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ABSTRACT
Water distribution systems are one of the critical infrastructures and major assets of the water utility in
a nation. The infrastructure of the distribution systems consists of resources, treatment plants, reservoirs,
distribution lines, and consumers. A sustainable water distribution network management has to take care
of accessibility, quality, quantity, and reliability of water. As water is becoming a depleting resource for
the coming decades, the regulation and accounting of the water in terms of the above four parameters is
a critical task. There have been many efforts towards the establishment of a monitoring and controlling
framework, capable of automating various stages of the water distribution processes. The current trending
technologies such as Information and Communication Technologies (ICT), Internet of Things (IoT), and
Artificial Intelligence (AI) have the potential to track this spatially varying network to collect, process,
and analyze the water distribution network attributes and events. In this work, we investigate the role and
scope of the IoT technologies in different stages of the water distribution systems. Our survey covers
the state-of-the-art monitoring and control systems for the water distribution networks, and the status
of IoT architectures for water distribution networks. We explore the existing water distribution systems,
providing the necessary background information on the current status. This work also presents an IoT
Architecture for Intelligent Water Networks - IoTA4IWNet, for real-time monitoring and control of water
distribution networks. We believe that to build a robust water distribution network, these components
need to be designed and implemented effectively.

INDEX TERMS Internet of things, IoT communication technologies, IoT services, water distribution
network

I. INTRODUCTION

AROUND 70% population in this world live in urban
areas and 50% of the population is expected to live

in water-stressed areas by 2025 [1]. Over two billion pop-
ulation are facing extreme water stress, as they consume
more than 80% of their available supply of water [2], [3].
According to the United Nations, “The human right to water
entitles everyone without discrimination to sufficient, safe,
acceptable, physically accessible and affordable water for
personal and domestic use [4]." The UN sustainable devel-
opment goal (SDG) #6 targets improved water availability,
sustainable management of water and sanitation for entire

population [5]. To achieve this goal, the researchers can
approach in various ways as discussed in [6] and [7]. Albeit
70% of the earth contains surface water and 30% ground-
water, only 2.5% water is available for consumption [1].
Engineered hydrologic and hydraulic components, such as
a water supply network, are used to transport the water.
Water distribution system refers to the part of the water
supply network that distributes portable water from a cen-
tralised treatment plant or a storage system to residential,
commercial, industrial, and firefighting purposes [8]. Water
distribution systems have always been important for the
well-being and development of communities; they grow and
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evolve in tandem with the growth of towns. However, the
water supply has been suffering serious issues as a result of
population growth, increased demand, infrastructure ageing,
and leakage, necessitating long-term solutions for both water
supply and consumption. Therefore it is very challenging to
achieve an equitable water supply for the water distribution
system [9].

A. CHALLENGES IN THE WATER DISTRIBUTION
SYSTEMS
Due to the unauthorized and unauthenticated extension
of the network without considering the system’s capacity,
most water distribution systems lack quality and quantity
of water supply, topological parameters, cost and energy
management, and plant efficiency. The population increase,
climate change, and urbanization enhance water depletion.
Furthermore, urbanization and population growth are the
primary causes of increased water withdrawal. The migra-
tion from rural to urban areas, loss of peri urban agriculture
and loss of green areas, due to deforestation, urbanization
and so on leads to population growth and urbanization.
The climate change, i.e, the rainfall intensity, variability in
sea level, melting of glaciers, temperature rise, increasing
floods, droughts and storm and changing the seasonality
are also challenges the WDS. The governance and policies,
some of the global policies, institutional frameworks, polit-
ical regimes makes the WDS functionality and institutional
management complex. Even though agriculture uses 70%
of freshwater worldwide according to Food and Agriculture
Organization (FAO) [10], there is an increasing imbalance
in water usage between developed and developing countries.
Most developed countries consume a major portion of their
water for industries rather than agriculture and domestic
purposes. However, in developing countries, agriculture con-
sumes the majority of water, rather than domestic and in-
dustry [11]. In addition, the growing number of international
water disputes might of considerable concern.

Deterioration in infrastructure system, such as increased
water main breaks, decreased freshwater resources, un-
traceable non-revenue water consumption, physical loss,
commercial loss, unbilled authorized users, increased water
demands, increased operational costs and water leakage
is the another major challenges identified for the water
distribution systems [12]–[14]. Non-revenue water (NRW)
[15]–[17], also known as physical losses or apparent losses,
is a significant concern for most countries’ water distribution
systems, as illustrated in Table 1. Leakage, evaporation,
incorrect metering, inadequate data collection, and theft all
contribute to the NRW. Furthermore, leakages can result in
considerable financial losses in water transportation as well
as additional costs for the consumer (end-user) due to the
wastage of energy and chemicals in water treatment plants.
The estimated losses due to leakage account for up to 30%
of the total amount of extracted water. Water leakage is
primarily caused by the aging of the pipeline (corroded),
excavation across the road, high pressure across the pipeline,

TABLE 1. A summary of per capita usage and non revenue water in various
countries.

Country Water resource Liter per
capita
per day
(LPCD)

Non Rev-
enue Wa-
ter (NRW)

Australia [18] Surface water/ ground-
water / desalination

191 7%

Canada [19] Rivers, lakes, groundwa-
ter, ice snow glaciers

343 30%

China [20] Surface and groundwater 178 21%

Germany [21] Spring water and bank-
filtered water, groundwa-
ter

122 8%

India [22] Surface water/ ground-
water

140 38%

Israel [23],
[24]

Aquifers and lakes 137 10%

Japan [25] Surface water and open
wells

250 6%

Malaysia [26] Surface water/ ground-
water

211 33%

US [27], [28] Ground water, streams,
rivers, lakes, aquifers,
and reservoirs

302-378 18%

unnoticed underground pipe leakage, extreme weather con-
ditions, material of construction, soil conditions, increased
water consumption of systems that are at capacity and/or
are already stressed, increased treatment costs due to larger
treatment system requirements, capital expenditure, chem-
ical requirements, operational expenditure, and increased
power requirements through larger capacity treatments and
pumping assets to support the higher demand [16]. To
reduce the leakage, a proper monitoring and maintenance
of the water distribution system is required. Moreover lack
of historic scientific data on distribution system can leads to
improper management and maintenance of the resources and
consumer connections such as supply deficiency, leakage,
higher demand, low pressure. Table 2 depicts various stages
of the water distribution system and its parameters to be
monitored in each stage to achieve better functioning and
equitable supply. Changes in public priorities, emerging
technologies, energy costs and increasing complexity are
also challenges for the WDS. In this paper, we are inter-
changeably using the terms water distribution system and
water supply systems.

B. ROLE OF INTERNET OF THINGS (IOT) IN WATER
SECTOR
Based on the aforementioned water distribution network
challenges in section I-A, it can be concluded that an effec-
tive monitoring and automation system can alleviate such
issues. One of the most prominent technologies for efficient
monitoring and automation of the water distribution network
is IoT, which enables individuals and objects to connect at
any time, anywhere, with anything and anybody, preferably
via any network (route) and using any service [29]. IoT has
evolved in such a way that, it has to deal with tremen-
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TABLE 2. Different stages in water supply systems and the key parameters to
be monitored in each stage to understand the system performance.

Resource Treatment Distribution Consumer

Availability Tank: over-
flow/empty

Storage:
empty/
overflow

Tank: over-
flow/empty

Conveyance
(Pump-
ing/Gravity)

Pumping/energy Pumping/energy Pumping/energy

Intake Reagent Pressure Pressure

Leakage Leakage Leakage Leakage

Quality Different qual-
ity parameters

Quality Quality param-
eters

Quantity Flow rate Velocity Velocity

dous data, storage, processing, and analytics [30]–[32].
The capabilities of IoT includes data sensing, processing,
analyzing, and inferring parameters from natural resources
and delicate ecologies to urban environments [33]. Further,
it provides network utilization and context awareness to the
system [34]. The embracing of Wireless Sensor Networks
(WSN), low power communication technology with small
embedded devices led to the technical convergence of IoT
[35]. IoT offers several refined and ubiquitous solutions
in various applications, such as intelligent transportation
systems, governance, environment monitoring, smart homes,
smart health, and quality of life [36]. Sustainability has
become a key issue nowadays for the world population,
as the dynamic and progressive advancement in the area
of IoT technologies are leading to totally different helpful
edges, however this fast growing developments must be
rigorously monitored and evaluated from an environmental
point of view to limit the presence of harmful impacts and
make sure the smart utilization of limited world resources.
There should require a significant analysis efforts within the
previous sense to rigorously investigate the positives and
negatives of IoT technologies [37].

IoT is considered as an important tool for monitoring
and automation [38]–[41] applications. IoT allows precise
control over water resources data, thus the key players in the
water sector proactively innovate and resolve issues of water
scarcity and address the aging water infrastructure [42], [43].
The water sector can no longer sustain itself in isolation
from the technological shifts happening in other infras-
tructure industries and at the customer level. Inspection of
corroding pipes, enabling predictive maintenance, analyzing
data in real-time to identify leaks, and leveraging software
to help utilities and consumers track their home water usage
are some applications of IoT enabled monitoring systems.

IoT is one of the powerful monitoring tools for water dis-
tribution systems that can integrate analytics and intelligence
to achieve control and automation features. Sensing systems,
communication technologies, networking capabilities, and
computing with storage and visualization makes IoT an
efficient platform for an intelligent monitoring system.

Introducing IoT into water distribution network can tack-

les one of the critical challenges in water management; data
unavailability/inadequate scientific information on various
water distribution network elements such as water reservoirs
and network health. The real time data collected by hetero-
geneous interconnected devices and sensors can analyze and
process the application environment information, hence IoT
would be a promising solution for the WDN. Moreover, the
application of IoT technology can prove valuable in better
water collection, storage, distribution, leakage prevention,
waste water management, as well as distribution [44].

C. MOTIVATION
Although IoT-based water supply systems are introduced
recently, there are several commercial solutions and plat-
forms [45]–[47] available indicating the growing market
demand. We found that most of the commercial solutions
and platforms are focusing on the data collection, data
integration, and data visualization using IoT sensors, while
only a few offer predictive analytics of the acquired data
[48]. The technological advances in IoT in recent years
have fuelled the need for systematic progress of the present
commercial systems and solutions in every industry sector.
Based on the progress made at the research level, successful
commercial solutions are constantly emerging using innova-
tive technologies.

Table 3 summarizes the existing review articles on the
methodologies for monitoring technologies in water distri-
bution systems. They provide different orientations, such as
these two articles [1], [49] focus on water quality monitoring
systems based on WSN and IoT systems, information and
communications technology (ICT) in water supply systems
in terms of the importance of the network pressure man-
agement and stakeholders engagement via social media and
gaming [50], [51], and blockchain solutions [52]. However,
most of the review articles do not consider IoT solutions
for water distribution systems with monitoring, control, and
automation.

D. CONTRIBUTIONS
The management of water distribution is critical for the
utilities and authorities, as they need to get a thorough
analysis of the distribution network with the scope of IoT
to embrace the system flawlessly. In this paper, we have
explained the water supply/distribution system with the per-
vasive inclusion of the IoT and presented the applications.
This survey endeavors to examine the research carried out to
provide a sustainable water distribution system by utilizing
the features of IoT. The major contributions of this paper
are as follows.

• Presentation of the water supply system taxonomy,
its components and parameters, and their different
processes at each stage.

• Providing extensive insights into the IoT communica-
tion technologies, cloud platforms, and their character-
istics applicable to water distribution systems.
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TABLE 3. Summary of some popular survey articles in the area of IoT and water distribution systems.

Reference Contribution Summary

[1] Water quality monitoring (WQM) applica-
tions with WSN

WSN based water quality monitoring techniques explained for water resources and also the
shortcoming of traditional manual lab-based (TMLB) monitoring approach and traditional
manual in situ (TMIS) monitoring approach for WQM over WSN.

[51] Importance of ICT in urban water manage-
ment

(i) Smart ICT solutions derived with flow and pressure sensors in the network and providing
online visibility and network intelligence (ii) Remote based control for valves based
on automatic pressure optimization algorithm value of social networks and gaming via
stakeholder involvement.

[52] Importance of blockchain in various applica-
tions in IoT-based water management system,
a scenario in Africa

Explains the challenges and security threats in an IoT-enabled water distribution network
and introduces the blockchain as the solution for such challenges and provided the
conceptual framework for the smart water supply.

[53] IoT enabled water quality monitoring Real-time water quality monitoring applications, parameters to be monitored, suitable
communication technologies, controllers, sensors, and power consumption issues with an
IoT-based hardware and software architecture is presented in this work.

[54] WSN systems and use cases The water quality system and water distribution system are presented as the use cases
of the WSN monitoring systems. Monitoring the water quality for both in households
and industrial processes, in a natural or an artificial environment, and the monitoring of
the water distribution system’s critical activities such as potential leakages, quantity or
efficiency.

TABLE 4. Comparative study of existing surveys in IoT-based WDS from
2019-2022.

Reference [55] [56] [57] [58] [59] [60] Our
survey

Background of
WDS

✗ ✗ ✗ ✗ ✗ ✗ ✓

Overview
of IoT
technology

✓ ✓ ✗ ✗ ✗ ✗ ✓

Role of IoT in
WDS Applica-
tions

✓ ✓ ✓ ✓ ✗ ✓ ✓

Recommended
Architecture
for IoT based
WDS

✗ ✗ ✓ ✗ ✓ ✓ ✓

Challenges
in IoT based
WDN

✓ ✓ ✓ ✗ ✓ ✗ ✓

• Analyzing the scope of various real-world IoT appli-
cations in water distribution systems.

• Providing a brief overview of IoT-based monitoring,
control, and automation strategies for water distribution
system applications.

• Presentation of a IoT Architecture for Intelligent Water
Network-IoTA4IWNet.

• Presentation of existing challenges, recommendations,
and future research directions for IoT-based water
distribution network.

We have considered relevant and recent six publications
of surveys and reviews conducted in IoT-based water distri-
bution networks, smart water grids, and ICT on WDS from
2019 to 2022. To acquire insights on IoT-based WDN, ex-
isting surveys compared to our work based on the following
concepts; the background of the water distribution system,
an overview of IoT technologies, IoT-based different water
supply applications, an architecture based on the study,
and challenges and future directions in IoT-based water

distribution systems as shown in Table 4. To the best of
our knowledge, we have considered all the above aspects
together, which provide a holistic approach that turns out to
be novel in this review paper. We feel that this paper will
help newcomers to understand the role of IoT in developing
a sustainable water distribution system.

E. ORGANIZATION
The organization of the paper is as follows. Section II
briefly explains the research method used in the study and
development of the research questions such as resources for
the study, thought process for the research development,
and finally presents the research questions. Each research
question is addressed and discussed in detail in Section
III. Section IV comprises the analysis of IoT characteristics
and constraints in the deployments of water distribution net-
work (WDN). Section V recommends and presents an IoT
architecture (IoTA4IWNet) capable of monitoring, control
and automate WDN systems and Section VII concludes the
paper.

II. RESEARCH METHOD
In this section, we introduce the research approach, by
conducting a systematic literature review to understand the
role of the IoT in the water distribution systems. Four
research questions are considered as the first step of the lit-
erature review. A comprehensive review analysis conducted
based on literature which are focused on IoT systems in
water distribution domain. The objective of this study is
to synthesize the current knowledge and approaches for
monitor, control, and automation strategies for the water
distribution systems. Towards this objective, a quantitative
review method, based on the systematic approach, is used
in this study. Moreover, qualitative analysis of the core
area publications i.e. carefully selected journals and con-
ferences presented in this study. This task is performed
such that, the identification and presentation of each articles
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is reviewed and categorized based on its research focus
and results. Moreover, we considered only the publications
written in English. Fig. 1 depicts an overview of the research
methodology adopted for this paper. The major resources
for the articles discussing in this work are identified via
Google Scholar and Scopus. Most of the selected articles
are from Elsevier, IEEE, and Springer, and the rest from
other scholarly article resources like arXiv, MDPI, and
Wiley. Furthermore, the collected articles are categorized
as journals, conference proceedings, white papers, and so
forth and their further analysis leads to the development of
the research questions.

A. THOUGHT PROCESS
To investigate the role of IoT in the water distribution
system, the primary step is to review the existing system
based on its parameters, attributes, and different events.
Therefore the initial research question deals with the iden-
tification of the stages and processes in water distribution
systems. Next, we surveyed the available literature in IoT
technologies for the period 2000 to 2021, to comprehend
the importance, specifications, and characteristics of the
IoT technologies, which turned out as the second research
question. Subsequently, we investigated the literature to
discover various applications of IoT in WDN. Finally, the
fourth question introduces the importance of an integrated
methodology to monitor, control, and automate the water
distribution networks with an IoT-based closed-loop system.

B. RESEARCH QUESTIONS
We aim to identify the scope of IoT in the water distribution
system and synthesize this research evidence to propose
an IoT-based communication architecture for the same.
This is achieved by comparing and contrasting the existing
approaches and analyzing this in an application framework.
Accordingly, this paper attempts to solve the following
research questions:

• RQ1: What are the major processes and stages in the
supply of water distribution networks?

• RQ2: What are the available IoT technologies applica-
ble to monitor/control/automate various parameters in
water distribution networks?

• RQ3: What are the real-world IoT applications in the
water distribution network?

• RQ4: What is the scope of IoT-based monitoring,
control, and automation in water supply systems?

III. FINDINGS AND DISCUSSIONS
In this section, we will discuss the above-mentioned four
research questions and present the findings of each.

A. ADDRESSING RQ1: WHAT ARE THE PROCESSES
AND STAGES IN THE SUPPLY OF WATER DISTRIBUTION
NETWORKS?
The water supply system is a spatially organized network
that ensures safe water access to the people/community,

which consists of water resources, intake system, storage
system, conveyance systems, treatment plants, distribution
networks, and consumers. The water intake from the source
is followed by the transmission system in which conveyance
of the raw water is carried out from the collection unit to the
water treatment plants (WTP). Subsequently, the distribution
of the treated water to the consumers through the pipe
networks. In a further attempt to provide more insights
into the water distribution system, we portrayed the water
supply system with stages, processes, and its attributes and
parameters in Fig. 2. The water supply system consists of
the following seven subsystems.

1) Water resources
The commonly used water sources are rivers, lakes, aquifers,
and bore wells. These water sources can be of different types
such as surface water sources, groundwater sources, atmo-
spheric water, recycled wastewater, and saline water. One
of the biggest challenges concerning the sources is water
availability, which depends on climate change, population,
and urbanization. Besides, general longevity of the sources
(short-term and long-term), water quality, susceptibility to
pollution, and ease of access to the water resources are some
other challenges [61].

2) Intake structures
The water resources are associated with an intake system.
These intake systems are installed to safely withdraw water
from the source and to discharge it into the withdrawal (or
intake) conduit, through which it reaches the WTP. It can
be categorized into three (see Fig. 2), according to the type
of source (river, canal, reservoir and lake intakes), water
presence in the intake tower (wet and dry intake) and the
position of intakes (submerged and exposed intake) [62].

3) Water conveyance/transport system
Conveyance or the transportation system has the following
two stages (see Fig. 2).

• Water can be transported by three methods depend-
ing on relative elevations of WTP and water supply
sources, whether it is by pumping or by gravity/free-
flow, or by the combined action of both pumping and
gravity flow.

• Water transported either by pumping directly to the
water mains or by pumping to an intermediate overhead
tank and then supplying to the water mains via gravity
for distribution.

4) Water storage systems
Water storage systems can be situated in water distribution
networks in the following ways (see Fig. 2):

• Before the intake system to store tapping water streams
with the low and inconsistent flow

• After the intake system to store water for consistent
supply to the treatment plant
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FIGURE 1. Information sources used for the search phase and overview of research methodology.

• Before the treatment system to store water for consis-
tent supply to the treatment plant

• After the treatment plant to safely store the treated
water before it reaches the end consumer.

5) Water treatment plant (WTP)
The treatment plant is one of the most vulnerable stages in
the supply system. It has the following processes [63].

• Screening: Screening refers to the filtration of the
coarser floating and suspended materials, and removes
impurities like wood, leaves, aquatic plants, papers,
polythene, and so forth.

• Aeration: An aeration is a unit that brings water and
air in close contact and aims at the removal of iron
and manganese, dissolved gases, and volatile organic
compounds (VOCs).

• Sedimentation: Phase separation process to settle down
the suspended materials including clay and silt, organic
matter, and other associated impurities under the effect
of gravity.

• Coagulation and flocculation: Respective steps in-
tended to overcome the forces stabilizing the fine sus-
pended or colloidal particles, allowing particle collision
and floc development.

• Filtration: Water is passed through sand or multimedia
filters for the removal of left-over suspended solids and
micro-flocs.

• Disinfection: Disinfection is the process to remove,
deactivate or kill pathogenic microorganisms so that
they are not infectious to humans and animals.

6) Water quality
The water abstracted from the source may not be of us-
able quality in its natural state. Moreover, anthropogenic
activities in many regions and the industrial, agriculture,
and social pollution [64] compel water quality deterioration.

Thus, the quality of the supplied water should ensure public
health safety (essentially free of disease-causing microbes
and chemicals). Some of the widely used water quality
guidelines [65] are the European Union Water Framework
Directive, the Clean Water Act in the United States, the
World Health Organization (WHO) drinking water qual-
ity guidelines, and the Bureau of Investigation Standards
(BIS) in India. The valid implementation of these standards
depends on the establishment of a robust and verifiable
monitoring regime of water supply systems. Systematic
and proactive water quality governance and control in the
water source management enables earlier identification of
the number of quality parameters so that the distribution
system can have a reasonable amount of time to act on
the quality risk factors. The water quality monitoring pa-
rameters can be categorized into three - physical, chemical,
and biological [66]. Some of the standard water quality
parameters (see Fig. 2) include temperature, color, odor,
turbidity, conductivity, solids (total, suspended, dissolved,
fixed, volatile) pH, acidity, alkalinity, hardness, nutrients
(nitrogen, phosphorous), metals (Fe, Al, As, Cr, Zn, Ni,
Co, and so on.), ions (chloride, carbonate, nitrate, sulfate,
and so on.), pesticides, radioactive emission, dissolved oxy-
gen (DO), chemical oxygen demand (COD), biochemical
oxygen demand (BOD), and other trace elements, Most
Probable Number (MPN), Total and Fecal Coliform.

7) Water distribution network
The water distribution network majorly consists of pipes,
valves, appurtenances, pumps and storage structures, and
other supporting infrastructure. The water pumping stations
can be equipped with pumps, motors, pressure switches,
valves and pump on-off valves, and so forth. The energy
content in the distribution network employed in this stage,
where monitoring, automation, and control together can
accomplish the optimized performance of the pumping sys-
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FIGURE 2. Water supply system taxonomy, consisting of different processes in the supply system from the water resources to the stakeholder.
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tem, thereby leading an increase in the performance of the
entire supply system. Further, the water quality parameters
like pH, chlorine, dissolved oxygen, conductivity, turbidity,
and oxidation-reduction potential need to monitor in the
water system, before supplied to the customers. In central-
ized water distribution systems, water treatment is carried
out before sending water to consumers. Positively, post-
treatment safety is also ensured by eliminating the chances
of contamination in distribution systems. Moreover, the
treated water is unstored for a long in storage or overhead
reservoirs to reduce the chances of contamination due to
long storage [67].

As stated in Section I-A, the challenges such as tracking
of pipe cracks, pipe bursts, leakage, and water quality
are difficult to carry out at frequent time scale, without
adequate technical support due to its spatial distribution.
Consequently, overall operation and monitoring have been
grossly inefficient with traditional practices of monitoring
and management, especially with aging infrastructure. Here,
some of the critical parameters to monitor are the flow
and pressure in mains and consumer end, reservoir level,
and valve operations of WDN. In short, both monitoring,
control, and automation of the water supply system can
enhance the reliability of the entire supply system from
the water generation to the consumer. Moreover, a robust
water distribution system must be capable of providing the
water, without deterioration in the quality in the pipes and
deliver with the optimum pressure head for various purposes
such as domestic, commercial, industrial, and firefighting.
Furthermore, the conventional WDN system can upgrade
into three steps as follows: (i) to upgrade the system into
an instrumental system with the ability to detect, measure,
acquire and record data, (ii) to upgrade the system into
an interconnected one with the ability to communicate
and interact with system operators, managers, utilities and
stakeholders and (iii) to control the system with the feedback
from step (ii).

Hence, entire water distribution system management can
be divided in to nine applications such as water quality
monitoring, leak detection and monitoring, pressure control
and monitoring, parameter estimation and monitoring, state
estimation and monitoring, demand prediction and moni-
toring, pipe health monitoring, pump energy consumption
monitoring, and water resource management [68].

B. ADDRESSING RQ2: WHAT ARE THE AVAILABLE IOT
COMMUNICATION TECHNOLOGIES/INTERFACES
APPLICABLE TO MONITOR/CONTROL/ AUTOMATE THE
PARAMETERS IN WATER DISTRIBUTION NETWORKS?
IoT deals with billions of devices ‘connected to the internet’
with the help of various IoT technologies (shown in Table
5), cellular technologies, M2M technologies, and so forth
[69]. The growth of the IoT can be identified from various
statistical data such as there exist 21.7 billion active con-
nected devices worldwide, from that 11.7 billion (or 54%)
is the IoT device connections. By 2025, it is expected to

be more than 30 billion IoT connections, which is on an
average four IoT devices per person [70], [71]. The total
volume of data exceeding 600 ZB per year by 2020, and
the global spending on IoT of more than $3.7 trillion in
2018 and projected to grow up to $11.1 trillion per year in
2025 [72]–[74].

Since IoT is a highly advanced technology, it can trig-
ger the development of intelligent devices, smart sensors,
actuators, and Machine to Machine (M2M) devices [75],
[76] with the coexistence of different IoT technologies like
Near Field Communication (NFC) [77], ZigBee [78], Wi-Fi
[79], [80], LoRa [81], and NB-IoT [82]. The IoT commu-
nication technologies are intend to connect heterogeneous
objects or devices within one framework to achieve smart
applications and services, with low cost and low power even
in adverse communication environments such as in lossy
and noisy communication links. To provide more insights
into the different IoT technologies and their characteristics,
a comparison is shown in Table 5. From different IoT
communication technologies, RFID is considered as the first
IoT communication technology, which realized the M2M
communications via RFID tag and reader concept [83].
NFC is another technology that supports high frequency,
low data rate communication with an applicable range up
to 10 centimeters [84] which allows the shortest commu-
nication distance. The Bluetooth technology is known as
the cable replacement technology which is widely used in
headphones, mouse, and keyboards while Bluetooth Low
Energy (BLE) is used in accessories for smartphone apps
and internet-connected devices [85]–[87]. Wi-Fi is the most
common communication technology in which used to build
smart sensor ad-hoc networks [88], [89]. LTE (Long-Term
Evolution) is a standard wireless communication technology
for high-speed data transfer between mobile phones based
on GSM/UMTS network technologies [90], [91].

Besides the communication technologies, other important
aspect of IoT is the cloud platforms and protocols. There are
a number of public and private cloud platforms available for
IoT applications. Most of the cloud platforms are providing
end to end connectivity and services to the edge network
and end devices. The major focuses of the cloud platforms
are connectivity and normalization, device management,
processing and decision making, data visualization and
analytic, external interface and database management [95].
The cloud platforms are supported by various data transfer
protocols such as Message Queuing Telemetry Transport
(MQTT) that handles publish subscribe for message broker,
Hypertext Transfer Protocol (HTTP) and so on. Prominent
cloud platforms and their supporting protocols are shown in
the Table 6.

The IoT system has different functional blocks like iden-
tification, sensing, services [48], management [96], security
[97], semantics [98] and applications. Moreover, each IoT
system needs to accomplish the major IoT characteristics
like interoperability, scalability, QoS, reliability, distributive,
and security [99]. Furthermore, the steps involved in the
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TABLE 5. Overview of different IoT technologies for water supply system.

Technology Supported
frequency

Range Data Rate Standardization Topology Security Modulation

ANT 2.4 GHz ISM band 30m at 0 dBm 12.8 kbps, 20 kbps &
60kbps

Proprietary P2P, star, tree,
mesh

AES-128 and 64-
bit key

GFSK

BLE 2.4 GHz 10–600m in air 125 kbps, 250 kbps,
500 kbps, 1 Mbps, &
2 Mbps

Standard P2P, star, &
mesh

AES-128 GFSK

Bluetooth 2.4GHz 1-100m, 20m
LoS

1-3 Mbps Standard ISM band P2P, scatternet 56-128 bit key GFSK

Dash 7
(DA7)

Unlicensed ISM band
433.92, 868, 915
MHz

1 - 2 KM (ex-
tend using sub-
controller)

13, 55, 200 kbps (16,
8, 4 channels)

ISO/IEC 18000-7 Tree, Simple
routing two
hops

AES-counter
with CBC-MAC
(CCM)

2-GFSK

EC-GSM-
IoT

Cellular GSM bands 154 - 164dB 70-240kbps 3GPP Licensed Star 3GPP (128-
256bit)

GMSK,
8PSK

EnOcean 315 MHz, 868 MHz,
902 MHz

300m Outdoor,
30m Indoors

125 kbps Standard Mesh AES 128-bit key ASK, FSK

INGENU
(RPMA)

2.4GHz Up to 176 square
miles

624 kbps (uplink),
156kbps (downlink)

cellular-based
standards

Star 128-bit
encryption
and two-way
authentication

D-BPSK

EnOcean 315 MHz, 868 MHz,
902 MHz

300m Outdoor,
30m Indoors

125 kbps Standard Mesh AES 128-bit key ASK, FSK

LoRa Unlicensed ISM band
868, 915 MHz

2 - 5 Km (ur-
ban)/15 (rural)

0.3 - 50 (EU) / 0.9 -
100 (US)

LoRa Alliance Star 128-bit AES en-
cryption

CSS

LTE CAT-
M

1.4–20 MHz Cellular LTE
network

1 Mbps 3GPP Star 128-256bit 16-QAM

MYTHINGS 868 MHz (Europe)
or 915 MHz (North
America)

1KM-15KM 10 Kbps-100Kbps Standard star Built-in AES-128 Telegram
Splitting

NB-IoT Cellular Band Greater than 15
Km

250 kbps 3GPP Licensed Star
Military grade

LTE cellular
framework

256 bit encryption QPSK,
BPSK

NFC 13.56 MHz Less than 0.2 m 106 kbps to 424 kbps Standard-ISO-
18000-6C

P2P symmetric cryp-
tography

ASK

RFID 120–150 kHz (LF),
13.56 MHz (HF), 433
MHz (UHF), 865-
868/902-928 MHz
UHF, 2450-5800
MHz (microwave)

10cm - 200m 40 kbps - 640 kbps ISO 14443, 15693,
18000 EPC global

P2P & P2M ISO/IEC 18000
ISO/IEC 29167
use on-chip
cryptography

ASK, 2
FSK, 2 PSK

SigFox 868, 902 MHZ ISM 24 Km 100 bps Proprietary Star AES-128 encryp-
tion

DBPSK
+GFSK

Symphony
Link

915-MHz ISM 2312.47 m 200 bps to 100 kbps Proprietary Mesh PKI based Diffie
Hellman AES

CSS

Weightless Varies with legislation
(470 – 790MHz)

Up to 10km 1 kbps - 10 Mbps Weightless SIG Open Star AES-128/256 en-
cryption

GMSK,
+PSK

Wi-Fi 2.4 GHz, 3.6 GHz
and 4.9/5.0 GHz
bands.2.4 GHz ISM
(g) 5 GHz U-NII (a)

100m+ 54 Mbps IEEE 802.11 Star Optional- RC4
(AES in 802.11i)

BPSK,
QPSK, 16-,
64-QAM

Wi-FI Hal-
low

Sub-1-GHz Over 1 KM 150 kbps-86.7 Mbps 802.11 standard unli-
censed

star-network WPA3 OFDM

WiMAX Licensed/Unlicensed
2 G to 11 GHz

50 Km 100 Mbps IEEE 802.16 Mesh Mandatory-
3DES Optional-
AES

BPSK,
QPSK,
16-64-256-
QAM

Zigbee 2.4 GHz (+ sub-GHz
for ZigBee PRO)

10–100 m 250 kbps (at 2.4
GHz)

Standard Mesh AES-128 QPSK

Z-WAVE 2.4 GHz and 900
MHz

10-100 metres 100 kbps Proprietary Mesh AES-128 FSK

3G 850/900/1800/1900
MHz

50-150 KM 2 MB 3GPP licensed Cellular
framework

SNOW3G CDMA

4G/LTE 2-8GHz 50-150 KM 200Mbps-1 Gbps 3GPP licensed Cellular
framework

128-bit AES
and SNOW3G
algorithms

CDMA

5G Low/Mid/mm Wave
bands 100/400 MHZ

50-80 KM Gbps 3GPP licensed Cellular
framework

LTE encription OFDM,
BDMA
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TABLE 6. IoT Cloud Platforms and supported protocols

IoT Cloud Plat-
forms

Protocols Contribution

AWS IoT CORE
[92]

MQTT3.1.1
HTTP(S)

Performanace analysis
of three cloud platforms
based on cloud service
time

MICROSOFT
AZURE FOR IoT
[92]

MQTT3.1.1
HTTP(S)

Simulation of point to
point, fan in and fan out
scenarios

GOOGLE CLOUD
IoT CORE [92]

MQTT3.1.1
HTTP(S)

Devices send one mes-
sage per minute of 1kB.

IBM WATSON IoT
[93]

MQTT, HTTP(S),
AMQP, and CoAP

Twenty one features of
five IoT platforms being
compared

Oracle IoT [93] MQTT, HTTP Theoretical framework
design for selection IoT
platform

DigiOcean [94] MQTT, HTTP Machine learning algo-
rithms for various cloud
computing services

Alibaba Cloud [94] MQTT, HTTP

IoT system development are understanding the necessities
and requirements of IoT users (consumer/utility/stakeholder)
and their appliances and devices, pervasive communication
networks, and software architectures to transmit, process and
compute the sensor data to where it is relevant, and analytic
tools for autonomous and intelligent behavior in IoT systems
[100], [101].

C. ADDRESSING RQ3: WHAT ARE THE REAL-WORLD
IOT APPLICATIONS IN THE WATER DISTRIBUTION
NETWORK?
The advanced technological shifts are happening to all
infrastructure industries at the customer level, and the water
sector can no longer sustain itself from this advanced
technological isolation. IoT is considered as a tool for
monitoring and automation [38]–[40] that allows precise
control over water resources data thereby proactively inno-
vates and resolves the water scarcity problems and address
the water infrastructure aging [41]–[43]. Additionally, IoT
can integrate analytic and intelligence to achieve control and
automation features in a water distribution system. More-
over, the sensing systems, communication technologies,
networking capabilities, and computing with storage and vi-
sualization makes IoT an efficient platform for an intelligent
monitoring system. Some of the main applications of IoT-
enabled monitoring systems are inspection of pipes (e.g.
corroding and crack), enable maintenance prediction, real-
time analysis of sensor data to identify leaks and cracks, and
software leverage to help utilities and consumers to track
their water usage pattern for the better water management.

In this section, our aim is to provide a brief summary of
existing literature in IoT-enabled water distribution system,
which are as follows.

• A Low Power Wide Area Network (LPWAN) based
IoT system for real-time water quality, availability,

and quantity monitoring system is a smart water grid
solution [102]. This system incorporated five qual-
ity parameters such as oxidation reduction potential
(ORP), pH, salinity, turbidity, and temperature along
with water level and water flow meter. Furthermore, it
addressed the challenges in a distribution grid such as
clean water and sewage water mixing, incomplete water
treatment, intermittent water supply, and inefficient
flow control gate management. LoRa communication
technology is used for long communication range and
to support small data rates and long communication
range. Moreover, the system can overcome the power
consumption and computational power efficiency con-
straints.

• A water usage control and equipment management
system with an integrated approach of WSN, IoT,
and cloud computing presents various IoT applications
in WDS [103]. The water flow meters are used to
get consumption and leakage data and the system
monitors the intermittent supply, availability, leakage
localization, billing, and consumption pattern of the
user. The architecture of the smart water distribution
system consists of a source (tanks/reservoirs), pumping
stations, valves, and pipes. Continuous level sensors,
water flow meters, and valves are in the WSN layer.
IoT layer occupies 2G/3G communication techniques
and it also acts as an adaption layer for both WSN
and cloud in this architecture. User awareness, control,
and management application and data analytics have
been done in the cloud layer. The system is costly and
interdisciplinary, hence challenging for the real-world
deployment of the system. IoT layer occupies 2G/3G
communication techniques and acts as an adaption
layer for both WSN and cloud in this architecture. User
awareness, control, management application, and data
analytics have been made in the cloud. The system is
costly and interdisciplinary, hence challenging for the
real-world deployment of the system.

• A water quality monitoring system in a single-chip
solution interfaces transducers to sensor networks using
Field Programmable Gate Arrays (FPGA) with the
help of a wireless XBee module [104]. This system
incorporates four water quality parameters like pH,
turbidity, temperature, and carbon dioxide with an
ultrasonic water level sensor. The research focused
on developing a number of energy-constrained sensor
nodes in an unnoticed environment. Therefore they
used low-power, low-cost single-chip fully-integrated
autonomous System-on-Chip (SoC) wireless sensor
nodes, which use VHSIC Hardware Description Lan-
guage (VHDL) and C programming for SoC data
computation. Further, they used ZigBee wireless nodes
for information transfer.

• A sustainable water distribution system for utilities
and consumers to save water resources and energy is
integrates the technologies Big data and IoT. In this
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system, Wi-Fi-enabled IoT devices are installed on the
consumer side, and the accumulated data is transmitted
via the Global System for Mobile Communications
(GSM) to the utility. The Big-data analytic platform
has automated water audits, billing, and hydraulic
performance analyses. Moreover, analyzing these data
utilities controls the network performance optimization
that includes the monitoring, control, pressure, and
overflow of the consumer home network.

• Integrating ICT into traditional water management sys-
tems can develop Smart Water Management (SWM).
SWM can monitor the water resources, diagnose prob-
lems, improve efficacy, and coordinate and manage a
sustainable water supply. Furthermore, SWM takes care
of the whole water management cycle from source
to consumer, including withdrawal, treatment, con-
veyance, distribution, and reuse of water [105].

• The IoT-based water quality monitoring system com-
prised of three subsystems, a central measurement
node, a control node, tiny notification nodes, and a
central measurement node through an interconnected
ZigBee-Radio Frequency (RF) transceiver. This sys-
tem provides near-tap notifications locally to the user
through interfaced peripherals such as LED and LCD
displays and buzzer. This setup has six water quality
sensors that can determine water flow, conductivity,
ORP, pH, temperature, and turbidity. Since the water
distribution system is rapidly polluted with hazardous
pollutants, there is an urgent need for such rapid quality
detection systems [106], [107].

To provide more insights into IoT-enabled water distri-
bution systems, we reviewed the literature and present the
analysis of various IoT technologies and their applications
in the WDN in Table 7. Further, we listed the types of
sensors required to capture different processes or events of
the WDN in Table 8. An effective water distribution system
can be built by effective usage and implementation of proper
devices, components, and communication technologies.

D. ADDRESSING RQ4: WHAT IS THE SCOPE OF
IOT-BASED MONITORING, CONTROL, AND
AUTOMATION IN WDN
The water supply system is a complex distributed network
that is being converted to networked control systems de-
ployed to monitor, control, and automate in response of
physical infrastructure. With the integration of the compati-
ble IoT devices the deprecated infrastructure can be changed
into supervisory systems, which enables remote monitor-
ing and control for the infrastructures. These upgraded
infrastructures help the utilities to get higher reliability
and existability of the deployed systems [141]. Moreover,
to promptly detect the defects and deficiencies of water
distribution network novel water management procedures
are necessary to carefully control the system.

The primary objectives of IoT, which will helps to con-
struct a proper monitoring system, sensor and device in-

WDN	Closed
Loop	Strategy/
Automated	
Realtime	
Control	

Real-Time	Water
Distribution	System

Monitoring

Database

Analytics	(Hydraulic
Simulation	&	
Optimization)

Prediction

Control	&	Automaton

FIGURE 3. Closed-loop strategy for water supply system.

tegration, sensed information security, information analysis
and real-time decision making. Therefore the main steps
in the IoT-based water distribution system operation are
as follows. The initial step is to facilitate a visualization
schematically to gather sufficient information of water sup-
ply network components such as, pipes, pumps, air valves,
tanks, and stabilizers, to group them in the next step in the
geographic information framework [142]. Next, to continu-
ously monitor the various water supply system parameters
such as water flow, pressure, and quality a set of sensors are
deployed. Finally, the sensed parameters are transmitted via
communication channels to an information system for the
analysis and to take suitable action [100]. Fig. 3 presents
the closed-loop strategy for an IoT network to attain the
automatic control features for the the system. An automated
real-time control systems can be achieved by the closed-loop
strategy with the feedback system. Further, the analysis of
monitored results, the hydraulic simulation strategies and the
prediction of the control variables according to the control
factors can enhance the efficiency of automated real-time
water distribution systems.

The hydraulic simulation and optimization strategies in
water distribution system, deals with demand prediction,
network design, pump operation, and real-time processes.
Although, major advances were made in this area, these
are still unexplored (or poorly explored) methodologies that
can be tested and applied in a considerable number of
water systems. Furthermore, AI models are powerful tools
in hydrology that can facilitate reliability, cost-effectiveness,
problem-solving, decision-making, efficiency, and effective-
ness.

The use of IoT and AI technologies [147]–[149] are
capable to result in the progressive transformation of moni-
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TABLE 8. Sensors used in different stages of water distribution network.

Parameter Location/Network
equipment

Sensor

Asset manage-
ment

Transmission
network

Video camera

Consumption Consumer mains Water meters, flow sensors,
pressure sensors

Leakage Pumps, valves &
Transmission mains

Acoustic sensors

Quality Sources, reservoir,
treatment plant

pH meter, TDS and conduc-
tivity meter, temperature me-
ter, turbidity meter, ORP me-
ter, dissolved oxygen probes,
ion-selective electrodes, to-
tal dissolved gases sensors,
chlorophyll content sensors

Water level Reservoirs, storage
systems, water tow-
ers, and tanks

water level gauges such
as floating hydrometers,
bubblers, pressure inductive
gauges and sonic gauge

Fault detection Transmission
mains, reservoir,
treatment plant, and
storage structures

pressure sensors, such
as piezoresistive,
capacitive, electro-magnetic,
piezoelectric and optical
gauges, normally installed
at demand nodes, control
valve inlet/outlet, and pump
suction/discharge to monitor
pressure heads

TABLE 9. Real-world water supply system monitoring platform.

Water
management
system

Country Features

HydroIQ [52],
[143]

Kenya A smart and automated meter device
known as Water virtual network oper-
ator (WNVO), which has the analytic
tools, IoT communications, and auto-
matic payment technique. It also mon-
itors the following parameters in real-
time, i.e. leaks/faults, water pressure,
and water quality and also control do-
mestic water consumption of the of wa-
ter distribution system. The water bill
can be paid via pay-as-you-go (PAYG)
feature, which is an electronic channel
for online mobile payment.

South East
Queensland
(SEQ) water
grid [144],
[145]

Australia Physical measurement of water use via
smart meters with subsequent remote
transfer of high resolution data and Wa-
ter demand forecasting platform Water-
hub. Waterhub is a critical system for
regulatory compliance in bulk metering
management and reporting

Water Supply
Network
(WSN) of the
Public Utilities
Board (PUB)
[146]

Singapore The system consists of real time moni-
toring using smart sensors, and analytic
tools for decision support system. It has
also other features such as, water quality
real-time monitoring, event prediction,
demand forecasting, automated meter
reading (real-time water utility infor-
mation/updates), and asset/infrastructure
management (risk management platform
development, data mining, and database
integration).

toring, control, and automation of water distribution network
[150], including (a) smart sensor data usage improvement
[151], [152], (b) management and governance of the internal
functions within the smart water distribution environment
which includes the management of the source, storage,
and distribution of water [47], [153], [160], (c) detection
and limiting of the leakage and cost-saving [161], (d)
increase the business efficacy via automating the traditional
processes and functions [162], [163] and, (e) the water
quality improvement [164]. A major challenge that the water
distribution system has to conquer is to provide the utility
with the required information in a rapid manner. Therefore
AI possesses significant potential to address the urgent
challenges encountered by the water distribution network.
Over previous decades, there has been a considerable of
research and applications of IoT, including in (a) intelligent
distribution network [165], (b) robotics [166], [167], (c)
water distribution network optimization management [168],
[169], (d) automation [170], [171], and (e) knowledge-based
systems and decision support systems [172]–[174]. The list
of various WDN applications, their monitoring parameters
and used ML/AI techniques listed in Table 10. Further, we
list the real-world water supply system monitoring platforms
in Table 9.

IV. ANALYSIS OF IOT CHARACTERISTICS AND
CONSTRAINTS IN THE DEPLOYMENT OF WDN
The IoT system suffers with inherent constrains such as up-
dates, heterogeneity, standardization, security and resources
[175]. This section explains the predominant IoT charac-
teristics and the major constrains in implementing an IoT
system for water distribution network.

• The non-linear and non-stationary features and vague
properties due to the unpredictable natural processes,
interdependent relationship, and human interference
make the water-related data difficult to design [176].

• To avoid the poor quality of data, advanced tools and
technologies like AI and machine learning are used to
achieve reliability [177].

• A standardized architecture for IoT is not proposed
yet, and is customized according to the applications in
order to achieve the IoT system characteristics [178].
Greater standardization can improve the compatibility
among different vendors and ensure sufficient network
connectivity, data management, and security measures
across devices, actuators, and sensors cloud servers and
end-user interfaces in the system. This also reduces
the gaps between the protocols, hence improves the
security as well as reduce the overall cost of data [179].

• Another limiting factor of IoT deployment is energy
depletion [180]. The life span of the IoT network
deployments can be improved by better power man-
agement using alternative power storage mechanisms.

• Sophisticated design and development for various mod-
ular hardware and software exclusively for the water
distribution system are required. The high-quality sen-
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TABLE 10. Monitor-automation-control applications in WDN based on AI.

WDN Appli-
cation

Monitor-control-
automate
parameters

ML/AI Techniques

Real time con-
trol of WDN
mains [154]

Pressure, flow &
power

Artificial Neural Networks (ANN)

Water quality
[155]

temperature ,
pH, specific
conductivity,
bicarbonate,
sulfates, chlorides,
total dissolved
solids, sodium,
magnesium,
calcium

Multilayer perceptron (MLP), Sup-
port Vector Machine (SVM), and
group method of data handling
(GMDH)

Water resource
management
[156]

Global and regional
climate, regional
hydrology, land use,
water withdrawal

Adaptive Intelligent Dynamic Wa-
ter Resource Planning (AIDWRP)-
Markov’s Decision Process (MDP)

Water Demand
Forecasting
[157], [158]

Previous water
demands, average
temperature,
solar radiation,
and reference
evapotranspiration

Neural Network-Based Methods-
support vector regression (SVR),
extreme learning machine (ELM),
multiple linear regression (MLR),
particle swarm optimisation–ANN
(PSO-ANN), hybrid backtracking
search algorithm ANN (BSA-
ANN), deep learning (DL),
Random forest, Multivariate
Adaptive Regression Splines
(MARS) and Projection Pursuit
Regression (PPR), Long Short
Term Memory (LSTM), auto-
regressive integrated moving
average (ARIMA), seasonal
auto-regressive integrated moving
average (SARIMA), Bayesian
additive regression trees (BART),
gradient boosting machines
(GBM), and Bayesian framework
& Genetic Algorithms (GA)

Leak Localiza-
tion [159]

Leak location, leak
size, and base node
demand uncertainty

Random forest classifier

sors and actuators for water distribution systems are
costlier compared to the low-cost embedded computing
platforms. IoT solutions require huge number of nodes
(may be hundreds and thousands in number), and hence
the overall cost for hardware components, internet
communication, and data roaming have to be reduced
[181].

• There exists compatibility between the water supply
infrastructure which is a legacy system to the special-
ized devices, field equipment, and software, and so
forth. As data synchronization and data reliability are
more important, the scaling of the IoT networks and
IoT devices are critical [182]. Therefore a systematic
design and development of the software can standardize
the analysis of the generated data, code refining, and
feature introduction and upgrading [183].

• The water supply infrastructure is spatially distributed
and the whole supply process is temporally distributed.
Hence, to improve efficiency for field deployments
the commercial IoT solution must handle basic envi-
ronmental parameters such as temperature variations,

humidity, and illumination to deal with seasonal vari-
ations and infrastructure-wide climatic variability.

• The security for the IoT realization in the water dis-
tribution system is necessary [184], since the water
networks are spatially distributed networks, it requires
IoT systems to address the end-to-end data security and
integrity of the field-deployed devices. IoT security is
a major constraint in IoT system deployment where the
vulnerabilities include clone attack, network hacking,
jamming, eavesdropping, distributed denial-of-service
(DDoS), and untrusted communication between de-
vices [52], [185], [186]. The cloud server downtime
and inaccessibility of services can influence trust and
manipulation of data residing in a central location ar-
chitecture [141], [187], [188]. Moreover, the industries
are introducing external internet access to the existing
infrastructure which can increase the vulnerabilities of
the cyber-attacks.

• The system design for water supply can be di-
vided into three-levels: user-centric, utility-centric, and
infrastructure-centric. User-centric design and sustain-
able practices are also important in the field of IoT
implementation for water distribution systems [189].

Therefore we can conclude capacity, cost and exponential
growth of IoT devices, vulnerabilities in IoT architecture and
data theft are the major challenges for IoT deployments.

V. SERVICES AND TECHNIQUES FACILITATES WDN
The realization of an IoT based water distribution sys-
tem includes, the type of IoT network architectures
(edge/fog/cloud), underlying protocols, appropriate commu-
nication technologies etc. Based on the survey conducted in
this paper, Table 11 summarizes these details with existing
platforms for various water distribution system applications.

A. IOT ENABLED FRAMEWORK FOR WDN
To summarize the findings of this study, we propose an
IoT-based water distribution network framework for mon-
itoring, control and automation of the system, as illus-
trated in Fig. 4. The service architecture includes sensors,
hardware, software, communications, visualization modules
and controllers, data management software, data mining
software, customer systems, and business systems. The
layered framework intend to classify the components and
interfaces into various categories according to their features
and functionalities. It has four main layers: physical layer,
communication layer, service layer, and application layer.

1) Physical layer
Physical layer includes the sensors, actuators, pre-
processors, interfaces and other devices to intelligently
capture and connect the valuable data on the functioning of
the water distribution network while sensing field variables
using an IoT communication network. The sensors (see
Table.8) are to monitor the stimuli and respond to events
in the water supply systems. The sensors or actuators can
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FIGURE 4. Services and techniques facilitates water distribution system.
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TABLE 11. Real-world application platforms for IoT based water distribution systems

Application platform Cloud Fog Edge Technology Protocols Applications

AgriSens [190] ✓ - ✓ ZigBee, GPRS Time Division Multiple Ac-
cess

Water management in fields

AQMS [191] ✓ ✓ ✓ IEEE 802.15.4, Bluetooth 4.0,
ZigBee-IP/ZigBee, and Wire-
lessHART, Wi-Fi, LiDR, Lo-
RAWAN,

MQTT, secure MQTT
(SMQTT), CoAP,

Water quality monitoring

Fiware4Water [192],
[193]

✓ ✓ ✓ LoRa, SigFox, Next Genera-
tion Service Interfaces

HTTP, MQTT, AMQP Tank monitoring

ICeWater [194] ✓ - - ZigBee, 6LoWPAN,
ISA100.11, Bluetooth, Z-
Wave, ENOCEAN, IEEE
802.15.4k, WI-SUN, Wireless
MBus, SigFox, LoRa,
Weightless, Wavenis, Dash7,
LTEM, LTN ETSI

- Water Loss Management
(WLM), Water Operation
Support (WOS), Water
Supply System Planning
(WSSP), Water Demand
Management (WDM), Water
Asset Management (WAM)

MASP [195] ✓ - ✓ USB/WiFi, SENSIBUS proprietary SENSIBUS serial
protocol

Automated recognition of wa-
ter contaminants

Smart Water Grid [196] ✓ - - LoRaWAN, SigFox, NB-IoT - Water infrastructure monitor-
ing

SWSDF Framework
[197]

✓ ✓ - Wi-Fi HTTP Water consumption abnormal-
ities such as leaks or excessive
consumption and alerts

Smart Solutions based on
IoT Technologies [198]

✓ - - LoRa HTTP(S), WebSocket, MQTT Water metering and consump-
tion

SENSIPLUS [199] - - - Wi-Fi, Bluetooth Low Energy
(BLE) and USB/BLE/Wi-Fi,
SENSIBUS

TCP/IP, Advanced Message
Queuing Protocol (AMQP)

Water quality

SWDS [103] ✓ ✓ - Bluetooth, 3G,4G - Water level

UIoT [200] ✓ ✓ ✓ - - Underwater IoT communica-
tion

WaCoMo [201] ✓ - - Wi-Fi MQTT Water Consumption

Wastewater management
[202]

✓ ✓ ✓ Bluetooth, WiFi, 3G, 4G, and
5G

- water storage level, water
consumption rate, wastewa-
ter generation, and industrial
wastewater treated by WWTP

Water Demand Predic-
tion System [203]

✓ - - Wi-Fi MQTT Water Demand prediction

WQMS [121] ✓ - - LoRa - Water quality

achieve two-way communications within the network by
providing commands to be sent from the water utility to
the smart sensors for various functionalities, including real-
time monitoring of parameters such as water flow at the
pipes, pressure at the nodes and changing the frequency
sampling of readings. Furthermore, short-term deployments
of devices/sensors powered by batteries, and long term
deployments can be powered by solar panels due to their
low-power consumption characteristics in the sensing layer.
Moreover, the control part of the sensing layer can acts as a
data sink, transceiving data from the communication layer.
The data/information received to the control layer can alter
the actuators state. The communication network between the
sensors and the utility center intends to collect and distribute
the relevant information to consumers, suppliers, stakehold-
ers, utility companies, and service providers. Each sensor
has a specific communication technology, which is depen-
dent on the climatic and geographic (spatial and temporal)
conditions, and multi-criteria decision methods. Therefore
to choose the most appropriate and reliable communication

technology, both the quantitative and qualitative variables
are taken into the consideration. Furthermore, the sensor
location and distribution, the distances to the edge device,
the communication costs, the urban context, restrictions
and governance, and the scalability are the parameters that
need to be considered for choosing the best communication
technology.

2) Communication layer
The communication layer which is contextually known as
network layer, is responsible for the IoT system connectivity
to the network technologies for a secure and robust data
communication to other layers. Therefore, the communica-
tion layer reciprocate the communication between the data
collected from the sensing layer and send the data via field
gateways. The primary objective of the communication layer
is to establish a communication channel for data transfer
from the physical layer to the internet and receive data from
the IoT gateway based either on Ethernet or other commu-
nication technologies (see Table.5) Wi-Fi, WiMAX, Zigbee,
mobile communications, LoRa, RFID, and Bluetooth Low
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Energy (BLE), NB-IoT, 5G etc [204]–[207]. This layer has
the field gateways which interfaces IoT gateways or edge
nodes with transceivers using ZigBee, Bluetooth, NFC, Wi-
Fi, LoRa, or Sigfox.

3) Service layer
The service layer serves as the interface for both the
consumer and the IoT system. The service layer has two
sub-layers, IoT services sub-layer and analytical services
sub-layer. The IoT services sub-layer handles data ingestion
from the communication layer and the analytical services
sub-layer handles data processing (digestion) and perform
various analytics. The IoT services sub-layer provide ser-
vices for the system to achieve device management [208],
data acquisition [209], device discovery [210], [211], remote
sim provisioning [212], [213], platform hosting [33], [214],
[215], and computer vision [216], [217] which are closely
accessible for the physical layer, i.e., data and device
interaction (middleware layer) [218]–[220]. The analytics
services sub-layer handles data processing such as target
modeling and detection, identification of suspicious behav-
ior in the network, data storage and situational awareness,
crowd dynamics, object tracking, and activity recognition.
The services of Big-data [221], [222], Machine learning
and AI [223]–[225] analytic tools are taken in this layer in
order for the water distribution network modeling, hydraulic
simulation, and optimization [226] to form useful insight
to which the real-time data can accommodate, validate and
predict the system behavior, as shown in Fig.3. The storage,
security, data analytic tools, and visualization modules are
needed to process and compute the data and data models.
These modules intend to provide services for both the
service layer and the application layer.

Since the service layer shares and analyze the information
of the consumers and the IoT system, this layer is highly
vulnerable and affects the authentication and security of
the system. To rectify the issue some robust and flexible
security protocols are widely used. The following are the
specifically proposed IoT protocols (see Fig.5): Message
Queuing Telemetry Transport (MQTT), Constrained Appli-
cation Protocol (COAP), Secure Message Queue Teleme-
try Transport (SMQTT), IPv6 over Low -Power Wireless
Personal Area Networks (6LoWPAN) and Routing Protocol
for Low-Power and Lossy Networks (RPL). Since these
communication protocols are modifiable, the user can define
the desired functionalities according to the applications
without compromising the protocol performance. Therefore
the factors influencing the selection of the most appropriate
protocol for an IoT system are the network range (area of the
action), openness, interoperability, and network architecture
[227].

4) Application layer
The application layer takes services from the service layer
and allows the end-user to handle monitoring, control,
prediction, and services. For the water distribution system,

there are specific applications [228], [229] such as water
quality monitoring, treatment processes monitoring, the data
analysis leads to the control measures, and automation of
the control process (e.g., Chlorination). Environmental mon-
itoring, water distribution network infrastructure monitoring
(asset monitoring), leakage detection, the anomaly detection
for the entire network by analyzing both spatial and tempo-
ral scale, consumption analysis, and demand prediction are
the different application-level functionalities for the water
distribution system.

The components required for the implementation of Intel-
ligent IoT based water distribution network shown in Fig 5.
This encapsulates most of the studies analyzed in this paper
such as IoT sensors, communication technologies, protocols,
architectures, optimization techniques, data analysis meth-
ods and types of middle-wares. With all these insights we
are recommending an architecture for intelligent IoT based
water network.

VI. RECOMMENDATIONS BASED ON THE SURVEY
A. RECOMMENDED ARCHITECTURE: IOT
ARCHITECTURE FOR INTELLIGENT WATER NETWORK -
IOTA4IWNET
The proposed architecture depicted in Fig.6 summarises the
studies performed in this survey. The architecture contains
the WDN applications for a system’s monitoring control
and automation. The IoTA4IWNet architecture is split into
WDN applications and four planes i.e, IoT edge plane, IoT
fog plane, IoT cloud plane and IoT service plane. The IoT
service plane further divided into edge services sub-plane,
fog services sub-plane and cloud services sub-plane.

1) WDN applications
IoTA4IWNet can monitor, automate and control the water
distribution system in applications such as demand (con-
sumer), junctions, water levels, leaks, reservoir, treatment
plant, and utility (services). Consumer demand monitoring is
beneficial for optimizing the water quantity allocation from
various water sources, deriving individual and cumulative
water usage patterns, and creating awareness regarding wa-
ter usage among stakeholders of WDN. In WDN, junctions
are one of the vital entities where monitoring is essential
since they are prone to various threats. Information on
water level variations in each reservoir, storage system, and
water tower are significant for planning the water allocation,
optimizing the water usage, scheduling the pump on/off, and
determining the water overflow. In WDN, water leakages
are also one of the significant threats, and their monitoring
is tedious (see Table10). Reservoir monitoring is required
to determine the quantity, quality, seasonal variations, and
optimized water allocation. Treatment plants are one of the
essential entities in WDN as the change in water quality
can adversity affect the health of consumers as well as
WDN infrastructure. The quality and quantity assessment of
portable water, usage pattern analysis, water demand profile
maintenance and prediction, the discovery of malpractices,
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and automated water meter readings and billing are some
of the services that come under utility that are intended
for the consumers. For enabling all these services, WDN
monitoring, automation, and control are essential.

An example scenario for the IoTA4IWNet architecture is
as follows; sensors are deployed to monitor water pressure
within a distribution network. A single sensor out of a
thousand deployed, sensed the pressure variation in one
single node due to a water hammer (single instance), thus
raising a false alarm. The edge node closest to that sensor
reacts immediate due to proximity, however, a hierarchically
higher fog node at the city’s observatory office collates all
responses from sensors and passed it to the cloud. Thus, a
predictive judgment is made based on machine intelligence.
This prediction can be used for future occurrences.

2) IoT edge plane
The edge plane consists of four layers; the first layer
contains sensors and actuators for sensing water system
parameters and state transitions for the parameters. The
second layer contains the interface devices such as analog
to digital converters, multiplexers, relays, filters, and so on,
which will help in data acquisition. The third layer consists
of IoT network and processing devices such as base-station,
switches, processors, visualization modules, and so on. The
fourth layer in the edge plane is the communication inter-
faces for sensors to edge devices. From the survey (Table 5,
7, 11) the communication technology used in edge planes
are BLE, Bluetooth, Zigbee, NB-IoT, LoRa, Wi-Fi and LTE.
The communication interface between edge to fog nodes
is shown as an overlapping layer between the edge plane
and the fog plane. The edge plane contributes resources and
voluntarily assists the fog and cloud plane in transmission,
communication, and computation, and handles multiple end
devices/users. Scheduling and resource provisioning, mobil-
ity consideration, security, privacy, and authentication are
the tools that help in satisfying the edge plane functioning
[230], [231]. Low power wide area networks [232] can be
used for the best communication results in this plane as it
has the advantage of low power consumption and long-range
communication features [233].

IoT edge services: The services provided by the edge
plane are sensing and actuation of the system parameters.
These services are transferred to routing of the devices in
the edge network, caching the data (micro data centers),
computing (things/devices), and control of the edge plane
devices. Context-aware and location-aware services can be
extracted in the edge plane. It also provides communication
interfaces for cloud and fog planes. The security service
provides a trust relationship between the edge plane to the
fog and cloud plane by guaranteeing the required device
security, communication security and integrated computing
module security. The possible threats and attacks in the edge
plane and their mitigation measures are listed in Table 12.
Federated edge computing can also be brought into this
architecture for computation optimization.

The introduction of edge plane reduces the latency and
perform distributed computation and storage in local prox-
imity of the IoT devices, which will reduce delay, improve
the security, scalability, and bandwidth for the entire system
[234].

3) IoT fog plane
The fog plane is responsible for infrastructure-based com-
puting [235]. It can inter-operate all its connected devices
and provide the necessary service support even if the
internet connection is intermittent. The fog plane can be
considered as the distributed virtualized platform dedicated
for intersection of edge services and cloud services. It
extends the services and functionalities of the cloud plane
to the edge plane such as database operations, storage (mini
data centers), computing, integration, security, and device
management to the proximity of the edge plane. The benefits
of the IoT fog plane are reducing network congestion and
end-to-end latency, improving privacy and security, and en-
hancing scalability and connectivity [236]. The fog network
device layer consists of devices that can enable connectivity
between edge to fog, fog to cloud and within fog plane. The
fog computing devices can get the context-aware computing
paradigm by moving the intelligence to LAN level and
data processing at fog plane. The communication interface
layer enables the communication between fog nodes using
LPWAN technologies and communication interface for fog
plane to cloud plane using 4G/5G/6G technologies.

IoT fog services: The services provided by the fog plane
includes storage (mini data centers) and computation of the
data. The data from the edge plane processed in fog plane
and enables the services to both edge plane and fog plane.
Various computing algorithms run at the fog plane and
extract remote intelligence of the data by the analytics. The
anatytic service is vital for extracting the insights for future
updation of the system. Machine learning and deep learning
are some of the tools used for analytics. Furthermore it
provides integration services and user interface services.
The integration services allow dynamic management and
future development of the fog plane. It also provides the
communication interfaces services for cloud and edge plane.
The security service provides a trust relationship between
fog plane to the edge plane and cloud plane by guaranteeing
the required network security, communication security and
integrated computing modules security. Refer Table 12 for
security threats and mitigation measures for fog plane.

4) IoT cloud plane
The IoT cloud plane is introduced to deal with massive data
(Big data). It is the most powerful plane in terms of compu-
tation, efficacy, storage and other resources. The cloud plane
consist of network of data centers which accumulates with
various application data. From the survey conducted (see
Table.11) COAP, MQTT, AMQP and HTTPS are the com-
munication and application protocols that provide services
based on Representational State Transfer Application Pro-
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gramming Interface (REST API) [237]. The communication
interface layer for data centers and cloud platforms consist
of 3G/4G/5G/6G [238] networks. The IoT cloud platforms
widely used for various water system application are given
in Table 6. Since the IoT cloud layer deals with Big-data, the
analytic techniques can combine with the Big data, which
can be structured, semi-structured, or unstructured. The data
cleaning and autonomous data quality check are significant
roadblocks to the WDN system due to the integration of
several heterogeneous data sources/sensors. We can fine-
tune the Big data analytics for WDN by including all the in-
fluencing parameters, such as physical, chemical, biological,
socio-economical, geospatial, and behavioral of the WDN
system, to predict short-term to long-term changes. Data-
driven decision-making, scientific discovery, and process
optimization of WDN can be achieved with the help of Big
data analytics [239]. Demand forecasting, water leak pre-
dictions, reservoir capacity prediction, reservoir water level
predictions, queries, reports, visualization and interpretation,
modeling and prediction, service improvement, and auditing
and evaluation [240], [241] are the other outcomes of the
data analytics for WDN system. The following are the major
outcomes of WDN integrated with Big data analytics:

• Sustainability: Big data analytics with existing and
future water infrastructure represent a significant un-
explored opportunity for the operation, maintenance,
and rehabilitation of WDN infrastructure to achieve
economic and environmental sustainability [242].

• Responsiveness: For a failure scenario event, big data
analytics can accelerate and improve response and
selection of mitigation strategy by elucidating the state
of emergency and the effectiveness of alternative sce-
narios to the decision-makers [243].

• Durability: Big data analytics models can help by
extending the service life of existing long-term water
infrastructure assets through a set of strategies to inten-
sify, maintain, rehabilitate, and replace infrastructure
[241], [242].

• Model-based risk analysis: With high-resolution, real-
time data feed integrated with the hydraulic model,
an actual image of the current system conditions and
its projections under different possible response and
recovery scenarios is provided [243].

• Resilience: To gain a critical view of a utility’s infras-
tructure for strategizing recovery efforts by integrating
real-time, high-resolution data with their water dis-
tribution model. The improved response times during
planned and emergency outages by reducing the time
spent setting the model boundary conditions. [243].

• Reliability: The improved operation, maintenance, and
optimal scheduling, rehabilitation, and resilience im-
prove the reliability of the WDN [244].

IoT cloud services: The cloud services are integral part
of IoT realization. The services provided by the cloud plane
includes storage (macro data centers) and computation of the

TABLE 12. Cyber security measurements for an IoT system.

IoT Plane Security threats/attacks Existing measures for
maintaining cyber-
security

Edge plane Network attack [250], port
attack [251], proximity at-
tack [252] and physical at-
tack [253]

Confidentiality, integrity,
access control, encryp-
tion and authentication,
regular security patches
and updates, physical se-
curity, backdoors and lo-
gins, intrusion detection
systems (IDS) and IP fast
hopping [254], [255]

Fog plane Man-in-the-middle attack
(MITM), data and security
access management, re-
duce delay time, real-time
attack detention, and pre-
vention of unauthorized ac-
cess to information [256]–
[258]

Intrusion detection
technique in combination
with Hellman key
exchange, Shibboleth
protocol, block chain-
based distributed cloud
framework, AES and
SSL [259], [260]

Cloud plane Side channel attacks, de-
nial of service attacks,
social networking attacks,
Mobile device attacks, in-
sider and organized crime
threat, cheap data and data
analysis, cost-effective de-
fense of availability, in-
creased authentication de-
mands, and mash-up au-
thorization [261]

Information-centric
security, high-assurance
remote server attestation,
privacy-enhanced
business intelligence,
authentication,
authorization, and
digital Signatures [262],
[263]

data. The knowledge-base and global intelligence analytics
of the system are performed in the cloud plane. It provisions
AI model building and updates, threshold modeling and
learning models. It also provides user interface services.
Furthermore, it enables the communication interfaces for
fog and edge plane and security services.

Cyber attacks focus on IoT devices, software, and net-
work as device attacks, data attacks, privacy attacks, and
network availability attacks. As WDN systems are critical
to human lives, the IoT-based WDN infrastructure can be
sensitive to/prone to political, military, and terrorist activ-
ities [245], [246]. Hence the cyber security for the WDN
system should be ensured for the reliable water distribution
networks [247]–[249]. The types of attacks on cloud plane
and its existing measures for maintaining cyber security in
the WDN-enabled IoT system are present in Table 12.

B. EXISTING CHALLENGES AND FUTURE DIRECTIONS
This paper deals with two contexts, water distribution sys-
tem and impact of Internet of Things in WDS. The chal-
lenges for water distribution systems are climate changes,
urbanization, population growth, infrastructure deterioration,
governance and policies, emerging technologies, energy
costs, changing priorities of public, and complexity. The
challenges for the IoT in WDS are listed in Table 13.

A sustainable management of water distribution network
requires both technical and hydrological dependent system.
A water distribution network varies spatially and temporally,
i.e, according to seasonal changes, the water availability
varies in the case of water network. The water distribution
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network is a complex infrastructure with inter-dependent
entities and parameters, hence challenging the IoT inte-
gration on top of the network. The non-invasive sensors
and control modules preferred over invasive modules as
health of the infrastructure is delicate. Most of the real time
implementations are pilot set ups and lacking end-to-end
real time system. The scalability, security, implementation
cost optimization, maximum bandwidth utilization via vir-
tualization are the future directions of this application.

The real-time monitoring and control of the WDN is
challenging due to dynamic spatio-temporal variabilities.
Health monitoring of each entities in the network such
as pipe, valves, pump, nodes, and so on, due to cost
effective and lack of appropriate IoT compatible sensors and
devices. This can be rectified by design and implementation
of a full fledged monitoring system, in a framework of
optimized available sensor usage and incorporated software
advancement (AI based ML algorithms). Real-time demand
monitoring, forecast and the implementation of the algo-
rithms are primitive in WDS area.

Several factors include seasonal variations, climatic
changes, types of geographical regions such as urban, subur-
ban, and rural, and user behaviour that affects the variations
in water demand. In a year, temporal variations of water
demand can experience spatially based on geographical
variations. For instance, in India, water usage is 30-40%
higher in the summer than in other seasons [264]. However,
in some nations like Netherlands, water usage is higher in
winter as the heater always works [265]. Likewise, climatic
changes influence water demand variations. For example,
the water requirements on a rainy day are lesser than on
a humid day. Moreover, the daily water demand varies for
rural, and urban areas as the water usage is 40 liters per
capita per day (lpcd) for rural areas and 140 lpcd in urban
areas as per the Ministry of Housing and Urban Affairs [22].
Variations of user behaviors based on social practices, re-
ligious practices, and regional practices influence the water
demand. Major challenge in designing the IoT architecture
for water demand application is comprehending all these
dynamically varying factors that affect water demand.

AI-ML enabled data driven operations, predictive algo-
rithms, and digital twin methods can be mitigate the chal-
lenges in demand forecasting. The water quantity is one of
the influencing factor for sustainable WDS operation. Moni-
toring the water levels of different kind of storage structures
is necessary as its dynamic spatio-temporal variability char-
acteristics. It is also important for planning and regulations
of policies for an area. Suitable sensor unavailability due to
cost and performance, the sub optimal manual intervention
for the pump, valve and motor operations, climatic changes
makes monitoring of the application challenging.

Water level monitoring challenging as the sub-optimal
decision making due to human intervene, hence automation
of the level monitoring has an important role in WDS
automation. Real time monitoring of the water level leads to
low water wastage, optimized water usage, sensible intake

of water from reservoir. The water levels in any storage
structure depends on climatic variability. A fully automated
system with optimal decision making can overcome the
challenges due to manual interventions (pump, motor and
valve operations -(dry run, on/off)).

In WDS, junctions plays an important role as it is the most
vulnerable entity. Control and monitoring of the junctions
enables the WDN to identify the theft, illegal connection,
pressure drops, pipe burst and so on. Predictive maintenance
and autonomous operation can make the entity self resilient.
Security is the one of the key element is automation of
junctions. Hence block chain based predictive maintenance
and autonomous system can mitigate the challenges.

Water leaks is one of the frequent and unavoidable factor
in a distribution network. Since most of the pipes are
in underground, the leaks may leads to the wastage of
considerable amount of water. Ultrasonic sensors, ground
penetrating radar (GPR), sonar, nano/micro robots, radars
are some of the techniques used to identify and prevent
the leaks. However, it requires an integrated framework for
monitoring, control and automation of junctions pipes and
appurtenance, as junctions and underground pipes are more
prone to leaks. It is also important to analyse the impact of
risk assessment due to the pip burst or leakage.

Water system starts with reservoir, hence it is important to
monitor the quantity, quality, and health of the reservoirs.
The system able to handle the dynamic characteristics of
the reservoirs such as spatio-temporal variations climate
changes (seasonal variability) and pollution due to waste
dumping, industries, agriculture etc. A cost effective sus-
tainable IoT-integrated intake system, which caters all the
above parameters can mitigate the challenges.

Water treatment plant monitoring, control and automation
is one of the critical and complex task. The input water
for the treatment plant depends on seasonal variability and
the IoT system has to capture its dynamically varying
quality parameters and also the systematic controlling and
automation for each treatment process. Since the WDS is an
spatial-temporal distributed system, the dynamic nature of
the infrastructure makes the system unreliable for the static
strategic functionalities.

Table 14 listed the challenges and recommendations re-
quired for IoT system design. Advantages of the IoT in
WDN are enhanced transparency for the entire system pro-
cesses, immense response for identifying and predicting the
anomalies and damages, optimized use of human resources,
optimized cost, and sustainability (reducing water wastage,
pollution and carbon footprint).

VII. CONCLUSION
This paper presented a detailed, up-to-date review of the
state-of-the-art of the role of IoT in water distribution
systems. It presented the taxonomy of the water distribution
system and role of IoT technologies, architectures, cloud
platforms in various water distribution applications. It pro-
posed an IoT architecture for intelligent water networks
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Application area Challenges Why is it a challenge? State of the art Future directions
WDN

• Real time monitoring
and control of the var-
ious WDN parameters

• Health monitoring of
the entities

• Piece wise applications im-
plemented to monitor spe-
cific parameters.

• Since most of the pipelines
are underground, the real
time health monitoring is
limited

Refer Table 11
• Design and implementation of end-

to-end monitoring system
• Control and automation of the

WDN by considering IoT charac-
teristics such as scalability, secu-
rity, data, stability, security, cost,
bandwidth, cloud, edge, and analyt-
ics

Demand monitoring
and forecasting • Real time monitoring

of water demand
• Efficient algorithms

for ensuring demand-
supply balance

• Demand forecasting

• Dynamic spatio-temporal
variations

• Geographic region wise
variations (Urban-suburban-
rural)

• impact of climatic variations
in water sources

• Most of the present re-
search works explores
on the impact of sea-
sonal variations in dif-
ferent water sources,
however demand vari-
ations are not fully ex-
plored

• Site specific variability
of water resources

• Most of the machine
learning algorithms
implemented for the
demand prediction is
using historical data
rather than the real
time data

• Intelligent algorithms for demand
supply balance

Monitoring water
level

Real time control and
automation of pump
operation integrated with
water levels and over flow
of reservoir/dam/storage-
tank/water-tower

• Manual interventions leads
to sub-optimal decisions

• Fully automated system
with multiple control points
depended on multiple
sensing points makes the
design complex

Prototype design and experi-
mentation available in litera-
ture

• Fully automated system for opti-
mal decision making with minimal
manual interventions

• Data analytics platform to incorpo-
rate data from multiple sensing and
control points

• support multi-dimensional analysis
for various operational functions

Control and moni-
toring of Junctions

Real time control and of the
junctions Automation of junc-
tion valves

• Illegal connections
• Theft
• Multiple branches inflow

and out flow

Authenticated Block chain
based IoT system design • Predictive maintenance and au-

tonomous operation
• Enhanced security algorithms

Monitoring and
control of water
leaks

• Integrated framework
for monitoring, con-
trol and automation of
junction, pipe and ap-
purtenance

• Prediction of the water
leaks and

• Impact and risk assess-
ment of water leakage
to the community

• Since WDN is a wide net-
work and most of the pipes
are underground, it is chal-
lenging to detect, localize
and manage the leaks

• In most cases WDN running
through highly populated re-
gions, this can create risk to
the community due to sig-
nificant water leakage

• Only site specific
robotic leakage
detection

• Sensitivity matrix-
based approaches

• Optimization-
calibration approaches

• Error-domain model
falsification-based
approaches

• Implementation of IoT based sys-
tem with crack, moisture and leak
sensors

• GIS integrated control and moni-
toring system

• Integrated digital twin for water
networks, communication network
and community

• Non-invasive sensors for leak de-
tection for the running system

Monitoring
reservoir • Real time monitoring

and prediction of
both watre quality
and quantity of the
reservoirs

• Quality
• Quantity
• Health

• Capturing the dynamic char-
acteristics such as spatio-
temporal variations, climate
changes, and pollution

• Unavailability and cost of
sensors

Design and prototype experi-
ments only • Cost effective real time monitoring

methods for water quality
• Ensure sustainable water intake

from the reservoir
• Develop algorithms to predict in-

take quantity, and quality

Treatment plant
• Security
• Real time water quality
• SCADA system
• Optimized automation

• Integrated control system
for actuators, valves, pumps
and motors in the water
treatment plant

• sub optimal manual inter-
ventions

Semi automation and control-
ling for treatment plant oper-
ations

• Smart Integrated Validation Plant
• digital twin for the Plant
• Digitization of operations and man-

agement of treatment plant with
Data-driven tools

• Advanced analytics and artificial
intelligence for optimising opera-
tions and maintenance

TABLE 13. Challenges and recommendations for IoT applications in WDN
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TABLE 14. Challenges and recommendations for IoT system design

Area Challenges Recommendations

Edge
plane

IoT compatible sensor devel-
opments, Lack of built in se-
curity in IoT devices, Imple-
mentation of AI/ML analytic,
cost

Identification of available sen-
sors in market, Design devices
with higher RAM and clock
frequency

Fog plane Real time monitoring and pre-
diction of total and sectored
demand calculation for a net-
work, cost

Identification of demand for
each consumer point

Cloud
plane

Public clouds lacks in
security, Private clouds are
costlier, Lack of visualization
from multiple sensing and
control systems integrated in
a single frame work

Develop own cloud servers

- IoTA4IWNet, for real-time monitoring, control and au-
tomation of different water distribution system applications.
This work was guided by an exhaustive literature review
and based on that, the research questions pertaining to
IoT in water distribution networks and applications were
formulated and analysed in great detail. During this study,
it was discovered that most of the research focused on mon-
itoring applications and did not cover closed-loop control
strategy and prediction for water distribution applications
using IoT. An efficient and reliable water distribution system
can reduce water stress by avoiding the challenges of the
water distribution network. An intelligent water distribution
system with operational excellence and productivity can be
achieved by using automated IoT systems with predictive
analytics. The architecture presented in this paper, for the
network automation and real-time operation, will make a
significant contribution towards meeting the challenges of
building an efficient water distribution system.
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