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Abstract—The hybridization of metaheuristics with data min-
ing techniques has been successfully applied to combinatorial
optimization problems. Examples of this type of strategy are
DM-GRASP and MDM-GRASP, hybrid versions of the Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic,
which incorporate data mining techniques. This type of hybrid
method is called Data-Driven Metaheuristics and aims at extract-
ing useful knowledge from the data generated by metaheuristics
in their search process. Despite success in combinatorial problems
like the set packing problem and maximum diversity problem,
proposals of this type to solve continuous optimization problems
are still scarce in the literature. This work presents a data
mining hybrid version of C-GRASP, an adaptation of GRASP
for problems with continuous variables. We call this new version
DMC-GRASP, which identifies patterns in high-quality solutions
and generates new solutions guided by these patterns. We
performed computational experiments with DMC-GRASP on a
set of well-known mathematical benchmark functions, and the
results showed that metaheuristics for continuous optimization
could also benefit from using patterns to guide the search for
better solutions.

Index Terms—Metaheuristics, Data Mining, Continuous Opti-
mization.

I. INTRODUCTION

Many real-world problems can be formulated as optimiza-
tion problems with variables in continuous domains, i.e., as
continuous optimization problems. These problems, in general,
are challenging to solve. This difficulty has given rise to
several proposals for optimization techniques that seek sub-
optimal solutions. In this context, metaheuristics arise, which
are general-purpose heuristics to solve complex optimization
problems that can not be solved using approximate or gradient-
based optimization techniques [2].

In this work, we focus on Global Optimization. Formally, in
minimization form, the continuous global optimization seeks
for a solution x∗ ∈ S ⊆ Rn such that f(x∗) ≤ f(x),∀x ∈ S,
where S is a subset of Rn and the objective function is
f : S → R. The solution x∗ is called the global minimum.
A solution x’ is called a local minimum in a neighborhood

S0 ⊆ S if f(x’) ≤ f(x), ∀x ∈ S0. We consider there are no
requirements on the properties of f . In particular, it may have
a nonlinear or non-differentiable form, for which there are no
classical gradient-based optimization techniques for obtaining
optimal solutions. Global optimization problems appear in
many areas such as materials science, biology, chemistry and
genetics, electrical engineering, robotics, and transportation
science [1]. One example of metaheuristic proposed to solve
continuous global optimization is the Continuous GRASP (C-
GRASP), which is an adaptation of GRASP metaheuristic to
problems with continuous variables.

In this work, to deal with continuous optimization problems,
we explore the hybridization of metaheuristics methods with
data mining techniques. In this context, data mining aims at
finding patterns in good solutions generated by heuristics. This
idea has been successfully applied to different combinatorial
optimization problems [12]–[16]. In [10], Plastino et al. pro-
posed the DM-GRASP, the hybridization of GRASP [8], a
multi-start metaheuristic, with data mining techniques, achiev-
ing good and promising results. Inspired by this work, we
present the DMC-GRASP, a hybridization of C-GRASP [5]
with Data Mining, to be applied to optimization problems with
continuous variables.

This paper is organized as follows. In section II, we present
the related work. In section III, we describe the C-GRASP
metaheuristic. In section IV, we describe our proposal – the
hybridization of C-GRASP with data mining, called DMC-
GRASP. In section V, the different versions of DMC-GRASP
are compared with each other and against C-GRASP. Section
VI presents our conclusions and points out directions for future
work.

II. RELATED WORK

Recently, hybrid metaheuristics have been proposed to use
explicit knowledge discovered during the search using ad-
vanced machine learning (ML) models or data mining (DM)
techniques. Metaheuristics generate many data in the search
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process. The data can be static – when it concerns the target
problem and instance features. Moreover, several dynamic
data are generated during the iterative search process, such as
solutions in the decision and the objective spaces, sequence of
solutions or trajectories, successive populations of solutions,
moves, recombinations, local optima, elite solutions, and bad
solutions [22]. Thus ML and DM can help analyze these data
to extract useful knowledge. In [22] metaheuristics that use
built-in ML or DM techniques in their search are called data-
driven metaheuristics.

Following these ideas, some works have proposed the
hybridization of metaheuristics with DM to solve complex
optimization problems. The hybridization of GRASP meta-
heuristic with a data mining process was first introduced and
successfully applied to the set packing problem [10], and
to the maximum diversity problem [11]. The data mining
technique was applied in the construction phase in both works.
The hybrid proposal was divided into two parts. In the first
one, a number of GRASP iterations are executed, and the
best solutions are stored in an elite set. Then, a data mining
algorithm is used to extract patterns from this set of sub-
optimal solutions. In the second part, the GRASP iterations use
the mined patterns to construct new solutions. In this strategy,
the data mining process is performed only once, after exactly
half of the GRASP iterations. This strategy was called DM-
GRASP. A similar hybridization strategy was applied to other
metaheuristics, as Iterated Local Search (ILS), to solve the set
covering with pairs problem and a state-of-art hybrid heuristic
for solving the classical p-median problem [13].

Plastino et al [12] proposed the Multi Data Mining GRASP
(MDM-GRASP), an extension of DM-GRASP which executes
the data mining procedure not just once but many times in an
adaptive way during the heuristic execution. The main idea of
MDM-GRASP is to execute the mining process: (a) as soon as
the elite set becomes stable – which means that no change in
the elite set occurred throughout a given number of iterations
– and (b) whenever the elite set has been changed and again
has become stable. Their hypothesis is that mining more than
once will explore the gradual evolution of the elite set and
allow the extraction of refined patterns.

In the context of data-driven metaheuristics to continuous
optimization problems, the Estimation of Distribution Algo-
rithms (EDAs) stand out. EDAs are stochastic optimization
techniques that explore the solution space by building and
sampling explicit probabilistic models of promising candidate
solutions. EDAs use the models to guide the search for better
solutions. The works [25]–[27] generate new solutions based
on the Gaussian distribution model. Others [28]–[30] are based
on histogram models. Although these works are based on the
approach of following the previously generated data to sample
new solutions, they differ from this present work because they
do not present the idea of patterns. Our proposal explicitly uses
pattern, which will compose the start point of the search in
iterations after the data mining. The underlying idea is that
we can discover features of good solutions in the data and
build new good solutions directly upon these features. This

kind of proposal to solve continuous optimization problems is
still scarce.

III. CONTINUOUS GRASP

C-GRASP [5]–[7] is a version of GRASP adapted to
continuous optimization. As GRASP [3], [4], [8], C-GRASP
is a multi-start metaheuristic that uses a greedy randomized
construction procedure to generate starting solutions and a
local search procedure to improve them. C-GRASP works
by discretizing the solution domain into a uniform grid. The
construction and local search procedures move along points on
the grid. As the algorithm iterates, the grid adaptively becomes
denser. Algorithm 1 shows the pseudocode of C-GRASP.

C-GRASP procedure takes as input the problem dimension
n, lower and upper bound vectors l and u, the objective
function f(.), as well as the parameters hs, he and ρlo.
Parameters hs and he define the starting and ending grid
discretization densities, while ρlo defines the portion of the
neighborhood of the current solution that is explored during
the local improvement procedure.

The algorithm processes the iterations while the stopping
criteria are not satisfied. At each iteration, an initial solution
is set to a random point distributed uniformly over the box
defined by l and u. The h parameter, which represents the
current density of the grid, is reset to hs. The construction
and local search procedures are called sequentially, in a loop,
generating internal iteration.

The solution returned from the local improvement procedure
is compared against the current best solution. If the returned
solution is better than the current best solution, then the current
best solution is updated with the returned solution. If the
variables ImprC and ImprL are still set to false, the grid
density is decreased by halving h.

The variable ImprC and ImprL are false when no improve-
ment is made in the construction and local search procedures,
respectively. An external iteration ends when h < he. At the
time the stopping criteria are satisfied, the best solution found
is returned.

IV. CONTINUOUS GRASP HYBRIDIZED WITH DATA
MINING

In the previously developed hybrid data mining metaheuris-
tics [13], the patterns are composed of a set of solution com-
ponents that frequently appear together in the elite solutions.
The pattern search characterizes, therefore, a frequent itemset
mining application. A frequent itemset mined with support
s% represents a set of elements that occur in s% of the
elite solutions [24]. In our hybridization proposal, differently,
patterns are clusters of points highly concentrated, that is,
with low dispersion. We search for these clusters in the set
of the best solutions generated by the heuristic. The low
dispersion indicates that the good solutions tend to be close
to a determined point in space. Thus, these good solutions
are similar, representing a pattern. The similarity between
solutions can be computed using the euclidian distance.
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Algorithm 1 Continuous GRASP
1: procedure C-GRASP(n, l,u, f(.), hs, he, ρlo)
2: f∗ ←∞
3: while Stopping criteria are not met do ▷ external iteration
4: x← UNIFRAND(l,u)
5: h← hs

6: while h ≥ he do ▷ internal iteration
7: ImprC← false
8: ImprL← false
9: [x,ImprC]← CONSTRUCTGREEDYRANDOMIZED(x, f(.), n, h, l,u,ImprC)

10: [x,ImprC]← LOCALIMPROVEMENT(x, f(.), n, h, l,u, ρlo,ImprL)
11: if f(x) < f∗ then
12: x∗ ← x
13: f∗ ← f(x)
14: end if
15: if ImprC = false and ImprL = false then
16: h← h/2 ▷ making grid denser
17: end if
18: end while
19: end while
20: return x∗
21: end procedure

Algorithm 2 Construct new solution from pattern p

1: procedure CONSTRUCTFROMPATTERN(p, l,u)
2: for i ∈ D do
3: if i ∈ p then
4: xi = pi

5: else
6: xi = UNIFRAND(li,ui)
7: end if
8: end for
9: return x

10: end procedure

As in the proposed hybridization of GRASP with data
mining techniques [10] to solve combinatorial problems, the
new hybridized C-GRASP will have two phases: The first
one is called the elite set generation phase, which consists
of executing pure C-GRASP iterations to obtain a set of
different solutions. The d best solutions from this set compose
the elite set. Next, the second phase, called hybrid phase,
is performed. In this part, different C-GRASP iterations are
executed. In these iterations, the construction of a new solution
is guided by a mined pattern. Initially, all elements of the
selected pattern are inserted into the partial solution. Then, a
complete solution will be built, choosing the uniform random
values for variables not present in the pattern. This procedure
called CONSTRUCTFROMPATTERN is described in Algorithm
2. This way, all initial solutions will contain the elements of
the selected pattern. Then the iteration proceeds as a standard
C-GRASP iteration.

We called the C-GRASP hybridized with Data Mining

by DMC-GRASP. The Algorithm 3 shows the entire DMC-
GRASP procedure. Note that for DMC-GRASP, we will need
a stopping criterion for the elite set generation phase and
another to hybrid phase. The stop criterion for the elite set
generation phase will be to reach a percentage (ρfe) of the
maximum resource budget of the algorithm. The hybrid phase
will consume the leftover budget. This resource budget can be
a maximum number of iterations or a maximum of objective
function evaluations. In the next subsections, we will specify
the proposed ideas to define the procedure EXTRACTPATTERN
in line 23 of DMC-GRASP, which is supposed to extract
patterns from the elite set.

A. Average and Standard Deviation

The average value of a set of numbers indicates the central
tendency of the data. It is the most likely value to be observed.
The dispersion of data around the mean is characterized by the
standard deviation measure. A low standard deviation indicates
the values tend to be close to the mean of the set, while a
high standard deviation indicates that the values are spread
out over a broader range [17]. Thus, we can use the mean and
standard deviation as concentration measures and then capture
the central tendency of data.

Therefore, we can characterize the solution pattern as the
mean of the solutions in the elite set. We call pattern here the
vector p of size |D|, in which, for each i ∈ D, pi = µ(Ei),
that is, the coordinate i of pattern is the mean of values in
coordinate i of solutions in the elite set E. Where D is the
set of dimensions of the problem and µ(Ei) is the average
of values in dimension i of E. Considering this pattern, the
hybrid C-GRASP, in his second phase, builds the new solution
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Algorithm 3 Continuous GRASP + Data Mining
1: procedure DMC-GRASP(n, l,u, f(.), hs, he, ρlo, ρfe)
2: f∗ ←∞
3: E ← ∅
4: while Stopping criteria 1 are not met do ▷ elite set generation phase
5: x← UNIFRAND(l,u)
6: h← hs

7: while h ≥ he do
8: ImprC← false
9: ImprL← false

10: [x,ImprC]← CONSTRUCTGREEDYRANDOMIZED(x, f(.), n, h, l,u,ImprC)
11: [x,ImprC]← LOCALIMPROVEMENT(x, f(.), n, h, l,u, ρlo,ImprL)
12: if f(x) < f∗ then
13: x∗ ← x
14: f∗ ← f(x)
15: end if
16: E ← UPDATEELITESET(E, x)
17: if ImprC = false and ImprL = false then
18: h← h/2
19: end if
20: end while
21: end while
22: while Stopping criteria 2 are not met do ▷ hybrid phase
23: p← EXTRACTPATTERN(E)
24: x← CONSTRUCTFROMPATTERN(p, l,u)
25: h← hs

26: while h ≥ he do
27: ImprC← false
28: ImprL← false
29: [x,ImprC]← CONSTRUCTGREEDYRANDOMIZED(x, f(.), n, h, l,u,ImprC)
30: [x,ImprC]← LOCALIMPROVEMENT(x, f(.), n, h, l,u, ρlo,ImprL)
31: if f(x) < f∗ then
32: x∗ ← x
33: f∗ ← f(x)
34: end if
35: E ← UPDATEELITESET(E, x)
36: if ImprC = false and ImprL = false then
37: h← h/2
38: end if
39: end while
40: end while
41: return x∗
42: end procedure

starting from the average of the best solutions found in his first
phase.

In some cases, we could have some dimensions that are not
sufficiently concentrated. We do not have enough evidence to
define a pattern in this case. We can use the standard deviation
to select only dimensions where the solution set is sufficiently
concentrated around the average value to avoid this problem.
Now, the pattern will be the sub-vector of p composed of
coordinates i where σ(Ei) ≤ τ . Here, σ(Ei) is the standard
deviation in values of dimension i of the elite set E, and the

parameter τ is the threshold that indicates low dispersion. This
mechanism aims at selecting only the variables sufficiently
concentrated for composing the pattern. We call the version of
DMC-GRASP with this pattern extraction strategy by DMC-
GRASP.

B. Clustering by dimension

In some cases, the mean and standard deviation may not
be adequate to identify patterns in the data. The data could
be distributed in clusters spread out in the search space.
In the problems we are focusing on, the search space, in
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general, has many minimums, and we expect that the set of
good solutions will be positioned near these minimums. We
propose then using clustering algorithms to identify groups of
points concentrated in different regions of the search space.
Clustering is an unsupervised machine learning task that aims
at partitioning the input data set into subsets (clusters), so these
data in each subset share common aspects [18].

Therefore, following this idea to extract patterns, for each
dimension i, we first cluster the data in dimension i of
solutions in the elite set. From the greatest cluster, we get
the centroid κi, which will be part of the pattern. So, pi = κi.
This process aims at getting the mean of a more dense set of
points, eliminating the influence of outliers to the mean. To
cluster the data we use the X-means algorithm [21], which is
an extension of the K-means algorithm [19] that estimates the
best number of clusters k to fit the data. This estimation is
based on Bayesian Information Criterion (BIC) or the Akaike
Information Criterion (AIC) measure. They are well-known
model selection approaches that evaluate how well a model fits
the data. They penalize models for having more parameters,
so these criteria will select models with fewer parameters.
The DMC-GRASP with this pattern extraction strategy will
be called DMC-GRASP-X.

C. Multidimensional Clustering

The previous methods focused on the view and analysis of
each dimension, separately, to extract patterns. Now, we pro-
pose clustering in the multidimensional space of the solutions.
This strategy tends to better reflect the distribution of elite
solutions. So, now, before extracting the pattern, we cluster
the elite set in the n-dimensional space, getting the centroid
κn from a selected cluster to be the pattern. To select the
cluster, we have three proposals. The first one is to select the
greatest cluster, and we call this approach by DMC-GRASP-
MX. The second selection strategy is randomly choosing a
cluster, and we call this by DMC-GRASP-RX. The third one
is to put all clusters in a queue to be used in a round-robin
way. In each iteration, in the second phase of DMC-GRASP,
we get the first element in the cluster queue, and after this,
that cluster goes to the end of the queue, This third approach
is named DMC-GRASP-QX. From the selected cluster, we
get the centroid as the pattern. We use the standard deviation
threshold to filter only the dimensions with low dispersion.

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the computational experiments
performed to evaluate the DMC-GRASP algorithm. We com-
pare all versions of DMC-GRASP with C-GRASP. To tune
the parameters of DMC-GRASP, we used irace [23]. Table I
shows the parameters used in the following experiments. In
these experiments, we introduced an extra parameter, denoted
here by |p| to determine the portion of the pattern which can
be used. The idea is to verify if using parts of patterns is better
than using the whole pattern.

Initially, we compare C-GRASP with the five versions of
DMC-GRASP described in Section IV. The comparison was

TABLE I
DMC-GRASP PARAMETERS

algorithm parameters
|E| ρfe |p| τ

DMC-GRASP 40 0.4 1 0.685
DMC-GRASP-X 40 0.1 0.8 0.0814
DMC-GRASP-MX 70 0.1 0.9 0.0712
DMC-GRASP-RX 70 0.4 0.9 0.3723
DMC-GRASP-QX 60 0.6 1 1

made in a set of 16 well-known benchmark functions. Table II
shows the comparison among the algorithms, considering the
average of the best solution found. Each algorithm was run
30 times, with a different seed to each execution. To this
experiment, the parameters hs, he and ρlo were set to 0.5, 0.01,
0.7 respectively. C-GRASP was set to stop when it reaches
20 external iterations or finds a solution x such that f(x) is
significantly close to the global minima f(x∗). As in [5], [6],
[9] be significantly close means:

|f(x∗)− f(x)| ≤ ϵ1|f(x∗)|+ ϵ2 (1)

where ϵ1 = 10−4 and ϵ2 = 10−6. After running C-GRASP,
we catch his average number of objective function evaluations
and set it as stop criterion for all DMC-GRASP versions as
well as the best solution found to be significantly close to
global minima.

The numbers in bold indicate the best result for a function
among the six algorithms in Table II. The underlined numbers
indicate for which function the corresponding DMC-GRASP
version performed better than C-GRASP. In turn, the results
marked with ‘*’ are statistically significant. We have used the
Wilcoxon signed-rank Test [20]. The results have shown that,
except for the BOHACHESKY function, for all functions, at
least one version of DMC-GRASP has performed better than
C-GRASP in the direct comparison of means.

We highlight the DMC-GRASP-QX results, which are better
than C-GRASP ones in 12 test functions, including 10 with
statistical significance. We also highlight that DMC-GRASP-
QX version wins C-GRASP with statistical significance to all
functions with |D| ≥ 5.

Table III shows the comparison of the best solutions found
by the algorithms. In this case, only in the POWERSUM func-
tion the C-GRASP finds the better result, however tied with
three versions of the DMC-GRASP. For all other functions,
at least one DMC-GRASP version has found a better solution
than C-GRASP. In this evaluation, DMC-GRASP-X has found
a better solution than C-GRASP in 14 test functions.

To analyze the effect of data mining on the algorithm
behaviour, we plot the mean cost values of solutions generated
by the construction procedure and local search with respect to
the 30 seeds used. Figures 1 and 2 shows the behaviours of C-
GRASP and DMC-GRASP-QX concerning the test functions
HARTMANN6,4 and RASTRINGIN, respectively. The verti-
cal blue line in the graphs of DMC-GRASP-QX marks the
average iteration where the mining starts. The red regions show
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TABLE II
COMPARISON OF MEANS

f |D| C-GRASP DMC-GRASP DMC-GRASP-X DMC-GRASP-MX DMC-GRASP-RX DMC-GRASP-QX
BOHACHEVSKY 2 5.9394e-05 8.8393e-05 9.0882e-05 1.2660e-04 9.1861e-05 7.5870e-05

GOLDSTEINPRICE 2 3.0017e+00 3.0004e+00* 3.0016e+00 3.0014e+00 3.0015e+00 3.0003e+00*
COLVILLE 4 4.5945e-04 2.0047e-04* 4.8941e-04 4.4075e-04 4.9144e-04 2.5488e-04*

POWERSUM 4 3.8587e-04 7.0311e-04 4.7032e-04 3.2270e-04 5.3069e-04 6.2174e-04
SHEKEL4,5 4 -9.9809e+00 -9.9013e+00 -9.0680e+00 -8.5699e+00 -9.9022e+00 -9.9822e+00*
SHEKEL4,7 4 -1.0399e+01 -1.0223e+01 -9.7004e+00 -9.5249e+00 -1.0401e+01* -1.0400e+01*
SHEKEL4,10 4 -1.0532e+01 -9.9938e+00 -8.7981e+00 -9.0625e+00 -1.0131e+01 -1.0533e+01*

PERM 4 8.8594e-03 8.4339e-03 6.9338e-02 1.3755e-01 8.2989e-02 9.8245e-03
PERM0 4 8.8594e-03 8.4339e-03 6.9338e-02 1.3755e-01 8.2989e-02 9.8245e-03

ROSENBROCK 5 2.2598e-02 2.3066e-02 6.3716e-03* 8.7730e-03* 1.1202e-02* 1.4140e-02*
HARTMANN6,4 6 -3.3219e+00 -3.3221e+00* -3.3220e+00* -3.3220e+00* -3.3221e+00* -3.3221e+00*
ROSENBROCK 10 6.0933e-02 6.1261e-02 6.4494e-02 1.3559e-01 3.3287e-02* 3.9672e-02

GRIEWANK 10 5.6184e-03 3.1773e-05* 5.2173e-05* 5.5775e-05* 4.8557e-05* 1.1137e-03*
ROSENBROCK 20 9.6348e-02 1.0589e-01 4.1610e-01 3.8107e-01 7.0546e-02* 7.8893e-02

GRIEWANK 20 9.0563e-03 3.6800e-05* 1.4525e-03* 6.5679e-05* 8.8092e-04* 3.0862e-03*
ACKLEY 30 1.1034e-02 5.8176e-03* 7.1033e-03* 6.8517e-03* 6.0661e-03* 5.5458e-03*

Wins - - 8 6 8 9 12

TABLE III
COMPARISON OF BEST

f |D| C-GRASP DMC-GRASP DMC-GRASP-X DMC-GRASP-MX DMC-GRASP-RX DMC-GRASP-QX
BOHACHEVSKY 2 1.4933e-06 2.2356e-06 2.7544e-07 4.1318e-07 1.1469e-06 1.6384e-07

GOLDSTEINPRICE 2 3.0002e+00 3.0000e+00 3.0001e+00 3.0002e+00 3.0001e+00 3.0000e+00
COLVILLE 4 8.5447e-05 2.1366e-05 7.5327e-05 6.0435e-05 9.3411e-05 2.4957e-05

POWERSUM 4 7.9648e-06 7.9648e-06 3.0893e-05 2.8253e-05 7.9648e-06 7.9648e-06
SHEKEL4,5 4 -1.0152e+01 -1.0153e+01 -1.0153e+01 -1.0153e+01 -1.0153e+01 -1.0153e+01
SHEKEL4,7 4 -1.0401e+01 -1.0403e+01 -1.0403e+01 -1.0403e+01 -1.0403e+01 -1.0403e+01
SHEKEL4,10 4 -1.0536e+01 -1.0536e+01 -1.0536e+01 -1.0536e+01 -1.0536e+01 -1.0536e+01

PERM 4 1.9945e-03 4.8515e-03 1.4043e-03 3.6150e-03 1.4778e-03 2.9955e-03
PERM0 4 1.9945e-03 4.8515e-03 1.4043e-03 3.6150e-03 1.4778e-03 2.9955e-03

ROSENBROCK 5 2.9203e-03 1.6199e-03 9.8446e-04 1.3650e-03 2.5237e-03 9.5073e-04
HARTMANN6,4 6 -3.3222e+00 -3.3223e+00 -3.3223e+00 -3.3223e+00 -3.3223e+00 -3.3223e+00
ROSENBROCK 10 1.3456e-02 4.0260e-03 2.4733e-03 5.6096e-03 1.9466e-03 5.3127e-03

GRIEWANK 10 2.4863e-05 0.0000e+00 1.9827e-05 2.9522e-05 2.4863e-05 2.0045e-05
ROSENBROCK 20 3.8979e-02 2.4384e-02 1.6369e-02 1.9877e-02 1.5783e-02 1.5226e-02

GRIEWANK 20 3.3826e-05 0.0000e+00 3.8813e-05 4.6140e-05 8.8439e-06 4.1625e-05
ACKLEY 30 9.6810e-03 4.6564e-03 5.6677e-03 5.7473e-03 5.0666e-03 4.4856e-03

Wins - - 12 14 10 13 12

where the algorithms tend to find their best solutions. The
black star marks the point with the best mean cost value. We
can observe that there is a quick convergence in average to the
lower values in the hybrid phase of DMC-GRASP. The region
in which it tends to find the best solutions is shorter than C-
GRASP and placed after starting the data mining. We can also
note that the DMC-GRASP performed more iterations than C-
GRASP with the same number of function evaluations, which
means it executes fewer function evaluations by iteration.

We also have undertaken an analysis using the time-to-target
plot [31] for some functions to compare the convergence speed
of C-GRASP and DMC-GRASP-QX, which has been the best
version of DMC-GRASP in the previous experiments. Fig-
ure 3 shows the graph for the HARTMANN6,4 function. The
time-to-target plot expresses that DMC-GRASP has a faster
convergence than C-GRASP. The DMC-GRASP algorithm
presented about 90% of probability to find a solution at least
as good as the target within about 7, 500 function evaluations.
C-GRASP reached the same probability after about 17, 500

evaluations. Figure 4 shows the graph for the RASTRINGIN
function, for which DMC-GRASP also has presented a faster
convergence, reaching about 100% of probability to find the
target solution before C-GRASP in one order of magnitude of
function evaluations.

VI. CONCLUSION

In this paper, we proposed the hybridization of the
C-GRASP metaheuristic with Data Mining, called DMC-
GRASP. The DMC-GRASP uses the patterns extracted from
good solutions by the Data Mining techniques to construct
new solutions, possibly better ones.

We compared the performance of five versions of DMC-
GRASP with C-GRASP in a set of well-known benchmark
functions. The results of the experiments showed that DMC-
GRASP can converge faster to better solutions than C-GRASP.

We can conclude from this work that pattern mining has
great potential to guide C-GRASP – or other metaheuristics
proposed for continuous optimization – to high-quality solu-
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Fig. 1. Analysis of average behaviour of C-GRASP and DMC-GRASP-QX, over the internal iterations for the HARTMANN6,4 function (|D| = 6).

Fig. 2. Analysis of average behaviour of C-GRASP and DMC-GRASP-QX, over the internal iterations for the RASTRIGIN function (|D| = 20).

tions. In future work, we intend to use pattern extracted by
data mining techniques to improve other state-of-art heuristics
in the context of continuous optimization.
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