IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received 26 July 2022, accepted 15 August 2022, date of publication 26 August 2022, date of current version 30 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3201843

== RESEARCH ARTICLE

BERT Learns From Electroencephalograms
About Parkinson’s Disease: Transformer-Based
Models for Aid Diagnosis

ALBERTO NOGALES “!, ALVARO J. GARCIA-TEJEDOR"1, ANA M. MAITiN?,
ANTONIO PEREZ-MORALES', MARIiA DOLORES DEL CASTILLO?Z,
AND JUAN PABLO ROMEROQ34

ICEIEC, Universidad Francisco de Vitoria, 28223 Madrid, Spain

2Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council, 28500 Madrid, Spain
3Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Madrid, Spain

#Brain Damage Unit, Hospital Beata Maria Ana, 28007 Madrid, Spain

Corresponding author: Alvaro J. Garcia-Tejedor (a.gtejedor@ceiec.es)
This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was

granted by Hospital 12 de Octubre Committee in Madrid, under Application No. 20/515 and performed in line with the Helsinki
Declaration.

ABSTRACT Medicine is a complex field with highly trained specialists with extensive knowledge that
continuously needs updating. Among them all, those who study the brain can perform complex tasks due to
the structure of this organ. There are neurological diseases such as degenerative ones whose diagnoses are
essential in very early stages. Parkinson’s disease is one of them, usually having a confirmed diagnosis when
it is already very developed. Some physicians have proposed using electroencephalograms as a non-invasive
method for a prompt diagnosis. The problem with these tests is that data analysis relies on the clinical eye of a
very experienced professional, which entails situations that escape human perception. This research proposes
the use of deep learning techniques in combination with electroencephalograms to develop a non-invasive
method for Parkinson’s disease diagnosis. These models have demonstrated their good performance in
managing massive amounts of data. Our main contribution is to apply models from the field of Natural
Language Processing, particularly an adaptation of BERT models, for being the last milestone in the area.
This model choice is due to the similarity between texts and electroencephalograms that can be processed as
data sequences. Results show that the best model uses electroencephalograms of 64 channels from people
without resting states and finger-tapping tasks. In terms of metrics, the model has values around 86%.

INDEX TERMS
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I. INTRODUCTION

The brain is estimated to be formed by order of 1011 neurons
plus its connections. Its functioning needs the interaction of
neurons of different areas organized in networks [56]. The
brain’s primary functions are the analysis of afferent stimuli,
also called sensitive information and the production of motor
and cognitive responses or efferences. Between afference and
efference, there is an analysis of information that can be
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altered in pathological states. The interactions between neu-
rons are mediated by molecules called neurotransmitters that
allow them to reach different membrane states that produce
their activation and depolarization, thus creating an electric
stimulus that neurophysiological techniques can register.
Electroencephalography, invented by Hans Berger, is a
method for recording superficial brain waves as electroen-
cephalograms (EEGs) [21]. EEGs are a particular type of
data called time series. We define them as sets of repeated
observations of a single unit or individual at regular inter-
vals over many instances [55]. EEGs can be recorded using
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electrodes placed around the scalp to measure the cerebral
cortex electric changes, called superficial EEG. There is also
the possibility of implanting the electrodes directly on the
brain cortex during surgery, called deep EEG. Still, its use
is rare and specific for certain situations, such as epilepsy
surgery.

An excellent temporal resolution characterizes superficial
EEG. This characteristic supposes that the cortical electric
changes are recorded in real-time but have a poor spatial
resolution. This problem is because the recorded electric
changes may be influenced by different local electric sources
making it very difficult to locate the exact anatomic origin of
the changes.

Traditionally EEG has been visually analyzed, limiting its
applications for functional cortical paroxystic impairments
like epilepsy. Visual analysis of EEGs is a potentially flawed
process that does not allow the detection of complex patterns.
This fact restricts its use in other diseases, such as neurode-
generative diseases with subcortical involvement. Thanks to
the recent advances in quantitative EEG analysis, it is pos-
sible to characterize different neurological disorders involv-
ing subcortical structures and circuits, such as Parkinson’s
Disease (PD).

PD is a neurodegenerative and progressive disease of the
central nervous system. First described by James Parkinson in
1817, its principal characteristic is a progressive deterioration
of the neurons in the brain’s central area of the substantia
nigra. The associated neurodegeneration produces a decrease
in dopamine secretion that leads to the appearance of motor
and non-motor symptoms that reflect the involvement of dif-
ferent non-dopaminergic pathways [36]. PD, also known as
agitant paralysis, is the second most common neurodegener-
ative disease after Alzheimer’s. There are many possibilities
that by the year 2040, there will be around 17 million affected,
which makes it the fastest-growing neurological illness in the
world [46].

According to the updated Movement Disorder Society
(MDS) Ceriteria [43], the diagnosis of this disease is mainly
clinic and based on the identification of the cardinal motor
manifestations of the disease, rest tremor, bradykinesia, and
rigidity. The problem is that these symptoms are evident only
when the neurodegeneration of the basal ganglia has reached
up to 80%. So, the treatment of the disease remains symp-
tomatic [14], being levodopa the gold standard treatment for
the symptoms since 1961 [52].

The patient’s response to levodopa is one of the criteria
used to confirm the diagnosis of PD. Some patients must
reach high doses of levodopa (up to 1 gram) to confirm or
rule out the diagnosis by this therapeutic test. This method
could lead to a delay in the diagnosis besides the side effects
of high levodopa doses. In some cases, the average time to
diagnose PD could reach two years [13]. It is crucial to make
an early diagnosis to look for preventive treatments.

Although alterations in EEGs are possible in PD patients,
according to Yoo et al. [60], they have not been entirely
justified. As dopaminergic deficit is the principal hallmark
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explaining the functional changes in this disease, previous
works demonstrate the changes produced by this medication
[48], so the precise moment when the EEG is registered may
be a crucial factor for the analysis. So, the primary motivation
of this paper is to find a non-invasive diagnostic method that
will prevent patients from taking large amounts of medicine
that could be harmful to their health. In this respect, the
most useful would be raw EEGs (without transformation
that could lead to information losses) as they are the default
physiological brain signal. Also, visual recordings of PD
must not allow physicians to make diagnoses, so we need
to apply Artificial Intelligence techniques. These techniques
nowadays allow the processing of large amounts of data.
In particular, deep learning techniques are models that com-
prise multiple processing layers to learn data representations
with various abstraction levels [12]. The use of such analysis
applied to EEGs implies its use as an early diagnosis method
with an impact on disease characterization and management.

In this paper, deep learning techniques from the Natu-
ral Language Processing (NLP) research area have been
applied to build a model for characterizing Parkinson’s
EEG changes in different states of dopaminergic stimulation.
These changes are compared with those from controls and the
obtained differences. Then, this information could give hints
for early diagnosis of the disease. Considering the nature of
the data (texts and EEGs) can be processed as data sequences.
Within all the NLP models, we use Bidirectional Encoder
Representations from Transformers (BERT) as the last break-
through in the area [16]. The paper’s main contribution is
the application of this model that will lead to obtaining a
non-invasive method to help clinicians diagnose PD. As far
as we know, this is the first time BERT has been adapted to
an EEG classification task for diagnosis. This fact is endorsed
by Maitin et al. [34], areview of machine learning techniques
for PD classification.

The main benefit of applying deep learning techniques for
diagnosing PD using EEGs is that there are no evident brain
structural alterations as may be the case of epilepsy, and the
functional changes such as motor performance depend on
the dopaminergic stimulation. Thus, the cortical activity may
vary depending on the degree of degeneration. The external
dopamine administration makes it quite challenging to dif-
ferentiate from healthy subjects depending on the patient’s
functional state.

The rest of the paper is structured as follows.
Section 2 summarizes the state of art related to computer
science models and PD diagnosis. Section 3 describes the
dataset used in the research and defines the methods used.
Section 4 discusses the results obtained during the study.
Finally, section 5 gives some conclusions and suggests some
future works.

Il. RELATED WORK

There are many studies of EEGs with classical machine learn-
ing techniques. A work that uses EEGs from Alzheimer’s
patients can be found in Podgorolec. It applies subspace
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methods and its version of decision trees. In another case,
Sohaib et al. use different machine learning algorithms to
classify brain activity changes related to emotions from
EEGs. Reference [27] show a comparison of algorithms
like Artificial Neural Networks (ANN), Naive Bayesian,
K-Nearest Neighbors (KNNs), Support Vector Machine
(SVM), and K-Means for the recognition of epileptic
seizures. Some previous methods, plus tree bagging or ran-
dom forest, have been applied in classifying brain states
related to activities such as reading or playing video
games [31]. Finally, Wang et al. present a use case in measur-
ing sleep quality with KNN, SVM, and discriminative Graph
regularized Extreme Learning Machine (GELM). The study
concludes that the gamma band is the most relevant for sleep
quality assessment.

As can be seen, all the previous papers solve EEG classi-
fication tasks related to different cases: brain activities based
on emotions, brain states when performing activities, sleep
quality, Alzheimer and epileptic seizures. In our study, the
classification task aims to discriminate between EEGs of
healthy people a PD patients. Another difference is the usage
of DP techniques against classical ML methods.

Some works also use classical techniques for classifying
PD, sometimes using EEGs. For example, Altay and Alatas [3]
evaluates different algorithms modeling the task of PD diag-
nosis as a multi-objective problem using several character-
istics of voice recordings. In [58], EEGs alongside PET
images obtain neurophysiological biomarkers using mea-
sures like reliability or coherence. These biomarkers let to
discriminate between healthy and PD patients and give a
level of affection based on the Unified Parkinson’s Disease
Rating Scale (UPDRS). Classification of Parkinson’s severity
into five different groups is approached in [11]. This work
uses SVM and K-Nearest Neighbors. Another work is [19],
classifying EEGs according to three levels of cognition by
applying the Boruta algorithm for feature extraction and
random forest for the classification. Finally, Vaneste et al.
use SVM for classifying Parkinson’s EEGs to search for spec-
tral equivalence between various neurological (PD between
them) and neuropsychiatric disorders with Thalamocortical
dysrhythmia. If we compare the previous work with ours,
some of them perform the same task, classifying between PD
and healthy, but none apply DL techniques.

Several works have these characteristics in the case of
DL using EEGs since these techniques appeared a few
years ago. For example, it has an application in movement
recognition. Reference [61] use Long Short Term Memory
(LSTM) networks with attention modules to classify left
and right-hand movements based on EEGs. In [40], EEGs
with neural networks identify movements that let a user
control a LEGO robot. Refernce [47] apply a deep learn-
ing model called Convolutional Neural Network (CNN) to
classify EEG changes related to motor tasks like moving
hands or feet. The first visual object classifier driven by EEGs
[51], uses a hybrid CNN and Recurrent Neural Networks
(RNNs) model that discriminates 40 class images. CNNs are
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also applied by Achayra et al. to detect epileptic seizures in
EEGs automatically. In [59], another hybrid model with CNN
and RNN classifies affective mental states. Also, in [38], a
particular RNN called LSTM, alongside a neural network
classifier, is used to discriminate normal, pre-seizure, and
seizure states. In [62], EEG-based emotion recognition uses a
simple deep learning model, a CNN model, an LSTM model,
and a hybrid model of the previous two. The diagnosis of
REM Behavior Disorder (RBD), a sleep disorder commonly
associated with PD, is studied using CNNs and RNNs using
spectrograms of the EEGs [45]. Finally, Gemein et al. [20]
evaluate classic methods like SVM vs. Temporal CNN to
classify pathological and non-pathological EEGs. In the pre-
vious works, different EEG tasks have been achieved: image
discrimination, epileptic seizures or epileptic states detection,
and emotion or movement recognition. The models used are
typical architectures applied to EEGs like CNNs and RNNs.
In our work, we are focused on discriminating between EEGs
of PD patients and healthy people, and our main contribution
is demonstrating that complex NLP techniques like BERT can
be used with EEGs.

Some research can be highlighted in the particular case of
PD and deep learning. Reference [41] built a CNN classifier
for aided diagnosis to analyze images of handwritten figures.
Also, Eskofier et al. [17] studied PD with CNN trained with
pictures of drawings, but in this case, focused on the detection
of bradykinesia. Another work is by Camps et al. (2017),
where a typical alteration of PD, Freezing Of Gait (FOG),
is detected using CNNs in data collected with a wrist-worn
accelerometer. Ogawa and Yang stand out for using voice
recording and CNN for a PD classification. Another approach
that uses CNN is [39] processing EEGs as images obtaining
an accuracy of around 88% in the discrimination between
Parkinson’s and normal EEGs. Few previous deep learning
reports applied to PD studies mainly used CNNs and RNNs.
Some use clinical data as different features and the PD rating
scale; some use neurophysiological signals as the Rapid Eye
Movements neurophysiological registers. Most of them use
neuroimaging as Magnetic Resonance Image (MRI) or Single
Photon Emission Computed Tomography (SPECT) imaging,
as described in [1], [28], [49], and [57], respectively. As far
as we know, there are no papers where EEGs of PD have
directly been used with BERT models as described in our
paper.

In this paper, inspired by the language representation
model BERT, we developed a neural model to process and
classify EEGs diagnosing if a patient suffers from PD or not.
The main novelty of this work is the direct use of EEGs (for
being a non-invasive technique) to diagnose PD with BERT
models.

Ill. RESOURCES AND METHODS

The following subsections describe the resources used in this
work and the techniques applied. First, a brief description
of the EEGs and their collected data. Secondly, a formal
definition of the deep learning models that have been applied.
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A. A DATASET OF EEGS WITH PD PATIENTS

AND CONTROLS

The data in this research corresponds to some EEG tests on
patients with PD and healthy people. EEGs are collected by
electrodes positioned along the scalp that measure the brain’s
electrical activity. The information, arranged in channels,
is the difference in potential between a reference electrode
and the active one. Also, different systems can be considered
depending on the positions of the electrodes.

In the present study, EEGs used 64 channels and the
10-20 system. This system means that electrodes are spaced
between 10% and 20% of the total distance between some
particular skull points. Another critical parameter is the fre-
quency which means the number of measures taken in one
second. In this case, the frequency is 512 Hz which is one
measure every 1.9531 milliseconds.

1) PARTICIPANTS

Eighty patients were recruited in the movement disorders
clinic of Hospital Beata Maria Ana in Madrid from March
2018 to February 2022. 24 age and gender-matched con-
trols were also recruited among relatives and compan-
ions of the patients. All the patients had been diagnosed
with PD according to London Brain Bank criteria (mean
time from onset years), with Hoehn and Yahr (HY) scale
(range I-1II).

Exclusion criteria included patients using advanced thera-
pies (apomorphine pump/duodenal dopamine infusion) for
PD, epilepsy history, or structural alterations in previous
imaging studies. Montreal Cognitive Assessment (MoCA)
score <25, Nazem et al., poor response to levodopa or
suspicion of atypical parkinsonism, any other neurologi-
cal disease, or severe comorbidity. Inclusion criteria for
patients with PD were to be over 18 years of age; idio-
pathic PD diagnosed according to London brain bank criteria
Hughes er al. (1992), stage <III Hoehn-Yahr, not
having noticeable motor fluctuations, and clinical stabil-
ity (not having changed the anti-dopaminergic medica-
tion in the last 30 days or anti-depressives during the
previous 90 days).

CEIC Fuenlabrada Hospital, Madrid, Spain, approved the
research protocol. All subjects gave written informed consent
following the Declaration of Helsinki.

2) INTERVENTION

EEG comprised 64 electrodes placed according to the 10-20
system. Resting EEG activity was recorded over one minute;
every subject was comfortably seated with their hands on
their laps, relaxed jaw, and eyes open, looking at a white wall.
Immediately afterward, each patient has to tap the thumb
with the index finger of the left hand (left finger tapping)
continuously for five intervals of 30 seconds. Finally, the
patient repeated the former task with the right hand (right
finger tapping). Healthy controls EEG were also recorded in
the same conditions.
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EEGs are texts

Channels are sentences

Words are measurements

FIGURE 1. EEG and text analogy where a channel corresponds to a
sentence and a word to a measure.

3) DATA COLLECTION MATERIALS

actiCHamp amplifier (Brain Vision LLC, NC, USA) was
used to amplify and digitize the EEG data at a sampling
frequency of 512 Hz. The EEG data were stored in a PC run-
ning Windows 7 (Microsoft Corporation, Washington, USA).
EEG activity was recorded from 64 positions (channels) with
active Ag/AgCl scalp electrodes (actiCAP electrodes, Brain
Vision LLC, NC, USA). The ground and reference electrodes
corresponded to AFz and FCz, respectively. EEG acquisition
was carried out by NeuroRT Studio software (Mensia Tech-
nologies SA, Paris, France).

4) DATASET SUMMARY

The dataset was automatically extracted from the EEGs.
In total, it consists of 80 Parkinson patients (48 males;
age: 63,89 + 9,21 years; disease duration: 7,21 £ 4,54;
stage of Hoehn-Yahr: 2.99 & 1.35) and 24 healthy patients
(19 males; age: 58,12 &+ 6,91) that serve as control. From
each EEG was extracted both finger tapping tasks of about
30 seconds of duration and one test of about 1 minute
from the resting state. So, each patient has 3 EEGs. Sum-
ming them all up makes a total of 240 different tests for
patients and 72 different tests for controls in the dataset with
a total duration of 12,480 seconds. Although that amount
of data seems small to train a BERT model, some papers
have demonstrated its good performance with small datasets.
For example, Barz and Denzler [8] obtains accuracies of
over 80% with datasets of 10 samples per class. Also,
Elze-Can [18] obtains good metrics, near 80% accuracy, with
a dataset of around 100 instances per class.

B. NLP TECHNIQUES TO CLASSIFY EEGS
Every channel of an EEG is a sequence of values measuring
potential differences at each point of the process. NLP state-
of-the-art neural models can process sequences efficiently to
generate different outputs. These models can even attend to
other parts of an input sequence to produce the desired result
([6], [16], and [54]).

This paper considers a parallelism between EEG and texts.
An EEG channel is a sequence of measurements like a
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FIGURE 2. Sliding window to process an EEG of 6 channels with four
windows.

sentence is a sequence of words. Then, suppose the meaning
of a word in a sentence depends on the previous and subse-
quent ones. In that case, a measurement in an EEG can be
understood by analyzing the previous and following ones,
which describe the brain’s activity in a particular moment.
Furthermore, an EEG can be considered like a text formed
by a set of sentences (the different channels) that the models
implemented in this work will process as a whole. Then, the
model will consider the values of all channels for a particular
moment as the minimum input data unit. Figure 2 shows
an example of this analogy between EEGs and texts. This
analogy assumes that EEG values have a local context like
words in a sentence. It is considered that, in an EEG, a specific
sequence of values is more likely to be observed than others,
justlike in a particular sequence of words. The decision about
using NLP techniques is based on this analogy but the strategy
used to preprocess the EEGs is quite different and will be
explained later.

1) BERT MODEL

Among all the NLP models, we have decided to use BERT as
its performance has been obtaining excellent results recently.
This model uses stacked Transformers, a revolution in the
field in 2017, [54]. Transformers have encoder-decoder archi-
tectures, a model aiming to reduce the input data into a
small piece containing the most relevant info (encoder) and
then upsample it until the output data is obtained (decoder).
In Transformers, the encoder comprises six identical layers
with two sublayers: a self-attention layer and a feed-forward
layer. The encoder seeks to code a specific word (EEG mea-
sure in our case) of the input data while considering other
relevant ones. The decoder has a similar architecture but also
implements a multi-head attention sublayer connected to the
output of the encoder.

BERT is implemented based on this architecture but using
only de encoder part. It is considered a multilayer bidirec-
tional Transformer encoder formed by six stacked Trans-
former encoders. Input data goes through an embedding
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layer and a positional encoding layer. The former transforms
each EEG measure into an n-dimensional vector. The latter
provides the positions of each element in the input data.
As has been said before, each encoder has two sublayers: self-
attention and feed-forward, which also receive information
from a residual layer. This layer aims to introduce informa-
tion from previous states that could be lost during the data
processing [16]. BERT’s latest Transformer connects to a
simple neural network classifier with several hidden layers
and a bicategorical output layer using a SoftMax activa-
tion function. SoftMax will let BERT discriminate between
Parkinson’s patients and healthy people [16].

C. EVALUATION METRICS

The four metrics used to evaluate the models are accuracy,
specificity, sensibility, and precision. Accuracy is the num-
ber of correct predictions divided by the total number of
performed predictions. The interpretation serves as a guide
to measuring the performance of the approaches. Specificity
measures the ratio between the number of true negatives
(healthy people diagnosed as healthy people) and the total of
those predicted as true negatives and false positives (healthy
people diagnosed as Parkinson’s patients). This metric avoids
healthy people taking the medication when they do not need
it. Precision measures the ratio between the number of true
positives (Parkinson’s patients diagnosed correctly) and the
total of those predicted as true positives and false positives,
which is interesting in terms of economic costs. Sensitivity
is the same as precision but considers false negatives (Parkin-
son’s patients diagnosed as healthy) instead of false positives,
which is very useful to avoid undiagnosed patients.

IV. RESULTS AND DISCUSSION

A. DATA PREPROCESSING

As texts, EEGs have the particularity that a value in a spe-
cific moment needs to consider the previous values to be
understood. In our case, EEGs must be evaluated using what
is happening in all the channels at given moments. This
approach determines how EEGs get into the neural models.
A sliding window mechanism uses all the channels at the
same time and splits each EEG into different small pieces.
The use of small data has the advantage of reducing the
input data and allowing a more populated dataset with small
instances. This sliding window has two parameters to decide
how to create the instances. The first parameter is called the
step and controls how much the start of a window is shifted
concerning an instant of the EEG, which is the beginning
of a previous window. The second parameter is the width
and controls the number of values between the window’s
start and end. In the present work, these parameters have the
following values: step comprises 95% of the data and width of
256 instances. In this way, we go through the EEG employing
windows with an overlapping of 5% to maintain its continuity.
Fig. 3 describes this paragraph. C1 to C6 denote six channels,
and tl to t9 are nine timestamps corresponding to the win-

VOLUME 10, 2022



A. Nogales et al.: BERT Learns From Electroencephalograms About Parkinson’s Disease

IEEE Access

input: | (16, 256, 64, 1)
InputLayer
output: | (16, 256, 64, 1)
Y
input: | (16,256,64,1)
BertModellLayer
output: | (16, 256, 64)
A4
input: (16, 256, 64)
Lambda
output: (16, 64)
input: (16, 64)
Dropout
output: (16, 64)
v
input: (16, 64)
Dense
output: (16, 768)
input: (16, 768)
Dropout
output: (16, 768)
input: (16, 768)
Dense
output: (16, 2)

FIGURE 3. Architecture of the 64 channels model.

dow’s beginning. Different colors represent windows; in this
case, there are four windows.

B. TREATING EEGS AS SEQUENCES OF WORDS

This research has adapted BERT models based on an anal-
ogy between EEGs and texts. In a BERT-based model, the
first layer is word-embedding, which takes a word as input
and returns its vector representation. In the case of EEGs,
each timestamp of all the channels has been considered the
minimum input data unit. Then, the input vector has a set of
values of a time window using the different channels of an
EEG. This input uses a vector with the length of the number
of channels in the EEG. Each vector’s value is a brain activity
measure for a channel at a particular time. In this case, the
embedding layer is removed since our data has a numerical
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representation. Notice that the lack of the embedding layer
reduces the size of the classification models and thus saves
training time. Moreover, a large amount of data is needed to
obtain good embeddings, around billions of words for good
word embeddings [32].

C. BERT-BASED MODELS TO CLASSIFY EEGS

To compare the results, we develop two experiments based
on BERT models with the same architecture. First, a model
is trained and focused on processing the 28 most interior
channels, assuming that the peripherical channels add noise
and predict if it comes from a person with PD or not.
Then, a model is implemented processing a 64-channels-EEG
which means using all the information collected in the EEGs.

1) THE TRAINING STAGES

Both experiments are trained, including all the EEGs (both
tappings and resting state) for each individual (training strat-
egy 1) and then removing the corresponding to a resting state
(training strategy 2). The motor task that has been chosen is
finger-tapping, consisting of a self-cued repetitive opposition
of the thumb and index of each hand is one of the most
informative tasks included in clinical evaluations such as the
UPDRS. The reason is that the hand has a pre-dominant
somatotopic representation in basal ganglia and is one of the
earliest locations of motor alterations identified in the disease
[30]. On the other hand, the resting state has been extensively
used in functional magnetic resonance imaging (fMRI) to
study functional connectivity among specific brain regions
organized into networks [26]. These networks’ dynamics
and disruption may be associated with various diseases.
The resting-state has been extensively used to study EEG
microstates [29] that are altered in PD depending on the
dopamine administration [48].

Then, we have to split the dataset into training, validation,
and test subsets. Train and validation comprise the training
stage, and then the test stage is used to do new classifica-
tions of EEGs. In this case, 80% for training and validation
applying 5-fold cross-validation, and 20% of the cases were
used for the test (examples never seen by the model during
training). The different subsets were chosen randomly in
terms of individuals but always maintained the percentage
of patients and controls. Although BERT-based models can
work with unbalanced classes [37], this double validation
allows us to eliminate the bias produced by the choice of data
and to identify failures during the training process through
the use of the CV method, and to verify the generalization
capacity of the model by means of a test blind set. The split
into train/validation/test sets was carried out guaranteeing
patient independence, and then the division into windows
was performed. The classification models give a result that
belongs to a particular instant time of an EEG for a specific
class. The final classification probability is the average of the
probabilities for each EEG fragment.

Processing EEGs is a complex task due to a large number
of values. This fact is reflected in the times needed to train
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the proposals with a CPU AMD Ryzen Threadripper 2950x
16 core, four NVidia GeForce RTX 2080 11 Gb RAM GPUs
running on Ubuntu 20.04.3. The training uses a Python script
that uses 49 libraries. The 28 channels solution is trained
during five epochs for three days, 12 hours, and 29 minutes
with all the EEGs and one day and 12 hours without the rest-
ing state. In the case of 64 channels, it is trained during five
epochs and needs three days, 16 hours, and 48 minutes in the
first case and one day and 12 hours in the second. Regarding
parameters to be trained: the solution for 28 channels has
583,842, and the one for 64 channels has 1,374,978.

2) 64-CHANNELS-EEG MODEL

The 64-channels-EEG architecture is in Figure 3. It imple-
ments a BERT model followed by a classification module
without the embedding part. The input is already a dense
vector representation of the information from the EEG values.
BERT module has 6 Transformer encoders having 64 neurons
and four attention-heads. Between each Transformer, we set
a feed-forward layer with 1,536 neurons, Gaussian Error
Linear Units (GELU) function, and a dropout of 0.3. The
classification module is a multilayer perceptron with an input
layer of 64 neurons, a hidden layer of 268 neurons, followed
by a SoftMax output over two classes representing the PD or
Non-PD possible labels for the EEGs. Figure 3 illustrates the
model and Table 1 summarizes its parameters.

TABLE 1. Parameters of the 64 channels model.

Module Parameter Value
“attention_probs_dropout_prob” 0.3
“hidden_act” “gelu”
“hidden_dropout_prob” 0.3
“hidden_size” 64
“Initializer range” 0.02
BERT “intermediate_size” 1536
“max_position_embeddings” 5120
“num_attention_heads” 4
“num_hidden_layers” 6
“type_vocab_size” 2
“vocab_size” 30522
Dropout dropout 0.5
layer
Classification Dense units “768,,
layer activation tanh’
Dropout dropout 0.5
layer
Dense  units 2
layer activation “softmax”

3) 28-CHANNELS-EEG MODEL

Goncharova et al. [22] claim that electrodes situated on
peripheric areas of the brain are more suitable for collecting
noise. Considering that, the 64-channel-EEG baseline model
is replicated but uses only the most interior 28 channels.
The elimination of peripheric electrodes does not affect the
central electrodes, which recollect the information from the
primary motor and sensitive areas. These areas expect to
reflect most of the changes produced by the dopaminergic
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stimulation changes in the disease. The reason for selecting
these particular channels is two-fold. First, to confirm the
previous hypothesis, and second because they allow us to
maintain the four attention-heads in the model’s architecture.

D. CLASSIFYING PARKINSON'S PATIENT

Trained approaches compile accuracy, specificity, sensitivity,
and precision as metrics. Since we are dealing with a medical
use case, the metrics should consider false positives and false
negatives [33]. In this work, a false positive is a healthy person
misdiagnosed with PD. A false negative is a person with PD
diagnosed as healthy.

After training the 28 channel models with both training
sets (with and without resting-state EEGs) during five epochs,
we obtained results from Table 2. It contains the four metrics
for both pieces of training, separating training validation and
splitting with its standard deviation.

TABLE 2. Evaluation of the 28 channels models with both trainings.

Model Training without resting states ~ Training with resting states
Train Valid. Test Train Valid. Test
Accuracy 75.98%  65.67% 70.16% 72.30% 68.75%  71.30%
+6.59 +5.16 +10.01 +4.71 +8.66 +5.58
Specificit 52.05% 61.89% 30.53% 21.65% 19.92% 18.08%
P Y £3001 £2747 2506 +£2492 +20.64 +20.64
Sensitivity 87.47% 82.73% 90.00% 96.58%  92.20%  98.00%
+10.05 +£11.52 +£10.00 +44.13 +44.16 +44.72
Precision 79.22%  71.20%  72.15% 72.05%  70.65%  70.47%
+20.57 +£12.65 +1944 41727 +19.19 +17.61

As seen in Table 2, we can interpret the results by consider-
ing the bias-variance trade-off [9]. First, bias seems accurate
in some metrics, as diagnostic accuracy is slightly over 80%
[44]. In terms of variance, the model trained without resting
tests has good results in all metrics except specificity due to
its differences between stages. Similar results happened when
resting states.

If we analyze the results in-depth, we can see that the
variability of results for the true and false negative (sensitivity
and specificity) without resting states is lower than using
these tests but still significantly high. In this experimentation
(28 channels), we have less data than in the other case by
dispensing with one of the EEG tests. However, percentage-
wise, the difference between the classes is maintained. This
result affects the specificity metric, as we can see in the
results. In addition to having a significantly low value, its
standard deviation exhibits high values, around 30%. When
the resting test remained unused, we did not observe signifi-
cant differences between the precision and accuracy metrics
results.

Analyzing the results of all the tests, we found the follow-
ing. On the one hand, sensitivity, a metric responsible for pro-
viding the rate of true positives, has values above 90% in all
stages of experimentation (that is, train, validation, and test).
Still, it exhibits very high deviation values, around 44% in all
cases. On the other hand, specificity, the metric responsible
for providing the rate of true negatives, has very low values,
around 20%. When performing a 5-fold strategy, we find high
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variability in the results of each fold for the true negatives
(Non-PD predictions that are non-PD) and false negatives
(Non-PD predictions that are PD). Given that the model is
trained with two classes, one being the majority, these results
lead us to think that the model may be over-training the
majority class (PD). Therefore, fluctuations can be found in
each fold when the prediction of non-PD is produced.

The results regarding the precision and accuracy of the
model do not differ much in both pieces of training. Where
we do find differences is in the sensitivity and specificity met-
rics. From the above evaluation, we can conclude that class
imbalance has negatively impacted the training. Although
this could be a problem, BERT has demonstrated promis-
ing results by working with imbalanced datasets [37]. Now,
we train a 64-channel model to verify the collected noise
hypothesis commented above. So, the model has been trained
with the same data and conditions during five epochs.
Table 3 compiles the information of the four metrics for
training, validation, and test.

TABLE 3. Evaluation of the 64 channels models with both trainings.

Model Training without resting states ~ Training with resting states
Train Valid. Test Train Valid, Test
Accuracy 93.45% 84.67% 86.41% 76.04% 68.41% 67.93%
+282 +£379 +£7.08 +585 +10.08 +5.59
Specificit 93.08% 84.94% 96.00% 54.11% 44.26%  36.00%
P Y 1166 +£1152 +894 +£947  +2228 +8093
Sensitivity 93.64% 84.56% 81.63% 86.54% 79.98%  83.96%
+4.21 +9.00 +11.58 +1.63 +9.33 +10.99
Precision 96.59%  92.15% 97.61% 79.77% 75.00%  72.35%
+2693 +£2390 +£2372 +£19.69 £19.37 +£5.59

As can be seen in Table 3, the 64 channels model has better
results than the 28 channels one. Results for training without
resting tests seem very good in terms of bias and variance,
except for precision due to its high deviation. However,
it should be noted that, in the test case, for the false positives,
there is a fold that contains very different values from the rest
of the folds. Therefore, these results alter the measurements
of the metrics that include this value. Since it only appears in
one of the folds, we de-duce that it is a specific event derived
from a data division and not from an error in the training.

Only the false negative values have shown a specific vari-
ability in the folds in the case using resting states, much
less than in the previous cases. This fact is reflected in the
values obtained from the metrics and their standard deviation,
where low values of the specificity metric still prevail with
high variability between the training processes. However, the
results of this experiment do not indicate an affectation by the
imbalance of classes since there are no significant variations
in the case of the True Negatives, while in False Negatives,
said fluctuation has dropped considerably. This issue may
occur because, considering more data, the model can better
relate the information, minimizing the effect caused by class
imbalance. We can corroborate this result with the increased
precision and accuracy metrics concerning the model of
28 channels using all data.
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E. COMPARISON WITH BASELINES

As a final way to check the performance of our model, we are
comparing it with two classical deep learning models widely
used with EEGS: CNNs and RNNs with Gated Recurrent
Units (GRUs). Both models are inspired by Shi er al. [50]
but have been adapted to our data. We trained both models
in the same conditions as our BERT model with underfitting
results. So, we decided to augment the number of epochs to
obtain well-trained models. The results of this comparison are
in Table 4.

TABLE 4. Evaluation of the 64 channels models with both trainings.

Model Train accuracy Test accuracy
64 channels BERT model 93.45% +2.82 86.41% + 7.08
CNN 94.97% + 0.04 93.49% + 0.06
RNN 76.12% + 0.04 70.92% + 0.09

As seen above, our model improves the results of the RNNs
but is slightly worse than the CNNs. However, it should be
considered that we needed more epochs to obtain a non-
underfitting model. We also want to remember that this
work aims to demonstrate that powerful NLP techniques like
BERT can be used in biosignal processing. In fact, there is
a tendency to use these models in other fields. For example,
He et al. [24] uses BERT for image classification. In this way,
the next step would be to test the performance of BERT and
EEGs in a more complex problem that could be difficult to
solve with CNNs.

V. CONCLUSION AND FUTURE WORKS

The main aim of this work has been to develop a neural
model that could differentiate between Parkinson’s patients
and healthy subjects using EEGs as time series and taking
advantage of NLP techniques. For this purpose, first, we have
collected a set of EEGs from PD subjects and controls.
Parkinson’s EEGs have been recorded in several conditions,
considering that there may be significant changes according
to the degree of the disease or even with motor activation.
Then, we retrained different versions of the BERT model to
prove our hypothesis. Also, additional training strategies have
been developed to achieve the results.

We obtain two main conclusions. First, EEGs without rest-
ing states help the models discriminate better between Parkin-
son’s patients and healthy controls than only finger tapping
EEGs. Secondly, the model corresponding to a 64 channels
model best differentiates between PD and healthy subjects.
To summarize, our main conclusion is that 64 channels model
without resting EEG was the best option in this case. Results
in different metrics are around 86% of performance classify-
ing EEGs between a patient with Parkinson’s and a healthy
subject.

This value may occur because a BERT model requires
more data to perform training, and removing part of the
electrodes does not contribute to improving the results of the
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classification problem. We could also think that, in the case of
PD, the affected area extends to peripheral regions; therefore,
these electrodes also contain information about the disease.
New training with an intermediate number of channels will
be required to test this hypothesis.

However, it draws our attention that when comparing
28 without resting tests and 28 with all tests, we did not find
much difference between the precision and accuracy results,
only in the sensitivity and specificity metrics that seem to
be influenced by class imbalance. This fact makes us think
that motor tests are significant when diagnosing PD, while
the resting test plays a secondary role.

The results of the 64 channels experiment with all tests
differ from those of 64 without resting states. Since when
comparing 28 channels with all tests and 28 channels without
resting test, we do not find significant differences between
their precision values. We may deduce that in the case of
64, everything the training has been insufficient. Remember
that the hyperparameters in each experiment are the same
to facilitate the comparison and evaluation of the results
depending on the channels and EEG tests performed.

This study is not without limitations. Firstly, we cannot
determine why resting tests are crucial in the model but are
not enough to differentiate them when studied separately.
In future studies, a more considerable amount of EEG record-
ings will help us to reinforce our conclusions. Secondly,
further studies should be done with more EEGs in the resting
state. Another study that could help us understand the dif-
ferences between EEGs with electrodes alongside the entire
scalp (64 channels) and only central electrodes (28 channels)
could be an analysis by zones.

In future works, apart from experimenting with an inter-
mediate number of channels, there is an interest in studying
the brain connectivity in PD. For example, we divide the
brain into several zones, using a BERT model for each of
them, and then making a final diagnosis based on the previous
models. Another exciting study uses Graph Convolutional
Neural Networks alongside graph theory metrics by model-
ing Parkinson’s EEGs as graphs. Finally, we want to make
another diagnosis of PD patients that could evaluate how
advanced the disease is.
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