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Abstract: We propose a novel equalization scheme for 100Gb/s/λ PAM4 PON based on Gated 

Recurrent Neural Network to increase SOA preamplifier input power dynamic range tolerance 

to 30 dB below hard-decision FEC BER limit of 3.8×10−3. © 2022 The Author(s)  

 

1. Introduction 

Passive Optical Networks (PONs) continue to be the dominant optical access technology addressing network 

operator demand for higher speed Fiber-to-the-Premises and mobile backhaul solutions. Looking beyond the 

recently published 50G PON standards, future networks will need to contend with limited electro-optic device 

bandwidths, and so four-level pulse amplitude modulation (PAM4) is being considered for single channel 100Gb/s 

PON due to its spectral efficiency. However, the recommendations of ITU-T G.9804.3 commit to supporting 

existing optical distribution network infrastructure, meaning a minimum optical loss budget of 29 dB, which is a 

challenge for PAM4’s high SNR requirements. Semiconductor optical amplifiers (SOAs) offer a compelling 

solution as pre-amplification units at the optical line terminal, being low cost, integrable, and operating in both C- 

and O- wavelength bands. But this raises another concern, as the SOA input power dynamic range cannot meet 

the minimum required PON dynamic range of 19.5 dB without equalization because of gain saturation induced 

patterning. Recently neural network-based equalizers (NNEs) have been suggested for pre-equalization to 

overcome SOA patterning effects in 50G PAM4 PON and extend system dynamic range [1]. Further, Recurrent 

Neural Networks (RNN) incorporating feedback have been proposed as efficient post-equalizers for 100 Gb/s 

PAM4 PON with O-band SOA preamplifiers achieving sufficient receiver sensitivity for 30 dB optical loss budget 

[2]. However the impact of SOA saturation, which is critical for high dynamic range operation, was not considered. 

Here, we demonstrate 100 Gb/s PAM4 33 dB power budget with 30 dB input power dynamic range using an 

SOA preamplifier. We implement an advanced RNN equalization scheme based on Gated Recurrent Units (GRUs) 

[3] to overcome SOA patterning and compare performance with a feed forward equalizer (FFE) and a standard 

neural network equalizer (NNE). Our results show that the GRU gated feedback mechanism enables the same 

SOA input power dynamic range as a NNE but with far fewer equalizer taps, leading to reduced memory footprint 

and computational complexity evaluated in terms of multiply-accumulate operations per equalised symbol [4]. 

2. Experimental Setup and Recurrent Neural Network Equalizer 

The experiment setup is shown in Fig. 1 (b): 50 Gbaud PAM4 signal with 6-dB extinction ratio is generated in the 

C-band with 100 GSa/s DAC with differential output driving a Mach Zehnder modulator and boosted by EDFA 

to emulate an ideal high-power Tx. Digital pre-compensation corrects for setup linear bandwidth restrictions. A 

photoreceiver with integrated TIA was unavailable for this study and so a 50 GHz photodiode combined with 

EDFA is substituted. To investigate signal performance with saturated and unsaturated SOA preamplifier (CIP 

SOA-S), a variable optical attenuator is placed before the SOA to emulate optical distribution network losses, see 

Fig. 1 (a). Signals are captured using a 200 GSa/s real time scope, and a 25GHz 4th-order Bessel filter is applied 

digitally to mimic the bandwidth limitation that would arise from the use of lower cost 25G class optoelectronics. 

 

Fig. 1: (a) CIP-SOA-S gain curve with eye diagrams (inset) showing extent of inter-symbol interference (ISI), (b) experimental setup, (c) 

RNN equalizer structure with (d) Gated Recurrent Units making up recurrent hidden layer. 

Fig. 1 (c) shows the structure of our proposed RNN equalizer solution: it comprises one hidden layer with 6 

GRUs incorporating layer feedback, while the output layer is a single fully connected (FC) unit. The GRU 



feedback mechanism is superior to that of standard RNNs as it exploits “reset” and “update” gates, which are used 

to determine relevant feedback and input state information for the current symbol equalization; the complete 

operation of a single GRU is shown in Fig. 1 (d). The backpropagation through time (BPTT) algorithm [5] with 

Adam optimizer is used to train the equalizer by “unrolling” the RNN for 40 sequential input times. For each SOA 

input power, a single captured PRBS14 waveform is used for training, while bit-error-ratio (BER) estimation is 

carried out on repeated acquisitions of PRBS15 (~130k symbols). We generate a PRBS14 PAM4 sequence by 

combining two binary PRBS14 sequences with a relative shift of ⌊(214 − 1)/2⌋ = 8191 symbols, thus avoiding 

neural network overfitting to the training pattern. 

3. Results 

From Fig. 2 (a) we achieve baseline receiver sensitivity of −25 dBm at the hard decision FEC (HD-FEC) threshold 

BER of 3.8 x 10−3 and therefore meet the required 29 dB PON loss budget assuming +8 dBm launch power. As 

the input power increases beyond −15 dBm we drive the SOA into gain saturation leading to nonlinear ISI due to 

patterning, with only 12.5 dB maximum achievable input power dynamic range with no equalizer, and 19 dB with 

40T (symbol spaced) tap FFE. However, our RNN equalizer using only 3T taps achieves a BER of 10−4, well 

below the HD-FEC limit up to +5 dBm input power to the SOA and corresponding to >30 dB input power dynamic 

range. For comparison we also implemented a 40T tap NNE with two hidden layers of 6 and 4 neurons, which 

achieves the same performance as our 3T tap RNN equalizer. 

 
Fig. 2: BER plotted against: (a) SOA input power with equalization; (b) symbol spaced input taps to NNE for different SOA input powers. 

Although a single GRU unit is more complex than a standard neural network neuron, the advantage of a GRU 

based RNN is clear as it effectively leverages its gated feedback mechanism to mitigate a range of nonlinear ISI 

extending beyond its immediate input taps. In contrast, Fig. 2 (b) shows a NNE is strongly dependent on a large 

numbers of input taps for the same ISI. Table 1 compares RNN and NNE equaliser performance in terms of SOA 

input power dynamic range achieved and computational complexity. The 3T RNN achieves 30 dB dynamic range, 

while a similar complexity 20T NNE only achieves 23 dB. To match the 3T RNN performance, NNE requires 

40T input taps, leading to a significant overall increase in equaliser parameters and multiply-accumulate 

operations. 

Table 1: Comparison of neural network equalizer parameters and associated multiply-accumulate operations. 

Equalizer Input Taps Structure Parameters 
Multiply-Accumulate 

Operations per Symbol 

SOA Input Power 

Dynamic Range [dB] 

NNE  20T (6FC, 4FC, 1FC) 159 148 23 

NNE  40T (6FC, 4FC, 1FC) 279 268 30 

RNN  3T (6GRU, 1FC) 187 168 30 

4. Conclusion 

In summary, we demonstrate >30 dB SOA input power dynamic range is possible in a 100 Gb/s PAM4 system 

using a recurrent neural network equalization scheme based on Gated Recurrent Units to mitigate SOA patterning. 

A computational complexity advantage over standard neural network equalizer structures is also shown. 
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