtime software environment that 

can handle the required elapsed time and latency jitter. These methods are more robust than 

the other approaches, and they are more accessible for implementation, giving them more 

practical capabilities. 

Table 1-V Summarization of Lagrangian-based methods. 
Algorithm Dual 

decomposition 
ADMM APP OCD 

Advantages  Scalable/ 
fine-grained 
Nodal-based 

Robust 
Area-based 

 

Speed Slow Fast Fast Fast 
Disadvantages Difficulty in 

convergence 
 

Dependent 
on the tuning 
parameters 

Dependent on 
tuning 
parameters 

Relies on how the 
system is 
partitioned-
Differentiable Cost 
functions 

Data exchange High Medium Low High 
Computational High Medium Low Low 
Iteration High Low Low High 
Convergence Strict convexity 

finiteness of all 
local functions 

Convex 
function 

Convex 
Differentiable 
function 

No proof 

 

 

Nevertheless, special consideration should be paid to the choice of tuning parameters to 

obtain satisfactory results in terms of the initialization and customization of the algorithm. 

Furthermore,  these  methods  are  preferable  to  consensus-based  schemes  since  their 

convergence to the global answer can be proven, and they easily enable each modular system 

to achieve optimal results even in the case of a halt or malfunction in one of them. In this 

regard,  APP,  C-ADMM,  and  PJ-ADMM  are  singled  out  among  the  Lagrangian-based 

approaches due to their parallel structures and fast convergence, which seem like feasible 

solutions in our case study. 
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Table 1-VI Summarization of Consensus-based Algorithm. 
Algorithm ICC GT RL 

Advantages • Fully 
decentralized 

• Robust 
• Adaptive 
• Scalable  
• Fully 
decentralized 

• Model-free 

Disadvantages • Sensitive to 
hyperparameters 

• Problem with 
addressing the 
constraints 

• Cannot reach a 
good outcome for 
nonlinear cost 
functions 

• The amount of 
data exchange 
between neighbor 
modules is high. 

• System-level 
security 
constraints 
may not be 
effectively 
handled 

• Significant 
information 
exchange 

• Self-
optimizing 
manner 

• Converge if 
general Nash 
equilibrium 
exists for the 
problem 

• Optimality 
cannot be 
guaranteed 

• High 
training 
rate 

 

1.6 Problem statement 

The  fuel  cell  system  encounters  reliability  and  durability  shortcomings  compared  to  the 

internal combustion engine. In the literature, the multi-stack fuel cell system is introduced, 

and many studies are conducted to improve further this kind of system. The main weakness 

regarding the current multi-stack system is that even these systems provide flexibility and 

plug-and-play from the hardware point of view. At the same time, they do not offer such 

characteristics from the software perspective. The control unit of an interconnected multi-

stack system with a centralized control strategy is susceptible to malfunction and would not 

be plug-and-play. For instance, in case of an electrical fault in the control unit, the fuel cell 

system will stop its regular operation. Furthermore, a multi-stack system with a centralized 

control unit would not be reconfigurable to the new powertrain changes. 
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1.7 Aims and objectives 

To correctly solve the preceding section's problem, three primary goals are identified, 

and the thesis's significant steps are detailed in connection to these objectives. The main goal 

is to illustrate the completely decentralized technique in a multiple-stack powertrain system. 

The second goal is to examine the capability of establishing a decentralized strategy from 

various perspectives. The third goal is to enhance the previous phase, based on a one-step 

optimization technique, by including knowledge about future driving profiles. After studying 

the  excited  decentralized  controllers,  the  Lagrangian-based  decomposition  approach  was 

chosen to meet the significant purpose of this research. The overall optimization issue is then 

subdivided  into  two  subproblems.  To  accomplish  the  second  objective,  two  well-known 

decomposition strategies are carefully contrasted. Two critical aspects of robustness and cost 

sensitivity are thoroughly examined. To accomplish this thesis's final objective, a machine-

learning technique is used to address the limitations of incorporating this information and the 

dynamic reactions of the components as computing complexity increases. 

1.8 Methodology 

Based on the explanations mentioned above, due to the shortcomings in the multi-stack FCSs 

from the software perspective, it is essential to shift toward decentralized energy management 

schemes.  Such  a  system  is  robust  against  faults  and  brings  flexibility  and  plug-and-play. 

Based on the developed bases, after presenting the literature review of the multi-stack fuel 

cell  system,  in  Chapter  2,  a  proof  of  concept  of  the  modular  system  with  a  single–step 

decentralized  control  strategy  is  proposed  for  a two-stack  system.  In  this  regard,  the 

optimization  problem  is  formulated.  Subsequently,  a  detailed  comparison  shows  how  this 

approach is close to the centralized method concerning the final hydrogen consumption and 
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degradation costs and the computational time complexity. After presenting this step, Chapter 

3  presents  two  powerful  decentralized  optimization  algorithms  to  more  specifically 

concentrate on the fault robustness of the proposed strategies. Different critical aspects such 

as hyperparameter tuning and cost sensitivity are presented in this chapter. For the last step 

of this thesis, in Chapter 4, to improve the proposed method's performance, the decentralized 

optimization method is shifted from the one-step form into the multi-step optimization one 

by adding the model predictive concept to the studied optimization problem. 

Additionally, a decentralized learning-based algorithm is added to the decentralized look-

ahead  scheme  to  have  an  adjustable  optimization  horizon.  The  decentralized  strategy's 

learning mechanism is based on three standard driving cycles. There is only one real driving 

profile  for  the  electric  car  under  study.  Furthermore,  just  three  available  standard  driving 

profiles  are  well-suited  to  the  selected  light-duty  electric  vehicle. Indeed,  to  obtain  a 

trustworthy outcome, it is critical to train the learning process using a database of real-world 

driving  patterns. The  result  reported  in  this  chapter  is  the  first  proof  of  the  central 

concept. Integrating the new driving profiles is the first step to making the suggested method 

even better. Ultimately, based on the conducted research, a conclusion summarizes all of the 

core results in this thesis. Then, several future possible directions and perspectives are given. 

1.9 Thesis structure 

The  remainder  of  this  thesis  is  structured  as  follows.  Chapter  2  presents  the  proof  of 

concept of the decentralized EMS in an article entitled “Power Allocation Strategy Based on 

Decentralized  Convex  Optimization  in  Modular  Fuel  Cell  Systems  for  Vehicular 

Applications”.  Chapter  3  describes  the  main  characteristics  of  such  decentralized 

optimization algorithms by presenting an article entitled “A Comparison of Decentralized 
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ADMM  Optimization  Algorithms  for  Power  Allocation  in  Modular  Fuel  Cell  Vehicles”. 

Chapter 4 explains the integration of the decentralized optimization approach with the model 

predictive  control  technique  by  presenting  an  article  entitled  “Look-Ahead  Decentralized 

Safe-Learning Control for a Modular Powertrain Using Convex Optimization and Federated 

Reinforcement Learning”. Finally, the conclusion is presented in Chapter 5 with a detailed 

description of the future steps concerning the further improvement of this thesis. 
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Chapitre 2 - Power Allocation Strategy Based on 
Decentralized Convex Optimization in 
Modular Fuel Cell Systems for Vehicular 
Applications  

2.1 Introduction 

Although  the  design  of  a  centralized  EMS  for  FCVs  is  a  familiar  issue  and  has  been 

carefully  investigated  in  many  studies  by  researcher  groups,  the  aim  of  exploring  a 

decentralized and modular control method has been disregarded. In this light, exploring and 

evaluating the benefits of a decentralized architecture for power splitting management as a 

dissertation's first step might be novel. Thus, the first investigation began with a proof of 

concept  for  a  decentralized  approach  to  power  management.  This  technique  uses 

decentralized control to create a resilient and adaptable (plug and play) system that does not 

require a centralized control unit to serve as the central coordinator. Decentralization: This 

architecture is defined by a systematic module-level management strategy that can allocate 

power in a way that meets the multi-objective cost function and other constraints. 

2.2 Methodology 

This paper presents a decentralized convex optimization (DCO) framework based on the 

auxiliary problem principle (APP) to solve a multi-objective power allocation strategy (PAS) 

problem in a modular fuel cell vehicle (MFCV). In this regard, the operational principle of 

the suggested D-APP for the PAS problem is elaborated. Moreover, a small-scale test bench 

based on an electric vehicle is developed, as shown in Figure 2-1. Several simulations and 
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experimental  validations  are  performed  to  verify  the  advantages  of  the  proposed  strategy 

compared to the existing centralized ones. 

 

Figure 2-1 The developed modular test bench 

A detailed framework to clarify the decentralized solution to the optimization problem is 

presented.  The  PAS  problem  is  decomposed  into  two  individual  subproblems  where  the 

output power of each FC module is the coupling variable, and each of the subproblems is 

associated with one of the two FC modules, as shown in Figure 2-2. Then, the output power 

of each FC is duplicated into two new terms, real and virtual variables, to mimic the rest of 

the powertrain system. The virtual variables are linked to each of the two subproblems. The 

local PAS subproblems are defined and formulated for each module. An iterative procedure 

based on the decentralized APP approach is carried out to coordinate between subproblems 

and seek the optimal operating point of the original modular powertrain system, as shown in 

Figure  2-3.  At  the  end  of  each  iteration,  the  local  optimization  algorithms  based  on  the 

defined cost functions and constraints are used to calculate the real power of the local FC 

modules and the virtual power of the neighboring FC modules. These values are then sent to 
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the neighboring FC modules. As for each of the real and virtual variables, it is essential to 

have the same values once the APP approach has converged, equality constraints are used by 

the two local PASs, thus restricting the error of the shared powers to be zero.  If the calculated 

errors  by  the  PAS  modules  and  their  duplicated  ones  are  less  than  a  predetermined  level, 

convergence is obtained. If not, a set of penalty multipliers (λ) are calculated, and then the 

local  PASs  are  solved  via  the  new  variables.  This  algorithm  is  run  repeatedly  until  it 

converges. Since the convergence speed of the algorithm is faster than the system dynamics, 

the  virtual  variables  get  very  close  to  the  real  values.  It  is  worth  noting  that  although  the 

number of shared variables increases the size of the matrixes, the decentralized forms are 

solved in a parallel manner which reduces the computational time. 

 

 

Figure 2-2  The configuration of the D-APP PAS [57]. 
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Figure 2-3 The general systematic flowchart of the D-APP strategy. 

The decentralized characteristic of the control management unit is achieved through a 

single-step auxiliary problem principle (APP) algorithm that can ultimately decompose 

the underlying centralized EMS optimization problem. Moreover, dynamic programming 

(DP) as the benchmark optimization method has been developed for evaluation purposes. 

Finally, the proposed method is investigated on a modular powertrain that executes the 

decision-making algorithm through a modular-to-modular network without a centralized 

coordinator.  As  a  result,  the  proposed  modular  EMS  offers  distinctive  characteristics 

compared to the centralized one. 

2.3 Synopsis of the analyses of the results 

The  power-split  strategy  based  on  DCO  between  the  modules  and  the  battery  unit  is 

shown in Figure 2-4, where Pload is the requested power, FC is the power provided by the 

modules, and Battery is the battery unit power. From Figure 2-4 (b), the modules primarily 
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operate in the high-efficiency region to avoid the degradation price, which leads to a lower 

cost of degradation with the aid of a battery pack. 

 

Figure 2-4 The APP results under real driving profile: (a) power profiles, (b) the 
modules (�!,�") split powers, (c) the SoC of battery. 

The cost of each optimization approach is determined using a single evaluation function 

to  ensure  that  they  may  be  compared  fairly.  The  assessment  is  made  using  the  hydrogen 

consumption  and  degradation  rates  of  the  battery  and  PEMFC  modules.  The  D-APP  has 

achieved a near end-user price to DP (with a 12% difference) while the computational burden 

is less. The final end-user cost is approximately $0.2134, to which the total hydrogen price 

of $0.1033 contributes the most (48.41% of the end-user expense). Between these two �! 

with about $0.0641 (30.04% of the end-user cost) contributes more compared to  �" with 

about $0.0392 (18.37% of the final cost). The second highest cost is the modules degradation 

cost which is precisely $0.0330 (15.46% of the end-user cost). The battery degradation cost 

is around $0.0077 (3.61% of the final cost). It is the lowest cost compared to the ones related 
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to  the  modules.  The  penalty  term  to  recharge  the  battery  pack  is  approximately  $0.0694 

(32.52% of the final cost). 

2.4 Outcomes 

The investigation of a single-step decentralized EMS to increase modularity and resilience 

has resulted in discovering new pieces of knowledge about a module-level power allocation 

control technique. To be more explicit, these comprehensions were developed by analyzing 

the decentralized-based power splitting technique employing a variety of numerical studies 

in its unique context, as indicated below. 

- Real-time accuracy and capability of the convex powertrain models: The developed EMS 

powertrain  modeling  has  been  assessed  as  one  of  the  significant  phases  in  the  control 

process. The effectiveness of the modeling step can be found by comparing the results of the 

optimization method to the results on the test bench. 

-  Communication  layer  and  information  flow:  The  communication  process  has  been 

elucidated and presented with detailed data management by the control modules. 

- Resulting optimization performance: The extensive comparison of decentralized solutions 

to  the  EMS  problem  demonstrated  that  the  suggested  algorithm,  with  its  specific 

decentralized characteristic, may be recognized as a beneficial power management approach 

and is worthy of future exploration. 

The subsequent research study displays the results of the proposed power allocation through 

comprehensive analysis. 

Article  1:  Power  Allocation  Strategy  based  on  Decentralized  Convex  Optimization  in 

Modular Fuel Cell Systems for Vehicular Applications 
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2.1 Conclusion 

The chapter put forward a DCO algorithm for MFCVs to address a multi-objective PAS 

optimization  problem.  Firstly,  a  novel  distributed  normalized  cost  function,  including 

hydrogen consumption and health-conscious constraints of the FC modules and the battery 

pack, is minimized via a fully D-APP algorithm. Secondly, the effectiveness of the D-APP 

algorithm is validated via several numerical studies, namely the effect of parameter tuning 

and  driving  behavior.  Finally,  the  performance  of  the  algorithm  is  compared  with  the  DP 

strategy and SQP. This comparison shows that D-APP can achieve an end-user price near DP 

(7.69% difference) while using a real-time method. 

Moreover, compared to SQP, the decentralized method leads to less computational time 

and  less  sensitivity  when  having  complex  functions  with  several  constraints.  Finally, 

experimental validation is performed on a developed test bench that illustrates the proposed 

D-APP's effectiveness. The focus of this chapter has been mainly on the proof of concept of 

the decentralized optimization algorithm. However, the outcomes seem to be very interesting 

in modular applications. The robustness and the modularity points of view have not been 

discussed.  Therefore,  the  next  chapter  will  perform  a  comprehensive  study  regarding  the 

raised matters for two advanced decentralized optimization algorithms. 
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Power Allocation Strategy Based on Decentralized
Convex Optimization in Modular Fuel Cell Systems

for Vehicular Applications
Arash Khalatbarisoltani , Member, IEEE, Mohsen Kandidayeni , Member, IEEE,
Loïc Boulon, Senior Member, IEEE, and Xiaosong Hu, Senior Member, IEEE

Abstract—Recently, modular powertrains have come under at-
tentions in fuel cell vehicles to increase the reliability and efficiency
of the system. However, modularity consists of hardware and soft-
ware, and the existing powertrains only deal with the hardware
side. To benefit from the full potential of modularity, the software
side, which is related to the design of a suitable decentralized power
allocation strategy (PAS), also needs to be taken into consideration.
In the present study, a novel decentralized convex optimization
(DCO) framework based on auxiliary problem principle (APP) is
suggested to solve a multi-objective PAS problem in a modular fuel
cell vehicle (MFCV). The suggested decentralized APP (D-APP) is
leveraged for accelerating the computational time of solving the
complex problem. Moreover, it enhances the durability and the
robustness of the modular powertrain system as it can deal with the
malfunction of the power sources. Herein, the operational principle
of the suggested D-APP for the PAS problem is elaborated. More-
over, a small-scale test bench based on a light-duty electric vehicle
is developed and several simulations and experimental validations
are performed to verify the advantages of the proposed strategy
compared to the existing centralized ones.

Index Terms—Fuel cell system, distributed optimization, fuel cell
hybrid vehicle, energy management, multi-agent system.

I. INTRODUCTION

FUEL cell vehicles (FCVs) have become a propitious sub-
stitute for internal combustion engines (ICEs) to mitigate

the greenhouse gas (GHG) emissions in transportation sector
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[1], [2]. Among several types of fuel cell (FC), proton exchange
membrane fuel cell (PEMFC) has been adopted broadly in green
mobility thanks to its appropriate characteristics [3]. However,
the use of a sole FC system (FCS) cannot satisfy all the require-
ments in vehicular applications as its performance is drastically
declined in the presence of dynamic load profiles. Moreover, it is
not able to capture the energy from regenerative braking owing
to its energy storage incapability. Hence, hybridization of the
FCS with other power sources, such as battery (B) or superca-
pacitor (SC), has been abundantly practiced in the literature to
compensate for the mentioned weaknesses [4], [5].
In FCVs, the end-user cost is defined based on several factors,
such as hydrogen consumption, FCS degradation, and battery
unit degradation. To minimize this cost, it is required to de-
fine a well-developed multi-objective power allocation strategy
(PAS). A variety of PASs, such as rule-based [6]–[8], equivalent
consumption minimization [9], [10], model predictive control
[11], adaptive [12], [13], dual-mode [14], and heuristic [15],
[16], have been suggested in the past few decades for the FCVs.
Some of these papers have also highlighted the possibility of
integrating the prognostic and health management techniques
into the design of PASs [17]. These techniques can be cate-
gorized into two main groups of model-based [18], [19], and
data-driven [20], [21]. They are utilized to estimate the state
of health (SOH) and remaining useful life (RUL) and then
this estimation can be included as an input in the strategy to
distribute the power. For the sake of combining the advantages
of model-based and data-driven methods, a hybrid prognostic
framework is introduced in [22]. The suggested method provides
an uncertain characterization of RUL probability distribution.
This method can be integrated into the existing PASs as a guiding
principle for making appropriate sequential decisions to prolong
the powertrain system lifetime. However, all the discussed strate-
gies have been developed for single FCSs. Hence, they are very
sensitive to the malfunction of the power sources, which is likely
to happen in such a powertrain configuration.
In this respect, a new direction called modular energy systems
(MESs) has come under attentions to overcome the limitations
of a single FCS and increase reliability as well as the scalability
of the FCVs [23]. Unlike the typical FCVs, a modular FCV
(MFCV) is composed of a battery pack and a set of low-power
FC modules, instead of a high-power one, to augment the re-
liability and the scalability characteristics. Several PASs have

0018-9545 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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been suggested for such modular systems, such as rule-based
[24], hysteresis strategy [25], and droop control [26], [27].
In [28], Marxet al.have reported a comparative review of
different concepts for these modular topologies in multi-stack
FCs from a hardware point of view. They have concluded that
the robustness is improved in parallel-connected configuration
compared to other topologies. In [29], a PAS based on forgetting
factor recursive least square is proposed for a MES composed
of two 300-W PEMFC stacks with a parallel configuration.
The strategy shows lower hydrogen consumption compared to
average power and daisy chain algorithms. In [24], an adaptive
state machine strategy is proposed for a MES composed of four
500-W PEMFCs and a battery pack. This strategy has improved
the hydrogen economy compared to Daisy Chain and Equal
distribution strategies while keeping the PEMFCs with the same
health states.
Therefore, the hardware modularity has been already in-

vestigated in the MFCSs while the software modularity has
escaped the attentions. Literature consideration shows that most
of the existing PASs, regardless of having a modular or normal
powertrain topology, are centralized. Therefore, they are very
sensitive to a precipitous single point of failure through their
powertrains from a software point of view. Moreover, the ad-
ditional degrees of freedom in the MESs make the centralized
algorithms substantially complicated and time-consuming to be
solved. In this respect, some papers have focused on the dis-
tributed optimization algorithms to solve the PAS optimization
problems [30]–[34]. In [30], a projected interior point method
is proposed under the framework of model predictive control
(MPC) to solve the power allocation problem and concluded that
this strategy is faster than CVX tool, which is a general-purpose
convex optimization software. In [31], CVX tool is utilized to
solve a formulated convex optimization problem for a plug-in
FCV, and it is shown that the proposed approach can effectively
distribute the power between the power sources and also find the
optimal sizes of each source. In [32], the slew rate of the PEMFC
current and the battery state of charge (SoC) are considered to
formulate the PAS in the form of quadratic programming (QP).
Subsequently, a solver is utilized to solve the QP problem based
on the alternating direction method of multipliers (ADMM).
It is concluded that this approach is much faster than interior
point or active set methods. In [33], a PAS for a hybrid electric
vehicle is proposed based on ADMM and concluded that this
strategy can achieve up to 90% of fuel saving obtained by
dynamic programming (DP) while it is 3000 times faster than
DP. In [34], a distributed optimization approach is put forward
to solve the PAS of a hybrid vehicle. The comparison of this
distributed algorithm with a centralized convex optimization
problem shows that the proposed algorithm can result in the same
fuel economy as the centralized method while its computational
time is declined up to 1825 times. Although the discussed papers
in [30]–[34] have improved the PAS formulation to a further
step regarding the accuracy and computational time reduction,
they are not still fully decentralized, and are sensitive to the
occurrence of malfunction in their systems. In [35], [36], a
decentralized approach based on non-cooperative game theory is
proposed to formulate the PAS in a multi-source hybrid vehicle.

The method in these papers shows a comparable performance
to that of the centralized strategies. Moreover, the potential of
this approach for dealing with the sudden reconfigurations in the
system is also demonstrated in [35]. However, this decentralized
method is not able to deal with the constraints with a high amount
of nonlinearity which are inevitable in FCVs.
In the light of the discussed papers, it can be stated that
the design of MESs for a FCV application has gained con-
siderable attentions. However, most of the existing works only
deal with one side of modularity, either hardware or software.
The hardware is related to the configuration of the powertrain
(for instance a parallel multi-stack PEFMC system coupled
with a battery pack), and the software is related to the de-
velopment of a suitable PAS (like a decentralized algorithm).
Furthermore, most of the papers which have focused on the
software side are for hybrid electric vehicles with an ICE and not
a FCV.
In this regard, this paper puts forward a decentralized convex
optimization (DCO) methodology based on auxiliary problem
principle (APP) [37]–[39] to solve a constrained convex approx-
imation power distribution problem in a MFCV. This MFCV is
composed of two PEMFCs, which are connected in parallel, and
a battery pack. To the best of the authors’ prior knowledge, this
is one of the first attempts, if any, to formulate an accelerated
decentralized PAS for a MFCV to benefit from the full modular-
ity potential considering hardware and software viewpoints. To
this end, a multi-objective cost function, including the hydrogen
consumption, battery SOC variation, PEMFC health state, and
battery health state, is defined and minimized by the proposed
decentralized APP (D-APP). To verify the performance of the
suggested D-APP, it is compared with dynamic programming,
which is an offline strategy, and an online centralized PAS based
on sequential quadratic programming (SQP). Moreover, the
performance of the D-APP has been justified by an experimental
modular FC (MFC) test bench developed for the purpose of this
work.
The rest of this paper is organized as follows. The power-
train and the modeling are detailed in Section II. Section III
formulates the convex PAS for a MFCV. The application of the
D-APP is explained in Section IV. Several numerical studies
are given in section V. A real-time implementation via the
developed small-scale MFC test bench is performed to confirm
the effectiveness of the DCO in Section VI. Finally, conclusion
and future directions are presented in Section VII.

II. MFCV POWERTRAINCONFIGURATION ANDMODELING

A. Powertrain Structure and Modeling

For the purpose of this study, a small-scale MFC test bench
has been developed based on a low-speed vehicle called Nemo
[40]. This test bench is presented in Fig. 1 and used for evaluating
the performance of the proposed decentralized PAS. The MFC
test bench is composed of two FC modules, a battery pack, a
power supply, and a programmable load to emulate the prolusion
system. The main device in each module is a 500-W FCS, a
smoothing inductor, and a unidirectional DC-DC converter to
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Fig. 1.  A MFC powertrain: a) schematic of powertrain, b) developed test
bench.

control the current of the FCS. The powertrain is formulated as:

M

m=1

Pm[k]Dm[k]+PB[k]=PL[k], (1)

wherePm[k]is the power of each FCS whileM ={1,2}is
the index of each FC module,Dm is the duty cycle defined by
each DCO-based control unit controller,PB[k]is the power of
the battery,PL[k]is the requested power from the propulsion
system, andkis the index of time period.

B. MFCS Modeling and Constraints

The FCSs are modeled as a voltage source by means of their
static polarization curves which are validated by experimental
tests, as shown in Fig. 2. The polarization curves of the employed
FCSs are illustrated in Fig. 2(a). Moreover, the power and
hydrogen consumption curves of each utilized FCS are presented
in Fig. 2(b) and Fig. 2(c), respectively. Each FC has two fans
which consume approximately 12 W. It is worth mentioning
that the FCSs do not have the same performance as they have
different ageing milestones.
To avoid FC degradation owing to the start-stop cycles and

operation at open circuit voltage (OCV) within very low-power
region, the requested power from the FCSs is supplied under
some limitations. Equations (2.a) and (2.b) apply the FCSs’
power and slew rate limits, respectively.

Pm,min ≤Pm[k]≤Pm,max, (2a)

Rd,mΔt≤Pm[k]−Pm[k−1]≤Ru,mΔt, (2b)

wherePm,minandPm,maxare the minimum and the maximum
power of the FCSs,Rd,mandRu,mare the minimum and the

Fig. 2.  The characteristics of the utilized 500-W FCSs, a) polarization curves,
b) power curves, and c) hydrogen consumption curves.

TABLE I
THEBATTERYPACKPARAMETERS

maximum slew rates, andΔtis the time step duration. It should
be noted that when the FCs go under degradation (which is a
slow process), their rated power decreases. In this regard, the
considered constraints regarding the minimum and maximum
power of the PEMFC should be updated from time to time to keep
the operation of the FCs within the safe and allowed zone [41].

C. Battery Modeling and Constraints

The battery pack which is passively linked to the DC bus is
modeled by:

IB[k]=
V0[k]−RsIB[k]−VB[k]

Rc

+Cc
d

dt
(V0[k]−RsIB[k]−VB[k]), (3)

whereVBandIBare the voltage and the current of the battery
unit, andV0is the battery OCV. Technical description of the
battery system is given in Table I.
Equation (4.a) and (4.b) impose the power and the slew rate
boundaries of the battery.

PB,min ≤PB[k]≤PB,max, (4a)

Rd,BΔt≤PB[k]−PB[k−1]≤Ru,BΔt, (4b)

wherePB,minis the minimum battery power,PB,maxis the bat-
tery maximum power,Rd,Bis the falling slew rate, andRu,Bis
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TABLE II
CHARACTERISTICS OF THETWOBOOSTCONVERTERS

the rising slew rate. Equation (5.a) presents theSoClimitations.

SoCmin ≤SoC[k]≤SoCmax, (5a)

SoC[k+1]=SoC[k]−
PB[k]Δt

QBVB[k]3600
, (5b)

SoC[0]=SoC0, (5c)

whereSoCminandSoCmaxare the minimum and the maximum
limits of theSoC, and (5.b) denotes the SoC equation starting
fromSoC0which is determined by (5.c). The service life of
battery unit is affected by the depth of discharge [42]. According
to the manufacturer’s datasheet, when adopting the depth of
discharge of 30%, the battery lifetime (nB) is equal to the
80% of capacity fade. The battery’s state of health (SoHB) is
calculated by (6).

SoHB[k+1]=SoHB[k]−
|PB[k]|Δt

2nBQBVB[k]3600
, (6a)

SoHB[0]=SoHB,0, (6b)

SoHB,min ≤SoHB[k], (6c)

where SoHB,min andSoHB,0denote the minimum and the
initialSoHvalues, respectively.

D. Boost Converter Modeling and Characteristics

The DC-DC converters’ equations are as follows:

Lm
d
dtIm[k]=Vm[k]−uh,m[k]−rLmIm[k],
uh,m[k]=mh,mVB[k]
Ih,m[k]=mh,mIm[k]η

z
h,m
z=

1 ifPm[k]>0
−1 ifPm[k]<0

(7)

wheremh,m is the modulation ration,Im is the FCs’ current,
Vmis the FCs’ voltage, andVBis the battery pack voltage. The
technical parameters of the utilized DC-DC converters are given
in Table II.

III. FORMULATION OF THEGENERALPROBLEM

The multi-objective PAS problem for the considered MFCV
is formulated as (8)–(12). Beside hydrogen consumption, the
health limitations are normalized and added into the proposed
cost function to extend the lifetime of the FCSs and the battery
pack. The cost function (s[k]) takes into account four items and
is calculated by:

s[k]=sh,m[k]+sd,m[k]+sB[k]+sSoC[k], (8)

where sh,m[k]is the normalized hydrogen consumption cost
shaping function for each FCS, obtained by:

sh,m[k]=
hm[k]−hm,min
hm,max−hm,min

, (9)

Fig. 3.  a) The measured and normalized hydrogen consumption curves, b) the
low-power and the high-power cost shaping functions.

wherehm[k]is the hydrogen consumption,hm,min is the min-
imum andhm,max is the maximum hydrogen consumption of
each FCS, as shown in Fig. 2(c). The normalized FC degradation
term (sd,F Cm[k]) is defined by:

sd,F Cm [k]=αls
l
d,m[k]+αhs

h
d,m[k], (10a)

wheresld,m[k]is the normalized degradation cost shaping term
related to low power operation, given by:

sld,m[k]=1−
[Pm[k]−Pm,min]

2

[Pm,max−Pm,min]
2
, (10b)

shd,m[k]is the normalized degradation cost shaping term related
to high power operation as:

shd,m[k]=1−
Pm[k]−Pm,max]

2

[Pm,max−Pm,min]
2
, (10c)

αlandαhare the constant coefficients which are defined by:

αl=
εl

εl+εh
, (10d)

αh=
εh
εl+εh

, (10e)

whereεl=8.662μV /handεh=10μV /hare the low-power
and the high-power cell degradation rates [43], [44]. Fig. 3
illustrates the measured and the normalized data of the hydrogen
consumption beside the low-power and the high-power cost
shaping functions. The normalized battery pack degradation
function (sB[k])is calculated by:

sB[k]=
PB[k]

PL,max
, (11)

wherePL,max is the maximum requested power.
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sSoC[k]is a punishment term to try to maintain the SoC level
similar or near to its initial value (SoC0).

sSoC[k]=β[SoC[k]−SoC0], (12)

whereβis a big positive coefficient. The equality and inequality
constraints are based on (1)–(2) and (4)–(6).

I V. DECENTRALIZEDAPP CONVEXALGORITHM

In this section, a detailed framework is presented to clarify
the relaxation approach and the decentralized solution of the
aforementioned optimization problem. In this algorithm, the
PAS problem is decomposed into two individual subproblems
where the output power of each FC module is the coupling
variable and each of subproblems is assigned into one of the two
FC modules. Then, the output power of each FC is duplicated
into two new terms, real variable and virtual variable to mimic
the rest of the powertrain system. The virtual variables are linked
to each of the two subproblems. The local PAS subproblems
are defined and formulated for each module, and an iterative
procedure based on the decentralized APP approach is carried
out to coordinate between subproblems and seek the optimal
operating point of the original modular powertrain system. At
the end of each iteration, the local optimization algorithms based
on the defined cost functions and constraints are used to calculate
the real power of the local FC modules and the virtual power
of the neighboring FC modules. These values are then sent to
the neighboring FC modules. As each of the real and virtual
variables are essential to have the same values once the APP
approach is converged, equal constraints are used by the two
local PASs restricting the error of the shared powers to be zero.
If the calculated errors by the PAS modules and their duplicated
ones are less than a predetermined level, the convergence is
obtained. If not, a set of penalty multipliers (λ) are calculated
and then the local PASs are solved again via the new variables.
This algorithm is run repeatedly until it converges. Since the
convergence speed of the algorithm is faster than the system
dynamic, the virtual variables get very close to the real values,
and this makes the final results be very close to the DP. It is worth
noting that although the number of sharing variables increases
the size of the matrixes, the decentralized forms are solved
in a parallel manner which reduces the computational time.
As shown in Fig. 4, in the developed DCO-based algorithm,
the general optimization problem with coupling constrains is
decomposed into two sub-problems ofM1andM2. The battery
pack is assumed to be located in the shared area as a storage
device and all of the FC modules are needed to be informed
about the estimated SoC level. The equality constraints forM1
can be formulated in terms ofFM1(a, b)=0 and forM2by
means ofFM2(b, c)=0.
In a similar way, the inequality constraints for M1

andM2are represented in the form ofG1(a, b)≤0 and
G2(b,c)≤0, respectively. By defining the two sets:A=
{(a, b):FM1(a, b)=0,GM1(a, b)≤0} forM1 and B=
{(b, c):FM2(b, c)=0,GM2(b, c)≤0}forM2, the feasible
response is a point(a, b, c)that satisfies(a, b)∈Aand(b, c)∈
B. Moreover,M1andM2have a vector (X,Y) with regard to the

Fig. 4.  The configuration of the D-APP PAS [45].

Fig. 5.  The APP steps. a) defining the virtual modules, b) duplicating the
virtual modules.

data which need to be shared with the neighboring FC module,
as shown in Fig. 5. The vectorXhas the real FC module power
(PM11), and the virtual FC module power (PM21), which is the
M2power in point ofM1. The vectorYhas the real FC module
power (PM22) and the virtual FC module power (PM12), which
is theM1power in point ofM2.
By taking (8)–(12) into account, the cost of M1andM2
(CM[k]) and the battery pack cost (CB[k]) are separately defined
as:

CM[k]=sh,m[k]+sd,m[k], (13a)

CB[k]=sB[k]+sSoC[k], (13b)

Based on (13), the centralized optimization is reformulated
by:

min{CM11{PM11[k]}+CM22{PM22[k]}+CB{PB[k]}},

{PM11[k],PM12[k]}A{PM12[k],PM22[k]}B, (14)

In order to solve the modified sub-problems, a regional de-
composition framework based on APP approach is suggested
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in [37]. For the sake of relaxing the coupling betweenM1
andM2,PMdd−PMdf =0,d,f=1,2d=f, and instead of
applying standard Lagrangian technique, linearized augmented
Lagrangian technique is applied to (14) to aid the convergence
speed [38].

{PM11[k],PM21[k],PM12[k],PM22[k]}

= min{CM11{PM11[k]}+CM22{PM22[k]}+CB{PB[k]}

+
β

2
PM11[k]−PM12[k]

2

+
β

2
PM22[k]−PM21[k]

2:PM11[k]−PM12[k]

=0,PM22[k]−PM21[k] =0},{PM11[k],PM21[k]}A,

{PM12[k],PM22[k]} B, (15)

The new quadratic function does not change the optimal result
although the decomposition of the coupled C-PAS considerably
improves the convergence speed [39].

A. Centralized APP

After applying the APP decomposition [37], (15) is solved by
means of a sequence process. The suggested algorithm based on
APP is formulated as follows:

Pj+1M11
[k],Pj+1M21[k],P

j+1
M21
[k],Pj+1M22

[k]

= min{CM1{PM11[k]}+CM22{PM22[k]}

+CB{PB[k]}+
β

2
PM11[k]−P

j
M11
[k]

2

+
β

2
PM21[k]−P

j
M21
[k]

2

+
β

2
PM12[k]−P

j
M12
[k]

2

+
β

2
PM22[k]−P

j
M22
[k]

2

+ρ{PM11[k]−PM12[k]} P
j
M11
[k]−PjM12[k]

+ρ{PM22[k]−PM21[k]} P
j
M22
[k]−PjM21[k]

+λj1{PM11[k]−PM12[k]}+λ
j
2{PM22[k]−PM21[k]} ,

(16)

λj+11 =λj1+α P
j+1
M11
[k]−Pj+1M12

[k] , (17)

λj+12 =λj2+α P
j+1
M22
[k]−Pj+1M21

[k] , (18)

where jis the index of optimization iteration, andα, β,
andρ are predefined positive values. The starting points
PM11, PM21, PM12,PM22, andλcan be set as the prior answer
or zero (cold start).λj1,2, as the Lagrange multipliers, are the
estimated virtual FC module costs to keep the equality coupling
constraints on the shared area at iterationj. The centralized APP
utilizes the power values and the Lagrange parameters obtained
from the previous step. It then alternates the achieved solutions of
regional FC modules and updates the Lagrange multipliers. This

iterative process will be completed if the stopping requirements
are fulfilled.

B. Decentralized APP

With the aim of reducing the computational time and im-
proving the fault-tolerant and the modularity features, (16)–(18)
is divided into smaller subproblems for each autonomous FC
module. The D-APP for theM1is formulated by:

Pj+1M11
[k],Pj+1M21

[k]

= min{CM11{PM11[k]}+CB{PB[k]}

+
β

2
PM11[k]−P

j
M11
[k]

2

+
β

2
PM21[k]−P

j
M21
[k]

2

+ρPM11[k] P
j
M11
[k]−PjM12[k]

−ρP(M21)[k] P
j
(M22)

[k]−P
(j)
(M21)

[k]

+λj1P(M11)[k]−λ
j
2P(M21)[k]}, (19)

λj+11 =λj1+α P
j+1
M11
[k]−Pj+1M12

[k] , (20)

λj+12 =λj2+α P
j+1
M21
[k]−Pj+1M22

[k] , (21)

The D-APP for theM2is given by:

Pj+1M12
[k],Pj+1M22

[k] (22)

= min{CM22{PM22[k]}+CB{PB[k]}

+
β

2
PM22[k]−P

j
M22
[k]

2

+
β

2
PM12[k]−P

j
M12
[k]

2

+ρPM22[k] P
j
M22
[k]−PjM21[k]

−ρPM12[k] P
j
M11
[k]−PjM12[k]

−λj1PM12[k]+λ
j
2PM11[k] ,

λj+11 =λj1+α P
j+1
M12
[k]−Pj+1M11

[k] , (23)

λj+12 =λj2+α P
j+1
M22
[k]−Pj+1M21

[k] , (24)

These new modifications (19)–(21) and (22)–(24) basically
lead to two D-APPs as a decentralized control layer, as shown
in Fig. 4. In [37], the APP parameters are defined based on:

α=
1

2
β=ρ, (25)

It is worth mentioning that this parallel process will be stopped
if the stopping conditions are satisfied. To better clarify the
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Fig. 6.  The general step-by-step flowchart of the D-APP strategy.

performance of the discussed method, a diagrammatic repre-
sentation of the developed decentralized PAS layer is presented
in Fig. 6.

V. COMPARISON ANDRESULTS OFNUMERICALCASESTUDIES

In this section, to have a comprehensive discussion, a number
of important items are considered to elucidate the DCO-based
PAS. An optimal PAS based on DP has been developed to
serve as a baseline. Moreover, SQP, as a well-known centralized
approach, is used to evaluate the performance of the proposed
decentralized method.
The numerical studies have been tested via MATLAB. The

calculation time depends on the utilized PC hardware (Processor
=Core i5, 2.30 GHz, RAM=4.00 GB). The total end-user cost,
ST, in USD, which includes five items is calculated by:

ST=SSoC+
k m

SH,m[k]+Sd,m[k]+SB[k], (26)

The hydrogen cost (SH,m[k]), in USD, is computed by:

SH,m[k]=Hm[k]CH2Δt, (27)

whereHm[k]is the hydrogen consumption (per gram) andCH2is
the hydrogen price. The modules’ degradation cost (Sd,m[k]), in
USD, is calculated by:

Sd,m[k]=S
l
d,m[k]+S

h
d,m[k], (28a)

whereSld,m[k]is the cost of low-power degradation andS
h
d,m[k]

is the cost of high-power degradation, given by:

Sld,m[k]=
nmεlCmΔtμl,m
3600Vn,m

, (28b)

Shd,m[k]=
nmεhCmΔtμh,m
3600Vn,m

, (28c)

wherenm is the cell numbers,εlis the low power cell-level
degradation,εhis the high power cell-level degradation, and

TABLE III
THEREFERENCEPRICE OFHYDROGEN,BATTERY,ANDFCS

Fig. 7.  Six different analyses of the real cycle (a) the power, (b) the speed, (c)
the power histogram, (d) the speed histogram.

CFCm is the FCS cost.μlandμhare determined by:

μl,m=
1,IfPmin,m≤Pm ≤0.2Pnom,m
0,otherwise

(28e)

μh,m=
1,If0.8Pnom,m≤Pm ≤Pmax, m
0,otherwise

(28f)

whereVn,mis the 10% voltage drop of the nominal voltage of
each module andPnom,mis the output power recommended
by the FCS manufacturing company for a nominal use of FCS
[44]. The cost of the battery unit degradation (SB[k]), in USD,
is determined by:

SB[k]=CB{SoHB[k]−SoHB[0]}, (29)

whereCBis the battery pack price. The punishment term for the
battery pack (SSoC) in USD is calculated based on the price of
the hydrogen to recharge the battery unit at the end of the driving
profile to reach the same level as the initial SoC. The battery
pack is recharged by utilizing the FC stacks at their maximum
efficiency points. This cost is added to the final end-user price.
The reference price of the hydrogen, the FCS, and the battery
pack are listed in Table III.

A. Optimal Power Distribution Under Real Driving Pattern

As shown in Fig. 7, a real profile is herein considered. The
power split based on DP, SQP, and DCO between the modules
and the battery unit are shown in Fig. 8, Fig. 9, and Fig. 10,
respectively, where Pload is the requested power, FC is the
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Fig. 8.  The DP results under real driving profile: (a) power profiles, (b) the
modules (M1, M2) split powers, (c) the SoC.

Fig. 9.  The SQP results under real driving profile: (a) power profiles, (b) the
modules (M1, M2) split powers, (c) the SoC.

power provided by the modules, and Battery is the battery unit
power. Fig. 8 demonstrates the performance of DP regarding the
distribution of power and battery SoC. From this figure, it is seen
that in the very beginning (0 to 25 s), the FC modules recharge
the battery. Then, from 25 s to almost 140 s, the FC modules
operate in low power and battery SoC level decreases. From
140s on, the modules slightly recharge the battery to reach the
same level of SoC as the initial one. In fact, knowing the driving
cycle in advance makes DP have such a good performance. Fig. 9
illustrates the SQP strategy performance.
According to Fig. 9c, during the first 50s, this strategy tries to

sustain the SoC level very close to 70%. Afterwards. It fluctuates
between charging and discharging and finishes almost with 71%
of SoC. Fig. 10 presents the power distribution obtained by the
proposed decentralized strategy. From Fig. 10(b), the modules
largely operate at the efficient region to mitigate the degradation
price, which leads to lower cost of degradation with the aid of

Fig. 10.  The APP results under real driving profile: (a) power profiles, (b) the
modules (M1, M2) split powers, (c) the SoC.

Fig. 11.  The profile and the distribution of the modules’ optimal powers (a)
the power profile of theM1(M11: the real,M12: the virtual), (b) the distribution
of theM1. (c) the power profile of theM2(M22: the real,M21: the virtual), (d)
the distribution of theM2.

battery power differences. Fig. 10(c) depicts the SoC level of
the battery. The SoC fluctuates between 68.9% and 71.1%, less
than approximately 2.2% variation. This strategy also manages
to reach a very close SoC level to the initial one, as shown in
Fig. 10(c). The time series and the distribution of the real and
the virtual FCSs’ power based on DCO are presented in Fig. 11.
It is evident that in both of the modules, the real and the virtual
power are well-matched, and are almost located in the efficient
region.
To evaluate the developed DCO-based method, the perfor-
mance of the obtained results is compared with DP as an off-line
optimization method and SQP as a centralized optimization
algorithm. According to Table IV, the D-APP has achieved
a near end-user price to DP (with 12% difference) while the
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TABLE IV
THEFINALPRICE AND THECOMPUTINGPERFORMANCES

Fig. 12.  (a) The computation time trajectory, (b) the number of iterations.

computational burden is much less. Moreover, the end-user price
of D-APP is 27.74% lower than SQP while benefiting from a
substantial decline in case of the computational time (71.31%)
and the number of iterations (68.76%). # denotes the number of
iterations in the optimization algorithms (SQP, APP), andSSoC
is the punishment term to recharge the battery pack. Based on our
experience, despite slight differences between the centralized
APP (17)–(19) and the D-APP (20)–(25), the final results of
both approaches are almost the same while the D-APP is faster.
To have a clear understanding, here, the number of iterations
and the computational time evaluation according to theM1are
illustrated in Fig. 12. It is evident that the computational time is
related to the number of iterations.
Based on the obtained results, the decentralized method has

less computational time which shows that this method is a
reasonable and practical candidate in the real-time PAS opti-
mization applications.
Fig. 13 presents the price trajectories of different sources un-

der a long test. The final end-user cost is approximately $0.2134,

Fig. 13.  Optimal price trajectories: the total end-user, the hydrogen ofM1, the
hydrogen ofM2, the degradation ofM1, and the degradation ofM2, the battery
degradation.

Fig. 14.  The investigation of the parameterρin the DCO performances.

to which the total hydrogen price of $0.1033 contributes most
(48.41% of the end-user expense). Between these two, theM1
with about $0.0641 (30.04% of the end-user cost) contributes
more compared to theM1with about $0.0392 (18.37% of the
final cost). The second largest cost is the modules degradation
cost of nearly $0.0330 (15.46% of the end-user cost). The battery
degradation cost is around $0.0077 (3.61% of the final cost). It is
the lowest cost, compared to the ones related to the modules. The
punishment term to recharge the battery pack is approximately
$0.0694 (32.52% of the final cost).

B. Impact of Parameter Tuning

The effect of tuningρon the end-user price and the compu-
tational performance is scrutinized in this subsection. Fig. 14
describes a detailed analysis ofρin a wide range, from 10
e-9to 10 e+7. Fig. 14(a) shows the relation ofρwith the final
cost ($) and the computational time (s). In Fig. 14(b), to verify
that all the comparisons finish with the nearly same final state
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Fig. 15.  The comparison of the computational burdens.

variable, the battery SoC evolution is presented. Fig. 14(c) shows
a comparison between the computational complexity (s) and
the number of iterations. It is apparent that they have the same
pattern.
Generally, considering the modular powertrain problem and

the hardware characteristics,ρshows a significant influence
over the performance where an improperρcould lead to slower
convergence and higher final cost. The end-user cost gradually
decreases asρgrows. However, the computational complexity
(s) becomes progressively heavy, particularly whenρexceeds
10 e−5. On the basis of our experience,ρin the range of
10 e−8–10 e−7is more suitable for the DCO problem and relying
on our analyses,ρ=10 e−7is selected as the optimal value.

C. Sensitivity Analysis

In this subsection, a sensitivity analysis of the proposed D-
APP method with SQP is conducted. In this regard, different
cost functions are taken into consideration: 1) hydrogen, 2)
hydrogen and FCS degradation, 3) hydrogen, FCS and battery
degradation. As shown in Fig. 15, in case (2), the computational
time of D-APP rises by almost 6.3378% in comparison with case
(1) while the computational time of SQP increases by nearly
24.2079% compared to case (1). Moreover, the computational
time of D-APP grows by around 10.5112% in case (3), compared
to case (1). However, in case (2), the computational time of SQP
increases by approximately 62.4511% compared to case (1).
This analysis shows that D-APP has less sensitivity to a complex
function with several constraints, which is important in practical
real-time applications.

VI. EXPERIMENTALIMPLEMENTATION

To verify the results, the D-APP has been implemented in
the PAS layer of the developed scaled-down test bench via
LabVIEW. As demonstrated in Fig. 1.(b), the test bench is
equipped with two open-cathode 500-W Horizon PEMFCs (M1
andM2) and a battery unit, composed of six series 12-V, 18-Ah
batteries. The voltage ofM1oscillates between 14.1 and 22.7
V, and the voltage ofM2varies between 14.5 and 23.4 V, while
the voltage of the DC-bus is given by the battery unit. The two
boost converters are from Zahn Electronics. Each module has
its PAS unit inside the National Instrument CompactRIO (NI
9022). The D-APP iteratively calculates the optimal references

Fig. 16.  Optimal results under real driving profile via the developed test bench:
(a) power profiles, (b) the modules split powers, (c) the SoC.

Fig. 17.  The trajectories and the distribution of the power profiles.

in parallel. The optimal reference of each module,PM 1Ref and

PM 2Ref, is updated at every control instant with an interval of
10 Hz. The results under the real profile is presented in Fig. 16
and Fig. 17. These results verify the validation of the real-time
implementation of the D-APP as well as the correctness of the
previous theoretical discussions.

VII. CONCLUSION

In this paper, a DCO algorithm for MFCVs is suggested
to address a multi-objective PAS optimization problem. In the
proposed decentralized framework, a novel distributed normal-
ized cost function, including hydrogen consumption and health-
conscious constraints of the FC modules and the battery pack, is
minimized via a fully D-APP algorithm. The effectiveness of the
D-APP algorithm is validated via several numerical studies, such
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as the effect of parameter tuning and driving behavior. Moreover,
the performance of the proposed approach is compared with
DP strategy, as an off-line method, and SQP, as a centralized
method. This comparison shows that D-APP is able to achieve
an end-user price very near to DP while it is a real-time method.
Moreover, compared to SQP, the decentralized method leads to
less computational time and also provides less sensitivity in case
of having complex function with several constraints. Finally, an
experimental validation is performed on a developed test bench
which justifies the effectiveness of the proposed D-APP.
Looking forward, a number of recommendations can be made

to extend the contributions of this paper:
The proposed decentralized algorithm can be combined
with an advanced MPC method to enhance the inherent
robustness against uncertainty in both of vehicle model
and projection of future driving conditions.
Another future direction can be integrating the proposed
approach with advanced prognostic frameworks which
consider variable loading condition to further prolong the
lifetime of the power sources.
In this work, the robustness and the modularity points
of view have not been demonstrated yet. Therefore, a
comprehensive study regarding the raised matters will be
performed in future.
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Chapitre 3 - A Comparison of Decentralized ADMM 
Optimization Algorithms for Power 
Allocation in Modular Fuel Cell Vehicles 

3.1 Introduction 

A comprehensive comparison of two state-of-art decentralized optimization algorithms 

based on the augmented Lagrangian decomposition technique is offered in this section's 

manuscript. Notwithstanding the previous optimization study, which straightforwardly 

examines a decentralized EMS, the main contribution of this study is to carefully assess 

the modularity and robustness of the decentralized convex optimization-based methods. 

Subsequently, the evaluation and outcome analysis of the decentralized scheme regarding 

different  optimization  parameters  and  baseline  costs  are  reported  to  demonstrate  the 

developed fully decentralized schemes' effectiveness compared to the centralized ones. 

3.2 Methodology 

This  paper  puts  forward  a  comparative  study  of  two  convex  optimization  frameworks 

based on the alternating direction method of multipliers (ADMM) for solving a multi-

objective power allocation strategy (PAS) problem in a modular FCV (MFCV).  The all-

propose analysis of the optimization results has been achieved through two key stages. 

First and foremost, the optimization procedures of the two EMSs and their structure have 

been  summarized.  After  that,  a  detailed  investigation  into  the  features  of  the  two 

decentralized optimization algorithms has been conducted through various case studies 

that consider the robustness and modularity of the decentralized frameworks. 
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The  utilized  decomposition  approaches  are  Consensus  ADMM  (C-ADMM)  and 

Proximal  Jacobian  ADMM  (PJ-ADMM). ADMM  is  fundamentally  inspired  by  a 

decomposition-coordination  procedure,  in  which  an  optimization  problem  is  broken 

down into smaller subproblems. Then, the subproblems are solved to converge into the 

same results as the initial problem. Firstly, to apply the algorithms in our case study, an 

augmented Lagrangian function of the power-split problem is derived. Subsequently, 

the corresponding function is decomposed, and the broken-down terms are minimized 

over  sequential  processes.  Finally,  the  dual  variables  are  updated.  This  procedure 

continues until the convergence criteria are satisfied.  

Figure 3-2 and Figure 3-1 depict the information flow in C-ADMM and PJ-ADMM. 

 

Figure 3-1 The parallel communication procedure of the decentralized PJ-ADMM. 
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Figure 3-2 The information flow between the FC modules via the C-ADMM. 

 

Figure 3-1 The parallel communication procedure of the decentralized PJ-ADMM. 

3.3 Synopsis of the analyses of the results 

Figure 3-3 compares the output powers and SoC variation obtained by C-ADMM and PJ-

ADMM. The SoC level of the battery pack oscillates between 69% and 72%, which is less 

than approximately a 3% variation. Although the obtained SOC variations by C-ADMM and 

PJ-ADMM are similar, a slight deviation can be observed in the SOC levels from 50 s to 150 

s. It is due to more cumulative costs in the PJ-ADMM algorithm. After the 150s, the SOC 

fluctuations become almost equal because the answers of decentralized convex optimization 
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3.4 Outcomes 

The study of two decentralized optimization approaches has brought about the following 

points. 

- Describing the principle highlights to devise a proficient modular EMS for the FCV 

applications. 

- Demonstrating the benefits of the decentralized EMSs with an electrical fault, parameter 

initialization, and price changes. 

The explanation, as mentioned earlier, is presented through an article in the following 

section. 

 

Article  2:  Comparison  of  Decentralized  ADMM  Optimization  Algorithms  for  Power 

Allocation in Modular Fuel Cell Vehicles  

Authors: Arash Khalatbarisoltani, Mohsen Kandidayeni, Loïc Boulon, and Xiaosong Hu 

Journal: IEEE/ASME Transactions on Mechatronics 

Publication date:  September 2021 

3.1 Conclusion 

This  chapter  comprehensively  analyzes  two  novel  fully  decentralized  convex 

optimization algorithms (DCOA). Firstly, a general PAS problem is formulated, including 

hydrogen consumption, FC modules, and battery unit lifetime. Secondly, two multi-block 

alternating direction methods of multipliers (ADMM) algorithms are selected due to their 

fast convergence, parallel structure, modularity, and robustness. These features make them 
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feasible solutions in a MFCS. Subsequently, an in-depth comparative analysis, considering 

the real driving cycle and parameters and the sensitivity analysis regarding the dynamic fault 

and different price scenarios, is performed to fully disclose these algorithms' benefits. 

Moreover,  the  performance  of  the  algorithms  is  compared  with  DP  and  SQP.  Both 

simulations and the experiments unveil that the fully decentralized modular schemes perform 

better than DP and SQP. Moreover, PJ-ADMM is more practical in real-time applications 

due  to its  fast  response  and  robustness.  This  chapter  has  been  mainly  focused  on  a 

comprehensive  analysis  of  two  fully  decentralized  convex  algorithms  with  a  single-step 

optimization. The proposed decentralized procedures have the potential to be combined with 

an  advanced  multi-step  MPC  method  to  enhance  the  optimization  performance  and  the 

inherent robustness against uncertainty in predicting future driving profiles. Additionally, the 

hyperparameters  of  the  decentralized  controller  can  be  tuned  to  improve  the  optimization 

speed  further.  Consequently,  the  next  chapter  will  present  an  adaptive  look-ahead 

decentralized MPC.
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Comparison of Decentralized ADMM
Optimization Algorithms for Power Allocation in

Modular Fuel Cell Vehicles
Arash Khalatbarisoltani , Member, IEEE, Mohsen Kandidayeni, Member, IEEE,
Loïc Boulon, Senior Member, IEEE, and Xiaosong Hu, Senior Member, IEEE

Abstract—The advanced modular powertrains are envi-
sioned as primary part of future hybrid fuel cell vehicles
(FCVs). The existing papers in the literature solely cope
with the hardware side of modularity, while the software
side is also vital to capitalize on the total capacity of these
powertrains. Driven by this motivation, this article puts for-
ward a comparative study of two novel decentralized con-
vex optimization frameworks based on alternating direction
method of multipliers (ADMM) to solve a multi-objective
power allocation strategy (PAS) problem in a modular FCV
(MFCV). The MFCV in this article is composed of two fuel
cell (FC) stacks and a battery pack. Despite the exist-
ing centralized strategies for such a modular system, this
manuscript proposes two decentralized PASs (Dec-PASs)
based on Consensus ADMM (C-ADMM) and Proximal Ja-
cobian ADMM (PJ-ADMM) to bridge the gap regarding the
appreciation of modularity in software terms. Herein, after
formulating the central PAS optimization problem, the prin-
ciple of utilizing such decentralized algorithms is presented
in detail. Subsequently, the performance of the proposed
Dec-PASs is examined through several numerical simula-
tions as well as experiments on a developed small-scale
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test bench. The obtained results illustrate that decomposi-
tion into decentralized forms enables solving the complex
PAS optimization problem faster and provides modularity
and flexibility. Furthermore, the proposed Dec-PASs can
cope with fault and malfunction and thus augment the dura-
bility and robustness of modular powertrain systems.

Index Terms—Alternating direction method of multipliers
(ADMM), distributed optimization, energy management, fuel
cell hybrid vehicle, proton exchange membrane fuel cell
(PEMFC).

I. INTRODUCTION

A. General Context

ONE of the largest sources of greenhouse gas emissions
is burning fossil fuels for the transportation sector. In

this regard, electrification of transportation through different
hybrid and pure electric vehicle technologies has come under
attention [1]. Fuel cell vehicles (FCVs), which are generally
composed of a fuel cell system (FCS) as the primary power
source and an energy storage system (battery and/or superca-
pacitor) as the secondary one, are considered as one of the
promising solutions to mitigate this critical concern [2], [3].
Among different FCSs, proton exchange membrane (PEM) fuel
cell (FC) has been the most appropriate candidate for this
application due to its efficiency, power density, low noise, and
low-temperature operation range [4]. The lithium-ion battery
is also the dominant battery technology in this domain due to
its high energy and power density and low self-discharge rate
[5]. Since the power sources of an FCV have different energetic
characteristics, the use of a power allocation strategy (PAS) is
crucial to minimize the total cost (hydrogen consumption and
degradation of the components) [6], [7]. A large number of
studies have been done on the design of PASs for FCVs, such as
rule-based [8], [9], fuzzy-based [10]–[14], optimization-based
[15]–[19], predictive-based [20]–[23], and adaptive strategies
[24]. The majority of these studies are based on centralized
PASs (Cen-PAS) designed for a single-stack FCV. Hence, they
are vulnerable to the malfunction of the power sources, which
can occur in such a configuration. This weakness exacerbates in
high-power applications, like buses and trucks, since many cells
must be stacked to meet the requested power. Consequently, with

1083-4435 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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all the advantageous of the single-stack FCSs, it is necessary to
advance them in terms of durability, modularity, and efficiency.

B. Literature Study

One of the proposed promising solutions in this regard is the
use of modular FCSs (MFCSs) [25]. Unlike the typical FCVs,
the modular FCVs consist of several connected low-power FCs
rather than a high-power one along with an energy storage
system. In [26], a survey of the MFCSs with different power
conditioning topologies and fluidic architectures is provided and
concluded that these systems offer better efficiency and lower
hydrogen consumption than the single-stack ones. Moreover,
the inherent redundancy of the MFCSs leads to the increase of
robustness and reliability in case of malfunction occurrence in
one of the FCs and/or the converters. On the other hand, the
extra degrees of freedom in the MFCSs necessitate the design
of advanced PASs to optimize the end-user costs and fulfill the
powertrain system requirements.
There are several research efforts based on the Cen-PASs

for MFCVs. For instance, in [27], three PASs, namely daisy
chain, equal distribution, and optimal splitting, are compared
for an MFCV, and it is shown that the optimal splitting achieves
the best performance. In [28], a rule-based PAS is utilized for
an MFCV and concluded that this strategy is suitable for high
hybridization ratios. In [29], four FCSs have been connected
via power converters to the DC bus using a maximum power
point tracking controller for each stack. In [30], a hysteresis
PAS is developed for an MFCV composed of three FCSs and a
battery pack. The primary purpose of the suggested PAS is to
make the operation time of the three FCSs equal while reducing
the number of on-off cycles. In [31], an adaptive state machine
PAS is proposed to distribute the power among four FCSs and a
battery pack. Simultaneously, the FCSs are constantly monitored
in terms of their maximum power and efficiency points. In [32],
an adaptive current distribution method based on a droop control
technique is proposed for two FCSs to decline the degradation
rate.
Although the discussed modular powertrains bring about

modularity and reliability from electrical and fluidic (hardware)
points of view, they do not guarantee these aspects in their
management and control units (software). These Cen-PASs are
susceptible to a precipitously single point of failure through
their software programs. Moreover, the additional degrees of
freedom make these Cen-PASs substantially complex and time-
consuming to be solved in real-time, which is a critical aspect
in the FCV applications. Therefore, there has been a growing
trend in the literature to gradually shift from Cen-PASs to
decentralized PASs (Dec-PASs). For instance, in [33], [34], two
Dec-PASs based on game theory are proposed. However, the
main drawback of these strategies is that the players are selfish
and may not converge to their optimal results. Furthermore,
these Dec-PASs cannot entirely satisfy the nonlinearities in the
behaviour and the constraints of different sources. Another worth
noting problem with these strategies is that they need a lot of
data exchange which is not feasible for the onboard applications.
In [35], a droop-based Dec-PAS is proposed for seeking optimal
power-sharing. However, this approach cannot perform well in

a wide range of operations and does not consider the longevity
of the powertrain system.
To evade the abovementioned problems in other domains with
multisource systems, such as smart grids [36], [37], special
attention has been given to decentralized convex optimization
(DCO) algorithms [38]. One of the most famous classical de-
composition methods in this regard is the one introduced in
[39] based on Lagrangian relaxation. However, this method
has slow convergence. Several other methods, such as auxiliary
problem principle (APP) [40], consensus-based algorithm [41],
Karush—Kuhn–Tucker (KKT) conditions [42], and alternat-
ing direction method of multipliers (ADMM) [43], [44], have
been proposed to enhance the convergence rate. Among them,
ADMM has attracted a lot of attentions since it can guaran-
tee the global convergence and does not require a significant
amount of data exchange in spite of other algorithms. This
method amalgamates dual decomposition with the multipliers
technique and the augmented Lagrangian approach. ADMM
decomposition-based method can be categorized into Gauss-
Seidel ADMM (GS-ADMM), Variable Splitting ADMM (VS-
ADMM), and Jacobian ADMM (J-ADMM) [45]. GS-ADMM
cannot be straightforwardly applied to an optimization problem
with more than three subproblems and hence cannot guarantee
the convergence in this case [45]. VS-ADMM is also not prac-
tical for large-size optimization problems, and J-ADMM may
diverge for various problems although its updating procedure
is parallel. In this regard, J-ADMM and GS-ADMM have been
advanced to Proximal Jacobian ADMM (PJ-ADMM) and Con-
sensus ADMM (C-ADMM), respectively, to be more practical
for the distributed optimization problems. The update processes
of PJ-ADMM and C-ADMM are parallel, and convergence
performance can be guaranteed simultaneously [46]. These two
DCO-based algorithms offer several advantages compared to
centralized ones. First, parallel execution feature enables them
to solve complex optimization problems with less computational
effort. Second, they can autonomously adapt to new changes
which provides robustness in case of any subsystem failure.
In [47], [48], two classic ADMM algorithms are suggested
for solving Cen-PASs in hybrid electric vehicles. However, their
central control units do not offer modularity, plug & play aspect,
and robustness in terms of software. In [49], an APP-based
scheme is proposed for a modular FCV. However, this decentral-
ized approach will not provide satisfying results in convergence
speed compared to other advanced DCO algorithms, such as
PJ-ADMM and C-ADMM.

C. Contribution

In the light of the discussed papers, it can be stated that there
is a lack of discussion on designing Dec-PAS via DCOs in the
domain of MFCVs. To the best of the authors’ knowledge,
this work is one of the leading attempts, if any, to propose
a practical framework for designing Dec-PASs in MFCVs. In
this respect, a detailed comparison of two Dec-PASs based on
C-ADMM and PJ-ADMM is put forward for an MFCV. These
two decomposition-based approaches are singled out due to
their parallel updating process, fast convergence speed, ability
to handle constraints, and global convergence performance.

Authorized licensed use limited to: Universite du Quebec a Trois-Rivieres. Downloaded on April 08,2022 at 00:00:01 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHALATBARISOLTANIet al.: COMPARISON OF DECENTRALIZED ADMM OPTIMIZATION ALGORITHMS 3

The proposed Dec-PASs are compared with an offline optimal
PAS (dynamic programming (DP)) and a Cen-PAS (sequential
quadratic programming (SQP)). The performance of these fully
Dec-PASs is thoroughly explored in terms of final cost under a
real driving profile. Since the ADMM-based decentralized ap-
proaches are highly sensitive to their parameters tuning, this vital
characteristic is thoroughly investigated. Moreover, to further
highlight the DCO-based PAS capabilities, the best Dec-PAS is
selected for price sensitivity and dynamic fault robustness analy-
ses. It is worth reminding that the performance of the PJ-ADMM
algorithm has been evaluated using a developed experimental
test bench, as opposed to most of similar manuscripts in the
literature, which are solely based on simulation.

D. Organization

The rest of this article is organized as follows. In Sec-
tion II, the configuration and modeling of the MFCV are de-
scribed in detail. Section III presents the general formulation
of the multi-objective PAS optimization problem. Section IV
describes the two utilized decentralized ADMM-based PAS
frameworks. In Section V, a detailed comparison of several
cases is conducted to scrutinize the performance of the proposed
DCO-based PASs. Section VI demonstrates the implementa-
tion results via a developed small-scale test bench to validate
the theoretical background. Finally, Section VII concludes this
article.

II. MFCV POWERTRAINCONFIGURATION ANDMODELING

A. Powertrain Structure and Modeling

To investigate the performance of the proposed Dec-PASs,
a modular FC test bench based on an electric vehicle is es-
tablished [50], as shown inFig. 1. The developed small-scale
test bench comprises two FC modules, a battery pack, a pro-
grammable dc electronic load, and a multirange programmable
dc power supply for simulating the requested load profile. The
critical components of each FC module are a 500-W open-
cathode PEMFCS (Horizon, model: H-500), a smoothing in-
ductor, and an adjustable unidirectional boost dc–dc converter
(Zahn ElectronicsTM, model: DC5036-SU). Moreover, six series
12V/18Ah battery packs provide the voltage of the dc-bus.
Each module has its autonomous Dec-PAS inside of a National
Instrument CompactRIO (NI9022). The optimal reference of
each module is calculated at each control instant with an interval
of 10 Hz. The power equilibrium of the FC modules and the
battery unit is formulated as follows:

M

m =1

Pm,kDm,k +PB,k=PL,k (1)

wherePm,m∈M, M ={1,2}denotes the generated power
by each one of the 500-W FCSs,Dmis the control signal of the
boost converters,PBis the power provided by the battery unit,
PLis the requested power from the propulsion system, andkis
the time instant.

Fig. 1. Developed small-scale test bench. (a) Schematic of the power-
train system. (b) Developed test bench.

Fig. 2. Characteristic curves of the two real FC modules. (a) Polariza-
tion curves. (b) Power curves. (c) Hydrogen curves.

B. FCS Modeling and Constraints

In this article, each of the 500-W FCSs,FCm, are modeled
as a voltage source where their polarization curves and the
hydrogen mass flows versus requested current are described by
experimentally validated quasi-static curves, as shown inFig. 2.
As explained in [14], the output power of an H-500 Horizon FCS
is obtained by subtracting the power of the FC stack from the
consumed power by the cooling fans and the hydrogen valve.
The consumed power by the purge valve is ignored as it has a
fixed cyclic purging (every ten seconds for a duration of 100ms).
In this article, the blowers and ancillaries of the FCSs are not
explicitly modeled. Nevertheless, their energetic performances
are taken into consideration by the static characteristics of the

Authorized licensed use limited to: Universite du Quebec a Trois-Rivieres. Downloaded on April 08,2022 at 00:00:01 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ASME TRANSACTIONS ON MECHATRONICS

Fig. 3. Measured and normalized hydrogen consumption curves of the
developed test bench. (a)FC1and (b)FC2.

TABLE I
TECHNICALSPECIFICATION OF THEOPEN-CATHODEPEMFC STAC K S

(H-500)

FCSs. In other words, the presented characteristics inFig. 2
belong to the FCSs considering the fans and hydrogen valve.
The technical data of the utilized FCSs are reported inTable I.
Fig. 3 demonstrates the measured and normalized hydrogen
consumptions of the FC modules.
The following enforces power and slew rate limits:

Pm,min ≤Pm,k ≤Pm,max (2.a)

Rd,mΔt≤Pm,k −Pm,(k−1)≤Ru,mΔt (2.b)

wherePm,min andPm,max are the minimum and maximum
values forPm,Rd,mandRu,mare boundaries of the slew
rates, andΔtindicates the time step. As explained in [14], for
rising, a dynamic limitation of 10% of the maximum power per
second, and for falling, 30% of the maximum power per second
have been considered for the operation of the FC stack. These
constraints prevent the FC stack from sudden changes, which
can result in degradation.

C. Battery Modeling and Constraints

A first-order RC model of the battery pack is formulated by

IB,k=
V0,k−RsIB,k−VB,k

Rc
+Cc

d

dt
(V0,k−RsIB,k−VB,k)

(3)
whereIB is the battery pack current,V0is the open-circuit
voltage,Rsis the series ohmic resistance,VB is the output
terminal voltage,Rcdenotes the polarization resistance, and
Ccis the polarization capacitor. The following imposes power
and slew rate limits:

PB,min ≤PB,k≤PB,max (4.a)

Rd,BΔt≤PB,k−PB,(k−1)≤Ru,BΔt (4.b)

wherePB,min andPB,max are the minimum and maximum
limits ofPB, respectively, andRd,BandRu,Bare the slew rate
boundaries ofPB. The following presents the state of charge
(SoC) calculation formula along with the constraints on the
batterySoClevel:

SoCk+1=SoCk−
PB,kΔt

QBVB,k3600
(5.a)

SoCmin ≤SoCk≤SoCmax (5.b)

whereSoCminandSoCmaxdenote the minimum and maximum
limits ofSoC, respectively,SoCk=0is the initialSoClevel,
andQBrepresents the battery capacity. The battery lifetime is
affected by the depth of discharge (DoD) and is defined as an
initial capacity drop (reaching 80% of the initial capacity). The
state of health (SoH) is calculated by

SoHk+1=SoHk−
|PB,k|Δt

2nBQBVB,k3600
(6.a)

SoHmin ≤SoHk (6.b)

whereSoHmin andSoHk=0indicate the minimum and ini-
tialSoH, respectively, andnB is the total number of cycles
during the whole lifetime of the battery pack. The parame-
ters of the battery pack have been obtained from experimental
tests (V0= 12.21V,Rs= 0.0141Ω,QB= 18.2Ah, and
Rc= 0.0177Ω).

D. Boost Converter Modeling and Characteristics

The two converters are modeled as follows:

Lm
d
dtIm,k =Vm,k −Vh,m,k−rmIm,k

Vh,m,k=mh,mVB,k
Ih,m,k=mh,mIm,kη

z
m
z=

1,ifPm >0
−1,ifPm <0

(7)

whereIm andVm are the current and voltage ofFCm, respec-
tively,Lmpresents the smoothing inductor inductance,rmis the
smoothing inductor resistance,ηh,mis the average efficiency,
andmh,mis the modulation ratio of the converters. The esti-
mated parameters of the boost converters areLm = 1.1mH,
rm = 23.9mΩ, andηm = 96.21%.

III. PROCESS OFDEVELOPING THEGENERALPA S
PROBLEM AND THEEVALUATIONFUNCTION

This section first presents a standard framework for formulat-
ing the main PAS optimization problem (8). Next, an evaluation
function (9) is defined to measure all the main criteria used in
different optimization methods in the same way.

A. Formulation of the Central PAS Problem

The multiobjective optimization problem of the MFCV can
be written as follows:

min
P1,...,PM ,PB

M

m =1

g(cm,k +cB,k) (8.a)
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s.t.

M

m=1

AmPm=c,other equality, and inequality constraints

wheregis a convex approximation cost function to be mini-
mized, including the FC modules’ normalized hydrogen con-
sumption, and the normalized degradation of the modules,
cm,k,and the battery system,cB,k, which are formulated as
follows:

cm,k =sh,m,k +sd,m,k,cB,k=sB,k +sSoC,k (8.b)

wherePm ∈R
Nm stands for the control actions,Am ∈R

M×Nm

andc∈RM apply the powertrain and the coupling constraints to
the modules, respectively,kstands for each simulation moment,
andsh,m,kis the normalized hydrogen consumption function,
calculated by

sh,m,k=
hm,k −hm,min
hm,max−hm,min

(8.c)

wherehm,k,hm,min, andhm,maxare the hydrogen consumption,
and the minimum and maximum limits ofFCm, respectively.
The normalizedFCm degradation term,sd,m, which includes
two normalized cost shaping functions, the low-power degrada-
tion,sld,m, and the high-power degradation,s

h
d,m, are formulated

by

sd,m,k=αls
l
d,m,k+αhs

h
d,m,k (8.d)

wheresld,mands
h
d,mare computed by

sld,m,k= 1−
(Pm,k −Pm,min)

2

(Pm,max−Pm,min)
2

(8.e)

shd,m,k= 1−
(Pm,k −Pm,max)

2

(Pm,max−Pm,min)
2

(8.f)

whereαlandαhare the constant coefficients, computed by

αl=
εl

εl+εh
, αh=

εh
εl+εh

(8.g)

whereεlandεhare the low-power and high-power cell degra-
dation rates, respectively. The degradation terms are adopted
from the previous studies since several long-duration aging
tests, which are beyond the scope of this research work, are
needed to determine them. These values are modified based
on the number of cells in the utilized FCSs. The values of
these variables (εl= 8.662μV /handεh= 10μV /h)have
been obtained from [51], [52]. The normalized battery pack
degradation function,sB,is calculated by

sB,k=
PB,k
PL,max

(8.h)

wherePL,max denotes the maximum value ofPL.sSoC is a
punishment term to measure the SoC level variation, which is
defined by

sSoC,k= β(SoCk−SoCk=0)
2 (8.i)

whereSoCk=0is the initialSoC, andβis a big positive
coefficient.

B. Defined Evaluation Function

The end-user cost,ST, in USD, is calculated by

ST=
K m

SH,m,k+Sd,m,k+SB,k +SSoC (9.a)

The hydrogen cost of each module,SH,m, is computed by

SH,m,k =hm,k CH2Δt (9.b)

wherehm,k is the hydrogen consumption,CH2is the hydrogen
price, andΔtindicates the time step. The degradation cost of
each module,Sd,m,k, is calculated by

Sd,m,k=S
l
d,m,k+S

h
d,m,k (9.c)

whereSld,m,kandS
h
d,m,kare costs of low-power and high-power

degradation, given by

Sld,m,k=
nmεlCFC,mΔtμl,m
3600Vn,m

Shd,m,k=
nmεhCFC,mΔtμh,m

3600Vn,m
(9.d)

wherenm represents the numbers of cells in eachFCm,Vn,m
is 10% of the nominalFCm voltage drop, andCFCm is FCS
cost.μl,mandμh,mare equal to

μl,m=
1,ifPmin,m≤Pm,k ≤0.2Pnom,m
0, otherwise.

(9.e)

μh,m=
1,if 0.8Pnom,m≤Pm,k ≤Pmax, m
0, otherwise.

(9.f)

wherePnom,mis the output power recommended by the manu-
facturing company for nominal use of the FCS [52]. The battery
degradation cost,SB, is determined by

SB,k=CB (SoHB,k−SoHB,0) (9.g)

whereCBis the battery price. The punishment term,SSoC,is
to recharge the battery to reach the initialSoCbyFCmwhile
operating at their maximum efficiency points. The reference
prices areCH2= 3.9254$/Kg[53],CB= 189$/kWh[54],
andCFCm = 35$/kW[55].

IV. FORMULATION OF THEGENERALADMM PAS
FRAMEWORKS

In this section, the utilized DCO algorithms are described.
To apply the DCO-based algorithms, firstly, the augmented
Lagrangian functions of the power-split problem are derived.
Subsequently, the corresponding functions are decomposed, and
the broken-down terms are minimized. Finally, the dual variables
are updated. These procedures continue until the convergence
criteria are satisfied.
It is worth noting that for the following two subsections, each
variable with the index ofjmeans the current value at the
jthiteration, and each variable with the index ofj+1 denotes
the new value.kis the position in the selected driving profile.
P1,kandP

s2
1.kare related toFC1, andP

s1
2,kandP2,kare linked
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Fig. 4. Description of real, virtual, and global variables in the MFCS.

toFC2. During the optimization process, each decentralized
controller calculates the power ofFC1andFC2at the same time.
For instance, the decentralized controller 1 solves its subproblem
for one iteration and calculates the output powerP1,kfor its
module andPs12,kfor the neighboring module. The decentralized
controller 2 solves its subproblem for one iteration and calculates
the output powerP2,kfor its module andP

s2
1,kfor the neighboring

module. During the exchange step, Ps21,kis sent toFC1and
Ps12,kis sent toFC2. Then, these values will be used in the next
iteration of the optimization procedure. These shared variables
are used to ensure that all the constraints are fulfilled for the
final results in thekthstep. The final power ofP1,kandP2,k
will be sent to the converters asPref1,k andP

ref
2,k to control the

modules and the rest of the requested power will be supplied
byPB. These final values will be used for thek

thstep. For
eachk, during the optimization iterations, the state variables of
the modular powertrain system are supposed to be unchanged.
However, these values will be updated in the next step (k+1).

A. C-ADMM-Based PAS

As shown inFig. 4, the central PAS is decomposed into two
coupled subproblems,sm. Since the coupling constraints are
not separable,Pm,k is copied into its neighboring module and
linked with a global power vector,wG,k ={w1,k,w2,k}.Inthis
respect,P1,kis copied intos2,P

s2
1,k, as a virtual power, andw1,k

is defined to link them.P2,kis also duplicated intos1,P
s1
2,k, and

w2,kconnects them.
The following guarantees that the duplicated powers ins1and
s2are equal with each other [44]

P1,k−w1,k= 0,P
s1
2,k−w2,k= 0 (10.a)

Ps21,k−w1,k= 0,P2,k−w2,k= 0. (10.b)

After defining the global power variable constraints, the dis-
tributed parallel form of C-ADMM is defined by (11) and (12).
TheFC1module equations

Pj+11,k,P
s1,j+1
2,k = min(c1,k P1,k,P

s1
2,k +cB,k(PB,k)

+λs1,j1 P1,k+λ
s1,j
2 P

s1
2,k

+
ρ

2
P1,k−w

j
1,k

2

+ Ps12,k−w
j
2,k

2

) (11.a)

wj+11,k=
Pj+11,k +P

s2,j+1
1,k

2
(11.b)

Fig. 5. Step-by-step fl wchart of the decentralized C-ADMM algo-
rithm.

Fig. 6. Information fl w between the FC modules via C-ADMM.

λs1,j+11,k =λ
s1,j
1,k +ρP

j+1
1,k −w

j+1
1,k (11.c)

λ
s1,j+1
2,k =λ

s1,j
2,k +ρP

j+1
2,k −w

j+1
2,k .

TheFC2module equations

Ps2,j+11,k ,Pj+12,k = min(c2,k P
s2
1,k,P2,k +cB,k(PB,k)

λs2,j1 P
s2
1,k+λ

s2,j
2 P2,k

+
ρ

2
Ps21,k−w

j
1,k

2

+ P2,k−w
j
2,k

2

) (12.a)

wj+12,k=
Pj+12,k +P

s1,j+1
2,k

2
(12.b)

λs2,j+11,k =λs2,j1,k +ρP
j+1
1,k −w

j+1
1,k (12.c)

λs2,j+12,k =λs2,j2,k +ρP
j+1
2,k −w

j+1
2,k

whereλm,k represents the Lagrangian multipliers, andρis a
positive tuning value. Equations (11.b) and (12.b) define the
global power vector,wG,k, calculated based on the average of
all the linked modules, andjdenotes the number of iterations
[44]. The optimization convergence is defined by the following,
whereμ1andμ2are the limiting values:

λj+1m,k −λ
j
m,k

2
2≤μ1,ρP

j+1
m,k −P

j
m,k

2
2≤μ2. (13)

Fig. 5presents the flowchart of the C-ADMM algorithm in
four steps.Fig. 6depicts the flow of information in C-ADMM,
where the virtual powers are sent to the neighboring mod-
ules. Then, the global powers are calculated and returned in
parallel.
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Fig. 7. Update process of the PJ-ADMM-based PAS.

Fig. 8. Parallel communications of the decentralized PJ-ADMM PAS.

B. PJ-ADMM-Based PAS

To improve the convergence of ADMM, PJ-ADMM is pro-
posed in [45]. The formulation and parallel updating procedure
are presented as follow.
TheFC1module equations

Pj+11,k,P
s1,j+1
2,k = min(c1,k P1,k,P

s1
2,k +cB,k(PB,k)

+
ρ

2
P1,k−P

s2,j
1,k −λ

j
1,k

2
2+
1

2
P1,k−P

j
1,k

2
Pxi

+
ρ

2
Ps12,k−P

j
2,k−λ

j
2,k

2
2+
1

2
Ps12,k−P

s1,j
2,k

2
Pxi) (14.a)

λj+12,k=λ
j
2,k−γ P

s1,j+1
2,k −Pj+12,k

λj+11,k=λ
j
1,k−γ P

j+1
1,k −P

s2,j+1
1,k (14.b)

TheFC2module equations

Ps2,j+11,k ,Pj+12,k = min(c2,k P
s2
1,k,P2,k +cB,k(PB,k)

+
ρ

2
Ps21,k−P

j
1,k−λ

j
1,k

2
2+
1

2
Ps21,k−P

s2,j
1,k

2
Pxi

+
ρ

2
P2,k−P

s1,j
2,k−λ

j
2,k

2
2+
1

2
P2,k−P

j
2,k

2
Pxi) (15.a)

λj+11,k=λ
j
1,k−γ P

s2,j+1
1,k −Pj+11,k

λj+12,k=λ
j
2,k−γ P

j+1
2,k −P

s1,j+1
2,k (15.b)

wherePxipresents a positive and symmetric semidefinite ma-
trix, andγindicates a positive damping parameter.Figs. 7and8
illustrate the step-by-step update process and the inter-module
communications of the DCO-based PAS.

Fig. 9. Real driving profil . (a) Velocity. (b) Acceleration. (c) Power.

V. SIMULATIONRESULTS ANDDISCUSSION

To unveil the capability of the DCO algorithms, first, a com-
prehensive analysis of the two proposed PASs is performed in
MATLAB software. In this sense, the developed approaches are
compared with DP as an offline optimization method and SQP
as a centralized convex programming algorithm. Subsequently,
due to the inherent sensitivity of the ADMM-based optimization
approaches to parameter tuning, this critical point is investigated
for PJ-ADMM and C-ADMM. Next, the most potential algo-
rithm is selected to scrutinize the effect of price sensitivity and
fault occurrence in the performance of the PAS. It is essential to
mention that the computational time extensively depends on the
utilized PC hardware (Processor=Corei5, 2.30 GHz, and RAM
=4.00 GB). Except for the parameter tuning analysis subsection,
the same initial values are applied to all the considered cases to
establish an unbiased comparison.

A. Optimal Performance Analysis

A real driving cycle is utilized to inspect the performance of
the developed DCO-based PASs, as shown inFig. 9. Since the
maximum power of the selected driving profile is higher than
the developed test bench limitations, the power profile is scaled
down by ten during the simulation and implementation steps.
The optimized power trajectories using C-ADMM and PJ-

ADMM are shown inFig. 10(a)and(b). As it can be seen, the
modules collaborate and primarily operate at the efficient regions
to fulfill the requested power and minimize the multiobjective
cost functions. However, due to the slow response of the mod-
ules, the secondary source supplies the fast dynamic response
and peaks.Fig. 10(c)compares theSoCvariations obtained
by C-ADMM and PJ-ADMM. TheSoCof the battery pack
oscillates between 69 and 72%, less than approximately 3% vari-
ation. Although the obtainedSoCvariations by C-ADMM and
PJ-ADMM are similar, a slight deviation can be observed in the
SoClevels from 50 to 150 s. It is due to more cumulative costs
in the PJ-ADMM algorithm. After 150 s, theSoCfluctuations
become almost equal because the responses of the DCO-based
algorithms are similar. Another point is that the drawn power
from the FC modules are increased after 250 s to keep theSoC
fluctuations close enough to the initial values.
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Fig. 10. Optimal PASs results (Pload:The requested power,FCs:
The power provided by the modules,Battery: The battery power).
(a) Profile based on C-ADMM. (b) The profile based on PJ-ADMM.
(c) TheSoCevaluations.

Fig. 11. Optimized power and power distributions of the modules using
C-ADMM. (a) Power profil ofFC1. (b) The distribution ofFC1.(c)The
power profil ofFC2. (d) The distribution ofFC2.

As an example, the time series and the distribution of the
power in the real and virtual FCs are presented for C-ADMM
case study inFig. 11.P1andP

s2
1 are the real and the virtual

power profile ofFC1, andP2andP
s1
2 are the real and the virtual

power profile ofFC2, respectively. It is evident from this figure
that the real power and virtual power of the modules are well-
matched. Moreover, the request power from the FCs is almost
located in high efficient regions. Since the convergence speed of
the C-ADMM algorithm is faster than the modular powertrain
dynamics, the virtual power of FCs gets very close to the real
one. It can also be realized that sinceFC2has a higher level of
maximum output power and efficiency, it is more utilized than
FC1.
The computation time and the number of iterations according
toFC1are illustrated in Fig. 12. The detailed computing per-
formance and final price of the developed PASs are presented in
Table II, where T is the computation time per second, and is the
number of iterations. As shown inTable II, the proposed DCO
algorithms are marginally better than SQP and have shown a very
close performance to DP in terms of the total cost. However, in
terms of computational time, the decentralized structures of the

Fig. 12. (a) Computational time. (b) Number of iterations.

TABLE II
DETAILEDCOMPUTINGPERFORMANCE ANDFINALPRICE

proposed PASs have made them much faster than SQP, where
the computational burdens have been reduced by 78.4% and
84.1% concerning C-ADMM and PJ-ADMM, respectively. The
computational time in PJ-ADMM is 5.7% lower than C-ADMM
because of the proximal term [45]. SQP is the slowest opti-
mization method with an operation time per iteration of 0.08
s. C-ADMM and PJ-ADMM are faster than SQP with 0.04
and 0.03 s, respectively. The associated total costs based on
PJ-ADMM and C-ADMM are $0.0426 and $0.0432, which are
4.4118% and 5.8824% higher than DP, respectively. These minor
differences are derived from the single-step optimization and the
convex modeling approximations. The hydrogen consumptions
are the highest cost, whereFC1andFC2contribute $0.0173
and $0.0109 under PJ-ADMM and $0.0174 and $0.010 under
C-ADMM, respectively. The second-largest expenses are related
to the modules’ degradations, which are approximately $0.0096
and $0.0098 by PJ-ADMM and C-ADMM, respectively. The
degradation costs of the battery pack using PJ-ADMM and
C-ADMM are about $0.0048 and $0.005, respectively, which
constitute 11.3% and 11.6% of the final costs. The C-ADMM
and PJ-ADMM cost terms equally decline because of the nor-
malized cost functions. It should be pronounced that DCOs can
assist the modules to prolong the FCSs lifetime and minimize
the final costs.Fig. 13provides the optimized cumulative cost
changes by utilizing the PJ-ADMM algorithm.

B. Parameter Tuning Analysis

In this section, the effects of the DCO-based PASs parameters
on the total cost and the computational time are cautiously
examined. A set of simulations are performed to seek appropriate
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Fig. 13. Cost evaluation of the PJ-ADMM algorithm.

Fig. 14. Variation withρandμof the fina cost and the processing
time. (a) C-ADMM and (b) PJ-ADMM.

ranges forρandμ. The obtained outcomes are presented in
Fig. 14. Overall, the costs present upward trends with some
fluctuations whenρincreases andμdeclines. Furthermore,
the computational time experiences incremental trends in both
cases, specifically whenμpasses 1.0×10−6. Consequently, the
selectedρandμranges require a balance between the final cost
and the data processing efficiency.

C. Price Sensitivity and Optimization Criteria Analysis

For the sake of exploring the influence of price changes and
optimization goals over the behavior of the DCO-based PASs,
a straightforward and effective investigation of PJ-ADMM is
performed in this section.Fig. 15illustrates the cost and op-
timization criteria evaluation. The current situation in 2020,
shown by the red dashed line, is considered the baseline. The
upcoming trend after five years in 2025 is considered a means
of comparison with two different probable case studies. The
first case study is related to a cheaper PEMFC stack price
(−20%) trend, which is plotted by the blue dashed line be-
cause of applying several cost-effective strategies from FC stack
manufacturers. The second case study assumes a surge in the
hydrogen price (+20%), depicted by the yellow-solid line, due
to the growth of the FCV production numbers and the penetration
of the hydrogen-powered system life. The criteria of the DCO-
based algorithms are defined throughη, whereη= 0shows

Fig. 15. Final cost evaluation according to different price and optimiza-
tion objective scenarios.

Fig. 16. Comparison between standard and fault operations of the
Dec-PAS based on PJ-ADMM. (a) Power profil evolutions in case of
regular operation. (b) The power profil trajectories in case of dynamic
electrical fault operation. (c) TheSoClevels of the battery pack.

the optimization is only hydrogen-consumption-oriented, and
η= 1 means the optimization is only health-aware-oriented.
It is pronounced that compared to the baseline price, a 20%
decrease in the FC stack price reduces the minimal value to
around 7.32%. Moreover, a 20% increase in the hydrogen price
augments the optimal value to around 9.76%. The optimalη=
0.18 is increased in both of the case studies. In future, adaptive
and comprehensive DCO PASs can be established while consid-
ering short-term and long-term price trajectories.

D. Fault-Resilient Analysis

To evaluate the robustness and modularity (plug & play), a
comparison between regular and faulty operation of PJ-ADMM
is performed in this subsection. This article takes only electrical
fault conditions into account, which will affect the system’s total
output power. For this purpose, a dynamic electrical fault is
imposed toFC2for 100 s.Fig. 16depicts the power trajectories
and theSoCfluctuations of the well-behaved and misbehaved
modules during and after the electrical fault. Throughout the
fault occurrence, the functional module and battery unit collabo-
rate to converge to the optimal power. After passing the electrical
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Fig. 17. Implementation results of the developed PAS based on PJ-
ADMM. (a) Power profile . (b) The modules’ power profile . (c) TheSoC
level fluctuation .

Fig. 18. Experimental results of the PJ-ADMM approach. (a) Power
profil ofFC1. (b) The distribution ofFC1. (c) The power profil ofFC2.
(d) The distribution ofFC2.

fault condition, due to the parallel structure of PJ-ADMM, this
algorithm can conveniently follow the requested power profile.
Therefore, if one of the modules stops regular operation for a
specific duration and gets back to regular operation again, the
Dec-PAS can keep working without making any problems for
the powertrain system. It is an intriguing clue that applying these
decentralized approaches at module-level fault operation needs
further investigations.

VI. EXPERIMENTALIMPLEMENTATION

An experimental test based on FPGA implementation is con-
ducted under the real driving profile to verify the simulation re-
sults. In this regard, PJ-ADMM is singled out due to its superior
performance compared to C-ADMM. Generally, the computa-
tional time and performance in the simulation step running on
general-purpose hardware (PC) differ from a real-time field test
for several reasons, such as processing capacity, memory, com-
munication delay, and uncertainty in the powertrain components.
The power trajectories andSoCoscillation are demonstrated in
Fig. 17. Moreover, the power distributions are shown inFig. 18.

The final cost of the PJ-ADMM-based PAS shows an extra cost
of 6.62% compared to that of the offline one. The hydrogen
consumption cost approximately forms 41.15% of the final cost.
The degradation of FC modules is the second-highest cost, with
about 27.84% of the final cost. The modular system operates
in the low-power and high-efficiency region to mitigate the
degradation expense and reduce hydrogen consumption. The
suggested PAS works well to ensure the constraints of the pow-
ertrain components prolong their lifespans. The computational
complexity of PJ-ADMM is about 63.25% lower than SQP. In
this regard, it is a practical and suitable optimization algorithm
for low-cost systems with limited onboard computational power.
These results highlight the potential of the decentralized imple-
mentation schemes in real-time applications.

VII. CONCLUSION

This article presents a comprehensive analysis of two Dec-
PASs based on distributed convex optimization in an MFCV ap-
plication. The two decomposition-based algorithms (C-ADMM
and PJ-ADMM) are selected due to their parallel updating
optimization procedures and their global convergences. In this
regard, a general PAS optimization problem with a convex
approximation is formulated for a modular powertrain system,
including hydrogen consumption and lifetime of the FC modules
as well as the lifetime of the battery unit. After that, the decen-
tralized optimization frameworks for solving the power-splitting
problem are presented. To evaluate the performance of the
proposed Dec-PASs under real driving profile, an in-depth com-
parative analysis of costs and computational times are presented
compared to DP and SQP.
Additionally, due to the importance of parameter tuning in
the ADMM-based optimization algorithms, this feature in C-
ADMM and PJ-ADMM is investigated. Since the PJ-ADMM
algorithm has reached a better general performance than C-
ADMM under the discussed scenarios, it is also used for two
further sensitivity analyses in terms of dynamic fault and price
fluctuation case studies. Finally, the experimental results un-
veil that the implemented PJ-ADMM decentralized scheme
achieves excellent performance compared to SQP. Considering
the outcomes of this manuscript, the following directions are put
forward for future endeavors.
1) The inclusion of future trip information in the DCO-
based PAS framework. This idea requires developing a
predictive-based control strategy and introducing a trip
model with a high level of reliability and accuracy.

2) The integration of thermal models of FCSs and battery
into the Dec-PAS and scrutinizing it from the perspective
of different initial temperatures and health conditions.

3) Combining DCO-based PASs with fault detection algo-
rithms to develop robust strategies for MFCV power-
trains.
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Chapitre 4 - Look-Ahead Decentralized Safe-
Learning Control for a Modular 
Powertrain Using Convex Optimization 
and Federated Reinforcement Learning 

4.1 Introduction 

This thesis explores different strengths and weaknesses related to the modular system, and a 

future-oriented concept is put forward using the distributed convex optimization approaches. 

After introducing the central idea of the decentralized optimization method in Chapter 2 and 

studying different algorithms to evaluate the advantages of the suggested methodology in 

Chapter 3, now this is the best moment to enhance the optimization algorithms' performance. 

All the work is based on one-step point optimization and does not include future information. 

This chapter will attempt to present the following point of view to combining the predictive 

model  idea  with  the  proposed  fully  decentralized  strategy  during  the  previous  chapters. 

Nevertheless,  two  crucial  sides  to  this  combination  need  to  be  studied.  Firstly,  having  a 

moving  horizon  will  augment  the  computational  time  and  will  increase  the  number  of 

iterations.  Secondly,  selecting  the  best  hyperparameter  value  is  highly  related  to  the 

application and the general pattern of the disturbance to the under-control system. For these 

two reasons, a decentralized learning method is added to simultaneously adopt the optimal 

horizon length based on the current state of the powertrain system. 

4.2 Methodology 

The fully decentralized lookahead allocation methodology to accomplish the third study is 

presented through the following stages. 
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- First, a multi-objective convex cost function for the power allocation problem is formulated 

by considering the hydrogen economy and powertrain lifespan factors. 

Second, a decentralized predictive-based optimization algorithm is developed by utilizing a 

Lagrangian decomposition method to minimize the convex cost function simultaneously. In 

the proposed Dec-MPC, the main problem is decentralized into �∈� subproblems, and 

each  one  is  allocated  to  a  FC  module  control  unit,  as  shown  in  Figure  4-1.  During  the 

optimization process, an exchange of candidate output powers occurs through the module-

to-module  communication  layer.  This  iterative  process  continues  until  an  agreement  is 

attained among the local control units, according to the determined stopping criterion. Then, 

the optimization process will be repeated and shifted to the next point. 

 

Figure 4-1 The adaptive look-ahead Dec-MPC framework and the modular 
powertrain system sequence operation. 
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The  detailed  procedure  of Dec-MPC  is  presented  in  Figure  4-2.  First,  a  cold-start 

initialization of �#,{&'!,…,&')}, �#,{&'!,…,&')}, and �#,{&'!,…,&')} is required for each module 

m (∀�∈�).  The  local  PAS  problems  are  solved  to  determine	�#,{&'!,…,&')}.  Then, 

�#,{&'!,…,&')} are  calculated  and  sent  to  the  neighbor  module  in  parallel.  After  that, 

�#,{&'!,…,&')} updates.  If ‖�#
+'!−�#

+‖"
"≤�! and �‖��

	+'![�]−��
+[�]‖"

"≤�",  where 

�!and �" are  the  limiting  values,  as  the  stopping  criteria  are  fulfilled,  the  optimization 

processes  stop  and �#,&'! is  sent  to  the  converters  as ��
./0
.  After  that,  the  optimization 

windows shift for one time step. If not, the optimization process goes back to Step 3. 

 

Figure 4-2 The systematic flowchart of the Dec-MPC algorithm. 
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- Third, a multi-agent safe learning technique is integrated to monitor the decentralized 

MPC performance and seek the best operational performance. This safe learning-based 

algorithm optimizes the hyperparameters of the control units based on the corresponding 

computational burden, final cost, and SoC level penalty. Safe Reinforcement Learning 

may be defined as establishing rules that maximize the likelihood of achieving a good 

return  on  investment  on  challenges.  It  is  vital  to  maintain  a  high  level  of  system 

performance and/or to adhere to safety restrictions during the learning and/or deployment 

stages  [58].  A  decentralized  learning  algorithm  is  built  based  on  this  notion  of  safe 

reinforcement  learning  by  incorporating  the  decentralized  MPC  layer  to  get  optimal 

outcomes. This topology aids the learning technique in converging on the FCS module's 

ideal  outcomes.  By  considering  the  characteristics  of  the  powertrain  components,  this 

safe learning technique ensures optimal outcomes. In this regard, state information from 

the environment that comprises the instance SoC level and average future power profile 

are  exploited  with  different  actions  to  reach  the  optimal  answers.  The  decentralized 

strategy's learning mechanism is based on three standard driving cycles. There is only 

one real driving profile for the electric car under study. Furthermore, just three available 

standard  driving  profiles  are  well-suited  to  the  selected  light-duty  electric 

vehicle. Indeed, to obtain a trustworthy outcome, it is critical to train the learning process 

using a database of real-world driving patterns. The result reported in this chapter is the 

first proof of the central concept. Integrating the new driving profiles is the first step to 

making the suggested method even better. The process of decentralized learning based 

on federated reinforcement learning (FRL) is indicated in Figure 4-3. To explain the FRL 

algorithm, an environment with {��#}#1!
2  modules is considered, where each module 
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has  the  training  points �# =EF�345!,���!,�!H,⋯,F�3456,���6,�6HJ  with �  tagged 

samples and the weight parameter list  �#. All modules {��#}#1!
2  are linked directly 

in a module-to-module style. Firstly, a cold-start initialization is applied to all modules 

{��#}#1!
2  , then it starts with training data �# in parallel for a small number of iterations 

(step 1). After that, each one pools its partially trained weight parameters �# to others 

(step 2) and merges all the received models by the weighted averaging technique, i.e., 

�7=∑
!

##
�# (step 3). In the end, the aggregated model �7 is used by the modules 

to select the optimal prediction horizon length. Several rounds are executed until all FC 

modules’ models converge (step 4). After completing the decentralized learning process, 

each  FC  module  has  its  local  model �&  and  the  aggregated  fine-tuned  model �7. 

Whenever a new FC module is connected to the environment {��#}#1!
2 , the aggregated 

model �7 will be shared to join the process (step 5) quickly. 

 

Figure 4-3 Visual representation of the module-to-module FRL algorithm and the 
learning steps. 
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The exact final operational costs associated with the proposed decentralized algorithms 

compared  to  DP  and  Cen-MPC  are  listed  in  Table  4-I.  The  final  costs  of  the  suggested 

approaches have achieved a very close performance to the DP results. The final costs based 

on fixed-horizon and adaptive Dec-MPCs are $0.0617 and $0.0628, which are 5.89% and 

7.75%  greater  than  DP,  respectively.  Based  on  the  obtained  results,  the  final  costs  of  the 

fixed-horizon and the adaptive Dec-MPCs are about 1.74% and 3.52% higher than Cen-MPC. 

Table 4-I The detailed comparison of computational complexity and final price 

 DP Cen-MPC Dec-MPC 
(Fixed-horizon) 

Dec-MPC 
(Adaptive-horizon) 

T - 25.5914 14.6237 9.2473 
�8 0.0583 0.0609   0.0617                    0.0628           

A  comparison  of  the  final  costs  and  the  computational time  based  on  different  prediction 

horizon  lengths  (from  2  to  25) is  depicted  in  Figure  4-5.  Generally,  the  final  costs  and 

computational  complexities  demonstrate  inverse  behaviors  as  the  moving  optimization 

window length increases for all cases. If the prediction moving window length is selected too 

short, the calculated optimized power values result in unsatisfactory approximations of the 

infinite horizon result. The execution time of Cen-MPC grows at best linearly with raising 

the length of the looking-ahead window in comparison with others, significantly when the 

optimization horizon dimension exceeds 12s. The computational burden of adjustable Dec-

MPC is about 61.54% and 76.95% fewer sensitivities than Dec-MPC and centralized one to 

the length of the moving horizon. 
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The  subsequent  paper  gives  the  discussions  mentioned  above  in  the  context  of  the 

suggested predictive power-splitting algorithm. 
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4.5 Conclusion 

This  chapter  presents  a  lookahead  D-PAS  for  coordinating  two  FC  modules  and  one 

battery pack in a FCV application. Firstly, the look-ahead PAS problem is formulated as a 

convex problem. Secondly, the decentralized PAS is attained by applying a decomposition 

scheme  based  on  C-ADMM  without  any  central  coordinator.  During  the  DCO-based 

optimization  process,  the  constraints  of  the  powertrain  components  are  scrutinized  by 

projecting the temporary FC modules powers into the feasible working spaces. Each module 

communicates with the neighboring one to agree on the optimal solutions leading to a robust 

and reconfigurable power-splitting scheme. Then, a federated reinforcement learning-based 

tuning  approach  is  proposed  to  improve  the  computational  time  of  the  D-PAS  scheme. 

Finally,  several  numerical  and  experimental  studies  investigate  the  data  processing  time 

efficiencies,  convergence  performances,  final  optimal  solution  precisions,  and  module-to-

module  communication  necessities  of  the  D-PAS  methods.  The  next  chapter  provides  a 

general conclusion and the future direction of this work. 
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4.5.1 Abstract 

Optimization-based power allocation strategy (PAS) facilitates knowledge to enhance the 

performance  of  fuel  cell  vehicles  (FCVs)  powertrain.  Ongoing  efforts  predominantly 

concentrate on optimizing a centralized PAS (Cen-PAS) by numerous high-computational 

methods  without  adequately  providing  flexibility  (plug  &  play)  and  robustness  for  the 

onboard  powertrain  components.  To  address  these  shortcomings,  a  forward-looking 

decentralized PAS (Dec-PAS) based on the consensus-based alternating direction method of 

multipliers  (ADMM)  is  presented  with  an  explicit  consciousness  of  coordination  of 

powertrain  components’  dynamic  responses  and  considering  the  future  driving  profile 

information.  The  powertrain  components  using  the  multi-step  scheme  cooperate  in 

converging  the  global  optimum  answers  using  a  highly  dynamic  module-to-module 

communication layer in a fully decentralized configuration that is more robust and provides 

plug and play capability. Comparted to a single-step decentralized optimization approach, 

the proposed predictive scheme, which considers future driving information, results in a more 

overall decline in the final costs of hydrogen consumption and degradation. 

Look-Ahead Decentralized Safe-Learning Control 
for a Modular Powertrain Using Convex 

Optimization and Federated Reinforcement Learning 

Arash Khalatbarisoltani, Member, IEEE, Mohsen Kandidayeni, Member, IEEE, Loïc Boulon, Senior 
Member, IEEE, Xiaosong Hu, Senior Member, IEEE 
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Additionally, to improve the processing time, a safe-learning algorithm is proposed to 

learn the optimal policy of the moving horizon dimensions in the Dec-PAS using a federated 

reinforcement  learning  (FRL)  algorithm.  The  performance  of  the  proposed  framework  is 

assessed  for  accuracy,  convergence  speed,  and  communication  burden  compared  to  Cen-

PASs. Both numerical simulation and implementation results manifested the superiority of 

the  recommended  multi-step  safe-learning-enabled  Dec-PAS  scheme  over  the  centralized 

and fixed-horizon MPC approaches. 

Index  Terms—  Alternating  direction  method  of  multipliers  (ADMM),  distributed 

optimization  algorithms,  energy  management  strategy  (EMS),  fuel  cell  hybrid  electric 

vehicle (FC-HEV), model predictive control (MPC), proton exchange membrane fuel cell 

(PEMFC). 

4.5.2 Introduction 

Owing  to  more  exceeding  concern  throughout  fossil  fuel  consumption  and  the 

consequential  escalating  requirements  for  more  renewable  resources,  transportation  as  an 

essential sector is transitioning from internal combustion engine (ICE) vehicles to fuel cell 

vehicles  (FCVs)  [59].  Power  allocation  strategies  (PASs)  aim  to  enhance  the  operational 

performance and the lifetime of their powertrain components (fuel cell system (FCS), battery, 

and ultracapacitor) in the FCVs [60, 61]. Since the powertrain system of heavy-duty FCVs 

demands  high-level  powers,  there  is  a  need  to  employ  a  big-size  FCS.  Nevertheless,  a 

multilayer  FC  stack  diminishes  the  safety  and  reliability  of  the  powertrain  system.  These 

drawbacks motivate to shift into modular energy systems (MESs) [13]. Although there are 

many  efforts  to  advance  the  multi-stack  FCSs  (MSFCs)  from  hardware  perspectives  (for 

instance, connection topologies [1] and power-conditioning [5]), some issues still need to be 
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further addressed in terms of the software point of view. For this purpose, various power-

splitting strategies are assigned through a centralized PAS (Cen-PAS) control unit, as shown 

in Figure 4-6(a), such as power point tracking [28], optimization [27, 30], state machine [32], 

hierarchical  [34],  hysteresis  [35],  and  droop  control  [62].  However,  when  integrating  the 

dynamic responses of components, it is indispensable to optimize over multiple time steps. 

Furthermore, adding driving cycle prediction to the PAS problem may improve the obtained 

optimization results. In this regard, various centralized model predictive control (Cen-MPC) 

approaches are suggested in the literature, for instance, standard [63-67], nonlinear [68, 69], 

hierarchical  [70],  mixed-integer  [71],  and  multi-mode  [72] MPC.  The  popularity  of  Cen-

MPC  predominantly  stems  from  its  proficiency  to  manage  complex  powertrains  while 

respecting components’ constraints and guaranteeing safe operation as two crucial points for 

the  FCV  applications.  The  primary  impediment  of  Cen-MPC  is  that  the  computational 

complexity  of  solving  the  optimal  power-splitting  problem  is  comparatively  significant, 

restricting the implementation. Furthermore, the hyperparameters of Cen-MPC require to be 

fine-tuned  to  the  multi-objective  power-splitting  purpose.  More  importantly,  due  to  the 

centralized control structure, Cen-PAS does not provide plug-and-play and robustness from 

software perspective. In this regard, it makes perfect sense to look for a decentralized PAS 

(Dec-PAS)  method,  as  shown  in  Figure  4-6(b),  where  the  main  optimization  problem  is 

appropriately mapped into a subproblem for each of the module controllers. 



73 
 

 

(a) (b) 

Figure  4-6  Diagram  of  the  communications  topologies  and  the  underlying 

powertrain for Cen-PAS and Dec-PAS with four FC modules (��#,�=	{1,…,4}) and 

one battery pack (Bat). a) Cen-PAS with four local control units (�#,�={1,…,4}) 

and one centralized unit (c), b) Dec-PAS without a centralized controller. 

Decentralized  decision-making  approaches  to  distributed  convex  optimization  (DCO) 

algorithms,  such  as  Benders  decomposition,  Karush–Kuhn–Tucker  optimality  condition, 

Lagrangian  relaxation,  and  consensus  algorithm,  have  been  put  forward  recently  in  the 

literature [73, 74]. As one of the popular decomposition techniques, the alternating direction 

method of multipliers (ADMM) method [75] obtains the convergence characteristics of the 

multipliers technique and the decomposability of Lagrangian relaxation. The most relevant 

study  regarding  the  optimization-based Dec-PAS  has  been  introduced  in  [76].  In  [76],  a 

single-step Dec-PAS based on an auxiliary problem principle (APP) method is introduced to 

address a PAS problem. This study is based on a single-step optimization method. Although 

efficiently  bringing  to  bear  the  available  battery  pack  capacity,  preventing  nearsighted 

optimization answers, and respecting system constraints, optimizing multiple-step strategies 
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is necessary. It seems to be beneficial to extend the single-step DCO-based PAS into a multi-

step  MPC-based  one.  Decomposing  a  complex  PAS  optimization  problem  into  several 

cooperative  sub-problems,  which  converges  into  the  global  optimum  answer,  can  offer 

various  benefits.  A  decentralized  MPC  (Dec-MPC)  controller  can  manage  the  abnormal 

process in either an electrical fault or a failure of a processor unit, or even an internal stack 

malfunction. 

Moreover,  Den-PAS  offers  plug-and-play  since  its  modular  power  network  can  be 

reconfigured without completely changing its control policies. In addition, since each local 

subproblem in a parallel optimization process has fewer shared variables, constraints, and 

control variables than Cen-MPC, the computational complexity burden will be enormously 

mitigated.  In  a  Dec-MPC  scheme,  the size  of  the  looking-ahead  moving  window  is  an 

imperative parameter, which selects how far into the future the decentralized optimization 

scheme  assesses  the  outcomes  of  its  control  actions.  This  clue  motivates  integrating a 

learning-based algorithm with Dec-MPC to learn the optimal moving horizon police. 

Reinforcement  learning  (RL)  [77]  as  a  powerful  data-driven  algorithm  has  devoted 

considerable attention in the FCV domain, for instance, direct [78-80], online recursive [81], 

and hierarchical [82, 83] RL. Notwithstanding, the RL-based approach has proven to be an 

advanced  method,  but it  has  not  witnessed  many  practical  applications  in  MFCVs.  It  is 

mainly  because  this  learning-based  PAS  faces  several  difficulties.  The  operation  safety 

concern in the training and implementation stages is important [84]. Several approaches are 

suggested to address this weakness, such as, coach-actor double critic [85], learning-based 

MPC [86, 87], robust MPC [88], parallel-constrained policy optimization [89], shielding [90, 

91], and Lyapunov-based [92]. 
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The contribution of this study is situated within formulating a lookahead decentralized 

MPC-based PAS framework and investigating how the FRL algorithm is assisting in learning 

the optimal policy to choose the prediction moving horizon size in a MFCV. In contrast with 

[76], to consider the intertemporal constraints and efficiently utilize the available battery pack 

capacity,  the  previous  single-step  DCO-based  approach  is  extended  into  a  multi-step 

decentralized with parallel moving horizons. The proposed method leads to an overall decline 

in the total system expense since predictive control responses in anticipation of the requested 

power  in  the  future  driving  profile  can  be  singled  out.  Also,  integrating  the  receding 

prediction horizon into the decomposition technique facilitates good initial points, enhancing 

the optimization convergence speed. Moreover, since the main hyper-parameters affecting 

Dec-MPC's  performance  and  the  computational  burden  are  the  lengths  of  the  prediction 

horizon,  a  safe-learning  scheme  that  integrates  federated  reinforcement  learning  (FRL) 

algorithm  with  Dec-MPC  is  put  forward.  The  FRL  framework  without  a  central  unit 

cooperatively learns a shared control policy across the FC modules. The FC modules locally 

train based on the module-specific data for several epochs and then directly collaborate to 

build an aggregated and fined-tuned model. To the best of our knowledge, no research has 

been conducted to develop a Dec-MPC approach with safe-learning capability for a MFCV. 

Since the main idea of this study does not lie in introducing a predictive method, the DCO-

based strategy is straightforwardly formulated by considering that the future power profile is 

precisely known. The rest of this paper proceeds as follows. The FCV powertrain modeling 

description is presented in Section II. Section III formulates the multi-step look-ahead PAS 

optimization  problem.  The  suggested  Dec-MPC  framework  is  derived  according  to  the 

consensus-based ADMM procedure in Section IV. The formulation of learning the optimal 

length  of  the  Dec-MPC  receding  prediction  horizon  as  a  FRL  framework  is  provided  in 
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Section  V.  Comprehensive  numerical  simulations.  Experimental  results  are  presented  in 

Section VI, and Section VII, respectively, accompanied by conclusions recapped about the 

proposed decentralized approach and prospects in Section VIII. 

4.5.3 FCV powertrain configuration and modeling 

To facilitate the general idea of transforming centralized power-spiting problem into Dec-

MPC, a powertrain system comprises two parallel modules, and one battery unit is developed, 

as illustrated in Figure 4-7. 

4.5.3.1 Powertrain structure and modeling 

A  modular  test  bench  based  on  an  electric  vehicle  is  established  [25].  The  developed 

small-scale test bench comprises two modules, a battery pack, a programmable DC electronic 

load, and a multi-range programmable DC power supply for simulating the requested load 

profile. The critical components of each module are a 500-W open-cathode PEMFCS (H-

500),  a  smoothing  inductor,  and  an adjustable unidirectional  boost  DC-DC converter. Six 

series  12-V  18-Ah  battery  packs  give  the  voltage  of  the  DC  bus.  Each  module  has  its 

autonomous Dec-MPC inside of a National Instrument CompactRIO. The optimal reference 

of each module is calculated at every control instant with an interval of 10 Hz. 
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Figure 4-7 The schematic of the established small-scale modular test bench. 

The power balance equation of the modules and the battery unit on the DC bus at each step 

of the optimization window	(∀�∈�) is formulated in (1). 

∑ �#,)# +�9,)=�:,),∀�∈�,∀�∈�, (1.a) 

�#,)=�#Q�#,)�#,)−�6;<<,)S,∀�∈�,∀�∈�, (1.b) 

where	�#,)	(∀�∈�,�={1,2}) denotes the power of each one of the modules ��#. �9,) 

(∀�∈�) denotes the power provided by the battery unit, �:,) is the requested power from 

the propulsion system,	�#,) indicates the generated power of each of the 500-W FCSs,	�# 

and �#,) are the efficiency and the control signal of the boost converters, respectively,	�6;<<,) 

denotes the consumed power by the auxiliary of FCSs. 

4.5.3.2 FCS modeling and constraints 

In  this  work,  each  one  of  the  500-W  FCSs, ��#(∀�∈�)  are  modeled  as  voltage 

sources  where  their  polarization  curves  and  the  hydrogen  mass  flows  versus  requested 
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encumber  the  FCSs  from  repeatedly  turning  on/off  and  sudden  changes,  which  can  cause 

degradation costs. 

4.5.3.3 Battery modeling and constraints 

The first-order RC model of the battery pack is formulated by 

�9,)=
C!,#>D$E%,#>C%,#

D&
+	�F

A

AG
Q�H,)−�<�9,)−�9,)S,∀�∈�, (3.a) 

where �9 is  the  battery  pack  current, �H is  the  open-circuit  voltage, �< is  the  series  ohmic 

resistance,	�9 is the terminal voltage, �F denotes the polarization resistance, and  �F is the 

polarization  capacitor. Equation  (3)  imposes  power  and  slew  rate  limits  for  the  battery 

unit	�9,),∀�∈�. 

�9
#&+ ≤�9,)≤�9

#3=,∀�∈�, (3.b) 

�9,)−�9,)>!≤�9
?@��,∀�∈�, (3.c) 

�9,)>!−�9,)≤�9
A;B+��,∀�∈�, (3.d) 

where �9
#&+ ≤0 and �9

#3= ≥0 are the minimum and maximum limits of	�9,), respectively, 

and	�9
A;B+ and �9

?@ are the slew rate boundaries of �9,). Equation (4) presents the state of 

charge (���) calculation formula and the constraints on the battery SoC level. 

���)'!=���)−
I%,#∆G

K%C%,#LMHH
,∀�∈�,  (4.a) 

���#&+ ≤���)≤���
#3=,∀�∈�, (4.b) 

where ���#&+ and ���#3= denote the minimum and maximum limits of ���, respectively, 

the initial SoC level ���)1H is ���H, and �9 represent the battery capacity. The battery life 
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is  affected  by the  depth  of  discharge  (DOD)  and  is  defined as  an  initial  capacity  drop 

(reaching 80% of the initial battery capacity). The state of health (���) is calculated by 

���)'!=���)−
]�9,)]∆�

2�9�9�9,)3600
,∀�∈�, 

(5.a) 

���#&+ ≤���),∀�∈�, (5.b) 

where ���#&+ is  the  minimum  value  and	���)1	H is  the  initial  SoH  level,  and �9 denotes 

the total number of cycles during the whole lifetime of the battery unit. The parameters of 

the battery unit obtained from experimental tests are listed in Table 4-II. 

Table 4-II The approximated battery unit parameters. 
�H=12.21	� �<=0.014Ω �9=73.26 �F=0.017Ω 

Cc=1792 F �9=18.2�ℎ ���#&+ =0.65 ���#3= =0.75 

4.5.3.4 Boost converter modeling and characteristics 

The two converters are modeled as follows: 

�#
�

��
�#,)=�#,)−�N#,)−�#�#,),∀�∈�,∀�∈� 

(6.a) 

�N,)=�N,)�9,),�N#,)=�N#,)�#,)�N), (6.b) 

where �# and �# are the current and voltage of ��#(∀�∈�), respectively, �# =1.1	�� 

presents  the  smoothing  inductor  inductance, �# =23.9	�� is  the  smoothing  inductor 

resistance, �N=96.21% is  the  average  efficiency,  and �N is  the  modulation  ratio  of  the 

converters. 
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4.5.4 The general optimization problem formulation of the look-ahead PAS 

In this section, the mathematical formula of the main PAS optimization problem for the 

multi-stack  FCV,  as  illustrated  in  Figure  4-9,  is  provided  and  utilized  in  the  subsequent 

sections to elicit the decentralized scheme. 

 

Figure 4-9 The adaptive look-ahead Dec-MPC framework and the modular powertrain 

system sequence operation. 

The centralized convex-based multi-objective problem can be formulated in the following 

sequence. 

���I',#I%,#∑ ∑ �(�#(�#,))+�9(�9,)))
2
#1!

O>!
)1H   (7.a) 

s.t ∑ �#�#,)=�# , other equality and inequality constraints  

where � is  a symbolic  convex  approximation  cost  function  that  summarizes  all  the  cost 

functions  which  equal  to  sum  module  and  battery  cost, �# =sN#,)+sA#,)denotes  the 
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hydrogen  and  degradation  costs  of ��#(∀�∈�), �9=�9,)+�P;Q) is  the  battery  unit 

degradation and SoC penalty costs, �#,)∈ℝ
R' stands for the power of the module �, �# ∈

ℝ2×R' and �∈ℝ2 apply the powertrain and the coupling constraints, respectively,	�∈�#	

denotes  the  number  of  iterations. �N#,) is  computed  by H#,)�T(∆�,  where ℎ#,)=

�#
!�#,)

"+�#
"�#,)+�#

L is  a  quadratic  approximation  function  to  calculate  the  hydrogen 

consumption  cost  with �#
!,�#

",�#
L ≥0 and �#,)≥0 for ��#(∀�∈�) and �T(	is 

hydrogen price, 3.92 $/Kg [93]. sA#,)includes the low-power degradation �A',#
6 , the high-

power degradation �A',#
N , and the load-change degradation �A',#

G , formulated by 

�A,#,)
6 =

�60.5�UQ'∆��6,#

3600	�+,#
,∀�∈�,∀�∈�, 

(7.b) 

�A,#,)
N =

�N0.5�UQ'∆��N,#

3600	�+,#
,∀�∈�,∀�∈�, 

(7.c) 

�A,#,)
G =

�G0.5�UQ'∑ ∑ ]�#,)'!−�#,)]
2
#1!

O>!
)1H

1000�#�+,#
,∀�∈�,∀�∈� 

(7.d) 

where �# represents cell numbers of, �6,#and �N,# are equal to 

�6,# =x
1,if	�#&+,# ≤�#,)≤0.2�+;#,#
0,																							otherwise.																

, 
(7.e) 

�N,# =x
1,if	0.8�+;#,# ≤�#,)≤�#3=,#
0,																									otherwise.															

, 
(7.f) 

where �+,# is 10 % of the nominal ��#voltage drop, �UQ' =35	$/kW is the FCS cost [94]. 

The low-power, high-power, and load-change cell degradation rates are �6=8.662��ℎ⁄, 

�N=10��ℎ⁄, and �G=0.04185����⁄ , respectively, adapted from [30,95]. The battery 

degradation cost, �9,), is determined by 
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�9,)=�9(���9,)−���9,H),∀�∈�, (7.g) 

where �9=189	$/kWh is the battery price [96], �P;Q)is a punishment item to measure the 

SoC level variation, which is defined by 

�P;Q)=�(���)−���H)
",∀�∈�, (7.h) 

where ���H is the initial SoC, and	� is a large positive coefficient. 

4.5.5 Reformulation of Cen-MPC via C-ADMM 

This  section  thoroughly  explains  reformulating  the  Cen-MPC  problem  (7)  into  a 

decentralized  form  using  C-ADMM.  Additionally,  the  communication  principle  and  data 

flow  are  investigated  comprehensively.    In  the  proposed  Dec-MPC,  the  main  problem  is 

decentralized  into �∈� subproblems,  and  each  one  is  allocated  to  a FC  module  control 

unit.  During  the  optimization  process,  an  exchange  of  candidate  output  powers  occurs 

through the module-to-module communication layer. This iterative process continues until 

an agreement is attained among the local control units, according to the determined stopping 

criterion. Then, the optimization process will be repeated and shifted to the next point, as 

illustrated in Figure 4-10. 
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Figure 4-10 The employed decomposition technique. 

Since the modules are coupled through (1) on the DC bus, the general problem (7) is not 

inherently decomposable. To tackle this issue, as demonstrated in Figure 4-11, �#,{&'!,…,&'O} 

is duplicated into its neighboring module as a virtual power and coupled with a global power 

vector,�#,{&'!,…,&'O}=à�!,{&'!,…,&'O},�",{&'!,…,&'O}ä.  As  an  example, �!,{&'!,…,&'O} is 

copied into ��" as a virtual power �!",{&'!,…,&'O}, and �!,{&'!,…,&'O} is defined to link them 

together. Equation (8) is added to guarantee that the duplicated variables are equal and the 

modified PAS converges to the same optimal optimization result [49]. 

�!,{&'!,…,&'O}
+ −�!,{&'!,…,&'O}

+ =0,∀�∈�, (8.a) 

�!",{&'!,…,&'O}
+ −�!,{&'!,…,&'O}

+ =0,∀�∈�, (8.b) 

�",{&'!,…,&'O}
+ −�",{&'!,…,&'O}

+ =0,∀�∈� (8.c) 

�"!,{&'!,…,&'O}
+ −�",{&'!,…,&'O}

+ =0,∀�∈� (8.d) 

To improve the convergence performance and ease the communication burden, the number 

of the optimization variables is reduced by assuming that the virtual variables are equal to 
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the  previous  global  variables.  For  instance, �!",{&'!,…,&'O}
+'! is  equal  to �!,{&'!,…,&'O}

+ .  In  this 

way, the centralized PAS problem can be transformed into two decentralized subproblems 

functions of �#,{&'!,…,&'O} and �#,{&'!,…,&'O}. 

 

Figure 4-11 Visual representation of the multi-step MPC-based PAS. 

The decentralized optimization process of (7)-(8) includes a three-step procedure, where � is 

a  positive  tuning  value, � denotes  the  number  of  iterations,  and �# are  Lagrangian 

multipliers  [49].  The  equations  related  to  modules  1  and  2  are  given  in  (9)  and  (10), 

respectively. 

�!,{&'!,…,	&'O}
+'! =���à�!(�!,{&'!,…,	&'O},�"!,{&'!,…,	&'O}

+ )+�9(�V,{&'!,…,	&'O})+ (9.a) 

�!,{&'!,…,	&'O}
+ �!,{&'!,…,	&'O}+

W

"
(�!,{&'!,…,&'O}−�!,{&'!,…,&'O}

+ )"J,	∀�∈�,  

�!,{&'!,…,&'O}
+'! =

I),{+,),…,+,.}
0,) 'B),{+,),…,+,.}

0

"
,	∀�∈� 

(9.b) 

�!,{&'!,…,&'O}
+'! =�!,{&'!,…,&'O}

+ +�(�!,{&'!,…,&'O}
+'! −�!,{&'!,…,&'O}

+'! ),∀�∈� (9.c) 

�",{&'!,…,&'O}
+'! =���	à�"(�!",{&'!,…,	&'O}

+ ,�",{&'!,…,	&'O})+�9(�V,{&'!,…,	&'O})+ (10.a) 
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�",{&'!,…,	&'O}
+ �",{&'!,…,	&'O}+

W

"
(�",{&'!,…,	&'O}−�",{&'!,…,&'O}

+ )"J],	∀�∈�  

�",{&'!,…,&'O}
+'! =

I(,{+,),…,+,.}
0,) 'B(,{+,),…,+,.}

0

"
,	∀�∈� 

(10.b) 

�",{&'!,…,&'O}
+'! =�",{&'!,…,&'O}

+ +�(�",{&'!,…,&'O}
+'! −�",{&'!,…,&'O}

+'! ),∀�∈�. (10.c) 

where �! and �" are  based  on �# which  defines  in  the  previous  sections.  The  detailed 

procedure  of Dec-MPC  is  presented  in  Figure  4-12.  First,  a  cold-start  initialization  of 

�#,{&'!,…,&')}, �#,{&'!,…,&')},  and �#,{&'!,…,&')} is  required  for  each  module � (∀�∈�). 

The local PAS problems (9.a) and (10.a) are solved to determine	�#,{&'!,…,&')}. Then, the 

�#,{&'!,…,&')} are calculated by (9.b) and (10.b) and sent to the neighbor module in parallel. 

After  that, �#,{&'!,…,&')} is  updated  using  by  (9.c)  and  (10.c).  If ‖�#
+'!−�#

+‖"
"≤�! and 

�‖��
	+'![�]−��

+[�]‖"
"≤�",  where �!and �" are  the  limiting  values,  as  the  stopping 

criteria are fulfilled, the optimization processes stop and �#,&'! sends to the converters as 

��
./0
. After that, the optimization windows shift for one time step. If not, the optimization 

process goes back to Step 3. 
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Figure 4-12 The step-by-step flowchart of the Dec-MPC algorithm. 

4.5.6 General  description  of  the  hyper-parameters  tuning  algorithm  based  on 

Federated reinforcement learning 

As the primary hyperparameter of the proposed DCO-based PAS approach, the length of 

the moving window significantly impacts the optimization accuracy and speed. In this regard, 

a  learning  approach  based  on  FRL  is  proposed  to  tune  this  hyperparameter  optimally.  A 

Markov decision process (MDP) is formulated for the tuning process as a tuple (�#, �#, P, 

R, T), where �#denotes the set of states �∈�# =à�345,&,���&ä (∀�∈�,∀�∈�), where 

�345 and ���	are the average requested power for the maximum optimization horizon length 

and the current ��� value, respectively, �# represents the action set �∈�# ={�}, where 
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� is  the  prediction  horizon. �(�&'!|	�&,�&):�
#×�# →�(�) (∀�∈�,∀�∈�) are  the 

probability of transitioning into �&'!∈�
# at time �+1	when the decentralized PAS units 

take  action �&∈�
#In  the  state �&∈�

# at  time �, �&(�&,�&,�&'!):�
#×�#×�# →ℝ, 

�#,&=−1×(�!�#,&+�"�#,&+�L(���&'T−���H)
"))	(∀�∈�,∀�∈�) is the  reward 

value obtained when an action �&∈�
# is taken, with {�A}A1!

L are weighting variables, �#,& 

denotes the computational time of module � at the time step �, �#,& is the sum of the cost of 

module � and the battery unit at the time step �, and the last term is the cost associated with 

sustaining  the  SoC  level.  The  primary  objective  of  the  FRL  method  is  to  determine  the 

optimal hyper-parameter tuning strategy �X
∗ [97]. The main parameter we are focused on is 

finding the optimization horizon window size.   The procedure of two sequence optimization 

steps of the proposed predictive-based method is visualized in Figure 4-13. 

 

Figure 4-13 The general operation of the FRL-based approach to seeking the optimal 

hyperparameter  based  on  the  current  powertrain  states  (�345 and ���) in  two  sequence 

optimization steps. 

The  process  of  decentralized  learning  based  on  FRL  is  indicated  in  Figure  4-14.  To 

explain the FRL algorithm, an environment with {��#}#1!
2  modules is considered, where 
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each  module  has  the  training  points �# =EF�345!,���!,�!H,⋯,F�3456,���6,�6HJ with � 

tagged  samples  and  the  weight  parameter  list   �#.  All  modules {��#}#1!
2  are  linked 

directly  in  a  module-to-module  style.  Firstly,  a  cold-start  initialization  is  applied  to  all 

modules {��#}#1!
2  , then it starts with training data �# in parallel for a small number of 

iterations (step 1). After that, each one pools its partially trained weight parameters �# to 

others (step 2), and merges all the received models by the weighted averaging technique, i.e., 

�7=∑
!

##
�# (step 3). In the end, the aggregated model �7 is used by the modules to 

select  the  optimal  prediction  horizon  length.  Several  rounds  are  executed  until  all  FC 

modules’  models  converge  (step  4).  After  completing  the  decentralized  learning  process, 

each FC module has its local model �& and the aggregated fine-tuned model �7. Whenever 

a new FC module is connected to the environment {��#}#1!
2 , the aggregated model �7 will 

be shared to join the process (step 5) quickly. 

 

Figure  4-14  Visual  representation  of  the  module-to-module  FRL  algorithm  and  the 

learning steps. 
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Figure  4-17(a)  presents  the  computational  time  of  Cen-MPC  and  the  proposed  PASs 

under the selected real driving profile. As can be observed, the computational times of the 

fixed  horizon  and  learning-enabled  Dec-MPCs  take  an  average  of  0.0139s  and  0.0096s, 

respectively, to converge for each execution. In comparison, Cen-MPC takes 0.0233s with 

the same stopping criteria, which demonstrates the computational complexities are reduced 

by about 40.4040 % and 58.9062 % compared to Cen-MPC. That is because the proposed 

decentralized  method  opens  up  the  possibility  to  scrutinize  feasible  management  fast-

response policies with cooperation between the FC modules that minimize the overall costs 

of the powertrain while considering the fair distribution of incremental expenses. Figure 4-17 

(b) shows that the learning-enabled Dec-MPC iteration is reduced by 11.8384%. In this study, 

a high-speed solution has been selected for primary convergence conditions of the adaptive-

horizon Dec-MPC. If the output power errors deviation from the optimized powers obtained 

from the benchmark Cen-MPC can be tolerated more, FRL-based Dec-MPC can improve the 

convergence speed. More iterative iterations would be indispensable if accuracy was selected 

as the optimization design criterion. Based on the selected cost function, the learning-enabled 

decentralized scheme reaches an appropriate policy to choose the prediction horizon length 

optimally. A comparison between the trajectories of the moving look-ahead horizons for the 

developed MPC-based PASs is presented in Figure 4-17(c). It is evident that different zones 

of  the  moving  horizon  state  space  (�345,���)  of  adaptive  Dec-MPC  requires  various 

prediction dimensions to seek nearly optimal powers. The distribution of the moving horizon 

regarding the prediction length is illustrated in Figure 4-17(d). 
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Table 4-III The detailed comparison of computational complexity and final price 
 DP Cen-MPC Dec-MPC 

(Fixed-horizon) 
Dec-MPC 

(Adaptive-horizon) 
T - 25.5914 14.6237 9.2473 
�8 0.0583 0.0609   0.0617                    0.0628           

4.5.7.2 Impact of prediction horizon length 

This subsection examines how learning the optimal prediction window policies impact 

the optimization performance and computational complexity of the MPC-based approaches. 

A  comparison  of  the  final  costs  and  the  computational  complexities  based  on  different 

prediction horizon lengths (from 2 to 25) are depicted in Figure 4-18. Generally, the final 

costs  and  computational  complexities  demonstrate  inverse  behaviors  as  the  moving 

optimization window length increases for all cases. If the prediction moving window length 

is  selected  too  short,  the  calculated  optimized  power  values  result  in  unsatisfactory 

approximations of the infinite horizon result. The execution time of Cen-MPC grows at best 

linearly  with  raising  the  length  of  the  looking-ahead  window  in  comparison  with  others, 

significantly  when  the  optimization  horizon  dimension  exceeds  12s.  The  computational 

burden of adjustable Dec-MPC is about 61.54% and 76.95% fewer sensitivities than Dec-

MPC and centralized one to the length of the moving horizon. 
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agree on optimal solutions, leading to a higher cost-optimal, robust, and reconfigurable power 

splitting scheme. 

Additionally, to improve the computational time of the Dec-MPC strategy, a learning-

based  hyperparameter  tuning  approach  is  proposed.  Several  numerical  and  experimental 

studies  investigate  the  data  processing  time  efficiencies,  convergence  performances,  final 

optimal solution precisions, and module-to-module communication necessities of the Dec-

MPC methods. The introduced DCO-based procedure will be extended for solving a non-

convex  PAS  optimization  problem  with  uncertainty  for  future  works.  Additionally, 

asynchronous updating features will be explored. 
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Chapitre 5 - Conclusion and Future Directions 

5.1 Outline of the Research Achievements 

Contrary to traditional centralized EMSs, this Ph.D. thesis principally concentrated on 

the possibility of embedding a fully decentralized power-splitting scheme into the real-time 

multi-objective  decision-making  strategy  to  explore  additional  performance  improvement 

concerning the modularity and flexibility (plug and play) by decomposing the optimization 

problem besides considering hydrogen economy, FCS, and battery unit lifetime prolongation. 

First, the related research literature on the multi-stack FCV and centralized EMSs was 

thoroughly reviewed. Then, by analyzing the benefits and weaknesses of existing centralized 

approaches, a decentralized convex optimization scheme was introduced for real-time power 

allocation purposes because of its capacity to contribute modularity and flexibility (plug and 

play)  for  heterogeneous  time-varying  constrained  optimization  problems.  After  that,  the 

following influential contributions were introduced via this dissertation to bridge the gaps 

versus existing research. 

First,  a  decentralized  optimization  strategy  for  the  power  allocation  decision-making 

problem was proposed to prove the concept. Numerical and experimental results have shown 

that  the  introduced  decentralized  approach  outperformed  the  benchmark  EMSs  in 

computational time, achieving very close accuracy compared to the centralized ones. 
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After  that,  a  comprehensive  comparison  of  two  decomposing-based  power-splitting 

methods  was  conducted  to  explore  further  the  benefits  and  the  potential  impacts  of  the 

decentralized optimization framework on EMS performance, such as parameter sensibility 

and robustness. This study established a solid basis for realizing an exemplary algorithm for 

the decentralized EMS framework. 

Next,  a  look-ahead  EMS  based  on  decentralized  convex  optimization  was  devised  to 

combine the predictive information with the introduced power allocation in the previous step. 

In addition, with the assistance of a multi-agent federated reinforcement learning algorithm, 

a learning-based tuning approach was established to optimally seek the best hyperparameters 

based on the SoC level and the future behaviors of the FCV over each decentralized rolling 

optimization horizon. 

5.2 Outlook and Future Research Trends for Decentralized EMS 

As far as we have discussed in this thesis, it is clear that the upcoming future for fuel cell 

technologies is very bright but needs tremendous attention to push them to a higher standard. 

This  thesis  provides  a  more  flexible  (plug-and-play)  and  modular  system  with  high 

reliabilities. Until now, the efforts made could be as light for future studies in this newly 

developed  field  to  make  it  possible  to  be  applicable  in  the  next  generation  of  FCVs. 

Notwithstanding the signs of development regarding the decentralized EMSs in this thesis, 

multiple forward-looking and revolutionary strategies should be developed to improve the 

proposed scheme's performance. To encourage more innovative ideas, future works on the 

decentralized approach would be possible to focus on the following perspectives: 
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5.2.1 Integrating Advanced Modeling Methods 

Accurate  modeling  methods  of  the  modular  powertrain  components  are  crucial  for 

enhancing the FCVs' EMS efficiency. Although simple modeling approaches are used in the 

thesis,  they  cannot  fully  reflect  each  powertrain  module's  complexity  and  nonlinearity 

characteristics. Using measured and recorded data, several advanced modeling techniques 

based  on  data-driven  strategies  should  be  introduced  to  improve  power  source  modeling. 

Thus, considering these advanced modeling methods in the developed decentralized EMS 

needs further investigation.  

Auxiliary  systems,  such  as  air  conditioning  and  cooling  systems,  power  conditioning 

systems,  power  steering,  and  electronic  boards,  consume  energy  during  FCV  operation 

conditions. In addition, the auxiliary components of the FCS, such as compressors, fans, and 

pumps,  also  consume  some  part  of  the  generated  power.  However,  in  the  modeling  and 

designing  process  of  the  developed  EMSs,  these  power  consumptions  and  losses  were 

ignored  or  treated  as  a  constant.  This  ignorance  can  lead  to  inaccuracies,  specifically  for 

heavy-duty multi-stack FCV applications. From this perspective, taking these losses is an 

essential aspect for improving the established decentralized EMS performance.  

Because  keeping  the  decentralized  strategy  as  simple  as  possible,  all  the  models  are 

considered fixed and valid during all examinations. However, the central fact is that these 

parameters are changing and are very sensitive to other factors such as temperature, humidity, 

the  purity  of  the  consumed  hydrogen,  etc.  So  one  direction  could  be  to  include  different 

advanced model updating approaches to push the developed decentralized strategies in this 

regard. 
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5.2.2 Including Fault Diagnosis and Fault-Tolerant Control  

As  one  of  the  growing  trends  in  fuel  cell  application,  the  fault-tolerant  control  topic  is 

explored  in  many  research  studies.  Fault  and  failure  modes  in  a  FCS  can  result  in 

performance  decline  and  severe  safety  concerns.  In  this  regard,  fault-tolerant  control is 

introduced to satisfy the performance desires and keep a safe operation in fault occurrence 

[99]. The essential missing point is that most developed methods are for a centralized system. 

The  fault  diagnosis  and  tolerant  approaches  based  on  the  centralized  structures  are  not 

preferred for interconnected and multi-fuel cell systems because such methods need sensing, 

processing, and communication of many variables measured from the different components 

of  the  powertrain  system.  A  multi-stack  with  a  decentralized  control  scheme  may  need 

decentralized fault detection, fault isolation, diagnosis tools, and a decision-making structure 

to  manage  the  powertrain  system and  control  an  irregular  operation  system. It  could  be  a 

network of several local fault detectors, which screens each FC module employing only the 

local measured information. Each under-control module could provide helpful information 

for neighbors to share and process for future decisions. Shifting into a decentralized fault-

tolerant scheme may reduce the need for communication, simplify the fault control problem, 

and improve general performance. Therefore, developing a decentralized EMS enabled with 

a decentralized fault-tolerant control method could be one of the possible future works that 

could be done to reach a safer and more reliable modular powertrain configuration. 

5.2.3 Co-optimization and integration of different objectives 

This  thesis  only  considered  hydrogen  consumption  and  degradation  (FC  and  battery) 

costs. However, other advanced goals that may enhance the general operating performance 

were not considered along with the decentralized EMSs. An exciting optimization point for 
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the future possible direction of the developed decentralized optimization schemes could be 

to advance the cooperation level of the modular system. Specific optimization techniques, 

such  as  cooperative  game  theory,  can  be  combined  and  implemented  in  the  developed 

method.  For  instance,  encouraging  the  modules  may  be  more  beneficial  as  the  decision-

makers share their benefits to reduce the total team cost. Another more exciting direction 

could be including machine-learning methods with the game theory approach to solve this 

optimization problem more efficiently. A security-constrained control strategy seems to be 

necessary  for  a  modular  FCV  powertrain  to  guarantee  robustness  and  reliability  under 

possible disturbances and malfunctions.  

Because  of  the  inadequate  durability  of  FCS,  the  prognostic  and  health  management 

approaches  used  to  achieve  a  longer  life  have  recently  gained  considerable  attention. 

Prognostics and health management (PHM) techniques have been introduced to estimate the 

remaining useful life (RUL)'s health state [100, 101]. Substantial attention should be given 

to developing reliable health indicators and integrating the accurate degradation model into 

a  well-designed  decision–making  strategy.  The  health  management  approach  of  a 

decentralized  system  could  be  more  challenging  and  need  to  be  implemented  cautiously, 

which needs attention from researchers and professionals in this field. 

One  of  the  principal  hypotheses  in  the  thesis's  optimization  problem  is  that  all  the 

modules are selected to be the same size. As it is self-evident, the power-allocation problem 

cannot  be  optimally  solved  without  including  the size  and  dimension  of  the  powertrain 

components because each of the FCV owners can have specific driving behaviors with its 

unique driving pattern. Therefore, the sizing and power-sharing decision-making problems 

need to be considered simultaneously.  
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A  modular  system  by  integrating  the  decentralized  concept  will  offer  more  flexibility 

than a centralized one. To enhance the market penetration of the FCV in the new future, it 

may  be  more  attractive  to  move  forward  into  a  customer-based  production  system.  Each 

driver should select a customized FCV that is more suitable regarding the historical data and 

driving pattern.  Thus, more investigation needs to be done to reach an economical and cost-

optimal configuration from both short-term and long-term perspectives for the manufacturers 

and car owners.  

Integrating uncertainty knowledge into the optimization problem is an exciting area of 

research that has mainly escaped the attention of researchers in the electrified vehicle domain. 

In the coming years, because of the increasing trend toward green hydrogen production and 

including  sustainable  energy  sources  (wind  turbines  and  solar  panels),  constant  hydrogen 

production will be more challenging, and more hydrogen cost fluctuation will be observed. 

Stochastic  optimization  approaches  can  be  applied  to  address  this  issue,  and  one  of  the 

fascinating  techniques  is  chance-constrained  optimization. 

 Investigating how to model this trajectory and integrating it into the proposed optimization 

method would be exciting for the scientific research sectors. 

This thesis solves the EMS optimization problem relatively quickly under a single driving 

profile in a single FCV. However, considering a trip ahead and facilities (refueling stations 

and parking places) is necessary for a more general scheduling problem. This concept could 

be included by shifting from a decentralized short time-scale EMS with a single FCV into a 

longer time-scale with multi FCVs for further work. 

One of the future research trends of the modular and decentralized EMS lies in integrating 

advanced AI and machine learning methods, like NN, SVM, Bayesian inference, RL, deep 
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NN,  and  deep  reinforcement  learning  (DRL),  into  the  control  strategy.  Among  these 

approaches, the RL and DRL methods are essential subjects that catch much attention from 

academic  researchers  [102].  Therefore,  applying  these  algorithms  and  integrating  these 

approaches into the decentralized and modular EMSs should be further addressed in future 

works.  

From an energy perspective, the central concept of eco-driving is to seek the best and optimal 

way  to  reduce  energy  consumption  by  optimizing  velocity  trajectory [103].  However,  the 

current literature on eco-driving generally focuses on the HEVs and EVs and rarely considers 

the EMS of FCVs. Therefore, the eco-driving concept is an important subject to consider for 

integrating the developed decentralized EMS in the future. Based on this idea, an eco-driving 

hierarchical controller could be designed to assist the decentralized scheme to follow the best 

trajectory and improve operational performance. 

5.2.4 Improving the implementation capabilities of the proposed decentralized method   

Other  missing  aspects  of  the  newly  developed  decentralized  methods  are  how 

implementable these techniques are in the current prototypes or future FCVs and whether the 

control  units  can  run  these  algorithms.  An  essential  step  to  solving  this  deficiency  of  the 

proposed method in the thesis is to design a cheaper and easier decentralized algorithm for 

the  available  processors.  One  of  the  straightforward  solutions  is  to  simplify  the  control 

strategy without losing its operation efficiency. Another option could be to allocate some part 

of  the  analysis  in  a  cloud-based  and  use  the  information  to  control  the  modules.  Another 

forward-looking  step  could  include  different  communication  technologies  using  cables  or 

wireless  communication.  When  shifting  to  wireless  communication,  the  flexibility  of  the 

modular system will be improved, and the system can be easily fitted with any developed 
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chasses  reconfiguration.  It  can  be  easily  reconfigured  whenever  necessary  for  the  new 

structure; however, several important points must be considered at this stage. For instance, it 

is very likely that either command signals or measured variables be damaged by noise and 

affect the management process of the FCVs. Another implementation point that needs to be 

considered is how the CAN bus can be involved in the modular powertrain project to have a 

more robust communication channel. 
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 Appendix A – Résumé   

Pour  atténuer  les  dépendances  aux  carburants  fossiles,  des  alternatives  prometteuses 

impliquant des véhicules électriques (VE), des véhicules électriques hybrides (VEH) et des 

véhicules électriques hybrides rechargeables (PHEV) ont été étudiées pour assurer l'avenir 

vert au domaine des transports. Considérant la croissance significative des technologies de 

pile à combustible (FC), les systèmes à hydrogène deviennent une alternative compétitive à 

leurs homologues de l'industrie automobile. Cela est dû notamment à leur rendement élevé, 

leur faible bruit, leur faible temps de ravitaillement ainsi que leur absence d’émissions locales 

au véhicule. Ces caractéristiques ont propulsé les véhicules à pile à combustible (FCV) au 

cœur de la recherche industrielle et académiques. Les FCV se composent de deux sources 

d'énergie,  FCS  comme  source  principale  et  une  unité  batterie/supercondensateur  comme 

source secondaire. Le développement d'une stratégie de gestion énergétique (SME) efficace 

doit être étudié attentivement pour coordonner efficacement les multiples sources d'énergie. 

Bien que de nombreux efforts soient déployés pour améliorer les FCVS intégrant une unique 

pile  à  combustible,  certains  problèmes  persistent  notamment  en  termes  d'efficacité,  de 

disponibilité, de flexibilité (plug & play), de robustesse, de durabilité et de coût. Ces défis 

incitent la technologie FCV actuelle à évoluer vers des systèmes énergétiques modulaires 

(MES). La modularité matérielle a déjà été étudiée dans les FCV multi-piles pour fournir un 

avantage  technologique  et  une  meilleur  rentabilité  comparé  à  un  système  de  conversion 

d’énergie  à  pile  à  combustible  unique.  Néanmoins,  le  point  de  vue  de  la  modularité  du 

logiciel, en particulier de l'unité EMS, a échappé à l'attention. À cet égard, par rapport aux 

études existantes, cette thèse se concentrera fondamentalement sur les EMS décentralisées 
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émergentes  pour  les  FCV  multi-piles  afin  d'examiner  les  améliorations  inhérentes  à  la 

modularité  et  à  la  robustesse  imposées  en  étudiant  l'intégration  des  techniques  de 

décomposition. La structure principale de cette thèse est définie comme suit. Le chapitre 1 

présente l'introduction de la thèse, incluant les systèmes énergétiques modulaires et la revue 

de littérature sur les algorithmes d'optimisation décentralisés. Les techniques actuelles sont 

classées et examinées en termes de vitesse de convergence, de communication, d'exactitude 

et  d'applicabilité  en  temps  réel.  Le  chapitre  2  propose  une  méthode  de  décomposition 

lagrangienne au cadre décisionnel de puissance, dont les performances sont validées par des 

études  numériques  et  expérimentales.  Ensuite,  le  chapitre  3  présente  une  comparaison 

détaillée  entre  deux  techniques  de  décomposition  avancées  pour  identifier  les  principales 

caractéristiques  du  cadre  EMS  modulaire  proposé,  qui  établit  une  base  solide  pour  la 

réalisation des EMS. Considérant les techniques établies, le chapitre 4 propose l'intégration 

d'une  EMS  basée  sur  la  prévision  avec  la  méthode  de  décomposition,  conduisant  à  la 

conception d'un principe innovant de EMS décentralisée et anticipée. De plus, pour améliorer 

l'approche suggérée, une technique basée sur l'apprentissage intelligent permettant le réglage 

paramétrique de l'EMS conçue est proposée. Enfin, en conclusion, le chapitre 5 décrit les 

travaux de recherche effectués tout au long de ce doctorat, avec une mise en évidence des 

principaux résultats significatifs et une ouverture sur les futures orientations de recherche 

autour des EMS décentralisées. 

 




