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Abstract

Fuel cell velicles (FCVs) have been broadly considered substitutes for traditional
mternal combustion engine (ICE) vehicles. It 1s crucial to efficiently and healthily use
hydrogen-powered power sources to diminish FCVs' operating costs. It can be fulfilled
through well-designed energy management strategies (EMSs), which organize the energy
sources to generate the requested power. The hardware modulanty has already been
mvestigated m the multi-stack FCVs (MFCS), while the software modularity has escaped
the attention. The hardware modularity aspect of the MFCSs 1s related to having
flexability and reconfiguration in different electrical and flmdic structures. Literature

consideration shows that most of the existing power splitting approaches are centralized.

Moreover, some 1ssues regarding efficiency, availability, modulanty, flexibility (plug &
play), robustness, durability, and cost need to be addressed. In this respect, a new
direction called decentralized power allocation strategy has come under close
consideration in this Ph D. thesis to overcome the limitations and increase the decision-
making scheme's reliability and scalability. Unlike the typical centralized power
management approaches, a decentralized confrol scheme comprises hight-connected
confrol umts mstead of a big centralized one to augment reliability and scalability.
Several decentralized EMSs are established to provide a robust and modular powertrain
system. The thesis's main contnibutions are outhined: First, a decentralized power-

splitting strategy based on the auxihiary problem principle (APP) decomposition method



15 developed to prove the concept stage. Next, a comprehensive companson between the
consensus alternating direchion method of multipliers (C-ADMM) and the Proximal
Jacobian alternating direction method of multipliers (PJ-ADMM) 1s conducted to
demonstrate the main characteristics of the decentralized optimization algorithms in the
EMS field. Finally, decentralized model predictive control (MPC) 1s introduced for real-
time decision-making because 1t can handle time-varymg constrained systems and 1s
suited for the integration of driving predictive information. Additionally, a learming-
based tuming method 1s integrated to seek the optimal hyperparameters of the suggested

EMS.
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Chapitre 1 - Introduction

1.1 Iniroduction

An ntroduction to the Ph D. thesis 1s presented in this chapter. Firstly, the research
gap 1n existing studies 1s specified. Then, the corresponding solutions, specifically modular
energy systems (MESs) and decentralized optinuzation algorithms, are discussed accordingly
to lughlight the main contributions of this thesis. Single-stack fuel cell systems (FCSs) face
several challenges, such as efficiency, availability, durability, and cost. In the FCS, each cell
needs appropriate distribution of hummdification, hydrogen, water, and temperature. In
malfunctioning cell/cells, uneven heating and variations in cell voltages can happen, and, as

a result, continuing operation under this condition may be non-appropnate.

Furthermore, the traction power of buses, trucks, trailers, trains, and ships can reach high-
level capacity, so 1t 1s necessary to shift to big-size FCS, generating higher power. However,
stacking more cells declines the reliability of the powertrain systems. A modular energy
system (MES) 1s introduced in the literature to address these deficiencies and imperfections.
In [1], Marx et al. provided a survey of multi-stack FCSs with different architectures. It has
been concluded that a more reliable system 1s obtained by utilizing a parallel configuration
by enabling the degraded mode of operation. Garmier et al. [2] analyzed a multi-stack FCS
with a power converter architecture for transportation applications. Candusso et al. [3]
mvestigated the electrical operation equpped with an anti-parallel diode under

malfunctioning conditions. A survey of vanant power conditioming topologies 1s provided in



[4]. Thounthong et al. [5] reviewed different methods regarding the power-conditioning
systems for the single-stack and multi-stack FCSs. Palma and Enjet1 [6] suggested a modular
mulfi-stack FCS powered by a modular power conditioning system There are several
advantages for the MES compared to the single-stack ones. One of the main advantages of
multiple FCSs 1s the accessibility to several maximum efficiency operating points, as shown
in Figure 1-1 [1].
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Figure 1-1 Efficiency curves comparison. (a) Single high-power source, and (b)
Modular energy system composed of four parallel low-power sources.

Additionally, a MES can increase availability and durability by providing a redundancy
function to the system [7, 8]. A MES can operate in a degraded mode if one or more modules
break down due to malfunction [7, 9, 10]. A simple reconfiguration and replacing of the
components without changing the entire system or pausing the operation can revert the power
system to continue in its normal state [11]. The flexible confipuration of these systems
provides modularity as well as function partitioning. The modularity rules out the probability
of cascading failure occurrence in the system and assures a nonstop operation of the system
m various operating modes [11]. If only one or few FC modules are used in low power
requirements, the unused FC modules do not degrade. This way of operation prolongs the

lifetime of the system [12]. A flexible architectural arrangement 1s another strength of MESs.



Adjusting the position of the center of gravity can be done through various architectural
configurations of powertrain components and their subsystems, wihich impact the mass
distribution of the velicle [13].

Another fundamental advantage of utilizing the MESs 1s reaching the economy of scale and
large-scale production volumes in the intended power source. By acting on the number of
modules, the MESs make the same elementary module possible for a wide range of
applications in terms of power demand. This characteristic 1s because several similar modules
manufactured by one production line can meet the power demand. In this way, the average
costs start reducing as the oufput, the customers' needs for the particular manufactured
product, escalates. This 1s when the economues of scale and series production happen. From
another perspective, the required initial price of desigming and implementing a MES 1s higher
than a single-source system. However, in the long term, the modularity could compensate for
this cost since the price of replacing one low-power component 1s much less than a high-
power one. It 1s worth mentioming that the economy of scale 1s valid for a miche market and
small series vehicles. Till the production reaches a high number of units/year of a given car,
the design and the production of a reliable single source will probably be more attractive
from an economic perspective. The modularity of the developed method 1s connected to the
fact that mass manufacture of a modular energy system will reduce FCV final cost. It will be
more cost-effective to have a modular energy module adaptable to varous vehicle
applications, from light-duty to heavy-duty. Thus, combimmng several modules may handle a

broad range of transportation applications.

Contrary to the benefits mentioned above, the modular system encounters various drawbacks.

First, because of several connected power umits, the imtial expense of a MES 1s higher than



a centralized energy system. Additionally, the maintenance cost to keep the system functional
mcreases because of its multi-structure. Another point to mention 1s that it 1s more difficult
to use several power sources effectively. Thus, management and designing an effective
control strategy for such a system are challenging. Additionally, compared to the centralized
energy system, the configuration and sizing methods will be more complex mn the modular

system design. The advantages and disadvantages of the MESs are summanzed in Table 1-I.

Table 1-I A detailed comparison between the advantages and disadvantages of the

modular epergy system.
Advantages Disadvantages
Efficiency mmprovement High mmitial ancillary cost

The economy of scale, series production, and | High maintenance expense

overall cost decline More challenging to deploy and design
Flexible architecture (mass distribution) (architecture and dimensioning)
Availability and durability Coordination and control problem

1.2 Different applications of the modular energy system

Based on the aforementioned benefits and drawbacks, it 1s clear that the modular system
may be effective in various applications. Thus, MESs are required for transportation other
than rail, road, sea, and air. The followmng sections show some of the most essential

applications for each group.

1.2.1 Rail application

The enhancement of MES technologies has paved the way for applying these
configurations in rail transportation applications [14]. In [15], different energy

management methods are proposed to control the power flow among the powertrain



components in a low-floor light rail velicle (LF-LRV) tramway. This tramway's
powertrain, shown m Figure 1-2, comprises two PEMFCs, two battery packs, two
supercapacitors, four bidirectional DC/DC converters, two umdirectional DC/DC
converters, an auxiliary service module, and a braking resistor. The battery packs are
connected in parallel by a converter. In thus way, the output voltage of each battery pack
1s 1solated, which leads to more flexibility in the inverter mput voltage, the topology of
each package, and operation management. Smce the utihized FCSs are arranged in a
parallel configuration, the 1solation and reconnection procedure can be conducted with
mimmum stress on the other components. This configuration 1s also more beneficial in

degraded mode operation and reduces the average degradation per cycle than senies one.

Unidirectional
boost Converter

PEM fuel 4
cell p—

Braking resistonr anray

O

1
Unidirectional boost Battery Battery Rraking resistor array
converter mieduls module

Figure 1-2 Powertrain configuration of the developed modular tramway [15].
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1.2.2 Road transport

Several examples of utilizing modular FCS and battenies for road vehicles can be found
m the lterature. The German multinational automotive corporation, Daimler, has
announced the emergence of a FC hybnd bus in Hamburg with the capability of 250

kilometers operating range and almost 50 percent less hydrogen consumption than the



last generation. The powertrain of this bus 1s practically maintenance-free with a long
operating life thanks to the provided modulanty by its FCS configuration in which two
FCSs are connected to the DC bus [16]. In [17], to increase power, availability, and
durability, two PEMFCs are connected in series, and the connection with the batteries 1s
parallel to control a heavy-duty velicle. The most sigmficant advantages of this
configuration are simplicity and low cost. The DC-bus of the car 15 directly connected to
a pack of lead-acid batteries. The batteries act as an electrical source buffer coupled to
the DC converter in a parallel configuration in the explained vehicle. In [18], two 40-kW
FCS stacks are connected 1n a parallel configuration. The whole drive train 1s controlled
through an adaptive supervisory control strategy. The power train configuration of this

bus 15 presented in Figure 1-3.

40 kW Unidirectional Bidirectional

boost converter DC-AC converter

[ PEM fuel cell

40 kW

100 kW
[ PEM fuel cell | 80 kKW [ Ni-MH batt ﬁl}'] Rated power

80 Ah

Figure 1-3 Powertrain of the hybrid modular source city bus [18].

1.2.3 Maritime application

Numerous examples of modular FCS and batteries for navigational purposes can be found
m the scientific literature. For instance, a 92-meter-long vessel, with the help of several

gas-electric propulsion systems (Gensets) next to FCS and battery systems, brings about



a safer level, lower noise and vibrations, and lower cost maintenance necessities [19].
Because of the parallel arrangement of the MES, the FCS system has prevented from
being degradation after one year. In [20], several alternative powertramns based on
different configurations of FCSs and batteries for an electric ship are studied. The power
for the electric boat was provided by 12 packs of batteries (650 kW) and a 250 kW Genset.
The research stated that the FCSs powertrain 1s more beneficial than others. Five Ballard
HD6 FCS modules have been used in a parallel structure to satisfy the required high
power current with a fixed voltage to implement this powertramn. Figure 1-4 demonstrates
a hydrogen-powered vessel. The consumed hydrogen of two 30-kW FCSs 1s produced by
electrolyzing seawater [21]. The primary feature of this vessel 1s that the hydrogen
storage 1s ten fimes lighter than the storage by a battery pack, and it can be stored for a
long time without any drop. Additionally, this forward-looking concept offers low
hydrogen consumption, zero emission, zero noise, efficient energy storage, and backup

power [21].

Hvdrogen Storage:

25 Hydrogen Tanlks

Delivering up to 2800 kWh
of Electricity

2x30 kW Fuel Cells
2x=5 KW Electrolyser

= Propulsion: 2=60 k'Wh Engines

= Solar Energy: 500 m® of Solar Panel

= Solar Energy storage: 4 Lithivm ion Batteries
/ Delivering 754 kWh

Figure 1-4 Configuration of the modular hybrid-electric boat [21].



1.2.4 Submarines application

Immersion autonomy and discretion (heat and sound) must be fulfilled n pulitary
submarines. The submarines with batteries have a very low immersion autonomy since
they need to come back up to the water's surface to use the diesel engines to recharge the
batteries. Integrating FCSs with batteries leads to a drastic increase in immersion
performance. Moreover, noise and heat generation 15 much less in this way. For mstance,
the Class 212 submanne designed by Siemens 1s equipped with nine modules of 30 kW

FCSs, in which one FCS 1s used as a backup. A lead-acid battery has been added to

improve the total performance [22].

1.2.5 Air transportation

In [23], research in an uncrewed aenal vehicle (UAV) application stated that modular-
stack confipuration performs way better than single stack in terms of efficiency and
availability. In [24], a hydrogen-powered four-seater passenger aircraft 1s introduced.
This aircraft produces no local air pollution and has shown good prospects to make future
transport more sustainable. The powertrain compnises four low-temperature FCSs (T<70
°C) placed in the center capsule, as shown m Figure 1-5. This aircraft can cnuse up to
750 kilometers. By using liquid hydrogen, this range can be doubled at the cost of more

complicated infrastructure [24].
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Figure 1-5 Powertrain configuration of the uncrewed aenal vehicle [24]

1.3 Possible prospects of modular-based powertrain systems

Concerming the discussed MES concept m the thesis, different possible research areas can
be pointed out as worthy of attention. One of the essential research directions would be
to create an advanced EMS for the modular system. A smtable and well-design EMS can
make most of the previously discussed advantages of MESs viable. Another direction 1s
to design an appropnate architecture and sizing of powertrain components for such a
modular architecture. In this Ph D. thesis, due to the importance of power decision-
making strategy, the primary focus 1s designing and developing forward-thinking EMS
control methods. In this regard, to mvestigate the design of the EMS part, a FCV
architecture composed of two FC modules and one battery pack 1s selected, as shown in
Figure 1-6. As can be observed, the two open-cathode PEMFCs are paralleled and
connected to a DC bus to supply the requested power. The battery pack 1s placed to tackle
the FCS's slow response characteristic, and the purpose of the regenerative braking 1s to
mmprove FCV efficiency. In this regard, a modular test bench based on an electric vehicle

1s established [25]. The developed small-scale test bench comprises two modules, a
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battery pack, a programmable DC electronic load, and a multi-range programmable DC
power supply for simulating the requested load profile. The critical components of each
module are a 500-W open-cathode PEMFCS (H-500), a smoothing mductor, and an
adjustable unmidirectional boost DC-DC converter. Six series 12-V 18-Ah battery packs
give the voltage of the DC bus. Each module has its autonomous Dec-MPC inside of a
National Instrument CompactRIO. The optimal reference of each module 1s calculated at

every confrol mstant with an mterval of 10 Hz.

To achieve this thesis's primary goal, which 1s to apply a decentralized power allocation
strategy, the presented figure makes it easier for the readers to understand the main
powertrain configuration. The complete structure mcludes the local fuel cell system and
powers electronic components. It 15 common to use such a presentation mn different
articles [18, 26, 27]. In the thesis, regenerative braking 1s not considered. The vehicle 1s
equipped with a typical braking system, in which surplus kinetic energy 1s converted to

wasted heat because of friction 1n the brakes.

Secondary

Primary Energy Source source
-

f
PEMFC
1 ttery
_— | 2 Regenerative braking E

Inverter — Motor _ Transmission

Propulsion
System

Figure 1-6 Scheme of the selected modular FCV powertrain architecture.

Hydrogen
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1.4 Different energy management strategies for modular fuel cell vehicles

Developing a pronusing energy management strategy (EMS) to coordinate multiple
power sources 1s of great importance to efficiently use the FCV with a modular powertram.
The possible control and management strategy configurations for a modular FCV can be
categorized into three primary forms: centralized, distnbuted, and decentralized, as

demonstrated in Figure 1-7.

(a) (b) (©

Figure 1-7 Dafferent forms of developing control strategy umit for a module FCV: a)

centralized, b) distnbuted, and c¢) decenfralized.

1.4.1 Centralized-based control structure

All power modules are linked to a central control umit i tlus type of controller. The
management umit collects detailed information about the modular system and provides
confrol signals. This centralized decision-making structure 1s easy to set up and can be
developed quickly. Somaiah and Agarwal [28] recommended implementing power pomnt
tracking in a multi-stack FCS using a power conditioning umt for each FCS. In [27],
efficiency optimization and an mstantaneous optimization-based EMS are suggested by Han
et al. for a dual-stack FCS. Ramadan ef al. [29] provided a thermal management strategy to

reduce startup duration, heating/cooling, and cycling problems. Each FCS 1s activated based
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on the demanded power and temperature. The multi-stack FCS useful life i1s influenced by
each FCS useful life, operating conditions, and schedule in this work. Herr et al. [30]
proposed a EMS based on the MILP method to prolong the powertrain systems’ useful life
through a prognostics and health management approach (PHM). Marx et al. [31] nvestigated
the impact of components sizing of a multi-stack FCS. The obtained results demonstrated an
improvement m hydrogen consumption and degradation rate in a lmgh hybridization rate.
Fernandez et al. [32] mntroduced a EMS based on an adaptive state machine to improve
hydrogen consumption and lifespan. The suggested approach 1s integrated with a Kalman
filter 1dentification method to determune each FCS’s maximum power and efficiency. To
enhance the multi-stack FCS parameters estimation accuracy, Wang ef al. [33] put forward
a EMS based on a forgetting factor recursive least square online identification algorithm. In
another study, Yan ef al.[34] suggested a hierarchical control method based on an equivalent
fitting circle strategy. Zhang et al. [35] proposed a hysteresis-based EMS to make activation
time evenly distributed and decrease the number of switching over three-stack FCS. It 1s
important to mention that all the existed EMSs for the multi-stack FCS are based on the
cenfralized configuration. These centralized managements are not fault tolerant and do not

provide the modularity from the software perspective.

1.4.2 Distributed-based control structure

As 1ts name imphies, the distributed structure does not require a central management umt.
Instead, this configuration uses several coordinators, each managing a part of the power
system’s modules. Each power module only exchanges information with the coordinator
umits that operate each energy module independently. When one or more units fail, the other

collaborating units can continue their operations and provide control signals to the functional
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modules. Concerning overall powertrain system uptime, this distnbuted-based control
system significantly improves over a centralized one. Furthermore, while their fault tolerance

15 higher than the centralized one, this comes at a mamtaming price in a distributed-based

control system.

1.4.3 Decentralized-based control structure

A decentralized strategy 1s similar to a distributed one 1n that 1t does not requure a central
control umt. However, going a step further in modularity eliminates the need to have mult
coordinator umits. Each control unit of the power modules directly exchanges data with 1ts
neighbor control units. The control umts (software part) are allocated between the power
modules (hardware part), improving the control strategy’s performance. This decentralized-
based scheme enables the modular controllers to share their control management
responsibilities. Such a control system 1s safer than the centralized and distributed structures
from the independent failure of power system components (hardware and software
perspectives), improving its effective uptime considerably. Furthermore, the decentralized
confrol structure 1s more scalable and flexible (plug-and-play) concerning changes in the
modular power system [36, 37]. Another point to mention 1s that due to the ability to offer
parallel processing and calculations, the decentralized-based EMS can reduce computational
complexity more than the previous control structures, forming the solution speed and the
maximum size perspectives.

While the decentralized-based strategy can bring several unique advantages for modular
powertrain applications, there are also several disadvantages to this type of control strategy.
In the modular powertrain system, a control strategy needs to be working toward the

predefined common goals. Since the power decision-making strategy 1s delegated in a
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decentralized control layer, ensuring that all control umts consistently pursue the main
powertrain objectives 1s more challenging. In this regard, addressing the coordmnation
problems effectively requires recerving considerable attention In addition, since several
similar parallel control decisions need to be made simultaneously, the decentralized and
modular structure 1s more susceptible to duplicating efforts, which results in mefficiency and
extra costs.

Additionally, each module’s control strategy may be tempted to modify 1ts operation in
an incongruity effort to maximize efficiency selfishly. Putting local goals above global goals
15 essenfial to make sure that one module's policy and control management does not interfere
with or disrupt the work of other modules. Furthermore, external factors and unknown

disturbances might make 1t impossible to benefit from the decentralization concept.

1.4.4 Comparison between centralized, distributed & decentralized control strategies

As mentioned above, there are several benefits and downsides to every control strategy
configuration. To sum up all the discussions regarding different management structures, a
thorough comparison among these control strategies 1s presented in Table 1-IT. As can be
obviously observed from Table 1-II, with less prone to malfunction and offering flexibility
(plug-and-play), the decentralized decision-making structure has important characteristics
compared to others. In addition, the reconfiguration and adaptive capabilities of the
decentralized-based control will assist in declimng its deployment and maintenance costs in
the future_ In this regard, the decentralized control configuration will likely prove an inspired
direction in the years to come for the modular powertrain. Based on the provided discussion,
the decentralized power splitting strategy 1s chosen to control the selected modular FCV

powertrain configuration.



15

Table 1-II Comparnison between centralized, distributed & decentralized control

strategies
Methods Pros Cons
Centralized | Simple management algonithm Likely to malfunctions
Fast developed process High computational time
R.easonable mamtenance cost Expensive and extremely

rehiable processor unit

Distnibuted | Less likely to fail than a centralized | More expensive maintenance costs

control unit than a centralized one
Better performance Irregular performance when not well
Allows for a more flexible control optimized
strategy

Decentralized | Parallelizable and needs low | More challenging to coordinate and
computational efforts design the control units
Best performance Higher maintenance costs

Fault-tolerant
Higher level of secunty
Highly plug-and-play and scalable

Several cheap possessor units

1.5 Decentralized convex-based optimization (DCO) approaches

Based on the previous explanation, in this subsection, a comprehensive hterature review of
the decentralized methods 1s given to select the most suitable approach. As mentioned earlier,
the multi-stack powertrains bring about modularity and reliability from electrical and flmdic
perspectives. They do not guarantee these aspects mn their management and control umits.
Therefore, there has been a growing trend in the literature to shift from centralized power
allocation strategies (Cen-PASs) to decentralized power allocation strategies (Dec-PASs).
For mnstance, 1 [38, 39], two Dec-PASs based on game theory are proposed. However, the
main drawback of these strategies 1s that the players are selfish and may not converge to their

optimal results.
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Furthermore, these Dec-PASs cannot entirely satisfy the nonlinearities in the behavior and
the constraints of different sources. Another significant problem with these strategies 1s that
they need a lot of data exchange, which 1s not feasible for the onboard applications. In [40],
a droop-based Dec-PAS i1s proposed for seeking optimal power-sharing. However, this
approach cannot perfoorm well m a wide range of operations and
does not consider the powertrain system's lifespan. To evade the problems mentioned above
mn other domains with multi-source systems, such as smart gnids [41, 42], special attention
has been given to decentralized convex optimization (DCO) algorithms [43]. In the DCO
methods, the central complex optimization problem is decomposed and then reformulated for
each small subproblem regarding shared information and newly defined constraints. One of
the most famous classical decomposition methods 1s introduced m [44] based on Lagrangian
Relaxation with slow convergence. Several other ways, such as auxiliary problem principle
(APP) [45], consensus-based algonthm [46], Karush-Kuhn-Tucker (KKT) conditions [47],
and alternating direction method of multipliers (ADMM) [48, 49], have been proposed to
enhance the convergence rate. ADMM has attracted much attention since it can guarantee
global convergence and does not require a significant amount of data exchange despite other
algorithms. This method amalgamates dual decomposition with the multipliers techmque and
the augmented Lagrangian approach. ADMM decomposition-based method can be
categorized mto Gauss-Seidel ADMM (GS-ADMM), Vanable Sphitting ADMM (VS-
ADMM), and Jacobian ADMM (J-ADMM) [50]. GS-ADMM cannot be straightforwardly
applied to an optinuzation problem with more than three subproblems and hence cannot
guarantee the convergence in this case [50]. VS-ADMM 1s also not practical for large-size
optimization problems, and J-JADMM may diverge for various problems although its

updating procedure 1s parallel. In this regard, J-ADMM and GS-ADMM have been advanced
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to Proximal Jacobian ADMM (PJ-ADMM) and Consensus ADMM (C-ADMM),
respectively, to be more practical for the distnbuted optimization problems. The update
processes of PI-ADMM and C-ADMM are parallel, and convergence performance can be
guaranteed simultaneously [51]. These two DCO-based algorithms offer several advantages
compared to centralized ones. Firstly, parallel execution feature enables them to solve
complex optinuzation problems with less computational effort. Secondly, they can
autonomously adapt to new changes, which provides robustness i any subsystem failure.
In a modular energy system, robustness may be defined as a system's ability to withstand a

sudden failure and continue operating normally in the case of an electrical fault. In [52, 53],
two classic ADMM algorithms are suggested for solving Cen-PASs in hybnd electric
vehicles. However, their central control units do not offer modulanty, plug & play aspects,
and robustness mn terms of software. [42]summarizes different notable applications of the
DCOs, such as direct current optimal power flow (DC-OPF), altemative current optimal
power flow (AC-OPF), and umt commitment (UC), i the hiterature. Different connection
topologies for the DCOs to share information among the subproblems are shown in Figure
1-8. The results in [54] showed that the star-connection would lead to a faster convergence
rate than the ring-connection strategy. Similar research in [55] investigated the advantages
of the ning-connection topology as compared to the star-connection topology, mncluding (1)
the reduced amount of data to be commumicated, (2) higher level of security, (3) more
robustness, and (4) privacy protection of mdividual agents since the data are not shared in a
central controller. The complete connection offers the fastest convergence rate between all
types of connection forms compared to the other configurations. From a contradictory

perspective, a high range of data exchange among the adjacent modules 1s needed in this
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topology. To do so, a nng configuration 1s employed to form the shared information between

the modules. A comparison of different fypes of communication 1s presented in Table 1-ITT.
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Figure 1-8 Popular commmunication and sharing information topologies for the

decentralized optimmzation algorithms.

Table 1-ITT A comparison of different types of commumication

Type | Convergence speed Data Secunty Pnvacy Robustness
Star Medmm Medinm Medmm Medium Medinm
Ring Low Low High High Higher
Full High High Medium Medium Medium

Depending on the decomposition techmques and shared information, the DCOs can be
classified into two main categories, as shown in Figure 1-9 and Figure 1-10. Table 1-IV 1s
compared the five most important characteristics of the Lagrangian-based and consensus-

based DCOs.
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Figure 1-9 Classified the DCOs based on the decomposition methods.
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Decomposition-based consensus mult-block ADMM (C-ADMM) ]
ADMM

Decentralized, m Proxomal Jacobian mult-block ADMM (PI-ADMM) |

Flooding-based Consensus Approach |
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Figure 1-10 The decentralized methods according to the type of the pooled information

Table 1-IV Comparison between the Lagrangian-based and Consensus-based DCOs.

Algorithm Method Type of Data | Iteration | Computational
mformation effort
Lagrangian- | Leaving each entity with Physical High | Low High
based an optimization problem | wvanables of
to solve the boundary
system
Consensus- Solves a set of a linear Cost of Low High Low
based combination of gradient | subproblem
terms per iteration

To mvestigate i detail, Table 1-V and Table 1-VI summarize the features of Lagrangian

and consensus-based methods.

Considening the discussed DCOs in the previous studies, it 1s reasonable to select the
Lagrangian-based schemes to tackle the real-time decentralized EMS application of the
thesis. A real-time system can generate accurate outputs from the computations based on the
logical results and the physical time when those results are generated [56]. When a controller
responds to a request, 1fs response time typically falls mnto a vanation interval, also known as
latency jitter. A powertrain system can only allow a certain amount of latency without
damage or failure. The latency of a control umit should be at least five fimes smaller than the

latency of the process the controller 1s meant to control to provide a reliable automation



20

solution. For appropriate hardware selection, requirements should include handling processor
mterrupts i real-time and providing a development and runtime software environment that
can handle the required elapsed time and latency jitter. These methods are more robust than

the other approaches, and they are more accessible for implementation, giving them more

practical capabilities.
Table 1-V Summanzation of Lagrangian-based methods.
Algorithm Dual ADMM APP oCD
decomposition
Advantages Scalable/ Robust
fine-grained Area-based
Nodal-based
Speed Slow Fast Fast Fast
Disadvantages Dafficulty 1n Dependent Dependent on | Relies on how the
convergence | on the tumng tuning system 1s
parameters parameters partitioned-
Differentiable Cost
functions
Data exchange High Medium Low High
Computational High Medium Low Low
Iteration High Low Low High
Convergence | Strict convexity Convex Convex No proof
finiteness of all function Differentiable
local functions function

Nevertheless, special consideration should be paid to the choice of tuning parameters to
obtain satisfactory results in terms of the imtialization and customization of the algorithm
Furthermore, these methods are preferable to consensus-based schemes since their
convergence to the global answer can be proven, and they easily enable each modular system
to achieve optimal results even in the case of a halt or malfunction in one of them. In this
regard, APP, C-ADMM, and PJ-ADMM are smgled out among the Lagrangian-based
approaches due to their parallel structures and fast convergence, which seem like feasible

solutions m our case study.
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Algorithm ICC GT RL
Advantages Fully » Robust Model-free
decentralized = Adaptive
* Scalable
= Fully
decentralized
Disadvantages Sensitive to » System-level Optimality
hyperparameters Security cannot be
Problem with constraints guaranteed
addressing the may not be High
constraints effectively training
Cannot reach a handled 1ate
good outcome for » Significant
nonlinear cost information
functions exchange
The amount of s Self
data exchange optimizing
between neighbor manner
modules 15 high. * Converge if
general Nash
equilibrium
exists for the
problem

1.6 Problem statement

The fuel cell system encounters reliability and durability shortcomings compared to the
mternal combustion engine. In the literature, the multi-stack fuel cell system 1s introduced,
and many studies are conducted to improve further this kind of system. The mam weakness
regarding the current multi-stack system 1s that even these systems provide flexibility and
plug-and-play from the hardware pomt of view. At the same time, they do not offer such
charactenistics from the software perspective. The control unit of an interconnected multi-
stack system with a centralized control strategy 15 susceptible to malfunction and would not
be plug-and-play. For instance, in case of an electrical fault in the control umit, the fuel cell
system will stop 1ts regular operation. Furthermore, a multi-stack system with a centralized

control unit would not be reconfigurable to the new powertrain changes.



1.7 Aims and objectives

To correctly solve the preceding section's problem, three primary goals are identified,
and the thesis's sigmificant steps are detailed in connection to these objectives. The maimn goal
15 to 1llustrate the completely decentralized technique in a multiple-stack powertrain system.
The second goal 1s to examune the capability of establishing a decentralized strategy from
various perspectives. The third goal 1s to enhance the previous phase, based on a one-step
optimuzation technique, by including knowledge about future driving profiles. After studying
the excited decentralized controllers, the Lagrangian-based decomposition approach was
chosen to meet the sigmficant purpose of this research. The overall optimization 1ssue 1s then
subdvided mnto two subproblems. To accomplish the second objective, two well-known
decomposition strategies are carefully contrasted. Two critical aspects of robustness and cost
sensitivity are thoroughly examined. To accomplish this thesis's final objective, a machine-
learning technique 1s used to address the linitations of incorporating this information and the

dynamic reactions of the components as computing complexity increases.

1.8 Methodology

Based on the explanations mentioned above, due to the shortcomuings in the multi-stack FCSs
from the software perspective, 1t 1s essential to shift toward decentralized energy management
schemes. Such a system 1s robust agamst faults and brings flexibility and plug-and-play.
Based on the developed bases, after presenting the hiterature review of the mmlti-stack fuel
cell system, in Chapter 2, a proof of concept of the modular system with a single—step
decentralized control strategy 1s proposed for a two-stack system. In this regard, the
optimuzation problem 1s formulated. Subsequently, a detailed comparison shows how this

approach 1s close to the centralized method concerning the final hydrogen consumption and
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degradation costs and the computational time complexity. After presenting this step, Chapter
3 presents two powerful decentralized optinuzation algornithms to more specifically
concentrate on the fault robustness of the proposed strategies. Different critical aspects such
as hyperparameter tuning and cost sensitivity are presented in this chapter. For the last step
of this thesis, in Chapter 4, to improve the proposed method's performance, the decentralized
optimuzation method 1s shifted from the one-step form mto the multi-step optinization one

by adding the model predictive concept to the studied optimmzation problem.

Additionally, a decentralized learming-based algorithm 1s added to the decentralized look-
ahead scheme to have an adjustable optinuzation honizon. The decentralized strategy's
learning mechamism 1s based on three standard driving cycles. There 1s only one real driving
profile for the electric car under study. Furthermore, just three available standard driving
profiles are well-suited to the selected Light-duty electric velicle Indeed, to obtamn a
trustworthy outcome, it 1s critical to train the learning process using a database of real-world
driving patterns. The result reported m this chapter 1s the first proof of the central
concept. Integrating the new driving profiles 1s the first step to making the suggested method
even better. Ultimately, based on the conducted research, a conclusion summarnizes all of the

core results in this thesis. Then, several future possible directions and perspectives are given.

1.9 Thesis structure

The remainder of this thesis 1s structured as follows. Chapter 2 presents the proof of
concept of the decentralized EMS 1n an article entitled “Power Allocation Strategy Based on
Decentralized Convex Optuimzation i Modular Fuel Cell Systems for Vehicular
Applications”. Chapter 3 describes the main characteristics of such decentralized

optinuzation algorithms by presenting an article enfitled “A Comparison of Decentralized
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ADMM Optimization Algonithms for Power Allocation in Modular Fuel Cell Vehicles™.
Chapter 4 explains the integration of the decentralized optinuzation approach with the model
predictive control techmque by presenting an article entitled “Look-Ahead Decentralized
Safe-Learning Control for a Modular Powertrain Using Convex Optimization and Federated
Remforcement Learning”. Finally, the conclusion 1s presented in Chapter 5 with a detailed

description of the future steps concerming the further improvement of this thesis.
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Chapitre 2 - Power Allocation Strategy Based on
Decentralized Convex Optimization in
Modular Fuel Cell Systems for Vehicular
Applications

2.1 Introduction

Although the design of a centralized EMS for FCVs 1s a fammlhiar 1ssue and has been
carefully mvestigated in many studies by researcher groups, the aim of explonng a
decentralized and modular control method has been disregarded. In this light, exploring and
evaluating the benefits of a decentralized architecture for power splitting management as a
dissertation's first step might be novel Thus, the first mvestigation began with a proof of
concept for a decenfralized approach to power management This techmque uses
decentralized control to create a resilient and adaptable (plug and play) system that does not
require a centralized control unit to serve as the central coordinator. Decentralization: This
architecture 1s defined by a systematic module-level management strategy that can allocate

power in a way that meets the multi-objective cost function and other constraints.

2.2 Methodology

This paper presents a decentralized convex optimization (DCQO) framework based on the
auxiliary problem principle (APP) to solve a multi-objective power allocation strategy (PAS)
problem in a modular fuel cell vehicle (MFCV). In this regard, the operational principle of
the sugpgested D-APP for the PAS problem 1s elaborated. Moreover, a small-scale test bench

based on an electric vehicle 1s developed, as shown m Figure 2-1. Several simulations and
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experimental validations are performed to verify the advantages of the proposed strategy

compared to the existing centralized ones.
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Figure 2-1 The developed modular test bench

A detailed framework to clanfy the decentralized solution to the optimization problem i1s
presented. The PAS problem 1s decomposed mto two individual subproblems where the
output power of each FC module 1s the coupling variable, and each of the subproblems 1s
associated with one of the two FC modules, as shown in Figure 2-2. Then, the output power
of each FC 1s duplicated mto two new terms, real and virtual vanables, to mumic the rest of
the powertrain system_ The virtual vanables are linked to each of the two subproblems. The
local PAS subproblems are defined and formulated for each module. An iterative procedure
based on the decentralized APP approach is carried out to coordinate between subproblems
and seek the optimal operating point of the original modular powertrain system, as shown in
Figure 2-3. At the end of each iteration, the local optimization algorithms based on the
defined cost functions and constraints are used to calculate the real power of the local FC

modules and the virtual power of the neighboring FC modules. These values are then sent to
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the neighboring FC modules. As for each of the real and virtual vanables, it 1s essential to
have the same values once the APP approach has converged, equality constramts are used by
the two local PASs, thus restricting the error of the shared powers to be zero. If the calculated
errors by the PAS modules and their duplicated ones are less than a predetermined level,
convergence 1s obtamed. If not, a set of penalty multipliers () are calculated, and then the
local PASs are solved via the new vanables. This algorithm 1s run repeatedly until it
converges. Since the convergence speed of the algonithm 1s faster than the system dynamics,
the virtual vanables get very close to the real values. It 1s worth noting that although the
number of shared variables increases the size of the matrixes, the decentralized forms are

solved in a parallel manner which reduces the computational time.
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Figure 2-2 The configuration of the D-APP PAS [57].
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Step 1:
Initialize A; and the real FCSs and the virtual FCSs.

Step 2: l

Each FCS solves the regional decentralized PAS
—+ optimization problem, (19)- (21) and (22)- (24), by

means of APP approach.

Step 3: il

The real MFCSs and the virtual MFCSs are shared
with their neighboring modules.

Step 4: l

If stopping conditions are satisfied, the DCO-based
— APP algorithm stops. If this is not the case, each
FCS module updates 4,, and returns to Step 2.

Figure 2-3 The general systematic flowchart of the D-APP strategy.

The decentralized characteristic of the control management umit 1s achieved through a
single-step auxihary problem principle (APP) algorithm that can ultimately decompose
the underlying centralized EMS optimization problem. Moreover, dynamic programming
(DP) as the benchmark optinuzation method has been developed for evaluation purposes.
Finally, the proposed method 1s imnvestigated on a modular powertrain that executes the
decision-making algorithm through a modular-to-modular network without a centralized
coordinator. As a result, the proposed modular EMS offers distinctive characteristics

compared to the centralized one.

2.3 Synopsis of the analyses of the results
The power-split strategy based on DCO between the modules and the battery umit 1s
shown in Figure 2-4, where Pload 1s the requested power, FC 1s the power provided by the

modules, and Battery is the battery unit power. From Figure 2-4 (b), the modules primanly
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operate 1n the high-efficiency region to avoid the degradation price, which leads to a lower

cost of degradation with the aid of a battery pack.
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Figure 2-4 The APP results under real dniving profile: (a) power profiles, (b) the
modules (M,, M;) sphit powers, (c) the SoC of battery.

The cost of each optimization approach 1s determined using a single evaluation function
to ensure that they may be compared fairly. The assessment 1s made using the hydrogen
consumption and degradation rates of the battery and PEMFC modules. The D-APP has
achieved a near end-user price to DP (with a 12% difference) while the computational burden
15 less. The final end-user cost 1s approximately $0.2134, to which the total hydrogen price
of $0.1033 contributes the most (48.41% of the end-user expense). Between these two M;
with about $0.0641 (30.04% of the end-user cost) contributes more compared to M, with
about $0.0392 (18.37% of the final cost). The second lughest cost 1s the modules degradation
cost which 1s precisely $0.0330 (15.46% of the end-user cost). The battery degradation cost

15 around $0.0077 (3.61% of the final cost). It 15 the lowest cost compared to the ones related
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to the modules. The penalty term to recharge the battery pack is approximately $0.0694

(32.52% of the final cost).

2.4 Outcomes

The investigation of a single-step decentralized EMS to increase modularity and resilience
has resulted in discovering new pieces of knowledge about a module-level power allocation
control technique. To be more explicit, these comprehensions were developed by analyzing
the decentralized-based power splitting techmque employmg a vanety of numerical studies

n 1ts unique context, as indicated below.

- Real-time accuracy and capability of the convex powertrain models: The developed EMS
powertrain modeling has been assessed as one of the sigmificant phases in the control

process. The effectiveness of the modeling step can be found by comparing the results of the

optimuzation method to the results on the test bench.

- Communication layer and mformation flow: The commumication process has been

elucidated and presented with detailed data management by the control modules.

- Resulting optimization performance: The extensive comparison of decentralized solutions
to the EMS problem demonstrated that the suggested algonthm, with its specific
decentralized characteristic, may be recognized as a beneficial power management approach

and 1s worthy of future exploration.
The subsequent research study displays the results of the proposed power allocation through
comprehensive analysis.

Article 1: Power Allocation Strategy based on Decentralized Convex Optimization in

Modular Fuel Cell Systems for Velicular Applications
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2.1 Conclusion

The chapter put forward a DCO algonthm for MFCVs to address a multi-objective PAS
optimization problem. Firstly, a novel distributed normalized cost function, including
hydrogen consumption and health-conscious constraints of the FC modules and the battery
pack, 1s minimmzed via a fully D-APP algonthm. Secondly, the effectiveness of the D-APP
algorithm 1s validated via several numerical studies, namely the effect of parameter tuning
and dnving behavior. Finally, the performance of the algonithm 1s compared with the DP
strategy and SQP. This comparison shows that D-APP can achieve an end-user price near DP
(7.69% difference) while using a real-time method.

Moreover, compared to SQP, the decentralized method leads to less computational fime
and less sensitivity when having complex functions with several constrants. Finally,
experimental validation 1s performed on a developed test bench that illustrates the proposed
D-APP's effectiveness. The focus of this chapter has been mainly on the proof of concept of
the decentralized optimization algorithm However, the outcomes seem to be very interesting
i modular applications. The robustness and the modulanty poimnts of view have not been
discussed. Therefore, the next chapter will perform a comprehensive study regarding the

raised matters for two advanced decentralized optimization algornithms.
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Power Allocation Strategy Based on Decentralized
Convex Optimization in Modular Fuel Cell Systems
for Vehicular Applications

Arash Khalatbarisoltani

Abstrace—Recently, modular powertrains have come under at-
tentions in fuel cell vehicles to increase the reliability and efficiency
of the system. However, modularity consists of hardware and soft-
ware, and the existing powertrains only deal with the hardware
side. To benefit from the full potential of modularity, the software
side, which is related to the design of a suitable decentralized power
allocation strategy (PAS), also needs to be taken into consideration.
In the present study, a novel decentralized convex optimization
(DCO) framework based on auxiliary problem principle (APP) is
suggested to solve a multi-objective PAS problem in a modular fuel
cell vehicle (MFCV). The suggested decentralized APP (D-APP) is
leveraged for accelerating the computational time of solving the
complex problem. Moreover, it enhances the durability and the
robustness of the modular powertrain system as it can deal with the
malfunction of the power sources. Herein, the operational principle
of the suggested D-APP for the PAS problem is elaborated. More-
over, a small-scale test bench based on a light-duty electric vehicle
is developed and several simulations and experimental validations
are performed to verify the advantages of the proposed strategy
compared to the existing centralized ones.

Index Terms—Fuel cell system, distributed optimization, fuel cell
hybrid vehicle, energy management, multi-agent system.

. INTRODUCTION

UEL cell vehicles (FCVs) have become a propitious sub-
F stitute for internal combustion engines (ICEs) to mitigate
the greenhouse gas (GHG) emissions in transportation sector
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[11, [2]. Among several types of fuel cell (FC), proton exchange
membrane fuel cell (PEMEC) has been adopted broadly in green
mobility thanks to its appropriate characteristics [3]. However,
the use of a sole FC system (FCS) cannot satisfy all the require-
ments in vehicular applications as its performance is drastically
declined in the presence of dynamic load profiles. Moreover, it is
not able to capture the energy from regenerative braking owing
to its energy storage incapability. Hence, hybridization of the
FCS with other power sources, such as battery (B) or superca-
pacitor (SC), has been abundantly practiced in the literature to
compensate for the mentioned weaknesses [4], [3].

In FCVs, the end-user cost is defined based on several factors,
such as hydrogen consumption, FCS degradation, and battery
unit degradation. To minimize this cost, it is required to de-
fine a well-developed multi-objective power allocation strategy
(PAS). A variety of PASs, such as rule-based [6]-{8], equivalent
consumption minimization [9], [10], model predictive control
[11], adaptive [12], [13], dual-mode [14], and heuristic [15],
[16], have been suggested in the past few decades for the FC'Vs.
Some of these papers have also highlighted the possibility of
integrating the prognostic and health management technigques
into the design of PASs [17]. These techniques can be cate-
gorized into two main groups of model-based [18], [19], and
data-driven [20], [21]. They are utilized to estimate the state
of health (SOH) and remaining uvseful life (RUL) and then
this estimation can be included as an input in the strategy to
distribute the power. For the sake of combining the advantages
of model-based and data-driven methods, a hybrid prognostic
framework is introduced in [22]. The suggested method provides
an uncertain characterization of RUL probability distribution.
This method can be integrated into the existing PASs as a guiding
principle for making appropriate sequential decisions to prolong
the powertrain system lifetime. However, all the discussed strate-
zies have been developed for single FCSs. Hence, they are very
sensitive to the malfunction of the power sources, which is likely
to happen in such a powertrain configuration.

In this respect, a new direction called modular energy systems
{MESs) has come under attentions to overcome the limitations
of a single FCS and increase reliability as well as the scalability
of the FCVs [23]. Unlike the typical FCVs, a modular FCV
{MFCV) is composed of a battery pack and a set of low-power
FC modules, instead of a high-power one, to augment the re-
liability and the scalability characteristics. Several PASs have
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been suggested for such modular systems, such as rule-based
[24], hysteresis strategy [25], and droop control [26], [27].
In [28], Marx et al. have reported a comparative review of
different concepts for these modular topologies in multi-stack
FCs from a hardware point of view. They have concluded that
the robustness is improved in parallel-connected configuration
compared to other topologies. In [29], a PAS based on forgetting
factor recursive least square is proposed for a MES composed
of two 300-W PEMFEC stacks with a parallel configuration.
The strategy shows lower hydrogen consumption compared to
average power and daisy chain algorithms. In [24], an adaptive
state machine strategy is proposed for a MES composed of four
500-W PEMFCs and a battery pack. This strategy has improved
the hydrogen economy compared to Daisy Chain and Equal
distribution strategies while keeping the PEMFCs with the same
health states.

Therefore, the hardware modularity has been already in-
vestizated in the MFCSs while the software modularity has
escaped the attentions. Literature consideration shows that most
of the existing PASs, regardless of having a modular or normal
powertrain topology, are centralized. Therefore, they are very
sensitive to a precipitous single point of failure through their
powertrains from a software point of view. Moreover, the ad-
ditional degrees of freedom in the MESs make the centralized
algorithms substantially complicated and time-consuming to be
solved. In this respect, some papers have focused on the dis-
tributed optimization algorithms to solve the PAS optimization
problems [30]-{34]. In [30], a projected interior point method
is proposed under the framework of model predictive control
(MPC) to solve the power allocation problem and concluded that
this strategy is faster than CVX tool, which is a general-purpose
convex optimization software. In [31], CVX tool is utilized to
solve a formulated convex optimization problem for a plug-in
FCV, and it is shown that the proposed approach can effectively
distribute the power between the power sources and also find the
optimal sizes of each source. In [32], the slew rate of the PEMFC
current and the battery state of charge (S0C) are considered to
formulate the PAS in the form of quadratic programming {(QP).
Subsequently, a solver is utilized to solve the QP problem based
on the alternating direction method of multipliers (ADMM).
It is concluded that this approach is much faster than interior
point or active set methods. In [33], a PAS for a hybrid electric
vehicle is proposed based on ADMM and concluded that this
strategy can achieve up to 90% of fuel saving obtained by
dynamic programming (DP) while it is 3000 times faster than
DP. In [34], a distributed optimization approach is put forward
to solve the PAS of a hybrid vehicle. The comparison of this
distributed algorithm with a centralized convex optimization
problem shows that the proposed algorithm can result in the same
fuel economy as the centralized method while its computational
time is declined up to 1825 times. Although the discussed papers
in [30]-[34] have improved the PAS formulation to a further
step regarding the accuracy and computational time reduction,
they are not still fully decentralized, and are sensitive to the
occurrence of malfunction in their systems. In [35], [36], a
decentralized approach based on non-cooperative game theory is
proposed to formulate the PAS in a multi-source hybrid vehicle.
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The method in these papers shows a comparable performance
to that of the centralized strategies. Moreover, the potential of
this approach for dealing with the sudden reconfigurations in the
system is also demonstrated in [35]. However, this decentralized
method is not able to deal with the constraints with a high amount
of nonlinearity which are inevitable in FCVs.

In the light of the discussed papers, it can be stated that
the design of MESs for a FCV application has gained con-
siderable attentions. However, most of the existing works only
deal with one side of modularity, either hardware or software.
The hardware is related to the configuration of the powertrain
(for instance a parallel multi-stack PEFMC system coupled
with a battery pack), and the software is related to the de-
velopment of a suitable PAS (like a decentralized algorithm).
Furthermore, most of the papers which have focused on the
software side are for hybrid electric vehicles with an ICE and not
aFCV.

In this regard, this paper puts forward a decentralized convex
optimization (DCO) methodology based on auxiliary problem
principle (APP) [37]-{39] to solve a constrained convex approx-
imation power distribution problem in a MFCV. This MECV is
composed of two PEMFCs, which are connected in parallel, and
a battery pack. To the best of the authors prior knowledge, this
is one of the first attempts, if any, to formulate an accelerated
decentralized PAS for a MFCV to benefit from the full modular-
ity potential considering hardware and software viewpoints. To
this end, a multi-objective cost function, including the hydrogen
consumption, battery SOC variation, PEMFC health state, and
battery health state, is defined and minimized by the proposed
decentralized APP (D-APP). To verify the performance of the
suggested D-APP, it is compared with dynamic programming,
which is an offline strategy, and an online centralized PAS based
on sequential quadratic programming (SQP). Moreover, the
performance of the D-APP has been justified by an experimental
modular FC (MFC) test bench developed for the purpose of this
work.

The rest of this paper is organized as follows. The power-
train and the modeling are detailed in Section II. Section 11
formulates the convex PAS for a MECV. The application of the
D-APP is explained in Section IV. Several numerical studies
are given in section V. A real-time implementation via the
developed small-scale MEC test bench is performed to confirm
the effectiveness of the DCO in Section VL. Finally, conclusion
and future directions are presented in Section VIL

II. MFCV POWERTRAIN CONFIGURATION AND MODELING
A. Powertrain Structure and Modeling

For the purpose of this study, a small-scale MFC test bench
has been developed based on a low-speed vehicle called Nemo
[40]. This test bench is presented in Fig. 1 and used for evaluating
the performance of the proposed decentralized PAS. The MEC
test bench is composed of two FC modules, a battery pack, a
power supply, and a programmable load to emulate the prolusion
system. The main device in each module is a 500-W FCS, a
smoothing inductor, and a unidirectional DC-DC converter to
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A MFC powerrain: a) schematic of powertrain, b) developed test

control the current of the FCS. The powertrain is formulated as:

i P [k] D

where P[] is the power of each FCS while M = {1,2} is
the index of each FC module, Dy, is the duty cycle defined by
each DCO-based control unit controller, Pg[k]| is the power of
the battery, Fy k| is the requested power from the propulsion
system, and k is the index of time period.

[k] + Pg [k] = P [K], (1)

B. MFCS Modeling and Constraints

The FCSs are modeled as a voltage source by means of their
static polarization curves which are validated by experimental
tests, as shown in Fig. 2. The polarization curves of the employed
FCSs are illustrated in Fig. 2(a). Moreover, the power and
hydrogen consumption curves of each utilized FCS are presented
in Fig. 2(b) and Fig. 2ic), respectively. Each FC has two fans
which consume approximately 12 W. It is worth mentioning
that the FCSs do not have the same performance as they have
different ageing milestones.

To avoid FC degradation owing to the start-stop cycles and
operation at open circuit voltage (OCV) within very low-power
region, the requested power from the FCSs is supplied under
some limitations. Equations (2.a) and (2.b) apply the FCSs’
power and slew rate limits, respectively.

Pm,min = P'm [k] = Pm,ma:t-.
RamAt < P [k] — P [k — 1] < RumAt,

(2a)
(2b)

where Py min and Py may are the minimum and the maximum
power of the FCSs, Ry and Ry m are the minimum and the
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Fig.2. The charactenstics of the utilized 500-W FCSs, a) polanzation curves,
b} power curves, and ¢} hydrogen consumption curves.

TABLEI
Tue BATTERY PACK PARAMETERS

Variable Symbol  Value Unit
Series resistance R, 00141 0
Capacity 05 182 Ak
Parallel capacitor e 1792 F
Parallel resistance R 0.0177 il

maximum slew rates, and Af is the time step duration. It should
be noted that when the FCs go under degradation (which is a
slow process), their rated power decreases. In this regard, the
considered constraints regarding the minimum and maximum
power of the PEMFC should be updated from time to time to keep
the operation of the FCs within the safe and allowed zone [41].

C. Battery Modeling and Constraints

The battery pack which is passively linked to the DC bus is
modeled by:

ot - T Rels Vol
+ Cﬂ% (Vo [k] —R.g [k] — Vi [k]:]', (3)

where Vg and I g are the voltage and the current of the battery
unit, and Vp is the battery OCV. Technical description of the
battery system is given in Table L

Equation (4.a) and (4.b) impose the power and the slew rate
boundaries of the battery.

PB‘,min = PB [k] = PB‘,ma:t:.
Ry gt < Pg k| — Pg [k — 1] < Ry giAt,

(4a)
(4b)

where Pg min is the minimum battery power, P ma is the bat-
tery maximum power, By g is the falling slew rate, and Ry, g is
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TABLE 11
CHARACTERISTICS OF THE Two BoOsT CONVERTERS

Variable Symbal  Value
Inductor inductance L 1.2 mH
Inductor resistance Tim 23.7 mil
Average efficiency T m 95, 7%

the rising slew rate. Equation (5.a) presents the SoC limitations.

S0Cumin < S0C [k] < S0Cimax, (5a)
Pg [k] At

SoC |k + 1| = 50C k]| - =——~+—— b

SoC [0] = SoCh, (5¢)

where SoCqin and SoC 54, are the minimum and the maximum
limits of the SoC, and (5.b) denotes the SoC equation starting
from SoCy which is determined by (5.c). The service life of
battery unit is affected by the depth of discharge [42]. According
to the manufacturer’s datasheet, when adopting the depth of
discharge of 30%, the battery lifetime (ng) is equal to the
80% of capacity fade. The battery's state of health (SoHg) is
calculated by (6).

Pa (k]| At
SoHg [k + 1] = SoHg [k] — EHBL?;!,J |[ T 6
SoHg [D] = SoHpgp, (6b)
SoH g min < SoHp [K], (6c)

where SoHp min and SoH g denote the minimum and the
initial SoH values, respectively.

D. Boast Converter Modeling and Characteristics
The DC-DC converters’ equations are as follows:

Lo %I [k] = Vin [k] — upm (k] — 12, Im [K],

Uh m [uii] =My m VB [k 7 — | !f Pm [k] =0 {?)
Ihm k] = mam Im [K] ’?f:.,m —1if B, [k] <0
where mp m is the modulation ration, Iy, is the FCs™ current,
Vi is the FCs” voltage, and Vg is the battery pack voltage. The

technical parameters of the utilized DC-DIC converters are given
in Table II.

III. FORMULATION OF THE GENERAL PROBLEM

The multi-objective PAS problem for the considered MFCV
is formulated as (8)-{12). Beside hydrogen consumption, the
health limitations are normalized and added into the proposed
cost function to extend the lifetime of the FCSs and the battery
pack. The cost function (s|k|) takes into account four items and
is calculated by:

s[k] = shm [k] + sa,m (kK] + 5B [k] + ssoc [K],  (8)
where sp (k] is the normalized hydrogen consumption cost
shaping function for each FCS, obtained by:
hm [k] - hm,min
hm,m:u - IF'fr'rn,m'L'n'L:‘

(9)

shom k| =
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Fig.3. a) The measured and normalized hydrogen consumption curves, b) the
lowe-power and the high-power cost shaping functions.

where hn k| is the hydrogen consumption, Ay, min is the min-
imum and hm mayx 15 the maximum hydrogen consumption of
each FCS, as shown in Fig. 2(c). The normalized FC degradation
term (sq o, [k]) is defined by:

54,FC,. |k] = o1 sl m [K] + ans m [K], (10a)

where s, .. [k] is the normalized degradation cost shaping term
related to low power operation, given by:
_ [Pm [k] - JF!"rrt,rrL'n'L]2

[Pm,mzl:t - JF!"rrt,rrL'n'L]2 ’

sk m|¥] is the normalized degradation cost shaping term related
to high power operation as:

sim k] =1

(10b)

[Pm [k] - Pm,mu.::]]zd
[Pm,mzl:t - '|'rt,1'rl'm]2 I

vy and o, are the constant coefficients which are defined by:

Sum k] =1- (10c)

Er

= 10d

=/ & +Eh’ ( :'
Eh

an=——, (10¢)

where 5; = 8.662 uV/h and == 10 pV /h are the low-power
and the high-power cell degradation rates [43], [44]. Fig. 3
illustrates the measured and the normalized data of the hydrogen
consumption beside the low-power and the high-power cost
shaping functions. The normalized battery pack degradation
function (sg|k|) is calculated by:

w52

(1D

where Pp may is the maximum requested power.
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ssoc[k] is a punishment term to try to maintain the SoC level
similar or near to its initial value (SoC%).
= B[SoC [k] — SoCy, (12)

where S is a big positive coefficient. The equality and inequality
constraints are based on (1)2) and (4)-6).

ssoc K]

IV. DECENTRALIZED APP CONVEX ALGORITHM

In this section, a detailed framework is presented to clarify
the relaxation approach and the decentralized solution of the
aforementioned optimization problem. In this algorithm, the
PAS problem is decomposed into two individual subproblems
where the output power of each FC module is the coupling
variable and each of subproblems is assigned into one of the two
FC modules. Then, the output power of each FC is duplicated
into two new terms, real variable and virtual variable to mimic
the rest of the powertrain system. The virtual variables are linked
to each of the two subproblems. The local PAS subproblems
are defined and formulated for each module, and an iterative
procedure based on the decentralized APP approach is carried
out to coordinate between subproblems and seek the optimal
operating point of the original modular powertrain system. At
the end of each iteration, the local optimization algorithms based
on the defined cost functions and constraints are used to calculate
the real power of the local FC modules and the virtual power
of the neighboring FC modules. These values are then sent to
the neighboring FC modules. As each of the real and virtual
variables are essential to have the same values once the APP
approach is converged, equal constraints are used by the two
local PASs restricting the error of the shared powers to be zero.
If the calculated errors by the PAS modules and their duplicated
ones are less than a predetermined level, the convergence is
obtained. If not, a set of penalty multipliers (1) are calculated
and then the local PASs are solved again via the new variables.
This algorithm is run repeatedly until it converges. Since the
convergence speed of the algorithm is faster than the system
dynamic, the virtual variables get very close to the real values,
and this makes the final results be very close to the DP. It is worth
noting that although the number of sharing variables increases
the size of the matrixes, the decentralized forms are solved
in a parallel manner which reduces the computational time.
As shown in Fig. 4, in the developed DCO-based algorithm,
the general optimization problem with coupling constrains is
decomposed into two sub-problems of M} and M. The battery
pack is assumed to be located in the shared area as a storage
device and all of the FC modules are needed to be informed
about the estimated SoC level. The equality constraints for M,
can be formulated in terms of Fyy, (a,b) =0 and for M: by
means of Fyy, (b,c) =

In a similar way, the inequality constraints for M,
and M, are represented in the form of &y{a,b) <0 and
Ga(b, c) < 0, respectively. By defining the two sets: A =
{(a,b) : Fag,(a,b) =0,Gr,(a,b) <0} for My and B =
{(b,c) : Fagy(b,c) =0,Gng(b,c) <0} for Mo, the feasible
response is a point (a, b, c) that satisfies (a,b) € A and (b,c) €
B.Moreover, M and M- have a vector (X,Y) with regard to the
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data which need to be shared with the neighboring FC module,
as shown in Fig. 5. The vector X has the real FC module power
(Pyy,,), and the virtual FC module power ( Py, ), which is the
M; power in point of M. The vector Y has the real FC module
power ( Pyy.,) and the virtual FC module power (Pyy,, ), which
is the M) power in point of M.

By taking (8)+(12) into account, the cost of M, and M,
(Cas [K]) and the battery pack cost (Cg|k|) are separately defined
as:

Cu [k] = shm k] + 5d,m [K] {13a)
Cg k| = sg [k] + ssoc [K], (13h)
Based on (13), the centralized optimization is reformulated
by:
min {GMJL {PMJL [k]} + Cuz {PME [k”' +Cg {PB [k]}}
{ Pasy, [K] s Pagy, [K)} €A { Pag, [K], Pus, [K]} €B, (14)

In order to solve the modified sub-problems, a regional de-
composition framework based on APP approach is suggested
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in [37]. For the sake of relaxing the coupling between M,
and M, Py,, — Puy =0.d, f=1,2d# f, and instead of
applying standard Lagrangian technique, linearized augmented
Lagrangian technique is applied to (14) to aid the convergence
speed [38].

{H‘L{,. [k] s Paty, [k] s Pty ['k] s Py ['k]}
= min {Cus,, {Paty (K]} + Catn { Pt [K]} + C { P [K]}

+ g”PMu [k] - jl:"f"’fl:t[k]ll1
+ g”PMn [k] — Py, [k]”2 : P, [k] — Py, [k]
=0, Par,, k] — Pag,, [k] =0}, { Pag,, [K], Pasy, [K]} A,

{PMu [k] s Pary, [k]}f B, (13)

The new quadratic function does not change the optimal result
although the decomposition of the coupled C-PAS considerably
improves the convergence speed [39].

A. Centralized APP

Afier applying the APP decomposition [37], (15) is solved by
means of a sequence process. The suggested algorithm based on
APP is formulated as follows:

{ P 0, PR W) PR ), PR ]}
— min {Cyy, {Pary [K]} + Crt {Pasn [K]}
+C (P K]} + & {Par, 16— Py, 1)

+ 5P (K~ Py, 14

}
+ 5 {Paa K- Pl I} +
Py, [k — Py, (K]}

~ Pu [W}{
{Pl. K — Py, [}

+ 3 {Paty [F] = Pas (K]} +3 {Pat [F] = Pasa [K]}}

2

8 P - Pl )
+ P{PMH [k]

+ P{PMII [k] — Par,, [k]}

(16)
M =M +a { Pl W - Pl W} amn
T = +a (P W - P R}, (18)

where j is the index of optimization iteration, and o, 3,
and p are predefined positive values. The starting points
Pty Prts Pafias Pags. and A can be set as the prior answer
or zero (cold start). .i.f 5. a5 the Lagrange multipliers, are the
estimated virtual FC module costs to keep the equality coupling
constraints on the shared area at iteration j. The centralized APP
utilizes the power values and the Lagrange parameters obtained
from the previous step. It then alternates the achieved solutions of
regional FC modules and updates the Lagrange multipliers. This
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iterative process will be completed if the stopping requirements
are fulfilled.

B. Decentralized APP
With the aim of reducing the computational time and im-
proving the fault-tolerant and the modularity features, (16)-{18)
is divided into smaller subproblems for each autonomous FC
module. The D-APP for the M) is formulated by:
{Pi! W1, PEE! R}
= miIl{GM“ {EMJI [k]} +Cg {PE [k]}

+ £{ P, ] - Py, W)

+ 5 { Puaa )~ Py )

+ pPaay (K] { Py, IK — P, (K]}

— PPtz k) { Py [k — P [k}
— ;3P [k}
+a{Pdt - P R}
+a{P - P M}

+ 3] Py [K]

M =

(19
(20)
A = (21)
The D-APP for the M; is given by:

(Pt W, P 1} @)
= min {Cat { Pu (K]} + Cr {Pg [k]}

+ 2P 1 - P, )

+ 5 Pu, (K- Py, )
+ PPage (K] { Pl K] — Py, (M}
— pPas,, K] { Py, [k — Py, (K]}
— K Pt [K] +A3Puy, [K] },
MM = +a { PR - PiE R} (23)
MY =+ o {PIE B - P ]
These new modifications (19921} and (22)—+24) basically

lead to two D-APPs as a decentralized control layer, as shown
in Fig. 4. In [37], the APP parameters are defined based on:

(24)

1
a=z8=p @s)

Itis worth mentioning that this parallel process will be stopped
if the stopping conditions are satisfied. To better clarify the
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Step 1:
Initialize A; and the real FCSs and the virtual FCSs,
Step 2: 1

Each FCS solves the regional decentralized PAS
~+ optimization problem, (19)- (21) and (22)- (24), by
means of APP approach,

Step 3: l l l

The real MFCSs and the virtual MFCSs are shared
with their neighboring modules,

Step 4 l

If stopping conditions are satisfied, the DCO-based
— APP algorithm stops. If this is not the case, cach
FCS module updates 4, and returns to Step 2.

Fig. 6. The general step-by-step flowchart of the D-APP strategy.

performance of the discussed method, a diagrammatic repre-
sentation of the developed decentralized PAS layer is presented
in Fig. 6.

V. COMPARISON AND RESULTS OF NUMERICAL CASE STUDIES

In this section, to have a comprehensive discussion, a number
of important items are considered to elucidate the DCO-based
PAS. An optimal PAS based on DP has been developed to
serve as a baseline. Moreover, SQP, as a well-known centralized
approach, is used to evaluate the performance of the proposed
decentralized method.

The numerical studies have been tested via MATLARB. The
calculation time depends on the utilized PC hardware { Processor
= Core i5, 2.30 GHz, RAM = 4.00 GB). The total end-user cost,
Sr, in USD, which includes five items is calculated by:

St = Sgoc + Z Z St,m |k| + Sam [K] + Se [k], (26)
kE m

The hydrogen cost (Sg m|k|), in USD, is computed by:
St.m [k] = Hm [k] Cu, At 27N

where Hyy, k] is the hydrogen consumption (per gram) and C'g, is
the hydrogen price. The modules’ degradation cost (54 . [k]), in
USD, is calculated by:

Sr:‘.1’” [k] = 'Sré.m [k] + Sim [k]: (28a)

where S}, | [k] is the cost of low-power degradation and S, [k]
is the cost of high-power degradation, given by:

mECm ﬂtﬂ-l,m

Sfi,m (k] = a0V (28b)
EpCm At
Stm K] = g (280)

where ng, is the cell numbers, =; is the low power cell-level
degradation, =5 is the high power cell-level degradation, and
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TABLE I
TrE REFERENCE PRICE OF HYDROGEN, BATTERY, AND FCS

Cost Symbel Value
Hydrogen Cy, 319254 8/Kg [46]
FCs Con 35 57kW [47)
Battery unit [ 189 5/kWh [48]

Speed(m/s)
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Fig. 7. Six different analyses of the real cycle (a) the power, (b) the speed, (c)
the power histogram, (d) the speed histogram.

Cre, is the FCS cost. iy and pp are determined by:

_ ]:. If Pmin,m = P'm = DEann,m

Him = {U, otherwise (28¢)
1, E0RRmm = P = Pnae, m

Fih,m = {U, otherwise (281)

where Vi, i is the 10% voltage drop of the nominal voltage of
each module and Fom m is the output power recommended
by the FCS manufacturing company for a nominal use of FCS
[44]. The cost of the battery unit degradation (Sg[k]), in USD,
is determined by:

Sg k] = Cg {SoHg [k — SoHg [0}, (29)

where C'g is the battery pack price. The punishment term for the
battery pack (Ssqc) in USD is calculated based on the price of
the hydrogen to recharge the battery unit at the end of the driving
profile to reach the same level as the initial SoC. The battery
pack is recharged by utilizing the FC stacks at their maximum
efficiency points. This cost is added to the final end-user price.
The reference price of the hydrogen, the FCS, and the battery
pack are listed in Table 111

A. Optimal Power Distribution Under Real Driving Pattern

As shown in Fig. 7, a real profile is herein considered. The
power split based on DP, SQP, and DCO between the modules
and the battery unit are shown in Fig. 8, Fig. 9, and Fig. 10,
respectively, where Pload is the requested power, FC is the
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Fig. 8. The DP results under real drving profile: (a) power profiles, (b) the
modules (M, M3) split powers, (c) the SoC.
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Fig. 9. The SQP results under real driving profile: (a) power profiles, (b) the
modules (M, M3) split powers, (c) the SoC.

power provided by the modules, and Battery is the battery unit
power. Fig. 8 demonstrates the performance of DP regarding the
distribution of power and battery SoC. From this fizure, it is seen
that in the very beginning (0 to 25 s), the FC modules recharge
the battery. Then, from 25 s to almost 140 s, the FC modules
operate in low power and battery 50C level decreases. From
140s on, the modules slightly recharge the battery to reach the
same level of SoC as the initial one. In fact, knowing the driving
cycle in advance makes DP have such a pood performance. Fig. 9
illustrates the SQP strategy performance.

According to Fig. 9c, during the first 50s, this strategy tries to
sustain the SoC level very close to 70%. Afterwards. It fluctuates
between charging and discharging and finishes almost with 71%
of SoC. Fig. 10 presents the power distribution obtained by the
proposed decentralized strategy. From Fig. 10{b), the modules
largely operate at the efficient region to mitigate the degradation
price, which leads to lower cost of degradation with the aid of
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battery power differences. Fig. 10{c) depicts the SoC level of
the battery. The SoC fluctuates between 68.95% and 71.1%, less
than approximately 2.2% variation. This strategy also manages
to reach a very close SoC level to the initial one, as shown in
Fig. 10(c). The time series and the distribution of the real and
the virtual FCSs” power based on DCO are presented in Fig. 11.
It is evident that in both of the modules, the real and the virtual
power are well-matched, and are almost located in the efficient
region.

To evaluate the developed DCO-based method, the perfor-
mance of the obtained results is compared with DP as an off-line
optimization method and SQP as a centralized optimization
algorithm. According to Table IV, the D-APP has achieved
a near end-user price to DP (with 12% difference) while the
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TABLE IV
TuE FINAL PRICE AND THE COMPUTING PERFORMANCES

DP S0P D-APP
M; Mz
Compuatio T040.3211 52,7360 15325 15.130
1 lime (5} 2 8
MNumber of - GOST 1892 1868
iterations
Hydrogen My M; M, Mz 00051 0.0026
"”“]f“f';‘jp“" 0004 0002 0.005  0.003
3 7 6 1
FC D001 0001 000l 0001 00014 0.0010
degradatio 2 1 -] 4
n (§)
Battery 00005 0.0006 0.0005
degradatio
n (§)
Sioc 0 0.0010 0.0005
Tatal Cost 0.0100 001550 00112
(%)
.08 T . . . .
o6 l
-
E 0.04 Ft A H
[_.
0.0 11 |
Ll
0 500 1004 1500 2000 2500
Driving cvele
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E st
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£
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(1)
Fig. 12.  {a) The computation time trajectory, (b) the number of iterations.

computational burden is much less. Moreover, the end-user price
of D-APP is 27.74% lower than SQP while benefiting from a
substantial decline in case of the computational time (71.31%)
and the number of iterations (68.765). # denotes the number of
iterations in the optimization algorithms (SQP, APP), and Sg,0
is the punishment term to recharge the battery pack. Based on our
experience, despite slight differences between the centralized
APP (17(19) and the D-APP (20)25), the final results of
both approaches are almost the same while the D-APP is faster.
To have a clear understanding, here, the number of iterations
and the computational time evaluation according to the M, are
illustrated in Fig. 12. It is evident that the computational time is
related to the number of iterations.

Based on the obtained results, the decentralized method has
less computational time which shows that this method is a
reasonable and practical candidate in the real-time PAS opti-
mization applications.

Fig. 13 presents the price trajectories of different sources un-
der a long test. The final end-user cost is approximately $0.2134,
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Fig. 14. The investigation of the parameter g in the DCO performances.

to which the total hydrogen price of $0.1033 contributes most
{48.41% of the end-user expense). Between these two, the M,
with about $0.0641 (30.045% of the end-user cost) contributes
more compared to the M, with about $0.0392 (18.37% of the
final cost). The second largest cost is the modules degradation
cost of nearly $0.0330(15.46% of the end-user cost). The battery
degradation cost is around $0.0077 (3.61% of the final cost). It is
the lowest cost, compared to the ones related to the modules. The
punishment term to recharge the battery pack is approximately
$0.0694 (32.52% of the final cost).

B. Impact of Parameter Tuning

The effect of tuning p on the end-user price and the compu-
tational performance is scrutinized in this subsection. Fig. 14
describes a detailed analysis of p in a wide range, from 10
e” to 10 e*’. Fig. 14(a) shows the relation of p with the final
cost ($) and the computational time (5). In Fig. 14(b), to verify
that all the comparisons finish with the nearly same final state
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variable, the battery SoC evolution is presented. Fig. 14(c) shows
a comparison between the computational complexity (s) and
the number of iterations. It is apparent that they have the same
pattern.

Generally, considering the modular powertrain problem and
the hardware characteristics, p shows a significant influence
over the performance where an improper g could lead to slower
convergence and higher final cost. The end-user cost gradually
decreases as p prows. However, the computational complexity
(s) becomes progressively heavy, particularly when p exceeds
10 e, On the basis of our experience, p in the range of
10e~#-10e~" is more suitable for the DCO problem and relying
on our analyses, p = 10 e’ is selected as the optimal value.

C. Sensitivity Analysis

In this subsection, a sensitivity analysis of the proposed D-
APP method with SQP is conducted. In this regard, different
cost functions are taken into consideration: 1) hydrogen, 2)
hydrogen and FCS degradation, 3) hydrogen, FCS and battery
degradation. As shown in Fig. 15, in case (2), the computational
time of D-APP rises by almost 6.3378% in comparison with case
(1) while the computational time of SQP increases by nearly
24.2079% compared to case (1). Moreover, the computational
time of D-APP grows by around 10.5112% in case (3), compared
to case (1). However, in case (2), the computational time of SQP
increases by approximately 62.4511% compared to case (1).
This analysis shows that D-APP has less sensitivity to acomplex
function with several constraints, which is important in practical
real-time applications.

VI EXPERIMENTAL IMPLEMENTATION

To verify the results, the D-APP has been implemented in
the PAS layer of the developed scaled-down test bench via
LabVIEW. As demonstrated in Fig. 1.(b), the test bench is
equipped with two open-cathode 500-W Horizon PEMFCs (M,
and M>) and a battery unit, composed of six series 12-V, 18-Ah
batteries. The voltage of M) oscillates between 14.1 and 22.7
V, and the voltage of M5 varies between 14.5 and 23.4 V, while
the voltage of the DC-bus is given by the battery unit. The two
boost converters are from Zahn Electronics. Each module has
its PAS unit inside the National Instrument CompactRIO (NI
0022). The D-APP iteratively calculates the optimal references
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in parallel. The optimal reference of each module, PjL), and

PL3, is updated at every control instant with an interval of
10 Hz. The results under the real profile is presented in Fig. 16
and Fig. 17. These results verify the validation of the real-time
implementation of the D-APP as well as the correctness of the
previous theoretical discussions.

VIL. CoNCLUSION

In this paper, a DCO algorithm for MFCVs is suggested
to address a multi-objective PAS optimization problem. In the
proposed decentralized framework, a novel distributed normal-
ized cost function, including hydrogen consumption and health-
conscious constraints of the FC modules and the battery pack, is
minimized viaa fully D-APP algorithm. The effectiveness of the
D-APP algorithm is validated viaseveral numerical studies, such
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as the effect of parameter tuning and driving behavior. Moreover,
the performance of the proposed approach is compared with
DP strategy, as an off-line method, and SQP, as a centralized
method. This comparison shows that D-APP is able to achieve
an end-user price very near to DP while it is a real-time method.
Moreover, compared to SQP, the decentralized method leads to
less computational time and also provides less sensitivity in case
of having complex function with several constraints. Finally, an
experimental validation is performed on a developed test bench
which justifies the effectiveness of the proposed D-APP.

Looking forward, a number of recommendations can be made
to extend the contributions of this paper:

e The proposed decentralized algorithm can be combined

[t

[z

[3

[4]

(3]

(6]

(8]

9

[1o]

[

[2]

with an advanced MPC method to enhance the inherent
robustness against uncertainty in both of vehicle model
and projection of future driving conditions.

Another future direction can be integrating the proposed
approach with advanced prognostic frameworks which
consider variable loading condition to further prolong the
lifetime of the power sources.

In this work, the robustness and the modularity points
of view have not been demonstrated yet. Therefore, a
comprehensive study regarding the raised matters will be
performed in future.
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Chapitre 3 - A Comparison of Decentralized ADMM
Optimization Algorithms for Power
Allocation in Modular Fuel Cell Vehicles

3.1 Introduction

A comprehensive comparison of two state-of-art decentralized optimization algonithms
based on the augmented Lagrangian decomposition techmque 1s offered m this section's
manuscript. Notwithstanding the previous optimization study, which straightforwardly
examines a decentralized EMS, the main contribution of this study 1s to carefully assess
the modularity and robustness of the decentralized convex optimization-based methods.
Subsequently, the evaluation and outcome analysis of the decentralized scheme regarding
different optimization parameters and baseline costs are reported to demonstrate the

developed fully decentralized schemes' effectiveness compared to the centralized ones.

3.2 Methodology

This paper puts forward a comparative study of fwo convex optinuzation frameworks
based on the alternating direction method of multiphers (ADMM) for solving a multi-
objective power allocation strategy (PAS) problem in a modular FCV (MFCV). The all-
propose analysis of the optimization results has been aclueved through two key stages.
First and foremost, the optinization procedures of the two EMSs and their structure have
been summarized. After that, a detailed mvestigation into the features of the two
decentralized optimization algorithms has been conducted through various case studies

that consider the robustness and modulanty of the decentralized frameworks.
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The utihzed decomposition approaches are Consensus ADMM (C-ADMM) and
Proximal Jacobian ADMM (PJ-ADMM). ADMM 1s fundamentally inspired by a
decomposition-coordination procedure, m which an optimization problem 1s broken
down mto smaller subproblems. Then, the subproblems are solved to converge into the
same results as the imtial problem. Firstly, to apply the algorithms in our case study, an
augmented Lagrangian function of the power-split problem 1s derived. Subsequently,
the corresponding function 1s decomposed, and the broken-down terms are mumimized
over sequential processes. Finally, the dual vanables are updated. This procedure

continues until the convergence criteria are satisfied.

Figure 3-2 and Figure 3-1 depict the information flow m C-ADMM and PJ-ADMM.
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Figure 3-1 The parallel communication procedure of the decentralized PT-ADMM.
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Figure 3-2 The information flow between the FC modules via the C-ADMM.
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3.3 Synopsis of the analyses of the results

Figure 3-3 compares the output powers and SoC vanation obtained by C-ADMM and PJ-
ADMM. The SoC level of the battery pack oscillates between 69% and 72%, which 1s less
than approximately a 3% vanation. Although the obtained SOC vanations by C-ADMM and
PJ-ADMM are similar, a shght deviation can be observed in the SOC levels from 50 s to 150
s. It 15 due to more cumulative costs in the PT-ADMM algonthm After the 150s, the SOC

fluctuations become almost equal because the answers of decentralized convex optimization
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algorithms (DCOAs) are similar. Another pomt 1s that the drawn power from the PEMFC
modules 1s increased after the 250s to keep the SOC fluctuation close enough to the imitial

value.
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Figure 3-3 Optimal PASs results: (a) the profiles based on C-ADMM, (b) the profiles based on

PI-ADMM., and (c) the SoC evaluations.

The proposed DCOA methods are marginally better than SQP and have shown a very
close performance to DP m terms of the total cost. However, in terms of computational time,
the decentralized structures of the introduced DCOA methods have made them much faster
than SQP, where the computational burden has been reduced by 78 4% and 84.1% when
using C-ADMM and PI-ADMM, respectively. The computational time m PJ-ADMM 15 5.7%

lower than in C-ADMM because of the proximal term.



45

3.4 Outcomes

The study of two decentralized optimization approaches has brought about the following
points.

- Describing the principle highlights to devise a proficient modular EMS for the FCV

applications.

- Demonstrating the benefits of the decentralized EMSs with an electrical fault, parameter

mitialization, and price changes.

The explanation, as mentioned earlier, 1s presented through an article in the following

section.

Article 2: Companson of Decentralized ADMM Optimiuzation Algonthms for Power

Allocation in Modular Fuel Cell Vehicles
Authors: Arash Khalatbarisoltan1, Mohsen Kandidayem, Loic Boulon, and X1aosong Hu
Journal: TEEE/ASME Transactions on Mechatronics

Publication date: September 2021

3.1 Conclusion

This chapter comprehensively analyzes two mnovel fully decentralized convex
optimuzation algorithms (DCOA). Furstly, a general PAS problem 1s formulated, including
hydrogen consumption, FC modules, and battery umt lifetime. Secondly, two multi-block
alternating direction methods of multipliers (ADMM) algorithms are selected due to their

fast convergence, parallel structure, modularity, and robustness. These features make them
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feasible solutions 1n a MFCS. Subsequently, an in-depth comparative analysis, considering
the real driving cycle and parameters and the sensifivity analysis regarding the dynanuc fault

and different price scenaros, 1s performed to fully disclose these algonthms' benefits.

Moreover, the performance of the algonthms 1s compared with DP and SQP. Both
simulations and the experiments unveil that the fully decentralized modular schemes perform
better than DP and SQP. Moreover, PI-ADMM 1s more practical in real-time applications
due to 1ts fast response and robustness. This chapter has been mainly focused on a
comprehensive analysis of two fully decentralized convex algonthms with a single-step
optimuzation. The proposed decentralized procedures have the potential to be combined with
an advanced multi-step MPC method to enhance the optimization performance and the
mberent robustness against uncertainty in predicting future drniving profiles. Additionally, the
hyperparameters of the decentralized controller can be tuned to improve the optimization
speed further. Consequently, the next chapter will present an adaptive look-ahead

decentralized MPC.
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Comparison of Decentralized ADMM
Optimization Algorithms for Power Allocation in
Modular Fuel Cell Vehicles

Arash Khalatbansoltani

Abstract—The advanced modular powertrains are envi-
sioned as primary part of future hybrid fuel cell vehicles
(FCVs). The existing papers in the literature solely cope
with the hardware side of modularity, while the software
side is also vital to capitalize on the total capacity of these
powertrains. Driven by this motivation, this article puts for-
ward a comparative study of two novel decentralized con-
vex optimization frameworks based on alternating direction
method of multipliers (ADMM) to solve a multi-objective
power allocation strategy (PAS) problem in a modular FCV
(MFCV). The MFCV in this article is composed of two fuel
cell (FC) stacks and a battery pack. Despite the exist-
ing centralized strategies for such a modular system, this
manuscript proposes two decentralized PASs (Dec-PASs)
based on Consensus ADMM (C-ADMM) and Proximal Ja-
cobian ADMM i(PJ-ADHH} to bridge the gap rding the
appreciation of modularity in software terms. Herein, after
formulating the central PAS optimization problem, the prin-
ciple of utilizing such decentralized algorithms is presented
in detail. Subsequently, the performance of the proposed
Dec-PASs is examined through several numerical simula-
tions as well as experiments on a developed small-scale
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test bench. The obtained results illustrate that decomposi-
tion into decentralized forms enables solving the complex
PAS optimization problem faster and provides modularity
and flexibility. Furthermore, the proposed Dec-PASs can
cope with fault and malfunction and thus augment the dura-
bility and robustness of modular powertrain systems.

Index Terms—Alternating direction method of multipliers
{ADMM), distributed optimization, energy management, fuel
cell hybrid vehicle, proton exchange membrane fuel cell
(PEMFC).

I. INTRODUCTION
A. General Context

NE of the largest sources of greenhouse gas emissions
O is burning fossil fuels for the transportation sector. In
this regard, electrification of transportation through different
hybrid and pure electric vehicle technologies has come under
attention [1]. Fuel cell vehicles (FCVs), which are generally
composed of a fuel cell system (FCS) as the primary power
source and an energy storage system (battery and/or superca-
pacitor) as the secondary one, are considered as one of the
promising solutions to mitigate this critical concern [2], [3].
Among different FCSs, proton exchange membrane (PEM) fuel
cell (FC) has been the most appropriate candidate for this
application due to its efficiency, power density, low noise, and
low-temperature operation range [4]. The lithium-ion battery
is also the dominant battery technology in this domain due to
its high enercy and power density and low self-discharge rate
[5]. Since the power sources of an FCV have different energetic
characteristics, the use of a power allocation strategy (PAS) is
crucial to minimize the total cost (hydrogen consumption and
degradation of the components) [6], [7]. A large number of
studies have been done on the design of PASs for FCVs, such as
rule-based [8], [9], fuzzy-based [10]-{14], optimization-based
[15]-{19], predictive-based [20]-{23], and adaptive strategies
[24]. The majority of these studies are based on centralized
PASs (Cen-PAS) designed for a single-stack FCV. Hence, they
are vulnerable to the malfunction of the power sources, which
can occur in such a configuration. This weakness exacerbates in
high-power applications, like buses and trucks, since many cells
must be stacked to meet the requested power. Consequently, with
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all the advantageous of the single-stack FCSs, it is necessary to
advance them in terms of durability, modularity, and efficiency.

B. Literature Study

One of the proposed promising solutions in this regard is the
use of modular FCSs (MFCSs) [25]. Unlike the typical FCVs,
the modular FCV's consist of several connected low-power FCs
rather than a high-power one along with an energy storage
system. In [26], a survey of the MFCSs with different power
conditioning topologies and fluidic architectures is provided and
concluded that these systems offer better efficiency and lower
hydrogen consumption than the single-stack ones. Moreover,
the inherent redundancy of the MFCSs leads to the increase of
robustness and reliability in case of malfunction occurrence in
one of the FCs andfor the converters. On the other hand, the
extra degrees of freedom in the MFCSs necessitate the design
of advanced PASs to optimize the end-user costs and fulfill the
powertrain system requirements.

There are several research efforts based on the Cen-PASs
for MFCVs. For instance, in [27], three PASs, namely daisy
chain, equal distribution, and optimal splitting, are compared
for an MFCV, and it is shown that the optimal splitting achieves
the best performance. In [28], a rule-based PAS is utilized for
an MFCV and concluded that this strategy is suitable for high
hybridization ratios. In [29], four FCSs have been connected
via power converters to the DC bus using a maximum power
point tracking controller for each stack. In [30], a hysteresis
PAS is developed for an MECV composed of three FCSs and a
battery pack. The primary purpose of the suggested PAS is to
make the operation time of the three FCSs equal while reducing
the number of on-off cycles. In [31], an adaptive state machine
PAS is proposed to distribute the power among four FCSs and a
battery pack. Simultaneously, the FCSs are constantly monitored
in terms of their maximum power and efficiency points. In [32],
an adaptive current distribution method based on a droop control
technique is proposed for two FCSs to decline the degradation
rate.

Although the discussed modular powertrains bring about
modularity and reliability from electrical and fluidic (hardware)
points of view, they do not guarantee these aspects in their
management and control units (software). These Cen-PASs are
susceptible to a precipitously single point of failure through
their software programs. Moreover, the additional degrees of
freedom make these Cen-PASs substantially complex and time-
consuming to be solved in real-time, which is a critical aspect
in the FCV applications. Therefore, there has been a growing
trend in the literature to gradually shift from Cen-PASs to
decentralized PASs (Dec-PASs). For instance, in [33], [34], two
Dec-PASs based on game theory are proposed. However, the
main drawback of these strategies is that the players are selfish
and may not converge to their optimal resulis. Furthermore,
these Dec-PASs cannot entirely satisfy the nonlinearities in the
behaviourand the constraints of different sources. Another worth
noting problem with these strategies is that they need a lot of
data exchange which is not feasible for the onboard applications.
In [35], a droop-based Dec-PAS is proposed for seeking optimal
power-sharing. However, this approach cannot perform well in

a wide range of operations and does not consider the longevity
of the powertrain system.

To evade the abovementioned problems in other domains with
multisource systems, such as smart grids [36], [37], special
attention has been given to decentralized convex optimization
(DCO) algorithms [38]. One of the most famous classical de-
composition methods in this regard is the one introduced in
[39] based on Lagrangian relaxation. However, this method
has slow convergence. Several other methods, such as auxiliary
problem principle (APP) [40], consensus-based algorithm [41],
Kamush—Kuhn-Tucker (KKT) conditions [42], and alternat-
ing direction method of multipliers (ADMM) [43], [44], have
been proposed to enhance the convergence rate. Among them,
ADMM has attracted a lot of attentions since it can guaran-
tee the global convergence and does not require a significant
amount of data exchange in spite of other algorithms. This
method amalgamates dual decomposition with the multipliers
technique and the augmented Lagrangian approach. ADMM
decomposition-based method can be categorized into Gauss-
Seidel ADMM (GS-ADMM), Variable Splitting ADMM (VS-
ADMM), and Jacobian ADMM (J-ADMM) [45]. GS-ADMM
cannot be straightforwardly applied to an optimization problem
with more than three subproblems and hence cannot guarantee
the convergence in this case [45]. V5-ADMM is also not prac-
tical for large-size optimization problems, and J-ADMM may
diverge for various problems although its updating procedure
is parallel. In this regard, J-ADMM and GS-ADMM have been
advanced to Proximal Jacobian ADMM (PI-ADMM) and Con-
sensus ADMM (C-ADMM), respectively, to be more practical
for the distributed optimization problems. The update processes
of PIFADMM and C-ADMM are parallel, and convergence
performance can be guaranteed simultaneously [46]. These two
DICO-based algorithms offer several advantages compared to
centralized ones. First, parallel execution feature enables them
to solve complex optimization problems with less computational
effort. Second, they can autonomously adapt to new changes
which provides robustness in case of any subsystem failure.

In [47], [48], two classic ADMM algorithms are suggested
for solving Cen-PASs in hybrid electric vehicles. However, their
central control units do not offer modularity, plug & play aspect,
and robustness in terms of software. In [49], an APP-based
scheme is proposed for a modular FCV. However, this decentral-
ized approach will not provide satisfying results in convergence
speed compared to other advanced DCO algorithms, such as
PI-ADMM and C-ADMM.

C. Coniribution

In the light of the discussed papers, it can be stated that there
is a lack of discussion on designing Dec-PAS via DCOs in the
domain of MFCVs. To the best of the authors® knowledge,
this work is one of the leading attempts, if any, to propose
a practical framework for designing Dec-PASs in MFCVs. In
this respect, a detailed comparison of two Dec-PASs based on
C-ADMM and PJ-ADMM is put forward for an MECV. These
two decomposition-based approaches are singled out due to
their parallel updating process, fast convergence speed, ability
to handle constraints, and global convergence performance.
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The proposed Dec-PASs are compared with an offline optimal
PAS (dynamic programming (DP)) and a Cen-PAS (sequential
quadratic programming (SQP)). The performance of these fully
Dec-PASs is thoroughly explored in terms of final cost under a
real driving profile. Since the ADMM-based decentralized ap-
proaches are highly sensitive to their parameters tuning, this vital
characteristic is thoroughly investigated. Moreover, to further
highlight the DCO-based PAS capabilities, the best Dec-PAS is
selected for price sensitivity and dynamic fault robustness analy-
ses. Itis worth reminding that the performance of the PI-ADMM
algorithm has been evaluated using a developed experimental
test bench, as opposed to most of similar manuscripts in the
literature, which are solely based on simulation.

D Organization

The rest of this article is organized as follows. In Sec-
tion I, the configuration and modeling of the MFCV are de-
scribed in detail. Section IIT presents the general formulation
of the multi-objective PAS optimization problem. Section I'V
describes the two utilized decentralized ADMM-based PAS
frameworks. In Section V, a detailed comparison of several
cases is conducted to scrutinize the performance of the proposed
DICO-based PASs. Section VI demonstrates the implementa-
tion results via a developed small-scale test bench to validate
the theoretical background. Finally, Section VII concludes this
article.

Il. MFCV POWERTRAIN CONFIGURATION AND MODELING
A. Powertrain Structure and Modeling

To investigate the performance of the proposed Dec-PASs,
a modular FC test bench based on an electric vehicle is es-
tablished [50], as shown in Fig. 1. The developed small-scale
test bench comprises two FC modules, a battery pack, a pro-
grammable dc electronic load, and a multirange programmable
dc power supply for simulating the requested load profile. The
critical components of each FC module are a 500-W open-
cathode PEMFCS (Horizon, model: H-500), a smoothing in-
ductor, and an adjustable unidirectional boost dc—dc converter
(Zahn Electronics™, model: DC5036-5U). Moreover, six series
12V/18Ah battery packs provide the voliage of the dc-bus.
Each module has its autonomous Dec-PAS inside of a Mational
Instrument CompactRIO (NI9022). The optimal reference of
each module is calculated at each control instant with an interval
of 10 Hz. The power equilibrium of the FC modules and the
battery unit is formulated as follows:

M
Z PrupDme+ Per=PFrg (1)

m=1

where Pp,m € M, M = {1,2} denotes the generated power
by each one of the S300-W FCSs, I) is the control signal of the
boost converters, Py is the power provided by the battery unit,
Py, is the requested power from the propulsion system, and k is
the time instant.

-
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Fig. 1. Developed small-scale test bench. (a) Schematic of the power-
train system. (b) Developed test bench.
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Fig. 2. Characteristic curves of the two real FC modules. (a) Polariza-
tion curves. (b) Power curves. (c) Hydrogen curves.

B. FCS Modeling and Constraints

In this article, each of the 500-W FCSs, F'C,. are modeled
as a voltage source where their polarization curves and the
hydrogen mass flows versus requested current are described by
experimentally validated quasi-static curves, as shown in Fig. 2.
Asexplained in [14], the output power of an H-500 Horizon FCS
is obtained by subtracting the power of the FC stack from the
consumed power by the cooling fans and the hydrogen valve.
The consumed power by the purge valve is ignored as it has a
fixed cyclic purging (every ten seconds for a duration of 100 m ).
In this article, the blowers and ancillaries of the FCSs are not
explicitly modeled. Nevertheless, their energetic performances
are taken into consideration by the static characteristics of the
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Fig. 3. Measured and normalized hydrogen consumption curves of the
developed test bench. (a) 'O and (b) F'Cs.

TABLEI
TECHMICAL SPECIFICATION OF THE OPFEN-CATHODE PEMFC STACKS
(H-500)

Mumber of cells= 24 Hydrogen pressure= 0,45-0,55 bar
Rated power=500 W External temperature= 5-30 *C
Rated performance= 144 V @35 A Max stack temperature= 65 *C
Crutput voltage range= 12 V-24 V' Humidification= Self-humidified
Reactants= Hydrogen and Adr Cooling= Air {cooling fan)
Flow rate at max power= 6.5 L/min Efficiency of stack= 40% @ 144V

FCSs. In other words, the presented characteristics in Fig. 2
belong to the FCSs considering the fans and hydrogen valve.
The technical data of the utilized FCSs are reported in Table 1.
Fig. 3 demonstrates the measured and normalized hydrogen
consumptions of the FC modules.

The following enforces power and slew rate limits:

Pm,'m::n. = Pm,ﬁ: = Pm,nm::

Ry mit < P — Py g1y < RBuméit

(2.2)
(2.b)

where P, men and Py mge are the minimum and maximum
values for P, Rgm and Ry, are boundaries of the slew
rates, and At indicates the time step. As explained in [14], for
rising, a dynamic limitation of 10% of the maximum power per
second, and for falling, 30% of the maximum power per second
have been considered for the operation of the FC stack. These
constraints prevent the FC stack from sudden changes, which
can result in degradation.

C. Bartery Modeling and Constraints
A first-order RC model of the battery pack is formulated by

Vor — Belpp—Vo iC d

- =
B.k R, “di

(Vo — RHalp g — Veg)

(3)
where Ip is the battery pack current, Vj is the open-circuit
voltage, R, is the series ohmic resistance, Vg is the output
terminal voltage, R, denotes the polarization resistance, and
.. is the polarization capacitor. The following imposes power
and slew rate limits:

Pg min = Prk = PBmax

Ry At < Pgy — Pp 1) < Ry pAt

(4.2)
(4.b)

where Pg min and Pgmae are the minimum and maximum
limits of Pg, respectively, and Ry g and R, g are the slew rate
boundaries of Pg. The following presents the state of charge
(SoC) calculation formula along with the constraints on the
battery Sol level:

Pg At
SoCryy = SoCy — =—— Sa
k41 k ~ OpVe 23600 (5.a)
SoCmin =< Sol < SoChax {5.b)

where SoC;, and Sol ., denote the minimum and maximum
limits of SoC, respectively, Soly — ¢ is the initial SoC' level,
and () g represents the battery capacity. The battery lifetime is
affected by the depth of discharge (Dol?) and is defined as an
initial capacity drop (reaching 80% of the initial capacity). The
state of health (SoH') is calculated by

| P x| At

SoHer1 = SeHr — 5 55 3600

(6.a)

SoHmin < SoH}, (6.b)

where SoH qin and SeH;. — ¢ indicate the minimum and ini-
tial SoH, respectively, and ng is the total number of cycles
during the whole lifetime of the battery pack. The parame-
ters of the battery pack have been obtained from experimental
tests (Vo= 12.21 V, R, = 0.0141 @, Qg = 18.24 k, and
R, = 00177 ).

D Boost Converter Modeling and Charactenstics

The two converters are modeled as follows:
LmEdE Im i = Vm.k - Vh,m,k - Tmfm,k

JifPn>0 (D

Vame = mpm Veg . 1
=1 -1,ifPp <0

Ih m e = mum Tm kT

where I, and Vy, are the current and voltage of FCy,, respec-
tively, L, presents the smoothing inductor inductance, r, is the
smoothing inductor resistance, ny, ;, is the average efficiency,
and mp ;m is the modulation ratio of the converters. The esti-
mated parameters of the boost converters are L, = 1.1 mH,
rm = 23.9m, and 5, = 96.21%.

lll. ProcEss oF DEVELOPING THE GENERAL PAS
PROBLEM AND THE EVvALUATION FUNCTION

This section first presents a standard framework for formulat-
ing the main PAS optimization problem (8). Next, an evaluation
function (9) is defined to measure all the main criteria used in
different optimization methods in the same way.

A. Formulation of the Central PAS Problem

The multiobjective optimization problem of the MFCV can
be written as follows:

(8.a)

min

M
+c
P Wi > glempk +cB)

m=1
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M B. Defined Evaluation Function
s.t. Z. Am P =c, other equality, and inequality constraints The end-user cost, Sy, in USD, is calculated by
m=

where g is a convex approximation cost function to be mini-
mized, including the FC modules’ normalized hydrogen con-
sumption, and the normalized degradation of the modules,
cm,k. and the battery system, cg ., which are formulated as
follows:

Cmk = Shomk + Sdmk, CEE = Bk + Ssock  (B.D)

where P, € BV= stands for the control actions, A, € RM*Nm
and ¢ € R™ apply the powertrain and the coupling constraints to
the modules, respectively, k stands for each simulation moment,
and sp m k15 the normalized hydrogen consumption function,
calculated by

s IF?'r.r.l.,.li: - hm,miﬂ
hm.k =
h-m,ma:t - IF?'r.r.l.,min

where b k. Fm min.and by ma are the hydrogen consumption,
and the minimum and maximum limits of FCy,, respectively.
The normalized F'Cy, degradation term, sg 5, which includes
two normalized cost shaping functions, the low-power degrada-
tion, s} ,,, and the high-power degradation, s} ., are formulated
by

(8.c)

Sdm k = 0¥ Sil,m,k - ahs;,m,k (8.d)
where s, and s}, are computed by
Pk — Poomin)*
sld k= 1— { m.k m,mm] - (EE)
o {Pm,m:l:t - Pm,min]
Py —P !
32,;;;,5: — 1 _ |: .k m,m:u] y (8.1)
{Pm,m:l:t - Pm,min]
where oy and cv, are the constant coefficients, computed by
£l Eh
= = 8.
M ate " Eten ®e

where £; and =y, are the low-power and high-power cell degra-
dation rates, respectively. The degradation terms are adopted
from the previous studies since several long-duration aging
tests, which are beyond the scope of this research work, are
needed to determine them. These values are modified based
on the number of cells in the utilized FCSs. The values of
these variables (s; = 8.662uV/h and = = 10V /h) have
been obtained from [51], [52]. The normalized battery pack
degradation function, sg, is calculated by

Pgy

(8.h)
PL JmaT

SRk =

where Pp ma, denotes the maximum value of Fj. sgoo is a
punishment term to measure the SoC level variation, which is
defined by

ssock = B(SoCy — SoC — )’ (8.i)

where Soly. _ g is the initial SoC, and & is a big positive
coefficient.

Sr = (Z Z Samk + Samk + SB,J:) + Sgoc (9.3)

K m
The hydrogen cost of each module, Sy m. is computed by

SHmk = hmx Cm At (9.b)

where hy x is the hydrogen consumption, C'y, is the hydrogen
price, and At indicates the time step. The degradation cost of

each module, S; , . is calculated by
Sd,m,ﬁ: = Sfi,m,ﬁ: + Sim,k {9.c)

where S}, ., and S}, are costs of low-power and high-power
degradation, given by

gl . nmEICromAturm
ok 3600 Vo, m

nmEnCromAtpnm
3600 Vi m

where ny, represents the numbers of cells in each FCr, Vam
is 10% of the nominal F'Cy, voltage drop, and Cr, is FCS
cost. gy m and pp m are equal to

Shmp = (9.d)

_ ]: imein,m ‘:_: -Pm,k ':_: ﬂ-zpnum,m {g :I
Him = 0, otherwise. €
_ )1, if08Pomm < Pk < Prax,m
Hhm = { 0, otherwise. ®.0

where Fuom,m 15 the output power recommended by the manu-
facturing company for nominal use of the FCS [52]. The battery
degradation cost, Sg, is determined by

Spr =Cpg (SoHpx — SoHpg ) 9.g)

where C'g is the battery price. The punishment term , Sg,c, is
to recharge the battery to reach the initial SoC by FC, while
operating at their maximum efficiency points. The reference
prices are Cy, = 3.9254§/Kg [533], Cp = 1895/kWh [54],
and Creo_ = 355/kW [55].

IV. ForMULATION OF THE GEMERAL ADMM PAS
FRAMEWORKS

In this section, the utilized DCO algorithms are described.
To apply the DCO-based algorithms, firstly, the augmented
Lagrangian functions of the power-split problem are derived.
Subsequently, the corresponding functions are decomposed, and
the broken-down terms are minimized. Finally, the dual variables
are updated. These procedures continue until the convergence
criteria are satisfied.

It is worth noting that for the following two subsections, each
variable with the index of j means the cumrent value at the
j*Miteration, and each variable with the index of j + 1 denotes
the new value. k is the position in the selected driving profile.
Py & and P}, are related to FC), and P;‘,, and P ;. are linked
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Fig. 4. Description of real, virtual, and global variables in the MFCS.

to F'C;. During the optimization process, each decentralized
controller calculates the power of FC'y and ' at the same time.
For instance, the decentralized controller 1 solves its subproblem
for one iteration and calculates the output power P for its
module and Py, for the neighboring module. The decentralized
controller 2 solves its subproblem for one iteration and calculates
the output power P 5. for its module and Pf’k for the neighboring
module. During the exchange step, P,i is sent to FC) and
Fj}, is sentto FC,. Then, these values will be used in the next
iteration of the optimization procedure. These shared variables
are used to ensure that all the constraints are fulfilled for the
final results in the £** step. The ﬁna] power of P and P g
will be sent to the converters as P}’ and P}/ to control the
modules and the rest of the requested power will be supplied
by Pg. These final values will be used for the k*"step. For
each k, during the optimization iterations, the state variables of
the modular powertrain system are supposed to be unchanged.
However, these values will be updated in the next step (k + 1).

A C-ADMM-Based PAS

As shown in Fig. 4, the central PAS is decomposed into two
coupled subproblems, sp,. Since the coupling constraints are
not separable, P, » is copied into its neighboring module and
linked with a global power vector, wg & = {wy g, w2 i} . In this
respect, Py j is copied into sz, Py, as a virtual power, and w
is defined to link them. P, j, is also duplicated into =, Py}, and
ur j connects them. '

The following guarantees that the duplicated powers in s, and
s7 are equal with each other [44]

Prj—wpe=0 Fj) —up=0
PP, — wik = 0,Py —

(10.a)
wr=0.  (10b)

Afier defining the global power variable constraints, the dis-
tributed parallel form of C-ADMM is defined by (11) and (12).
The FC module equations
P PRI — min(eor (Pl,ﬁ:-. Pf,’a) +en .k (Prx)
+ l]sl‘jPL& + ASLJP;:E

(11.a)

(11.b)

Fiep 1
[ Isitialize A,  and the real and the vimaal FC modules. ]

Brep 2 '

The DOO-based PAS is salved by (10a) and (12.2) in pasllel.
Then, the resihs ane senl s The peighbonr madnles,

Step 5 l - - J-

The FC neodules determine wy g via {11.5) and (12.b). Afier that,
the updated wy 3 return 1o the corresponding FC modules.

Slep 4:

If stopping criteria {13} are satisfed. C-ADMM siops. I thas is not

the case, the Lagrangian variables are wpdated by {11.c) and {12
| for each FC medule.

Fig. 5. Step-by-step fl wchart of the decentralized C-ADMM algo-
rithim.
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Fig. 6. Information fl w between the FC modules via C-ADMM.

_;,_-:IL;EIH _ :‘-T:kj +p (Pﬂ-] _ w{-};l)
3+ ! !
by (sz; — ) ) :
The F'Cy module equations
min (e & (H‘i‘}:, Pi,;c) +egk(Prk)

?.':IJPEE& + }.;2’ jP!,k

(11.c)

8.9
=X +

s, 141 pi+l _
B By =

z 2
+'; ((Plsi —wly) + (P —ur%',k) )} (12.a)
pi+l 4 ps. g+l
“ﬂ' - % (12.b)
At =ay Pl (12:c)
Lk e TP Pk 1k c

81, J+1 2.7 +1 +1
AT =Mt (Pifr.: - “’g,k )

where A . represents the Lagrangian multipliers, and p is a
positive tuning value. Equations (11.b) and (12.b) define the
global power vector, wg k. calculated based on the average of
all the linked modules, and j denotes the number of iterations
[44]. The optimization convergence is defined by the following,
where pjand po are the limiting values:

1 1
Ik =2kl S, pllPAE — Pl ulli <pa. (13)

Fig. 5 presents the flowchart of the C-ADMM algorithm in
four steps. Fig. 6 depicts the flow of information in C-ADMM,
where the virtual powers are sent to the neighboring mod-
ules. Then, the global powers are calculated and returned in

parallel.
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L To unveil the capability of the DCO algorithms, first, a com-
J "M\ y prehensive analysis of the two proposed PASs is performed in
JE J c:r, P' MATLAB software. In this sense, the developed approaches are
S e compared with DP as an offline optimization method and SQP
Fig. 8. Parallel communications of the decentralized PJ-ADMM PAS.  as a centralized convex programming algorithm. Subsequently,

B. PJADMM-Based PAS

To improve the convergence of ADMM, PI-ADMM is pro-
posed in [45]. The formulation and parallel updating procedure
are presented as follow.

The FC module equations

P]{II: Pﬂﬁl = min(cy k (H,&,Pf;c) +cmk(Ppk)

F 2P~ PR T~ AL+ 51 Pk — Pl

4 21PE — Pl =23+ 5P — P o) (149)
M5 =L, o (B PE)
Jhﬂl = 31-{5: -7 (PFI' - B ,lk'H])

The FC; module equations

(14.b)

Pf,’k‘jJ']asz,J;' = min(cy,k (P."i,Pz,k) +cek (Pe.x)

2 2 1 232
+ Eplﬁ: - P]j,ic - “"I{k”l + Eji—‘]f!k - Py Nz

1
+ EPP:,;G - Pii]éj - 3-2%"% + EP:,J: — sz‘;nlllpﬂ} (15.a)
M= (PR - R
1 1 L 41
gy =, —v (P - B )
where Pri presents a positive and symmetric semidefinite ma-
trix, and -y indicates a positive damping parameter. Figs. 7 and 8

illustrate the step-by-step update process and the inter-module
communications of the DCO-based PAS.

(15.b)

due to the inherent sensitivity of the ADMM-based optimization
approaches to parameter tuning, this critical point is investigated
for PI-ADMM and C-ADMM. Next, the most potential algo-
rithm is selected to scrutinize the effect of price sensitivity and
fault occurrence in the performance of the PAS. It is essential to
mention that the computational time extensively depends on the
utilized PC hardware (Processor = Corei3, 2.30 GHz, and RAM
=4.00GB). Except for the parameter tuning analysis subsection,
the same initial values are applied to all the considered cases to
establish an unbiased comparison.

A. Optimal Performance Analysis

A real driving cycle is utilized to inspect the performance of
the developed DCO-based PASs, as shown in Fig. 9. Since the
maximum power of the selected driving profile is higher than
the developed test bench limitations, the power profile is scaled
down by ten during the simulation and implementation steps.

The optimized power trajectories using C-ADMM and PJ-
ADMM are shown in Fig. 1({a) and (b). As it can be seen, the
modules collaborate and primarily operate at the efficient regions
to fulfill the requested power and minimize the multiobjective
cost functions. However, due to the slow response of the mod-
ules, the secondary source supplies the fast dynamic response
and peaks. Fig. 10{c) compares the SoC’ variations obtained
by C-ADMM and PI-ADMM. The SoC' of the battery pack
oscillates between 69 and 72%, less than approximately 3% vari-
ation. Although the obtained Sol variations by C-ADMM and
PJ-ADMM are similar, a slight deviation can be observed in the
SolC levels from 50 to 150 s. It is due to more cumulative costs
in the PI-ADMM algorithm. Afier 150 s, the SoC fluctuations
become almost equal because the responses of the DCO-based
algorithms are similar. Another point is that the drawn power
from the FC modules are increased after 250 s to keep the SolC
fluctuations close enough to the initial values.
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Fig. 10. Optimal PASs results {Fload : The requested power, FCs:
The power provided by the modules, Battery: The battery power).
{a) Profile based on C-ADMM. (b) The profile based on PJ-ADMM.
{c) The SoC evaluations.
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Fig. 11. Oplimized power and power distributions of the modules using
C-ADMM. (a) Power profil of F'Ch. (b) The distribution of F'C1. (c) The
power profil  of Fi(C5. (d) The distribution of FIC5.

As an example, the time series and the distribution of the
power in the real and virtual FCs are presented for C-ADMM
case study in Fig. 11 . F; and P} are the real and the virtual
power profile of FCy, and P and ;" are the real and the virtual
power profile of F'C5, respectively. It is evident from this figure
that the real power and virtual power of the modules are well-
matched. Moreover, the request power from the FCs is almost
located in high efficient regions. Since the convergence speed of
the C-ADMM algorithm is faster than the modular powertrain
dynamics, the virtual power of FCs gets very close to the real
one. It can also be realized that since F'C; has a higher level of
maximum output power and efficiency, it is more utilized than
FCy.

The computation time and the number of iterations according
to Fy are illustrated in Fig. 12. The detailed computing per-
formance and final price of the developed PASs are presented in
Table 11, where T is the computation time per second, and is the
number of iterations. As shown in Table I, the proposed DCO
algorithms are marginally better than SQP and have shown a very
close performance to DP in terms of the total cost. However, in
terms of computational time, the decentralized structures of the
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Fig. 12. (a) Computaticnal time. (b) Number of iterations.
TABLE I
DETAILED COMPUTING PERFORMANCE AND FINAL PRICE
or QP C-ATNM PI-ADMM
_ F, + FC;  FC 4+ FG; Fiy Fi; Fi, Fit,
T 4160,5 2084 459 459 3.7 3.6
# - 2463 68 w72 932 G963
Spm 00254 0L.0Z58 00174 001 00173 DO
Sgm 00091 0LoloL 00062 00039 0006 0066
55 0.0055 (L0043 00051 0040841
Seoc 1] 0LOD0E 0.0006 0LMMES
S (L0440 0,045 0.0432 0.0425

proposed PASs have made them much faster than SQP, where
the computational burdens have been reduced by 78.4% and
84.1% concerning C-ADMM and PJ-ADMM, respectively. The
computational time in PI-ADMM is 5.7% lower than C-ADMM
because of the proximal term [45]. SQP is the slowest opti-
mization method with an operation time per iteration of 0.08
5. C-ADMM and PJ-ADMM are faster than SQP with 0.04
and 0.03 s, respectively. The associated total costs based on
PJ-ADMM and C-ADMM are $0.0426 and $0.0432, which are
4.4118% and 5.8824% higher than DP, respectively. These minor
differences are derived from the single-step optimization and the
convex modeling approximations. The hydrogen consumptions
are the highest cost, where FC and FC5 contribute $0.0173
and $0.0109 under PJ-ADMM and $0.0174 and $0.010 under
C-ADMM, respectively. The second-largest expenses are related
to the modules’ degradations, which are approximately $0.0096
and $0.0098 by PI-ADMM and C-ADMM, respectively. The
degradation costs of the battery pack using PI-ADMM and
C-ADMM are about $0.0048 and $0.005, respectively, which
constitute 11.3% and 11.6% of the final costs. The C-ADMM
and PJ-ADMM cost terms equally decline because of the nor-
malized cost functions. It should be pronounced that DCOs can
assist the modules to prolong the FCSs lifetime and minimize
the final costs. Fig. 13 provides the optimized cumulative cost
changes by utilizing the PI-ADMM algorithm.

B. Parameter Tuning Analysis

In this section, the effects of the DCO-based PASs parameters
on the total cost and the computational time are cautiously
examined. A set of simulations are performed to seek appropriate

Authorized licensed use limited to: Universite du Quebec a Trois-Rivieres. Downloaded on April 08,2022 at 00:00:01 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHALATBARISOLTANI &t &l COMPARISON OF DECENTRALIZED ADMM OPTIMIZATION ALGORITHMS ]

Fig. 13.

Fig. 14. Varation with » and p of the fina cost and the processing
time. (a) C-ADMM and (b) PJ-ADMM.

ranges for p and p. The obtained outcomes are presented in
Fig. 14. Overall, the costs present upward trends with some
fluctuations when p increases and p declines. Furthermore,
the computational time experiences incremental trends in both
cases, specifically when p passes 1.0 x 10~®. Consequently, the
selected p and p ranges require a balance between the final cost
and the data processing efficiency.

C. Price Sensitivity and Optimization Criteria Analysis

For the sake of exploring the influence of price changes and
optimization goals over the behavior of the DCO-based PASs,
a straightforward and effective investigation of PJ-ADMM is
performed in this section. Fig. 15 illustrates the cost and op-
timization criteria evaluation. The current situation in 2020,
shown by the red dashed line, is considered the baseline. The
upcoming trend after five years in 2025 is considered a means
of comparison with two different probable case studies. The
first case study is related to a cheaper PEMFC stack price
(—20%) trend, which is plotted by the blue dashed line be-
cause of applying several cost-effective strategies from FC stack
manufacturers. The second case study assumes a surge in the
hydrogen price (+20%), depicted by the yellow-solid line, due
to the growth of the FCV production numbers and the penetration
of the hydrogen-powered system life. The criteria of the DCO-
based algorithms are defined through n, where = 0 shows
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Fig. 15. Final cost evaluation according to different price and optimiza-
tion cbjective scenarios.
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Fig. 16. Comparnson between standard and fault operations of the

Dec-PAS based on PJ-ADMM. (a) Power profil ewolutions in case of

regular operation. (b) The power profil trajectories in case of dynamic
electrical fault operation. (c) The Sol levels of the battery pack.

the optimization is only hydrogen-consumption-oriented, and
n = | means the optimization is only health-aware-oriented.
It is pronounced that compared to the baseline price, a 20%
decrease in the FC stack price reduces the minimal value to
around 7.32%. Moreover, a 20% increase in the hydrogen price
augments the optimal value to around 9.76%. The optimal 5 =
0.18 is increased in both of the case studies. In future, adaptive
and comprehensive DCO PASs can be established while consid-
ering shori-term and long-term price trajectories.

D Fault-Resilient Analysis

To evaluate the robustness and modularity (plug & play), a
comparison between regular and faulty operation of PI-ADMM
is performed in this subsection. This article takes only electrical
fault conditions into account, which will affect the system’s total
output power. For this purpose, a dynamic electrical fault is
imposed to F'C; for 100 5. Fig. 16 depicts the power trajectories
and the SoC" fluctuations of the well-behaved and misbehaved
modules during and after the electrical fault. Throughout the
fault occurrence, the functional module and battery unit collabo-
rate to converge to the optimal power. After passing the electrical
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fault condition, due to the parallel structure of PI-ADMM, this
algorithm can conveniently follow the requested power profile.
Therefore, if one of the modules stops regular operation for a
specific duration and gets back to regular operation again, the
Dec-PAS can keep working without making any problems for
the powertrain system. It is an intriguing clue that applying these
decentralized approaches at module-level fault operation needs
further investigations.

V1. EXPERIMENTAL IMPLEMENTATION

An experimental test based on FPGA implementation is con-
ducted under the real driving profile to verify the simulation re-
sults. In this regard, PJ-ADMM is singled out due to its superior
performance compared to C-ADMM. Generally, the computa-
tional time and performance in the simulation step running on
general-purpose hardware (PC) differ from a real-time field test
for several reasons, such as processing capacity, memory, com-
munication delay, and uncertainty in the powertrain components.
The power trajectories and SoC" oscillation are demonstrated in
Fig. 17. Moreover, the power distributions are shown in Fig. 18,

The final cost of the PT-ADMM-based PAS shows an extra cost
of 6.62% compared to that of the offline one. The hydrogen
consumption cost approximately forms 41.15% of the final cost.
The degradation of FC modules is the second-highest cost, with
about 27.84% of the final cost. The modular system operates
in the low-power and high-efficiency region to mitigate the
degradation expense and reduce hydrogen consumption. The
suggested PAS works well to ensure the constraints of the pow-
ertrain components prolong their lifespans. The computational
complexity of PI-ADMM is about 63.25% lower than SQP. In
this regard, it is a practical and suitable optimization algorithm
for low-cost systems with limited onboard computational power.
These results highlight the potential of the decentralized imple-
mentation schemes in real-time applications.

WVil. CoNcLUsIOoN

This article presents a comprehensive analysis of two Dec-
PASs based on distributed convex optimization in an MECV ap-
plication. The two decomposition-based algorithms (C-ADMM
and PJI-ADMM) are selected due to their parallel updating
optimization procedures and their global convergences. In this
regard, a general PAS optimization problem with a convex
approximation is formulated for a modular powertrain system,
including hydrogen consumption and lifetime of the FC modules
as well as the lifetime of the battery unit. After that, the decen-
tralized optimization frameworks for solving the power-splitting
problem are presented. To evaluate the performance of the
proposed Dec-PASs under real driving profile, an in-depth com-
parative analysis of costs and computational times are presented
compared to DP and SQP.

Additionally, due to the importance of parameter tuning in
the ADMM-based optimization algorithms, this feature in C-
ADMM and PJ-ADMM is investigated. Since the PI-ADMM
algorithm has reached a better general performance than C-
ADMM under the discussed scenarios, it is also used for two
further sensitivity analyses in terms of dynamic fault and price
fluctuation case studies. Finally, the experimental results un-
veil that the implemented PI-ADMM decentralized scheme
achieves excellent performance compared to SQP. Considering
the outcomes of this manuscript, the following directions are put
forward for future endeavors.

1) The inclusion of future trip information in the DCO-
based PAS framework. This idea requires developing a
predictive-based control strategy and introducing a trip
model with a high level of reliability and accuracy.

2) The integration of thermal models of FCSs and battery
into the Dec-PAS and scrutinizing it from the perspective
of different initial temperatures and health conditions.

3) Combining DCO-based PASs with fault detection algo-
rithms to develop robust strategies for MECV power-
trains.
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Chapitre 4 - Look-Ahead Decentralized Safe-
Learning Control for a Modular
Powertrain Using Convex Optimization
and Federated Reinforcement Learning

4.1 Iniroduction

Thus thesis explores different strengths and weaknesses related to the modular system, and a
future-oriented concept 1s put forward using the distributed convex optimization approaches.
After introducing the central 1dea of the decentralized optimuzation method m Chapter 2 and
studymng different algorithms to evaluate the advantages of the suggested methodology in
Chapter 3, now this 1s the best moment to enhance the optimuzation algorithms' performance.
All the work 15 based on one-step point optinization and does not include future information.
This chapter will attempt to present the following point of view to combiming the predictive
model idea with the proposed fully decentralized strategy dunng the previous chapters.
Nevertheless, two crucial sides to this combination need to be studied. Firstly, having a
moving horizon will augment the computational time and will increase the number of
iterations. Secondly, selecting the best hyperparameter value 1s lighly related to the
application and the general pattern of the disturbance to the under-control system. For these
two reasons, a decentralized learming method 1s added to simultaneously adopt the optimal

horizon length based on the current state of the powertrain system.

4.2 Methodology

The fully decentralized lookahead allocation methodology to accomplish the third study 1s

presented through the following stages.
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- First, a multi-objective convex cost function for the power allocation problem 1s formulated

by considering the hydrogen economy and powertrain lifespan factors.

Second, a decentralized predictive-based optinuzation algorithm 1s developed by utilizing a
Lagrangian decomposition method to mimimize the convex cost function simultaneously. In
the proposed Dec-MPC, the main problem 1s decentralized into m € M subproblems, and
each one 1s allocated to a FC module control unmt, as shown in Figure 4-1. Duning the
optimuzation process, an exchange of candidate output powers occurs through the module-
to-module commumication layer. This iterative process continues until an agreement is
attained among the local control units, according to the determined stopping criterion. Then,
the optimization process will be repeated and shifted to the next point.
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The detailed procedure of Dec-MPC 1s presented m Fipure 4-2. Furst, a cold-start
mitialization of A (i41,...i+k)> Pmfi+1,..i+k)> A0d Wi (141 i+k) 15 required for each module
m (¥m € M) . The local PAS problems are solved to determune Py, (41, i+k)- Then,
Wi i+1,.i+k) are calculated and sent to the neighbor module in parallel After that,
Amis1,.ivky Updates. If [|ARF — AR |13 < py and pl|PR+ [k] — PRK]II < po, where
uyand p, are the limiting values, as the stopping criteria are fulfilled, the optimmuzation
processes stop and Py, ;4 is sent to the converters as PLc/ . After that, the optimization

windows shift for one time step. If not, the optinmzation process goes back to Step 3.

:
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Figure 4-2 The systematic flowchart of the Dec-MPC algorithm.
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- Third, a multi-agent safe learning technique 1s integrated to momnitor the decentralized
MPC performance and seek the best operational performance. Ths safe learning-based
algonithm optinuzes the hyperparameters of the control units based on the corresponding
computational burden, final cost, and SoC level penalty. Safe Reinforcement Learning
may be defined as establishing rules that maxinmize the likelihood of achieving a good
refurn on investment on challenges. It 1s vital to maintain a lgh level of system
performance and/or to adhere to safety restrictions during the learming and/or deployment
stages [58]. A decentralized learming algornithm 1s bwlt based on this notion of safe
remnforcement learming by incorporating the decentralized MPC layer to get optimal
outcomes. This topology aids the learming techmque 1n converging on the FCS module's
ideal outcomes. By considering the charactenistics of the powertrain components, this
safe learning techmque ensures optimal outcomes. In this regard, state information from
the environment that comprises the instance SoC level and average future power profile
are exploited with different actions to reach the optimal answers. The decentralized
strategy's learmng mechanism 1s based on three standard dniving cycles. There 1s only
one real dniving profile for the electric car under study. Furthermore, just three available
standard dnving profiles are well-suited to the selected light-duty electric
vehicle. Indeed, to obtain a trustworthy outcome, 1t 1s critical to train the learming process
using a database of real-world driving patterns. The result reported in this chapter 1s the
first proof of the central concept. Integrating the new drniving profiles 1s the first step to
making the suggested method even better. The process of decentralized learning based
on federated reinforcement learming (FRL) 1s indicated in Figure 4-3. To explain the FRL

algorithm, an environment with {FC,,}¥_, modules is considered, where each module
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has the training points Oy, = {(Pavy,S0C;, 1), (Payg, S0C, 1)} with [ tagged
samples and the weight parameter list W™ _ All modules {FC,, }*_, are linked directly
m a module-to-module style. Firstly, a cold-start mitialization 1s applied to all modules
{FC,}M_, . then it starts with training data O,, in parallel for a small number of iterations
(step 1). After that, each one pools its partially tramned weight parameters W™ to others
(step 2) and merges all the received models by the weighted averaging techmque, 1e |
WA = Emiﬂ’m (step 3). In the end, the aggregated model W* is used by the modules
to select the optimal prediction horizon length Several rounds are executed until all FC
modules’ models converge (step 4). After completing the decentralized learming process,
each FC module has its local model W' and the aggregated fine-tuned model W*.

Whenever a new FC module is connected to the environment {FC,,,}*_, . the aggregated

model W# will be shared to join the process (step 5) quickly.
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Figure 4-3 Visual representation of the module-to-module FRL algorithm and the
learning steps.
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- Fourth, the adaptive decentralized optimization algonithm has been implemented using

a laboratory-scale test bench system to evaluate real implementation.

4.3 Synopsis of the analyses of the results

The optimized output answers of the powertramn components via Cen-MPC, fixed
horizon, and safe-learning Dec-MPCs are illustrated in Figure 4-4. The prediction horizon
length, K, 1s selected to be equal to 10 tume-step for the Cen-MPC and the fixed-horizon Dec-
MPC schemes. The maximum moving look-ahead horizon K of the learming-enabled Dec-
MPC 1s also chosen to be equal to 10-fime steps. It 1s evident from Figure 4-4 that the powers
profiles and the SoC curves of the proposed decentralized approaches perfectly follow Cen-
MPC with minor errors. For instance, the SoC curves of the fixed horizon and adjustable

horizon Dec-MPCs accurately track Cen-MPC with under 0.0571 % and 0.0597 % errors.
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Figure 4-4 Optimized results of the MPC-based approaches: (a) the powers based on
Dec-MPC, (b) the powers based on adaptive Dec-MPC, (c) the comparison
between the total output modules powers of the FC modules, and (d) the
comparison between SoC levels.



67

The exact final operational costs associated with the proposed decentralized algorithms
compared to DP and Cen-MPC are listed in Table 4-1. The final costs of the suggested
approaches have aclieved a very close performance to the DP results. The final costs based
on fixed-hornizon and adaptive Dec-MPCs are $0.0617 and $0.0628, which are 5.89% and
7.75% greater than DP, respectively. Based on the obtained results, the final costs of the

fixed-horizon and the adaptive Dec-MPCs are about 1.74% and 3.52% higher than Cen-MPC.

Table 4-1 The detailed comparison of computational complexity and final price

DP Cen-MPC Dec-MPC Dec-MPC
(Fixed-horizon) (Adaptive-horizon)
T - 255914 14.6237 02473
St 0.0583 0.0609 0.0617 0.0628

A comparison of the final costs and the computational time based on different prediction
horizon lengths (from 2 to 25) 1s depicted m Figure 4-5. Generally, the final costs and
computational complexities demonstrate mverse behaviors as the moving optimuization
window length increases for all cases. If the prediction moving window length 1s selected too
short, the calculated optimized power values result in unsatisfactory approximations of the
mfinite horizon result. The execution fime of Cen-MPC grows at best linearly with raising
the length of the looking-ahead window in comparison with others, significantly when the
optimuzation horizon dimension exceeds 12s. The computational burden of adjustable Dec-
MPC 1s about 61.54% and 76.95% fewer sensifivities than Dec-MPC and centralized one to

the length of the moving horizon.
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Figure 4-5 Optimal final cost and computational complexity of Cen-MPC, Dec-
MPC, and adjustable Dec-MPC as functions of optinization window
size.

4.4 Outcomes
The results of an exhaustive investigation about an optimal module-level power
allocation control focusing on merging the model predictive theory and reinforcement

learning algorithm have brought about the following statements.

- The presented findings demonstrate the effectiveness and supeniority of the proposed
approach compared to the centralized MPC from final cost, computational time, and

robustness elicited from numerous examinations of the targeted optimization problem.

- It gives a valuable knowledge of the top prospects and challenges of the adjustable

decentralized EMS by analyzing functioning achievements and requurements.

- Expennmentation with a developed test bench system has been another contribution of

this study neglected in other relevant studies.
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The subsequent paper gives the discussions mentioned above in the context of the

suggested predictive power-splifting algorithm.

Article 3: Look-Ahead Decentralized Safe-I.earming Control for a Modular Powertrain

Using Convex Optimization and Federated Remforcement Learning
Authors: Arash Khalatbarisoltam1, Mohsen Kandidayem, Loic Boulon, and Xiaosong Hu
Journal: IEEE Transactions on Intelligent Transportation Systems (under review)

Publication date: -

4.5 Conclusion

This chapter presents a lookahead D-PAS for coordinating two FC modules and one
battery pack in a FCV application. Firstly, the look-ahead PAS problem 1s formulated as a
convex problem. Secondly, the decentralized PAS i1s attained by applying a decomposition
scheme based on C-ADMM without any central coordinator. During the DCO-based
optinuzation process, the constraints of the powertrain components are scrutimzed by
projecting the temporary FC modules powers into the feasible working spaces. Each module
communicates with the neighboring one to agree on the optimal solutions leading to a robust
and reconfigurable power-splitting scheme. Then, a federated reinforcement learming-based
funing approach is proposed to improve the computational time of the D-PAS scheme.
Finally, several numerical and experimental studies investigate the data processing time
efficiencies, convergence performances, final optimal solution precisions, and module-to-
module communication necessifies of the D-PAS methods. The next chapter provides a

general conclusion and the future direction of this work.



Look-Ahead Decentralized Safe-Learning Control
for a Modular Powertrain Using Convex
Optimization and Federated Reinforcement Learning

Arash Khalatbansoltam, Member, IEEE, Mohsen Kandidayemi, Member, IEEE, Loic Boulon, Senior
Member, IEEE. Xiaosong Hu, Senior Member, IEEE

4.5.1 Abstract

Optimization-based power allocation strategy (PAS) facilitates knowledge to enhance the
performance of fuel cell vehicles (FCVs) powertrain. Ongoing efforts predommantly
concentrate on optimizing a centralized PAS (Cen-PAS) by numerous high-computational
methods without adequately providing flexibihity (plug & play) and robustness for the
onboard powertrain components. To address these shortcomings, a forward-looking
decentralized PAS (Dec-PAS) based on the consensus-based alternating direction method of
multipliers (ADMM) 1s presented with an explicit consciousness of coordmnation of
powertrain components’ dynamic responses and considering the future driving profile
mformation. The powertramn components using the multi-step scheme cooperate m
converging the global optimum answers using a highly dynamic module-to-module
communication layer in a fully decentralized configuration that 1s more robust and provides
plug and play capability. Comparted to a single-step decentralized optimization approach,
the proposed predictive scheme, which considers future driving information, results in a more

overall decline in the final costs of hydrogen consumption and degradation.
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Additionally, to improve the processing time, a safe-learming algorithm 1s proposed to
learn the optimal policy of the moving horizon dimensions in the Dec-PAS using a federated
remforcement learming (FRL) algorithm The performance of the proposed framework 1s
assessed for accuracy, convergence speed, and commumication burden compared to Cen-
PASs. Both numenical simulation and implementation results manifested the superionity of
the recommended multi-step safe-learning-enabled Dec-PAS scheme over the centralized
and fixed-horizon MPC approaches.

Index Terms— Alternating direction method of multiphers (ADMM), distributed
optinuzation algorithms, energy management strategy (EMS), fuel cell hybnd electric
vehicle (FC-HEV), model predictive control (MPC), proton exchange membrane fuel cell

(PEMEFC).

4.5.2 Introduction

Owmg to more exceeding concern throughout fossil fuel consumption and the
consequential escalating requirements for more renewable resources, transportation as an
essential sector 1s transitioning from internal combustion engine (ICE) vehicles to fuel cell
vehicles (FCVs) [59]. Power allocation strategies (PASs) aim to enhance the operational
performance and the lifetime of their powertrain components (fuel cell system (FCS), battery,
and ultracapacitor) in the FCVs [60, 61]. Since the powertrain system of heavy-duty FCVs
demands high-level powers, there i1s a need to employ a big-size FCS. Nevertheless, a
mulfilayer FC stack diminishes the safety and reliability of the powertrain system These
drawbacks motivate to shift into modular energy systems (MESs) [13]. Although there are
many efforts to advance the multi-stack FCSs (MSFCs) from hardware perspectives (for

mstance, connection topologies [1] and power-conditioming [5]), some 1ssues still need to be
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further addressed in terms of the software point of view. For this purpose, various power-
splitting strategies are assigned through a centralized PAS (Cen-PAS) control umt, as shown
mn Figure 4-6(a), such as power point tracking [28], optimization [27, 30], state machine [32],
hierarchical [34], hysteresis [35], and droop control [62]. However, when mtegrating the
dynamic responses of components, 1t 1s indispensable to optimize over multiple time steps.
Furthermore, adding driving cycle prediction to the PAS problem may improve the obtamned
optimuzation results. In this regard, various centralized model predictive control (Cen-MPC)
approaches are suggested in the literature, for instance, standard [63-67], nonlinear [68, 69],
hierarchical [70], nuxed-integer [71], and multi-mode [72] MPC. The popularity of Cen-
MPC predonunantly stems from its proficiency to manage complex powertrains while
respecting components’ constraints and guaranteeing safe operation as two crucial points for
the FCV applications. The pnmary impediment of Cen-MPC 1is that the computational
complexity of solving the optimal power-splitting problem 1s comparatively significant,
restricting the implementation. Furthermore, the hyperparameters of Cen-MPC requuire to be
fine-tuned to the multi-objective power-splitting purpose. More importantly, due to the
cenfralized control structure, Cen-PAS does not provide plug-and-play and robustness from
software perspective. In this regard, 1t makes perfect sense to look for a decentralized PAS
(Dec-PAS) method, as shown in Figure 4-6(b), where the mamn optimization problem 1s

appropriately mapped into a subproblem for each of the module controllers.
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(a) ®)

Figure 4-6 Diagram of the commumications topologies and the underlymng
powertrain for Cen-PAS and Dec-PAS with four FC modules (FC,,,,m = {1, ...,4}) and
one battery pack (Bat). a) Cen-PAS with four local control units (M,,, m = {1, ...,4})

and one centralized umit (c), b) Dec-PAS without a centralized controller.

Decentralized decision-making approaches to distnbuted convex optumzation (DCO)
algorithms, such as Benders decomposition, Kamush-Kuhn—Tucker optimality condition,
Lagrangian relaxation, and consensus algorithm have been put forward recently in the
literature [73, 74]. As one of the popular decomposition techmques, the alternating direction
method of multipliers (ADMM) method [75] obtains the convergence characteristics of the
multipliers technique and the decomposability of Lagrangian relaxation. The most relevant
study regarding the optinuzation-based Dec-PAS has been mtroduced mn [76]. In [76], a
single-step Dec-PAS based on an auxihiary problem principle (APP) method 1s introduced to
address a PAS problem. This study 1s based on a single-step optinization method. Although
efficiently bringing to bear the available battery pack capacity, preventing nearsighted

optinuzation answers, and respecting system constraints, optimizing multiple-step strategies
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15 necessary. It seems to be beneficial to extend the single-step DCO-based PAS into a multi-
step MPC-based one. Decomposing a complex PAS optinuzation problem into several
cooperative sub-problems, which converges into the global optimum answer, can offer
various benefits. A decentralized MPC (Dec-MPC) controller can manage the abnormal
process i either an electrical fault or a failure of a processor umit, or even an internal stack

malfunction.

Moreover, Den-PAS offers plug-and-play since its modular power network can be
reconfigured without completely changing its control policies. In addition, since each local
subproblem 1 a parallel optimization process has fewer shared vanables, constramts, and
control variables than Cen-MPC, the computational complexity burden will be enormously
mutigated. In a Dec-MPC scheme, the size of the looking-ahead moving window 1s an
imperative parameter, which selects how far mnto the future the decentralized optinuzation
scheme assesses the outcomes of its confrol actions. This clue motivates mtegrating a

learning-based algorithm with Dec-MPC to learn the optimal moving horizon police.

Reinforcement learming (RL) [77] as a powerful data-dnven algorithm has devoted
considerable attention in the FCV domain, for instance, direct [78-80], online recursive [81],
and hierarchical [82, 83] RL. Notwithstanding, the RI-based approach has proven to be an
advanced method, but it has not witnessed many practical applications m MFCVs. It 1s
mainly because this learming-based PAS faces several difficulties. The operation safety
concern in the training and implementation stages 1s important [84]. Several approaches are
suggested to address this weakness, such as, coach-actor double critic [85], learming-based
MPC [86, 87], robust MPC [88], parallel-constramned policy optimization [89], shuelding [90,

91], and Lyapunov-based [92].
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The contribution of this study 1s situated within formulating a lookahead decentralized
MPC-based PAS framework and mvestigating how the FRL algorithm 1s assisting in learning
the optimal policy to choose the prediction moving horizon size in a MFCV. In contrast with
[76], to consider the intertemporal constraints and efficiently utilize the available battery pack
capacity, the previous single-step DCO-based approach i1s extended into a multi-step
decentralized with parallel moving horizons. The proposed method leads to an overall decline
n the total system expense since predictive control responses in anticipation of the requested
power in the future driving profile can be singled out. Also, mtegrating the receding
prediction horizon into the decomposition techmque facilitates good 1mtial points, enhancing
the optinuzation convergence speed. Moreover, since the main hyper-parameters affecting
Dec-MPC's performance and the computational burden are the lengths of the prediction
horizon, a safe-learning scheme that integrates federated reinforcement learming (FRL)
algorithm with Dec-MPC i1s put forward. The FRL framework without a central unit
cooperatively learns a shared control policy across the FC modules. The FC modules locally
train based on the module-specific data for several epochs and then directly collaborate to
build an aggregated and fined-funed model To the best of our knowledge, no research has
been conducted to develop a Dec-MPC approach with safe-learming capability for a MFCV.
Since the main idea of this study does not lie 1 introducing a predictive method, the DCO-
based strategy 1s straightforwardly formulated by considering that the future power profile 1s
precisely known. The rest of this paper proceeds as follows. The FCV powertrain modeling
description 1s presented in Section II. Section ITT formulates the multi-step look-ahead PAS
optinuzation problem. The suggested Dec-MPC framework 1s derived according to the
consensus-based ADMM procedure m Section IV. The formulation of learning the optimal

length of the Dec-MPC receding prediction hornizon as a FRL framework 1s provided in
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Section V. Comprehensive numerical simulations. Experimental results are presented in
Section VI, and Section VII, respectively, accompanied by conclusions recapped about the

proposed decentralized approach and prospects in Section VIIL

4.5.3 FCV powertrain configuration and modeling

To facilitate the general 1dea of transforming centralized power-spiting problem into Dec-
MPC, a powertrain system comprises two parallel modules, and one battery unit 1s developed,

as 1llustrated in Figure 4-7.

4.5.3.1 Powertrain structure and modeling

A modular test bench based on an electric vehicle 15 established [25]. The developed
small-scale test bench comprises two modules, a battery pack, a programmable DC electronic
load, and a multi-range programmable DC power supply for simulating the requested load
profile. The critical components of each module are a 500-W open-cathode PEMFCS (H-
500), a smoothing inductor, and an adjustable umidirectional boost DC-DC converter. Six
series 12-V 18-Ah battery packs give the voltage of the DC bus. Each module has its
autonomous Dec-MPC inside of a National Instrument CompactRIO. The optimal reference

of each module is calculated at every control instant with an interval of 10 Hz.
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Figure 4-7 The schematic of the established small-scale modular test bench.
The power balance equation of the modules and the battery unit on the DC bus at each step
of the optinuzation window (vk € K) 1s formulated in (1).
Eum,k +Pﬂ,k = P;__k,‘a'm E M,Vk EK, (]3}

Pm.k = nm(Fm.kDm,k = -Pj_gss'k);vm E M, Vk E K, (1.b)

where Py, (Yvm € M, M = {1,2}) denotes the power of each one of the modules FC,,. Pg
(vk € K) denotes the power provided by the battery umit, P, ; 1s the requested power from
the propulsion system, F, ; indicates the generated power of each of the 500-W FCSs, n,
and D, ; are the efficiency and the control signal of the boost converters, respectively, Pgss i

denotes the consumed power by the auxiliary of FCSs.

4.5.3.2 FCS modeling and constraints

In this work, each one of the 500-W FCSs, FC,,,(WYm € M) are modeled as voltage

sources where thewr polanzation curves and the hydrogen mass flows versus requested
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currents are described by experimentally validated quasi-static curves, as shown i Figure

4-8.
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Figure 4-8 The charactenistic curves of the two actual FCS modules: (a) polarization

curves, (b) power curves, and (c) hydrogen curves.

Equation (2) demonstrates the upper, lower, and slew rate linits on mstantaneous powers

Ppx (Ym € M,Vk € K).

Pt < Py < P, ¥m € M,Vk € K, (2.a)
Pk = Pmi-1 < R,7At,Ym € MYk €K, (2.b)
Ppg-1 = Pmyx < RIPW™At,¥Ym € M,Vk € K, (2.0)

where A" > 0 and P'** = 0 are the minimum and maximum values of Pp, x,R&*™ < 0

and R,7 = 0 are boundaries of the slew rate, and At indicates the time step. These limitations
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encumber the FCSs from repeatedly turming on/off and sudden changes, which can cause

degradation costs.

4.5.3.3 Battery modeling and constraints
The first-order RC model of the battery pack 1s formulated by

Igx = m + E'c%(va_k — Rylgy — Vay),Vk €K, (3.2)

where [ 1s the battery pack current, V;, 1s the open-circuut voltage, R, 1s the series ohmic
resistance, Vy 1s the termunal voltage, R, denotes the polanzation resistance, and C_ 1s the
polarization capacitor. Equation (3) imposes power and slew rate lints for the battery

unit PB'_k- vYkeEK.

PI™ < Py < PP* Wk EK, G.b)
Pgyx — Pgx-1 < Rg"PAt,Vk €K, G.o
Pgr—y — Py < RZ4YMAt,Vk €K, G.d)

where P"™ < ( and PJ'®* > ( are the minimum and maximum limits of Py ; , respectively,
and Rg?°"™ and Rz"? are the slew rate boundaries of Py ;. Equation (4) presents the state of
charge (SoC) calculation formula and the constraints on the battery SoC level.

Pg At

S50Ck4q = SoCy —————
k1 Kk QpVpx3600”

vk EK, (4.a)

SoC™" < SoC;, < SoC™%*, vk € K, (4b)

where SoC™™" and SoC™%* denote the minimum and maximum limits of SoC, respectively,

the mitial SoC level SoC,, _, 1s SoC,, and @ represent the battery capacity. The battery lhife
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15 affected by the depth of discharge (DOD) and 1s defined as an mmitial capacity drop

(reaching 80% of the imtial battery capacity). The state of health (SoH) 1s calculated by

|Pg | At (5.4)
SoH,.. = SoH, — d ,Vk E K,
Ofkt1 = 20 = 0V 3600
SoH™" < SoH,, Yk € K, (5b)

where SoH™™ is the minimum value and SoHy- ( is the initial SoH level, and ng denotes
the total number of cycles during the whole lifetime of the battery umt. The parameters of

the battery unit obtained from experimental tests are listed n Table 4-IT.

Table 4-11 The approximated battery umit parameters.
Vo= 1221V R, = 0.0140 Vg = 73.26 R. = 0.0170

Cc=1792F Qp = 18.24h SoC™" = .65 SoC™** = 0.75

4.5.3.4 Boost converter modeling and characteristics

The two converters are modeled as follows:

(6.2)

Lmafmak - Vm,k - th,k - '.l"mfmlk,"ﬂ"m E M, Vk EK

Ve = Mp Ve o Thm e = Mam i macMhge (6.b)

where [};, and ¥}, are the current and voltage of FC,,,(¥m € M), respectively, L, = 1.1 mH
presents the smoothing inductor inductance, 1, = 23.9 mf2 1s the smoothing inductor
resistance, 1, = 96.21% 1s the average efficiency, and my 1s the modulation ratio of the

converters.
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4.5.4 The general optimization problem formulation of the look-ahead PAS

In this section, the mathematical formula of the main PAS optimization problem for the

mulfi-stack FCV, as illustrated in Figure 4-9, 1s provided and utilized in the subsequent

sections to elicit the decentralized scheme.
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Figure 4-9 The adaptive look-ahead Dec-MPC framework and the modular powertrain

system sequence operation.

The centralized convex-based multi-objective problem can be formulated in the following

sequence.

: K-1
MiNp,  Pgy k=0

m=19(Cm(Pmi) + ca(Pax))

(7.)

st Yom AmPm i = ¢, other equality and inequality constraints

where g 1s a symbolic convex approximation cost function that summanzes all the cost

functions which equal to sum module and battery cost, ¢, = s, , + S4,,, denotes the
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hydrogen and degradation costs of FC,,(Ym € M), cy = Sg + Sg,¢, 15 the battery unit
degradation and SoC penalty costs, Py, ; € RNm stands for the power of the module m_ A, €
RM*Nm and ¢ € RM apply the powertrain and the coupling constraints, respectively, n € Ny,
denotes the number of iferations. s X 1s computed by Hy, i Cy,At , where hy,,; =
al P’ + a4 P, + a is a quadratic approximation function to calculate the hydrogen
consumption cost with a},ah,am =0 and Ppy =0 for FCp,(Vm € M) and Cy, is
hydrogen price, 3.92 $/Kg [93]. sq4,, , includes the low-power degradation Sam.k" the high-

power degradation sﬁm .- and the load-change degradation Sa,, - formulated by

£0.5Ckc,, Atp;m (7.b)

st = m_____ ¥YmeEM,Vke€K,

d.mk 35{“) 'p;l.m m

&n0.5Ckc,, Atinm (7.c)

sho = I — ¥Ym€E M, vk € K,

d.m.k 2600 ]"':‘I.m
ot _ Er{]-ScFE.'m EE;; #1=1|Pm.k+1 = Pm.kl vm e M Yk € K (7.d)
d,m,k 1000n,,V, ’ ’

where n,,, represents cell numbers of, y; ,,and up, ,,, are equal to

. { L if Ppinm < Pmix < 0.2Fomm (7.)
Him 0, otherwise. ’

_ { 1, if D-Epnam,m = Pm.k = Pma_r,m (T-ﬂ
Hhm 0, otherwise. ’

where V, ,,, 1s 10 % of the nominal FC,,voltage drop, Cz; = 35 $/kW 1s the FCS cost [94].
The low-power, high-power, and load-change cell degradation rates are £, = 8.662 uV /h,
gp = 10uV /h, and &, = 0.04185 uV /kW , respectively, adapted from [30, 95]. The battery

degradation cost, s5p ., 15 determined by
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S-B.lk - EB(SGHB.k - SGHB,H)' Vk € K, (?.g)

where c; = 189 $/kWh is the battery price [96], sg,, 15 a punishment item to measure the

SoC level vanation, which 1s defined by
Ssocy = P(S0C, —S0Cy)%, Vk € K, (7h)

where So(j 1s the iitial SoC, and §§ 1s a large positive coefficient.

4.5.5 Reformulation of Cen-MPC via C-ADMM

This section thoroughly explains reformulating the Cen-MPC problem (7) mfo a
decentralized form using C-ADMM. Additionally, the communication principle and data
flow are investigated comprehensively. In the proposed Dec-MPC, the main problem 1s
decentralized into m € M subproblems, and each one 1s allocated to a FC module control
umt During the optimization process, an exchange of candidate output powers occurs
through the module-to-module communication layer. This iterative process confinues until
an agreement 1s attained among the local control umits, according to the determined stopping
criterion. Then, the optimization process will be repeated and shifted to the next pomnt, as

illustrated i Figure 4-10.
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Figure 4-10 The employed decomposition technique.

Since the modules are coupled through (1) on the DC bus, the general problem (7) 1s not
nherently decomposable. To tackle this issue, as demonstrated in Figure 4-11, P, (541, i+k)

15 duplicated into its neighboring module as a virtual power and coupled with a global power

..........

together. Equation (8) 1s added to guarantee that the duplicated vanables are equal and the

modified PAS converges to the same optimal optimization result [49].

P :E{Hl...ﬂ,iH{] - WE{:‘+1_..J+K} =0,Vk EK, (8.a)
Fz.{i+1...1.i+i':] - W:{i+1...ﬂ.i+i{] =0,Vk €K, (81)
‘:{i+‘l,....i+}f} - W;tl.{i+1,..hi+xl =0,vkEK (8.c)

;1_{i+1,_.hi+h'] - W;,{i+1,...,i+!{} =0,Vk €K (8.d)

To improve the convergence performance and ease the communication burden, the number

of the optimization vanables 1s reduced by assuming that the virtual vanables are equal to
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the previous global variables. For instance, P{}i,, ;. x)is equal to wi'y,, .- In this

.....

..........

- ; \Dz {:+1 :+K}
P‘lE {i+1,.. i+K} ﬁ|
Qﬂ, LitHK} P21{1+1, ,an} /
‘I ,'_:"' F{:z

Walit1,.. i+K)

Figure 4-11 Visual representation of the multi-step MPC-based PAS.

The decentralized optimization process of (7)-(8) includes a three-step procedure, where p 1s
a positive tuning value, n denotes the number of iterations, and A,, are Lagrangian
multipliers [49]. The equations related to modules 1 and 2 are given m (9) and (10),
respectively.

Pnﬂll JA+K} T mm{CI(PI {i+1,.,i+K} Pz1[:+1 ..:+H}) + EB(Pb {i+1,.. h:+x}) + (9.a)

il'l.-l-l
Wfil;l1 R} = Py fiv.. 1+x}‘;‘“1f;+1 AK] VkEK (9.b)
’1:-{{11,._.&!:} = ‘11 Ji+1,.,0+K) +p (P 1?{::11 JAHKRY T TE;-IH ,:+H}) VkEK (5-0)
Py, vy = Min{Co(Plysa, . ivkp P2gi+n,. i+k)) + Co(Poygis,... i+x)) + (10.2)



pndL Ll
W;ﬂll,...1+x} — _2li41..04K] 2“’2.{!+1,._.!+K]? vk € K (10.b)
Ag:fiil...ui+x] = Ag.{i+1......i+!{] + P(Pzall ,,,,, i+K} — W;.Eil....,i+!{])f vk € K. I:]_{]_(_*)

where C; and C, are based on C,, which defines in the previous sections. The detailed
procedure of Dec-MPC 1s presented mn Figure 4-12. First, a cold-start imtialization of
Am fi+1,..i+k)> Pmji+1,.i+k)> 304 Wi 149 14k 15 required for each module m (Vm € M).
The local PAS problems (9.a) and (10.a) are solved to determine Py, (i1 i+k)- Then, the
Wi (i+1,..i+k) are calculated by (9.b) and (10.b) and sent to the neighbor module 1n parallel.
After that, A (i41,.i+k) 15 updated using by (9.c) and (10.c). If | — AR | < p, and
pIIPR**[k] — PRlk]ll3 < pz, where p, and p, are the limiting values, as the stopping
criteria are fulfilled, the optinization processes stop and P, ;,, sends to the converters as
Pr,:‘f . After that, the optimization windows shift for one time step. If not, the optimization

process goes back to Step 3.
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Figure 4-12 The step-by-step flowchart of the Dec-MPC algorithm.

4.5.6 General description of the hyper-parameters tuning algorithm based on
Federated reinforcement learning
As the pnmary hyperparameter of the proposed DCO-based PAS approach, the length of
the moving window sigmificantly impacts the optimization accuracy and speed. In this regard,
a learming approach based on FRL 1s proposed to tune this hyperparameter optimally. A
Markov decision process (MDP) 1s formulated for the tuning process as a tuple (§™, A™, P,
R, T), where S™denotes the set of states s € §™ = {Pgy4,,50C;} (Vi € I, Vm € M), where
FPayg and SoC are the average requested power for the maximum optimization horizon length

and the current SoC value, respectively, A™ represents the action set a € A™ = {K}, where
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K 1s the prediction horizon. P(s;,,| 5;,@;):8™ X A™ = P(s) (Vi € I, Yym € M) are the
probability of transitioning into s;,, € §™ at time { + 1 when the decentralized PAS umts
take action a; € A™In the state 5; € S™ at time i, R;(5;,a;, 5i41): " X AM xS™ = R,
Tmi = —1 X (1tm; + @aCm; + az(SoCipy — S0Cy)?)) (Vi € ,VYm € M) is the reward
value obtained when an action a; € A™ is taken, with {a,}_,are weighting variables, t,, ;
denotes the computational time of module m at the time step i, ¢, ; 15 the sum of the cost of
module m and the battery unit at the fime step i, and the last term 1s the cost associated with
sustaining the SoC level. The primary objective of the FRL method 1s to determune the
optimal hyper-parameter tuming strategy g [97]. The main parameter we are focused on is
finding the optimization honizon window size. The procedure of two sequence optinization

steps of the proposed predictive-based method 1s visualized in Figure 4-13.
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Figure 4-13 The general operation of the FRL.-based approach to seeking the optimal
hyperparameter based on the current powertraimn states (F,,g and SoC) m two sequence
optimization steps.

The process of decentralized learming based on FRL is mndicated mn Figure 4-14. To

explain the FRL algorithm, an environment with {FC,,}*_, modules is considered, where
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each module has the traming points 0,, = {(Pm,gl,.ﬂ'ﬂﬂl,rl) , ---,(Pm,gi,.‘j'ﬂﬂ}, rt)} with [

tagged samples and the weight parameter list W™ _ All modules {FC,,}M_, are linked
directly in a module-to-module style. Firstly, a cold-start mifiahization 1s applied to all
modules {FCp, }*_, . then it starts with training data O, in parallel for a small number of
iterations (step 1). After that, each one pools its partially trained weight parameters W™ to
others (step 2), and merges all the received models by the weighted averaging techmque, 1 e,
WA = Emiﬂ’m (step 3). In the end, the aggregated model W4 is used by the modules to
select the optimal prediction horizon length Several rounds are executed until all FC
modules’ models converge (step 4). After completing the decentralized learning process,
each FC module has its local model W' and the aggregated fine-tuned model W#_ Whenever

anew FC module is connected to the environment {FC,,} _, . the aggregated model W# will

be shared to join the process (step 5) quackly.

FCy  Tocal training FC:; Local training
Local model

@% i %%

weighted 'Zl“ﬂn )
averaging | £ m

NETR I _______ 4 i o
- N T
Local aggregated ”
model W4 : -
FCMW
=
5

Aggregated model sharing
with a new FC module

Figure 4-14 Visual representation of the module-to-module FRL algonthm and the

learning steps.



4.5.7 Results and Discussions on Numerical case studies

Thas section exphcitly elucidated the optimization results of the fixed honizon and safe-
learning-based Dec-MPC frameworks. Dynamic programmung (DP) and Cen-MPC are
implemented on the same PAS problem for comparison purposes. The result based on DP 1s
accepted as the optimal global solution. The Cen-MPC answer 1s used to appraise the optimal
solution accuracy, convergence speed, and communication performance of the DCO-based
MPCs. To quantitatively scrutimize the operation of the proposed methods, the processing
times are compared on a desktop PC (Processor= Intel Core 15, 2.30 GHz, RAM= 4 GB,

MATLAB R2018). For investigation, a real dniving profile from [98] 1s singled out, as shown

mn Figure 4-15.
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Figure 4-15 The real profile characteristics: (a) power, (b) velocity, (c) acceleration, (d)

power distnibution, (e) velocity distribution, and (f) acceleration distribution.
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4.5.7.1 Regular Operation Optimized Results

The optimized output answers of the powertram components via Cen-MPC, fixed
horizon, and safe-learming Dec-MPCs are illustrated in Figure 4-16. The prediction horizon
length K 1s selected to be equal to 10 time-step for the Cen-MPC and fixed-horizon Dec-
MPC schemes. The maximum moving lookahead horizon K of the learning-enabled Dec-
MPC 1s also equal to 10 fime-steps. It 1s evident that the power profiles and the SoC curves
of the proposed decentralized approaches perfectly follow Cen-MPC with nunor errors. For
mstance, the SoC curves of the fixed horizon and adjustable Dec-MPCs accurately track Cen-

MPC with under 0.0571 % and 0.0597 % errors.
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Figure 4-16 Optinized results of the MPC-based approaches: (a) the powers based on Dec-
MPC, (b) the powers based on adaptive Dec-MPC, (c) the comparison between the total

output modules powers of the FC modules, and (d) the comparison between SoC levels.
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Figure 4-17(a) presents the computational time of Cen-MPC and the proposed PASs
under the selected real driving profile. As can be observed, the computational times of the
fixed honzon and learming-enabled Dec-MPCs take an average of 0.0139s and 0.0096s,
respectively, to converge for each execution. In companison, Cen-MPC takes 0.0233s with
the same stopping criteria, which demonstrates the computational complexities are reduced
by about 40.4040 % and 58.9062 % compared to Cen-MPC. That 1s because the proposed
decentralized method opens up the possibility to scrutimze feasible management fast-
response policies with cooperation between the FC modules that mimimize the overall costs
of the powertrain while considering the fair distribution of mncremental expenses. Figure 4-17
(b) shows that the learming-enabled Dec-MPC iteration 1s reduced by 11.8384%. In this study,
a high-speed solution has been selected for pnimary convergence conditions of the adaptive-
horizon Dec-MPC. If the output power errors deviation from the optimized powers obtained
from the benchmark Cen-MPC can be tolerated more, FRI-based Dec-MPC can improve the
convergence speed. More iterative iterations would be indispensable 1f accuracy was selected
as the optimization design criterion. Based on the selected cost function, the learning-enabled
decentralized scheme reaches an appropriate policy to choose the prediction horizon length
optimally. A comparison between the trajectories of the moving look-ahead honzons for the
developed MPC-based PASs 1s presented in Figure 4-17(c). It 1s evident that different zones

of the moving honizon state space (Pﬂ“g.

SoC) of adaptive Dec-MPC requires various
prediction dimensions to seek nearly optimal powers. The distribution of the moving horizon

regarding the prediction length 1s 1llustrated mn Figure 4-17(d).



o3

l]

[ N
Tumu l{s] -

(b)
|

[=1

L} 200 400 500 00 10000 1200
Time (s)

()

Mumber of iterations

E
£ ol : v ;
£ Cen MPC & Dec-MPC Adaptive Dec-MPC
"
E
z
= 200 400 &0 800 1000 1200
Time (s)
(d)
T T T T T
=150f 4
£ 1oo} .
& sof J

4 [
Moving horizon length

Figure 4-17 (a) The computational complexity of the developed MPC-based
approaches, (b) the number of iterations based on the DCO-based MPCs, (c) the moving
horizon frajectonies, and (d) the distribution of the lookahead horizon decided by the FRL

control policy.

The exact final operational costs associated with the proposed decentralized algorithms
compared to DP and Cen-MPC are listed in Table 4-IIT. The final prices of the suggested
approaches have achieved a very close performance to the DP results. The final costs based
on fixed-hornizon and adaptive Dec-MPCs are $0.0617 and $0.0628, which are 5.89% and
7.75% greater than DP, respectively. Based on these results, the final costs of the fixed-

horizon and adaptive Dec-MPCs are about 1.74% and 3.52% higher than Cen-MPC.



Table 4-IIT The detailed

o4

1son of computational complexity and final price

DP Cen-MPC Dec-MPC Dec-MPC
(Fixed-horizon) (Adaptive-horizon)
T - 255914 14.6237 9.2473
St 0.0583 0.0609 0.0617 0.0628

4.5.7.2 Impact of prediction horizon length

This subsection examines how learming the optimal prediction window policies impact

the optimization performance and computational complexity of the MPC-based approaches.

A companson of the final costs and the computational complexities based on different

prediction horizon lengths (from 2 to 25) are depicted mn Figure 4-18. Generally, the final

costs and computational complexities demonstrate inverse behaviors as the moving

optimuzation window length increases for all cases. If the prediction moving window length

15 selected too short, the calculated optimized power values result in unsatisfactory

approximations of the infinite horizon result. The execution fime of Cen-MPC grows at best

linearly with raising the length of the looking-ahead window in comparison with others,

significantly when the optimization horizon dimension exceeds 12s. The computational

burden of adjustable Dec-MPC 1s about 61.54% and 76.95% fewer sensitivities than Dec-

MPC and centralized one to the length of the moving honizon.
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Figure 4-18 Optimal final cost and computational complexity of Cen-MPC, Dec-MPC,

and adjustable Dec-MPC as functions of optimization window size.

4.5.8 Experimental implementation

To assess the decentralized lookahead PASs, a small-scale expeniment 1s carried ouf using
the developed modular test bench under the selected real driving profile to verify the previous
numerical studies. The output powers and SoC level of the learning-enabled Dec-MPC are
presented mn Figure 4-19. In addition, the power distributions of the FC modules are
illustrated in Figure 4-20. As shown in Figure 4-19 and Figure 4-20, the modules primanly
operate close to efficiency zones to dimimish the hydrogen economy. The power ramping of
the modules met the defined constraints entirely. The battery pack 1s mainly responsible for
charging in the low-power zones and discharging in high-power conditions, offering reduced

modules’ dimensioning.
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Additionally, the battery unit 1s in charge of balancing the fast-dynamic load fluctuations.
The oscillation level of the battery SoC demonstrates that the adaptive Dec-MPC contributes
to the cooperation of their two modules to reach the minimum deviations from the mitial SoC
levels. The total cost of the FRL-based Dec-MPC scheme ($0.0668) demonstrates an
additional charge of 6.32% compared to the simulation result. The computational time of the

adaptive Dec-MPC strategy 1s about 50.07% lower than the Cen-MPC method.
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Figure 4-19 The experimental results of the suggested Dec-MPC: (a) the output power

profiles, (b) the FC modules’ power profiles, and (c) the SoC level fluctuations.
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Figure 4-20 The expennmental results of the learming-enabled Dec-MPC approach: (a) the

power profile of FC,, (b) the distribution of FC,, (c) the power profile of FC,, and (d) the

distribution of FC,.

4.5.9 Conclusion

This paper presents a look-ahead safe-learmng-enabled Dec-MPC for coordinating two
FC modules and one battery pack mn a FCV apphcation. The cumulative operational cost,
which includes the hydrogen consumption and degradation costs, 1s mimmzed in a fully
decentralized MPC framework. The studied problem 1s formulated as a multi-step convex
problem with several constraints. Then, the decentralized PAS 1s attamned by applymng a
decomposition scheme based on C-ADMM without any central coordinator. During the
DCO-based optumzation process, the linutations on the powertrain components are
scrutimzed by projecting the temporary FC modules powers into the feasible working spaces.

Each module communicates with the neighboring one concerming future power responses to
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agree on optimal solutions, leading to a higher cost-optimal, robust, and reconfigurable power

splitting scheme.

Additionally, to improve the computational time of the Dec-MPC strategy, a learming-
based hyperparameter tuming approach i1s proposed. Several numerical and expenimental
studies investigate the data processing time efficiencies, convergence performances, final
optimal solution precisions, and module-to-module communication necessities of the Dec-
MPC methods. The mtroduced DCO-based procedure will be extended for solving a non-
convex PAS optimization problem with uncertanty for future works. Additionally,

asynchronous updating features will be explored.
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Chapitre 5 - Conclusion and Future Directions

5.1 Outline of the Research Achievements

Contrary to traditional centralized EMSs, this Ph D. thesis principally concentrated on
the possibility of embedding a fully decentralized power-splitting scheme into the real-time
mulfi-objective decision-making strategy to explore additional performance improvement
concerning the modularity and flexability (plug and play) by decomposing the optinuzation

problem besides considening hydrogen economy, FCS, and battery unit lifetime prolongation.

First, the related research lhiterature on the multi-stack FCV and centralized EMSs was
thoroughly reviewed. Then, by analyzing the benefits and weaknesses of existing centralized
approaches, a decentralized convex optimization scheme was introduced for real-time power
allocation purposes because of 1ts capacity to contribute modulanty and flexibility (plug and
play) for heterogeneous time-varying constrained optimuzation problems. After that, the
following influential contributions were mftroduced via this dissertation to bridge the gaps
versus existing research.

First, a decentralized optimization strategy for the power allocation decision-making
problem was proposed to prove the concept. Numerical and experimental results have shown

that the mfroduced decentralized approach outperformed the benchmark EMSs

computational time, achieving very close accuracy compared to the centralized ones.
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After that, a comprehensive comparison of two decomposmng-based power-splitting
methods was conducted to explore further the benefits and the potential impacts of the
decentralized optimization framework on EMS performance, such as parameter sensibility
and robustness. This study established a solid basis for realizing an exemplary algorithm for

the decentralized EMS framework.

Next, a look-ahead EMS based on decentralized convex optimization was devised to
combine the predictive mformation with the introduced power allocation in the previous step.
In addition, with the assistance of a multi-agent federated reinforcement learning algorithm,
a learning-based tuning approach was established to optimally seek the best hyperparameters
based on the SoC level and the future behaviors of the FCV over each decentralized rolling

optimuzation horizon.

5.2 Outlook and Future Research Trends for Decentralized EMS

As far as we have discussed in thus thesis, 1t 15 clear that the upcoming future for fuel cell
technologies 1s very bright but needs tremendous attention to push them to a higher standard.
This thesis provides a more flexible (plug-and-play) and modular system with high
reliabihities. Until now, the efforts made could be as hight for future studies in this newly
developed field to make 1t possible to be applicable in the next generation of FCVs.
Notwithstanding the signs of development regarding the decentralized EMSs in this thesis,
multiple forward-looking and revolutionary strategies should be developed to improve the
proposed scheme's performance. To encourage more innovative ideas, future works on the

decentralized approach would be possible to focus on the following perspectives:
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5.2.1 Integrating Advanced Modeling Methods

Accurate modeling methods of the modular powertrain components are crucial for
enhancing the FCVs' EMS efficiency. Although simple modeling approaches are used in the
thesis, they cannot fully reflect each powertrain module's complexity and nonlineanty
charactenistics. Using measured and recorded data, several advanced modeling techmiques
based on data-drniven strategies should be introduced to improve power source modeling.
Thus, considering these advanced modeling methods in the developed decentralized EMS

needs further investigation.

Auxiliary systems, such as air conditiomng and cooling systems, power conditioning
systems, power steering, and electronic boards, consume energy during FCV operation
conditions. In addition, the auxiliary components of the FCS, such as compressors, fans, and
pumps, also consume some part of the generated power. However, in the modeling and
designing process of the developed EMSs, these power consumptions and losses were
ignored or treated as a constant. This ignorance can lead to maccuracies, specifically for
heavy-duty multi-stack FCV applications. From this perspective, taking these losses 1s an

essential aspect for improving the established decentralized EMS performance.

Because keeping the decentralized strategy as simple as possible, all the models are
considered fixed and valid durning all examinations. However, the central fact 1s that these
parameters are changing and are very sensitive to other factors such as temperature, hunmdity,
the purity of the consumed hydrogen, etc. So one direction could be to include different

advanced model updating approaches to push the developed decentralized strategies in this

regard.
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5.2.2 Including Fault Diagnosis and Fault-Tolerant Control

As one of the growing trends in fuel cell application, the fault-tolerant control topic 1s
explored in many research studies. Fault and failure modes m a FCS can result in
performance decline and severe safety concerns. In this regard, fault-tolerant control is
mtroduced to satisfy the performance desires and keep a safe operation mn fault occurrence
[99]. The essential missing point 1s that most developed methods are for a centralized system.
The fault diagnosis and tolerant approaches based on the centralized structures are not
preferred for interconnected and multi-fuel cell systems because such methods need sensing,
processing, and commumnication of many variables measured from the different components
of the powertrain system. A mmlti-stack with a decentralized control scheme may need
decentralized fault detection, fault 1solation, diagnosis tools, and a decision-making structure
to manage the powertrain system and control an wrregular operation system. It could be a
network of several local fault detectors, which screens each FC module employing only the
local measured information. Each under-control module could provide helpful information
for neighbors to share and process for future decisions. Shifting into a decentralized fault-
tolerant scheme may reduce the need for communication, simplify the fault control problem,
and improve general performance. Therefore, developing a decentralized EMS enabled with
a decentralized fault-tolerant control method could be one of the possible future works that

could be done to reach a safer and more reliable modular powertrain configuration.

5.2.3 Co-optimization and integration of different objectives

This thesis only considered hydrogen consumption and degradation (FC and battery)
costs. However, other advanced goals that may enhance the general operating performance

were not considered along with the decentralized EMSs. An exciting optimization point for
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the future possible direction of the developed decentralized optimization schemes could be
to advance the cooperation level of the modular system. Specific optimization techniques,
such as cooperative game theory, can be combined and implemented in the developed
method. For instance, encouraging the modules may be more beneficial as the decision-
makers share their benefits to reduce the total team cost. Another more exciting direction
could be including machine-learning methods with the game theory approach to solve this
optinuzation problem more efficiently. A secunty-constrained control strategy seems to be
necessary for a modular FCV powertrain to guarantee robustness and rehabilifty under

possible disturbances and malfunctions.

Because of the inadequate durability of FCS, the prognostic and health management
approaches used to achieve a longer life have recently gained considerable attention.
Prognostics and health management (PHM) techmques have been introduced to estimate the
remaining useful hife (RUL)'s health state [100, 101]. Substantial attention should be given
to developing reliable health indicators and integrating the accurate degradation model into
a well-designed decision—making strategy. The health management approach of a
decentralized system could be more challenging and need to be implemented cautiously,

which needs attention from researchers and professionals m this field.

One of the principal hypotheses in the thesis's optimuzation problem 1s that all the
modules are selected to be the same size. As it 1s self-evident, the power-allocation problem
cannot be optimally solved without including the size and dimension of the powertrain
components because each of the FCV owners can have specific dnving behaviors with 1ts
umque driving pattern. Therefore, the sizing and power-sharing decision-making problems

need to be considered simultaneously.
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A modular system by integrating the decentralized concept will offer more flexibility
than a centralized one. To enhance the market penetration of the FCV in the new future, 1t
may be more atfractive to move forward into a customer-based production system Each
driver should select a custonized FCV that 1s more suitable regarding the historical data and
driving pattern. Thus, more mvestigation needs to be done to reach an economical and cost-
optimal configuration from both short-term and long-term perspectives for the manufacturers

and car owners.

Integrating uncertamnty knowledge mto the optimization problem 1s an exciting area of
research that has mainly escaped the attention of researchers in the electrified vehicle domamn.
In the coming years, because of the increasing trend toward green hydrogen production and
mcluding sustainable energy sources (wind turbines and solar panels), constant hydrogen
production will be more challenging, and more hydrogen cost fluctuation will be observed.
Stochastic optimization approaches can be applied to address this issue, and one of the
fascmating techniques 15 chance-constrained optimuzation.
Investigating how to model this trajectory and mtegrating it into the proposed optinuzation

method would be exciting for the scientific research sectors.

This thesis solves the EMS optimization problem relatively quickly under a single driving
profile 1 a single FCV. However, considering a trip ahead and facilities (refueling stations
and parking places) 1s necessary for a more general scheduling problem. This concept could
be included by shifting from a decentralized short time-scale EMS with a single FCV into a

longer time-scale with multi FCVs for further work.

One of the future research trends of the modular and decentralized EMS lies in mtegrating

advanced Al and machine learning methods, like NN, SVM, Bayesian inference, RL, deep
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NN, and deep remforcement learmng (DRL), mto the control strategy. Among these
approaches, the RL and DRL methods are essential subjects that catch much attention from
academic researchers [102]. Therefore, applymng these algorithms and integrating these
approaches nto the decentralized and modular EMSs should be further addressed in future

works.

From an energy perspective, the central concept of eco-dniving 1s to seek the best and optimal
way to reduce energy consumption by optimizing velocity trajectory [103]. However, the
current literature on eco-driving generally focuses on the HEVs and EVs and rarely considers
the EMS of FCVs. Therefore, the eco-driving concept 1s an important subject to consider for
mtegrating the developed decentralized EMS m the future. Based on this idea, an eco-driving
hierarchical controller could be designed to assist the decentralized scheme to follow the best

trajectory and improve operational performance.

5.2.4 Improving the implementation capabilities of the proposed decentralized method

Other nussing aspects of the newly developed decentralized methods are how
implementable these techniques are in the current prototypes or future FCVs and whether the
confrol umits can run these algonthms An essential step to solving this deficiency of the
proposed method 1n the thesis 1s to design a cheaper and easier decentralized algonthm for
the available processors. One of the straightforward solutions i1s to sumplify the control
strategy without losing 1its operation efficiency. Another option could be to allocate some part
of the analysis mn a cloud-based and use the information to control the modules. Another
forward-looking step could include different communication technologies using cables or
wireless communication. When shifting to wireless commumication, the flexability of the

modular system will be improved, and the system can be easily fitted with any developed
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chasses reconfiguration. It can be easily reconfigpured whenever necessary for the new
structure; however, several important points must be considered at this stage. For mstance, 1t
15 very likely that either command signals or measured variables be damaged by noise and
affect the management process of the FCVs. Another implementation point that needs to be
considered 1s how the CAN bus can be mvolved in the modular powertrain project to have a

more robust communmication channel
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Appendix A — Résumé

Pour atténuer les dépendances aux carburants fossiles, des altematives prometteuses
impliquant des véhicules électriques (VE), des véhicules électriques hybrides (VEH) et des
véhicules électriques hybrides rechargeables (PHEV) ont été étudiées pour assurer 'avenir
vert au domaine des transports. Considérant la croissance significative des technologies de
pile a combustible (FC), les systémes a hydrogéne deviennent une alternative compétitive a
leurs homologues de 1''mdustrie automobile. Cela est dii notamment a leur rendement éleve,
leur faible bruit, leur faible temps de ravitaillement ainsi que leur absence d’émissions locales
au véhicule. Ces caracténstiques ont propulsé les véhicules a pile a combustible (FCV) au
ceeur de la recherche industrielle et acadénuques. Les FCV se composent de deux sources
d'énergie, FCS comme source principale et une umité batterie/supercondensateur comme
source secondaire. Le développement d'une stratégie de gestion énergétique (SME) efficace
doit étre étudié attentivement pour coordonner efficacement les multiples sources d'énergie.
Bien que de nombreux efforts soient déployés pour améliorer les FCV'S mtégrant une unique
pile 4 combustible, certans problémes persistent notamment en termes d'efficacité, de
disponibilité, de flexabilité (plug & play), de robustesse, de durabilité et de cotit. Ces défis
mcitent la technologie FCV actuelle a évoluer vers des systémes énergétiques modulaires
(MES). La modularité matérielle a déja été étudiée dans les FCV multi-piles pour fournir un
avantage technologique et une meilleur rentabilité comparé & un systéme de conversion
d’énergie a pile a combustible umque. Néanmoms, le point de vue de la modularité du
logiciel, en particulier de I'unité EMS, a échappé a l'attention. A cet égard, par rapport aux

études existantes, cette thése se concentrera fondamentalement sur les EMS décentralisées
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émergentes pour les FCV multi-piles afin d'examiner les améliorations inhérentes a la
modularité et a la robustesse imposées en étudiant I'intépration des techmiques de
décomposition. La structure principale de cette thése est définie comme smt. Le chapitre 1
présente l'introduction de la thése, incluant les systémes énergétiques modulaires et la revue
de littérature sur les algorithmes d'optimisation décentralisés. Les techmques actuelles sont
classées et examunées en termes de vitesse de convergence, de communication, d'exactitude
et d'applicabilité en temps réel. Le chapitre 2 propose une méthode de décomposition
lagrangienne au cadre décisionnel de puissance, dont les performances sont validées par des
études numeéniques et expénmentales. Ensuite, le chapitre 3 présente une comparaison
détaillée entre deux techmques de décomposition avancées pour identifier les principales
caracténistiques du cadre EMS modulaire proposé, qu établit une base solide pour la
réalisation des EMS. Considérant les techmques établies, le chapitre 4 propose l'intégration
d'une EMS basée sur la prévision avec la méthode de décomposition, conduisant a la
conception d'un principe innovant de EMS décentralisée et anticipée. De plus, pour améliorer
l'approche suggérée, une technique basée sur I'apprentissage intelligent permettant le réglage
paramétrique de I'EMS congue est proposée. Enfin, en conclusion, le chapitre 5 décrit les
travaux de recherche effectués tout au long de ce doctorat, avec une mise en évidence des
principaux résultats significatifs et une ouverture sur les futures orentations de recherche

autour des EMS décentralisées.





