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ABSTRACT Medicine is a complex field with highly trained specialists with extensive knowledge that
continuously needs updating. Among them all, those who study the brain can perform complex tasks due to
the structure of this organ. There are neurological diseases such as degenerative ones whose diagnoses are
essential in very early stages. Parkinson’s disease is one of them, usually having a confirmed diagnosis when
it is already very developed. Some physicians have proposed using electroencephalograms as a non-invasive
method for a prompt diagnosis. The problemwith these tests is that data analysis relies on the clinical eye of a
very experienced professional, which entails situations that escape human perception. This research proposes
the use of deep learning techniques in combination with electroencephalograms to develop a non-invasive
method for Parkinson’s disease diagnosis. These models have demonstrated their good performance in
managing massive amounts of data. Our main contribution is to apply models from the field of Natural
Language Processing, particularly an adaptation of BERT models, for being the last milestone in the area.
This model choice is due to the similarity between texts and electroencephalograms that can be processed as
data sequences. Results show that the best model uses electroencephalograms of 64 channels from people
without resting states and finger-tapping tasks. In terms of metrics, the model has values around 86%.
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INDEX TERMS Deep learning, transformers, BERT, neurology, parkinson’s disease,
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I. INTRODUCTION17

The brain is estimated to be formed by order of 1011 neurons18

plus its connections. Its functioning needs the interaction of19

neurons of different areas organized in networks [56]. The20

brain’s primary functions are the analysis of afferent stimuli,21

also called sensitive information and the production of motor22

and cognitive responses or efferences. Between afference and23

efference, there is an analysis of information that can be24
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altered in pathological states. The interactions between neu- 25

rons are mediated by molecules called neurotransmitters that 26

allow them to reach different membrane states that produce 27

their activation and depolarization, thus creating an electric 28

stimulus that neurophysiological techniques can register. 29

Electroencephalography, invented by Hans Berger, is a 30

method for recording superficial brain waves as electroen- 31

cephalograms (EEGs) [21]. EEGs are a particular type of 32

data called time series. We define them as sets of repeated 33

observations of a single unit or individual at regular inter- 34

vals over many instances [55]. EEGs can be recorded using 35
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electrodes placed around the scalp to measure the cerebral36

cortex electric changes, called superficial EEG. There is also37

the possibility of implanting the electrodes directly on the38

brain cortex during surgery, called deep EEG. Still, its use39

is rare and specific for certain situations, such as epilepsy40

surgery.41

An excellent temporal resolution characterizes superficial42

EEG. This characteristic supposes that the cortical electric43

changes are recorded in real-time but have a poor spatial44

resolution. This problem is because the recorded electric45

changes may be influenced by different local electric sources46

making it very difficult to locate the exact anatomic origin of47

the changes.48

Traditionally EEG has been visually analyzed, limiting its49

applications for functional cortical paroxystic impairments50

like epilepsy. Visual analysis of EEGs is a potentially flawed51

process that does not allow the detection of complex patterns.52

This fact restricts its use in other diseases, such as neurode-53

generative diseases with subcortical involvement. Thanks to54

the recent advances in quantitative EEG analysis, it is pos-55

sible to characterize different neurological disorders involv-56

ing subcortical structures and circuits, such as Parkinson’s57

Disease (PD).58

PD is a neurodegenerative and progressive disease of the59

central nervous system. First described by James Parkinson in60

1817, its principal characteristic is a progressive deterioration61

of the neurons in the brain’s central area of the substantia62

nigra. The associated neurodegeneration produces a decrease63

in dopamine secretion that leads to the appearance of motor64

and non-motor symptoms that reflect the involvement of dif-65

ferent non-dopaminergic pathways [36]. PD, also known as66

agitant paralysis, is the second most common neurodegener-67

ative disease after Alzheimer’s. There are many possibilities68

that by the year 2040, there will be around 17million affected,69

which makes it the fastest-growing neurological illness in the70

world [46].71

According to the updated Movement Disorder Society72

(MDS) Criteria [43], the diagnosis of this disease is mainly73

clinic and based on the identification of the cardinal motor74

manifestations of the disease, rest tremor, bradykinesia, and75

rigidity. The problem is that these symptoms are evident only76

when the neurodegeneration of the basal ganglia has reached77

up to 80%. So, the treatment of the disease remains symp-78

tomatic [14], being levodopa the gold standard treatment for79

the symptoms since 1961 [52].80

The patient’s response to levodopa is one of the criteria81

used to confirm the diagnosis of PD. Some patients must82

reach high doses of levodopa (up to 1 gram) to confirm or83

rule out the diagnosis by this therapeutic test. This method84

could lead to a delay in the diagnosis besides the side effects85

of high levodopa doses. In some cases, the average time to86

diagnose PD could reach two years [13]. It is crucial to make87

an early diagnosis to look for preventive treatments.88

Although alterations in EEGs are possible in PD patients,89

according to Yoo et al. [60], they have not been entirely90

justified. As dopaminergic deficit is the principal hallmark91

explaining the functional changes in this disease, previous 92

works demonstrate the changes produced by this medication 93

[48], so the precise moment when the EEG is registered may 94

be a crucial factor for the analysis. So, the primary motivation 95

of this paper is to find a non-invasive diagnostic method that 96

will prevent patients from taking large amounts of medicine 97

that could be harmful to their health. In this respect, the 98

most useful would be raw EEGs (without transformation 99

that could lead to information losses) as they are the default 100

physiological brain signal. Also, visual recordings of PD 101

must not allow physicians to make diagnoses, so we need 102

to apply Artificial Intelligence techniques. These techniques 103

nowadays allow the processing of large amounts of data. 104

In particular, deep learning techniques are models that com- 105

prise multiple processing layers to learn data representations 106

with various abstraction levels [12]. The use of such analysis 107

applied to EEGs implies its use as an early diagnosis method 108

with an impact on disease characterization and management. 109

In this paper, deep learning techniques from the Natu- 110

ral Language Processing (NLP) research area have been 111

applied to build a model for characterizing Parkinson’s 112

EEG changes in different states of dopaminergic stimulation. 113

These changes are compared with those from controls and the 114

obtained differences. Then, this information could give hints 115

for early diagnosis of the disease. Considering the nature of 116

the data (texts and EEGs) can be processed as data sequences. 117

Within all the NLP models, we use Bidirectional Encoder 118

Representations from Transformers (BERT) as the last break- 119

through in the area [16]. The paper’s main contribution is 120

the application of this model that will lead to obtaining a 121

non-invasive method to help clinicians diagnose PD. As far 122

as we know, this is the first time BERT has been adapted to 123

an EEG classification task for diagnosis. This fact is endorsed 124

byMaitin et al. [34], a review of machine learning techniques 125

for PD classification. 126

The main benefit of applying deep learning techniques for 127

diagnosing PD using EEGs is that there are no evident brain 128

structural alterations as may be the case of epilepsy, and the 129

functional changes such as motor performance depend on 130

the dopaminergic stimulation. Thus, the cortical activity may 131

vary depending on the degree of degeneration. The external 132

dopamine administration makes it quite challenging to dif- 133

ferentiate from healthy subjects depending on the patient’s 134

functional state. 135

The rest of the paper is structured as follows. 136

Section 2 summarizes the state of art related to computer 137

science models and PD diagnosis. Section 3 describes the 138

dataset used in the research and defines the methods used. 139

Section 4 discusses the results obtained during the study. 140

Finally, section 5 gives some conclusions and suggests some 141

future works. 142

II. RELATED WORK 143

There are many studies of EEGswith classical machine learn- 144

ing techniques. A work that uses EEGs from Alzheimer’s 145

patients can be found in Podgorolec. It applies subspace 146
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methods and its version of decision trees. In another case,147

Sohaib et al. use different machine learning algorithms to148

classify brain activity changes related to emotions from149

EEGs. Reference [27] show a comparison of algorithms150

like Artificial Neural Networks (ANN), Naïve Bayesian,151

K-Nearest Neighbors (KNNs), Support Vector Machine152

(SVM), and K-Means for the recognition of epileptic153

seizures. Some previous methods, plus tree bagging or ran-154

dom forest, have been applied in classifying brain states155

related to activities such as reading or playing video156

games [31]. Finally, Wang et al. present a use case in measur-157

ing sleep quality with KNN, SVM, and discriminative Graph158

regularized Extreme Learning Machine (GELM). The study159

concludes that the gamma band is the most relevant for sleep160

quality assessment.161

As can be seen, all the previous papers solve EEG classi-162

fication tasks related to different cases: brain activities based163

on emotions, brain states when performing activities, sleep164

quality, Alzheimer and epileptic seizures. In our study, the165

classification task aims to discriminate between EEGs of166

healthy people a PD patients. Another difference is the usage167

of DP techniques against classical ML methods.168

Some works also use classical techniques for classifying169

PD, sometimes using EEGs. For example, Altay andAlatas [3]170

evaluates different algorithms modeling the task of PD diag-171

nosis as a multi-objective problem using several character-172

istics of voice recordings. In [58], EEGs alongside PET173

images obtain neurophysiological biomarkers using mea-174

sures like reliability or coherence. These biomarkers let to175

discriminate between healthy and PD patients and give a176

level of affection based on the Unified Parkinson’s Disease177

Rating Scale (UPDRS). Classification of Parkinson’s severity178

into five different groups is approached in [11]. This work179

uses SVM and K-Nearest Neighbors. Another work is [19],180

classifying EEGs according to three levels of cognition by181

applying the Boruta algorithm for feature extraction and182

random forest for the classification. Finally, Vaneste et al.183

use SVM for classifying Parkinson’s EEGs to search for spec-184

tral equivalence between various neurological (PD between185

them) and neuropsychiatric disorders with Thalamocortical186

dysrhythmia. If we compare the previous work with ours,187

some of them perform the same task, classifying between PD188

and healthy, but none apply DL techniques.189

Several works have these characteristics in the case of190

DL using EEGs since these techniques appeared a few191

years ago. For example, it has an application in movement192

recognition. Reference [61] use Long Short Term Memory193

(LSTM) networks with attention modules to classify left194

and right-hand movements based on EEGs. In [40], EEGs195

with neural networks identify movements that let a user196

control a LEGO robot. Refernce [47] apply a deep learn-197

ing model called Convolutional Neural Network (CNN) to198

classify EEG changes related to motor tasks like moving199

hands or feet. The first visual object classifier driven by EEGs200

[51], uses a hybrid CNN and Recurrent Neural Networks201

(RNNs) model that discriminates 40 class images. CNNs are202

also applied by Achayra et al. to detect epileptic seizures in 203

EEGs automatically. In [59], another hybrid model with CNN 204

and RNN classifies affective mental states. Also, in [38], a 205

particular RNN called LSTM, alongside a neural network 206

classifier, is used to discriminate normal, pre-seizure, and 207

seizure states. In [62], EEG-based emotion recognition uses a 208

simple deep learning model, a CNN model, an LSTMmodel, 209

and a hybrid model of the previous two. The diagnosis of 210

REM Behavior Disorder (RBD), a sleep disorder commonly 211

associated with PD, is studied using CNNs and RNNs using 212

spectrograms of the EEGs [45]. Finally, Gemein et al. [20] 213

evaluate classic methods like SVM vs. Temporal CNN to 214

classify pathological and non-pathological EEGs. In the pre- 215

vious works, different EEG tasks have been achieved: image 216

discrimination, epileptic seizures or epileptic states detection, 217

and emotion or movement recognition. The models used are 218

typical architectures applied to EEGs like CNNs and RNNs. 219

In our work, we are focused on discriminating between EEGs 220

of PD patients and healthy people, and our main contribution 221

is demonstrating that complexNLP techniques like BERT can 222

be used with EEGs. 223

Some research can be highlighted in the particular case of 224

PD and deep learning. Reference [41] built a CNN classifier 225

for aided diagnosis to analyze images of handwritten figures. 226

Also, Eskofier et al. [17] studied PD with CNN trained with 227

pictures of drawings, but in this case, focused on the detection 228

of bradykinesia. Another work is by Camps et al. (2017), 229

where a typical alteration of PD, Freezing Of Gait (FOG), 230

is detected using CNNs in data collected with a wrist-worn 231

accelerometer. Ogawa and Yang stand out for using voice 232

recording and CNN for a PD classification. Another approach 233

that uses CNN is [39] processing EEGs as images obtaining 234

an accuracy of around 88% in the discrimination between 235

Parkinson’s and normal EEGs. Few previous deep learning 236

reports applied to PD studies mainly used CNNs and RNNs. 237

Some use clinical data as different features and the PD rating 238

scale; some use neurophysiological signals as the Rapid Eye 239

Movements neurophysiological registers. Most of them use 240

neuroimaging asMagnetic Resonance Image (MRI) or Single 241

Photon Emission Computed Tomography (SPECT) imaging, 242

as described in [1], [28], [49], and [57], respectively. As far 243

as we know, there are no papers where EEGs of PD have 244

directly been used with BERT models as described in our 245

paper. 246

In this paper, inspired by the language representation 247

model BERT, we developed a neural model to process and 248

classify EEGs diagnosing if a patient suffers from PD or not. 249

The main novelty of this work is the direct use of EEGs (for 250

being a non-invasive technique) to diagnose PD with BERT 251

models. 252

III. RESOURCES AND METHODS 253

The following subsections describe the resources used in this 254

work and the techniques applied. First, a brief description 255

of the EEGs and their collected data. Secondly, a formal 256

definition of the deep learning models that have been applied. 257
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A. A DATASET OF EEGS WITH PD PATIENTS258

AND CONTROLS259

The data in this research corresponds to some EEG tests on260

patients with PD and healthy people. EEGs are collected by261

electrodes positioned along the scalp that measure the brain’s262

electrical activity. The information, arranged in channels,263

is the difference in potential between a reference electrode264

and the active one. Also, different systems can be considered265

depending on the positions of the electrodes.266

In the present study, EEGs used 64 channels and the267

10-20 system. This system means that electrodes are spaced268

between 10% and 20% of the total distance between some269

particular skull points. Another critical parameter is the fre-270

quency which means the number of measures taken in one271

second. In this case, the frequency is 512 Hz which is one272

measure every 1.9531 milliseconds.273

1) PARTICIPANTS274

Eighty patients were recruited in the movement disorders275

clinic of Hospital Beata María Ana in Madrid from March276

2018 to February 2022. 24 age and gender-matched con-277

trols were also recruited among relatives and compan-278

ions of the patients. All the patients had been diagnosed279

with PD according to London Brain Bank criteria (mean280

time from onset years), with Hoehn and Yahr (HY) scale281

(range I-III).282

Exclusion criteria included patients using advanced thera-283

pies (apomorphine pump/duodenal dopamine infusion) for284

PD, epilepsy history, or structural alterations in previous285

imaging studies. Montreal Cognitive Assessment (MoCA)286

score <25, Nazem et al., poor response to levodopa or287

suspicion of atypical parkinsonism, any other neurologi-288

cal disease, or severe comorbidity. Inclusion criteria for289

patients with PD were to be over 18 years of age; idio-290

pathic PD diagnosed according to London brain bank criteria291

Hughes et al. (1992), stage <III Hoehn-Yahr, not292

having noticeable motor fluctuations, and clinical stabil-293

ity (not having changed the anti-dopaminergic medica-294

tion in the last 30 days or anti-depressives during the295

previous 90 days).296

CEIC Fuenlabrada Hospital, Madrid, Spain, approved the297

research protocol. All subjects gave written informed consent298

following the Declaration of Helsinki.299

2) INTERVENTION300

EEG comprised 64 electrodes placed according to the 10-20301

system. Resting EEG activity was recorded over one minute;302

every subject was comfortably seated with their hands on303

their laps, relaxed jaw, and eyes open, looking at a white wall.304

Immediately afterward, each patient has to tap the thumb305

with the index finger of the left hand (left finger tapping)306

continuously for five intervals of 30 seconds. Finally, the307

patient repeated the former task with the right hand (right308

finger tapping). Healthy controls EEG were also recorded in309

the same conditions.310

FIGURE 1. EEG and text analogy where a channel corresponds to a
sentence and a word to a measure.

3) DATA COLLECTION MATERIALS 311

actiCHamp amplifier (Brain Vision LLC, NC, USA) was 312

used to amplify and digitize the EEG data at a sampling 313

frequency of 512 Hz. The EEG data were stored in a PC run- 314

ningWindows 7 (Microsoft Corporation, Washington, USA). 315

EEG activity was recorded from 64 positions (channels) with 316

active Ag/AgCl scalp electrodes (actiCAP electrodes, Brain 317

Vision LLC, NC, USA). The ground and reference electrodes 318

corresponded to AFz and FCz, respectively. EEG acquisition 319

was carried out by NeuroRT Studio software (Mensia Tech- 320

nologies SA, Paris, France). 321

4) DATASET SUMMARY 322

The dataset was automatically extracted from the EEGs. 323

In total, it consists of 80 Parkinson patients (48 males; 324

age: 63,89 ± 9,21 years; disease duration: 7,21 ± 4,54; 325

stage of Hoehn-Yahr: 2.99 ± 1.35) and 24 healthy patients 326

(19 males; age: 58,12 ± 6,91) that serve as control. From 327

each EEG was extracted both finger tapping tasks of about 328

30 seconds of duration and one test of about 1 minute 329

from the resting state. So, each patient has 3 EEGs. Sum- 330

ming them all up makes a total of 240 different tests for 331

patients and 72 different tests for controls in the dataset with 332

a total duration of 12,480 seconds. Although that amount 333

of data seems small to train a BERT model, some papers 334

have demonstrated its good performance with small datasets. 335

For example, Barz and Denzler [8] obtains accuracies of 336

over 80% with datasets of 10 samples per class. Also, 337

Elze-Can [18] obtains good metrics, near 80% accuracy, with 338

a dataset of around 100 instances per class. 339

B. NLP TECHNIQUES TO CLASSIFY EEGS 340

Every channel of an EEG is a sequence of values measuring 341

potential differences at each point of the process. NLP state- 342

of-the-art neural models can process sequences efficiently to 343

generate different outputs. These models can even attend to 344

other parts of an input sequence to produce the desired result 345

([6], [16], and [54]). 346

This paper considers a parallelism between EEG and texts. 347

An EEG channel is a sequence of measurements like a 348
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FIGURE 2. Sliding window to process an EEG of 6 channels with four
windows.

sentence is a sequence of words. Then, suppose the meaning349

of a word in a sentence depends on the previous and subse-350

quent ones. In that case, a measurement in an EEG can be351

understood by analyzing the previous and following ones,352

which describe the brain’s activity in a particular moment.353

Furthermore, an EEG can be considered like a text formed354

by a set of sentences (the different channels) that the models355

implemented in this work will process as a whole. Then, the356

model will consider the values of all channels for a particular357

moment as the minimum input data unit. Figure 2 shows358

an example of this analogy between EEGs and texts. This359

analogy assumes that EEG values have a local context like360

words in a sentence. It is considered that, in an EEG, a specific361

sequence of values is more likely to be observed than others,362

just like in a particular sequence of words. The decision about363

usingNLP techniques is based on this analogy but the strategy364

used to preprocess the EEGs is quite different and will be365

explained later.366

1) BERT MODEL367

Among all the NLP models, we have decided to use BERT as368

its performance has been obtaining excellent results recently.369

This model uses stacked Transformers, a revolution in the370

field in 2017, [54]. Transformers have encoder-decoder archi-371

tectures, a model aiming to reduce the input data into a372

small piece containing the most relevant info (encoder) and373

then upsample it until the output data is obtained (decoder).374

In Transformers, the encoder comprises six identical layers375

with two sublayers: a self-attention layer and a feed-forward376

layer. The encoder seeks to code a specific word (EEG mea-377

sure in our case) of the input data while considering other378

relevant ones. The decoder has a similar architecture but also379

implements a multi-head attention sublayer connected to the380

output of the encoder.381

BERT is implemented based on this architecture but using382

only de encoder part. It is considered a multilayer bidirec-383

tional Transformer encoder formed by six stacked Trans-384

former encoders. Input data goes through an embedding385

layer and a positional encoding layer. The former transforms 386

each EEG measure into an n-dimensional vector. The latter 387

provides the positions of each element in the input data. 388

As has been said before, each encoder has two sublayers: self- 389

attention and feed-forward, which also receive information 390

from a residual layer. This layer aims to introduce informa- 391

tion from previous states that could be lost during the data 392

processing [16]. BERT’s latest Transformer connects to a 393

simple neural network classifier with several hidden layers 394

and a bicategorical output layer using a SoftMax activa- 395

tion function. SoftMax will let BERT discriminate between 396

Parkinson’s patients and healthy people [16]. 397

C. EVALUATION METRICS 398

The four metrics used to evaluate the models are accuracy, 399

specificity, sensibility, and precision. Accuracy is the num- 400

ber of correct predictions divided by the total number of 401

performed predictions. The interpretation serves as a guide 402

to measuring the performance of the approaches. Specificity 403

measures the ratio between the number of true negatives 404

(healthy people diagnosed as healthy people) and the total of 405

those predicted as true negatives and false positives (healthy 406

people diagnosed as Parkinson’s patients). This metric avoids 407

healthy people taking the medication when they do not need 408

it. Precision measures the ratio between the number of true 409

positives (Parkinson’s patients diagnosed correctly) and the 410

total of those predicted as true positives and false positives, 411

which is interesting in terms of economic costs. Sensitivity 412

is the same as precision but considers false negatives (Parkin- 413

son’s patients diagnosed as healthy) instead of false positives, 414

which is very useful to avoid undiagnosed patients. 415

IV. RESULTS AND DISCUSSION 416

A. DATA PREPROCESSING 417

As texts, EEGs have the particularity that a value in a spe- 418

cific moment needs to consider the previous values to be 419

understood. In our case, EEGs must be evaluated using what 420

is happening in all the channels at given moments. This 421

approach determines how EEGs get into the neural models. 422

A sliding window mechanism uses all the channels at the 423

same time and splits each EEG into different small pieces. 424

The use of small data has the advantage of reducing the 425

input data and allowing a more populated dataset with small 426

instances. This sliding window has two parameters to decide 427

how to create the instances. The first parameter is called the 428

step and controls how much the start of a window is shifted 429

concerning an instant of the EEG, which is the beginning 430

of a previous window. The second parameter is the width 431

and controls the number of values between the window’s 432

start and end. In the present work, these parameters have the 433

following values: step comprises 95% of the data andwidth of 434

256 instances. In this way, we go through the EEG employing 435

windowswith an overlapping of 5% tomaintain its continuity. 436

Fig. 3 describes this paragraph. C1 to C6 denote six channels, 437

and t1 to t9 are nine timestamps corresponding to the win- 438
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FIGURE 3. Architecture of the 64 channels model.

dow’s beginning. Different colors represent windows; in this439

case, there are four windows.440

B. TREATING EEGS AS SEQUENCES OF WORDS441

This research has adapted BERT models based on an anal-442

ogy between EEGs and texts. In a BERT-based model, the443

first layer is word-embedding, which takes a word as input444

and returns its vector representation. In the case of EEGs,445

each timestamp of all the channels has been considered the446

minimum input data unit. Then, the input vector has a set of447

values of a time window using the different channels of an448

EEG. This input uses a vector with the length of the number449

of channels in the EEG. Each vector’s value is a brain activity450

measure for a channel at a particular time. In this case, the451

embedding layer is removed since our data has a numerical452

representation. Notice that the lack of the embedding layer 453

reduces the size of the classification models and thus saves 454

training time. Moreover, a large amount of data is needed to 455

obtain good embeddings, around billions of words for good 456

word embeddings [32]. 457

C. BERT-BASED MODELS TO CLASSIFY EEGS 458

To compare the results, we develop two experiments based 459

on BERT models with the same architecture. First, a model 460

is trained and focused on processing the 28 most interior 461

channels, assuming that the peripherical channels add noise 462

and predict if it comes from a person with PD or not. 463

Then, amodel is implemented processing a 64-channels-EEG 464

which means using all the information collected in the EEGs. 465

1) THE TRAINING STAGES 466

Both experiments are trained, including all the EEGs (both 467

tappings and resting state) for each individual (training strat- 468

egy 1) and then removing the corresponding to a resting state 469

(training strategy 2). The motor task that has been chosen is 470

finger-tapping, consisting of a self-cued repetitive opposition 471

of the thumb and index of each hand is one of the most 472

informative tasks included in clinical evaluations such as the 473

UPDRS. The reason is that the hand has a pre-dominant 474

somatotopic representation in basal ganglia and is one of the 475

earliest locations of motor alterations identified in the disease 476

[30]. On the other hand, the resting state has been extensively 477

used in functional magnetic resonance imaging (fMRI) to 478

study functional connectivity among specific brain regions 479

organized into networks [26]. These networks’ dynamics 480

and disruption may be associated with various diseases. 481

The resting-state has been extensively used to study EEG 482

microstates [29] that are altered in PD depending on the 483

dopamine administration [48]. 484

Then, we have to split the dataset into training, validation, 485

and test subsets. Train and validation comprise the training 486

stage, and then the test stage is used to do new classifica- 487

tions of EEGs. In this case, 80% for training and validation 488

applying 5-fold cross-validation, and 20% of the cases were 489

used for the test (examples never seen by the model during 490

training). The different subsets were chosen randomly in 491

terms of individuals but always maintained the percentage 492

of patients and controls. Although BERT-based models can 493

work with unbalanced classes [37], this double validation 494

allows us to eliminate the bias produced by the choice of data 495

and to identify failures during the training process through 496

the use of the CV method, and to verify the generalization 497

capacity of the model by means of a test blind set. The split 498

into train/validation/test sets was carried out guaranteeing 499

patient independence, and then the division into windows 500

was performed. The classification models give a result that 501

belongs to a particular instant time of an EEG for a specific 502

class. The final classification probability is the average of the 503

probabilities for each EEG fragment. 504

Processing EEGs is a complex task due to a large number 505

of values. This fact is reflected in the times needed to train 506
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the proposals with a CPU AMD Ryzen Threadripper 2950x507

16 core, four NVidia GeForce RTX 2080 11 Gb RAM GPUs508

running on Ubuntu 20.04.3. The training uses a Python script509

that uses 49 libraries. The 28 channels solution is trained510

during five epochs for three days, 12 hours, and 29 minutes511

with all the EEGs and one day and 12 hours without the rest-512

ing state. In the case of 64 channels, it is trained during five513

epochs and needs three days, 16 hours, and 48 minutes in the514

first case and one day and 12 hours in the second. Regarding515

parameters to be trained: the solution for 28 channels has516

583,842, and the one for 64 channels has 1,374,978.517

2) 64-CHANNELS-EEG MODEL518

The 64-channels-EEG architecture is in Figure 3. It imple-519

ments a BERT model followed by a classification module520

without the embedding part. The input is already a dense521

vector representation of the information from the EEG values.522

BERTmodule has 6 Transformer encoders having 64 neurons523

and four attention-heads. Between each Transformer, we set524

a feed-forward layer with 1,536 neurons, Gaussian Error525

Linear Units (GELU) function, and a dropout of 0.3. The526

classification module is a multilayer perceptron with an input527

layer of 64 neurons, a hidden layer of 268 neurons, followed528

by a SoftMax output over two classes representing the PD or529

Non-PD possible labels for the EEGs. Figure 3 illustrates the530

model and Table 1 summarizes its parameters.531

TABLE 1. Parameters of the 64 channels model.

3) 28-CHANNELS-EEG MODEL532

Goncharova et al. [22] claim that electrodes situated on533

peripheric areas of the brain are more suitable for collecting534

noise. Considering that, the 64-channel-EEG baseline model535

is replicated but uses only the most interior 28 channels.536

The elimination of peripheric electrodes does not affect the537

central electrodes, which recollect the information from the538

primary motor and sensitive areas. These areas expect to539

reflect most of the changes produced by the dopaminergic540

stimulation changes in the disease. The reason for selecting 541

these particular channels is two-fold. First, to confirm the 542

previous hypothesis, and second because they allow us to 543

maintain the four attention-heads in the model’s architecture. 544

D. CLASSIFYING PARKINSON’S PATIENT 545

Trained approaches compile accuracy, specificity, sensitivity, 546

and precision as metrics. Since we are dealing with a medical 547

use case, the metrics should consider false positives and false 548

negatives [33]. In this work, a false positive is a healthy person 549

misdiagnosed with PD. A false negative is a person with PD 550

diagnosed as healthy. 551

After training the 28 channel models with both training 552

sets (with andwithout resting-state EEGs) during five epochs, 553

we obtained results from Table 2. It contains the four metrics 554

for both pieces of training, separating training validation and 555

splitting with its standard deviation. 556

TABLE 2. Evaluation of the 28 channels models with both trainings.

As seen in Table 2, we can interpret the results by consider- 557

ing the bias-variance trade-off [9]. First, bias seems accurate 558

in some metrics, as diagnostic accuracy is slightly over 80% 559

[44]. In terms of variance, the model trained without resting 560

tests has good results in all metrics except specificity due to 561

its differences between stages. Similar results happened when 562

resting states. 563

If we analyze the results in-depth, we can see that the 564

variability of results for the true and false negative (sensitivity 565

and specificity) without resting states is lower than using 566

these tests but still significantly high. In this experimentation 567

(28 channels), we have less data than in the other case by 568

dispensing with one of the EEG tests. However, percentage- 569

wise, the difference between the classes is maintained. This 570

result affects the specificity metric, as we can see in the 571

results. In addition to having a significantly low value, its 572

standard deviation exhibits high values, around 30%. When 573

the resting test remained unused, we did not observe signifi- 574

cant differences between the precision and accuracy metrics 575

results. 576

Analyzing the results of all the tests, we found the follow- 577

ing. On the one hand, sensitivity, a metric responsible for pro- 578

viding the rate of true positives, has values above 90% in all 579

stages of experimentation (that is, train, validation, and test). 580

Still, it exhibits very high deviation values, around 44% in all 581

cases. On the other hand, specificity, the metric responsible 582

for providing the rate of true negatives, has very low values, 583

around 20%.When performing a 5-fold strategy, we find high 584
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variability in the results of each fold for the true negatives585

(Non-PD predictions that are non-PD) and false negatives586

(Non-PD predictions that are PD). Given that the model is587

trained with two classes, one being the majority, these results588

lead us to think that the model may be over-training the589

majority class (PD). Therefore, fluctuations can be found in590

each fold when the prediction of non-PD is produced.591

The results regarding the precision and accuracy of the592

model do not differ much in both pieces of training. Where593

we do find differences is in the sensitivity and specificity met-594

rics. From the above evaluation, we can conclude that class595

imbalance has negatively impacted the training. Although596

this could be a problem, BERT has demonstrated promis-597

ing results by working with imbalanced datasets [37]. Now,598

we train a 64-channel model to verify the collected noise599

hypothesis commented above. So, the model has been trained600

with the same data and conditions during five epochs.601

Table 3 compiles the information of the four metrics for602

training, validation, and test.603

TABLE 3. Evaluation of the 64 channels models with both trainings.

As can be seen in Table 3, the 64 channels model has better604

results than the 28 channels one. Results for training without605

resting tests seem very good in terms of bias and variance,606

except for precision due to its high deviation. However,607

it should be noted that, in the test case, for the false positives,608

there is a fold that contains very different values from the rest609

of the folds. Therefore, these results alter the measurements610

of the metrics that include this value. Since it only appears in611

one of the folds, we de-duce that it is a specific event derived612

from a data division and not from an error in the training.613

Only the false negative values have shown a specific vari-614

ability in the folds in the case using resting states, much615

less than in the previous cases. This fact is reflected in the616

values obtained from the metrics and their standard deviation,617

where low values of the specificity metric still prevail with618

high variability between the training processes. However, the619

results of this experiment do not indicate an affectation by the620

imbalance of classes since there are no significant variations621

in the case of the True Negatives, while in False Negatives,622

said fluctuation has dropped considerably. This issue may623

occur because, considering more data, the model can better624

relate the information, minimizing the effect caused by class625

imbalance. We can corroborate this result with the increased626

precision and accuracy metrics concerning the model of627

28 channels using all data.628

E. COMPARISON WITH BASELINES 629

As a final way to check the performance of our model, we are 630

comparing it with two classical deep learning models widely 631

used with EEGS: CNNs and RNNs with Gated Recurrent 632

Units (GRUs). Both models are inspired by Shi et al. [50] 633

but have been adapted to our data. We trained both models 634

in the same conditions as our BERT model with underfitting 635

results. So, we decided to augment the number of epochs to 636

obtain well-trainedmodels. The results of this comparison are 637

in Table 4. 638

TABLE 4. Evaluation of the 64 channels models with both trainings.

As seen above, our model improves the results of the RNNs 639

but is slightly worse than the CNNs. However, it should be 640

considered that we needed more epochs to obtain a non- 641

underfitting model. We also want to remember that this 642

work aims to demonstrate that powerful NLP techniques like 643

BERT can be used in biosignal processing. In fact, there is 644

a tendency to use these models in other fields. For example, 645

He et al. [24] uses BERT for image classification. In this way, 646

the next step would be to test the performance of BERT and 647

EEGs in a more complex problem that could be difficult to 648

solve with CNNs. 649

V. CONCLUSION AND FUTURE WORKS 650

The main aim of this work has been to develop a neural 651

model that could differentiate between Parkinson’s patients 652

and healthy subjects using EEGs as time series and taking 653

advantage of NLP techniques. For this purpose, first, we have 654

collected a set of EEGs from PD subjects and controls. 655

Parkinson’s EEGs have been recorded in several conditions, 656

considering that there may be significant changes according 657

to the degree of the disease or even with motor activation. 658

Then, we retrained different versions of the BERT model to 659

prove our hypothesis. Also, additional training strategies have 660

been developed to achieve the results. 661

We obtain two main conclusions. First, EEGs without rest- 662

ing states help themodels discriminate better between Parkin- 663

son’s patients and healthy controls than only finger tapping 664

EEGs. Secondly, the model corresponding to a 64 channels 665

model best differentiates between PD and healthy subjects. 666

To summarize, our main conclusion is that 64 channels model 667

without resting EEG was the best option in this case. Results 668

in different metrics are around 86% of performance classify- 669

ing EEGs between a patient with Parkinson’s and a healthy 670

subject. 671

This value may occur because a BERT model requires 672

more data to perform training, and removing part of the 673

electrodes does not contribute to improving the results of the 674
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classification problem.We could also think that, in the case of675

PD, the affected area extends to peripheral regions; therefore,676

these electrodes also contain information about the disease.677

New training with an intermediate number of channels will678

be required to test this hypothesis.679

However, it draws our attention that when comparing680

28 without resting tests and 28 with all tests, we did not find681

much difference between the precision and accuracy results,682

only in the sensitivity and specificity metrics that seem to683

be influenced by class imbalance. This fact makes us think684

that motor tests are significant when diagnosing PD, while685

the resting test plays a secondary role.686

The results of the 64 channels experiment with all tests687

differ from those of 64 without resting states. Since when688

comparing 28 channels with all tests and 28 channels without689

resting test, we do not find significant differences between690

their precision values. We may deduce that in the case of691

64, everything the training has been insufficient. Remember692

that the hyperparameters in each experiment are the same693

to facilitate the comparison and evaluation of the results694

depending on the channels and EEG tests performed.695

This study is not without limitations. Firstly, we cannot696

determine why resting tests are crucial in the model but are697

not enough to differentiate them when studied separately.698

In future studies, a more considerable amount of EEG record-699

ings will help us to reinforce our conclusions. Secondly,700

further studies should be done with more EEGs in the resting701

state. Another study that could help us understand the dif-702

ferences between EEGs with electrodes alongside the entire703

scalp (64 channels) and only central electrodes (28 channels)704

could be an analysis by zones.705

In future works, apart from experimenting with an inter-706

mediate number of channels, there is an interest in studying707

the brain connectivity in PD. For example, we divide the708

brain into several zones, using a BERT model for each of709

them, and thenmaking a final diagnosis based on the previous710

models. Another exciting study uses Graph Convolutional711

Neural Networks alongside graph theory metrics by model-712

ing Parkinson’s EEGs as graphs. Finally, we want to make713

another diagnosis of PD patients that could evaluate how714

advanced the disease is.715
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