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ABSTRACT  

Development of Battery Energy Storage System projects and their subsequent 

installation and connection to electrical grids throughout the world is expected to 

increase over the coming years. Two key concerns are at the forefront of entities 

undertaking these installations. The first is determining the optimal BESS size for a 

given application. The second is whether this optimal BESS size reflects the goals 

(referred to as planning objectives in this dissertation) set out in the BESS project 

planning phase. Recognising these two concerns, it is determined that BESS sizing 

approaches must be fit for purpose, can be used adequality as a planning tool and 

capable of modelling important planning objectives.  

The Front-End Planning framework was utilised in this dissertation as a means 

to assess if existing BESS sizing approaches are suitable for modelling planning 

objectives as part of BESS project planning. In total, 32 of the most-cited articles 

from the BESS sizing literature were reviewed for their inclusiveness of scoping 

elements set out by the Front-End Planning framework. The results of this review 

showed that existing BESS sizing approaches are lacking in three key planning 

objectives called Investment Scale, Investment Timing and Dispatch Adaptability. 

This research sought to answer the following questions: 1) Is it possible to form the 

planning objectives Investment Scale, Investment Timing and Dispatch Adaptability 

as part of optimising energy capacity size for new BESS installations seeking 

maximum profit? 2) Are there any circumstances where the inclusion of the three 

planning objectives as part of BESS sizing helps overcome shortcomings of existing 

sizing approaches? 

To incorporate the planning objective Investment Scale as part of BESS sizing, 

maximisation of opposing financial objective functions using two different multi-

objective optimisation methods called Rating Method and Paired Comparison was 

used. These approaches were tested on a simple microgrid under various electricity 

price scenarios. The results show that the Rating Method performed best when 

selecting BESS size in significant knee regions near maximum daily worth. The 
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Rating Method can also select optimal BESS size at maximum daily worth when less-

significant knee regions are present. This approach gives an appropriate balance 

between forming the planning objective Investment Scale and maximising profit. 

To incorporate the planning objective Investment Timing as part of BESS sizing, 

two different models were used, referred to as the operational model (controlling 

operational decisions i.e. BESS dispatch) and the planning model (controlling BESS 

size at different yearly intervals). Reinforcement learning was used as the 

operational model solution method, while global optimisation was used as the 

solution method for planning model. This approach was tested on data from the 

Integrated Single Electricity Market Day-Ahead Market. It was found that splitting 

BESS operational decisions and BESS planning decisions into two different models is 

an effective technique. 

To incorporate the planning objective Dispatch Adaptability as part of BESS 

sizing, model-based and model-free stochastic optimisation methods are used. This 

was done for model-free optimisation by utilising deep reinforcement learning 

methods, while stochastic programming was used as the solution method for 

model-based approach. Both approaches were tested on historical Day-Ahead and 

Intraday Markets electricity clearing prices from the Integrated Single Electricity 

Market. It was found that the model-based approach outperformed the model-free 

approach. However, it is not clear that such a broad statement can be made about 

model-free and model-based approaches in general based on the results gained 

through this thesis.  

The significance of this study’s results is that BESS sizing is now more functional 

and adaptable for project planning purposes. It is now possible to size BESS without 

suffering scale issues resulting from ever-diminishing returns of larger BESS sizes, 

where the timing of the investment can be chosen optimally rather than assuming 

“here and now” investment, and where the operational strategy employed to 

simulate BESS dispatch is more reflective of actual BESS use and adaptability. 
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CHAPTER ONE 

1 INTRODUCTION 

The advancement of battery energy storage systems (BESS) over the past 

decades has led to an increase in their deployment throughout electrical grids 

worldwide. As an example, Li-ion technology has seen a greater than two-fold 

increase in energy density compared with early Li-ion concepts, Zinc-Air technology 

has seen advances in terms of rechargeability and active research is underway to 

reduce the operating temperatures of Na-S BESS technology [1]. From 2015 to 

2018, utility scale battery storage costs declined by 70% as reported by the U.S. 

Energy Information Administration [2]. Research and innovation of BESS technology 

will continue into the future, as more and more electrical systems around the world 

seek to install renewable generation as a means to decarbonise. Fig.1.1 (extracted 

from [3]) outlines the planned EU-28 electrochemical storage power capacity as of 

 

Fig.1.1 – Electrochemical storage planned capacity by country within the EU-28 
as of March 2020 
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March 2020, with Ireland and United Kingdom showing aggressive expansion of 

BESS installations compared with the rest of Europe. Of noteworthiness is the 

number of proposed BESS installations on the island of Ireland given the relative 

size of its electrical grid. This is in part due to the enduring predicted increase in 

System Non-Synchronous Penetration (SNSP1) limit to 75% in 2022 [4], its minimal 

interconnectivity compared with other European member states, and the recently 

launched systems services market [5]. In addition, the European Commission 

envisages that the market size for energy storage by 2030 within the EU-28 could 

be as high as 108 GW [3].  

1.1 BACKGROUND  
The pursuant development of a new BESS installation follows a logical 

question: what size BESS should be installed? The answer to this question is not 

always obvious. This question stems from the reality that unlike traditional sources 

of electricity (e.g. coal, nuclear, gas, wind, solar, etc.), BESS are not a generation 

source. Rather, BESS can occupy both demand and generation, but more 

importantly are limited in duration for both. This limitation is the BESS size, also 

known as the energy storage capacity and typically measured in megawatt-hours 

(MWh). This is what sets BESS apart from other non-energy storage technologies 

connected to electrical grids. Therefore, the capacity size question is unique to 

energy storage systems. Currently, there is a plethora of BESS sizing approaches in 

use as shown in review articles [6-8]. The predominant approach taken in the 

literature is to develop objective functions as part of a mathematical optimisation 

problem, with the optimised solution resulting in two important outcomes, the first 

being a solution to the BESS size variable and the second being an objective 

function scalar value. The objective function can take various forms, such as 

financial or technical objectives. The principle of the objective function is to size a 

BESS for a specific purpose called a goal, and it is accordingly modelled in such a 

way as to capture this goal. Sizing a BESS to increase renewable energy penetration 

is one such example. Depending on the goal, objective functions have wide-ranging 

modelling flexibility, with the challenge being the solution method. Ideally, a sizing 

 
1 SNSP = (all non synchronous generation + HVDC imports) / (demand + HVDC export). 
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objective function for a potential BESS installation should reflect or incorporate as 

many important project goals as possible. This can be magnified through a thought-

provoking question: how can one take confidence in sizing a BESS correctly unless 

the objective function contains all project goals either directly/indirectly? This is 

very important question when BESS sizing approaches are required to be used as a 

project planning tool. Including as many project goals as part of sizing optimisation 

ensures that the built BESS project is the right BESS project, and aligns the BESS 

project with any goals set out before execution. BESS project planners require that 

sizing approaches are capable of modelling prescribed goals set out at the initial 

planning phase. These project planners are the very entities undertaking such BESS 

projects as those outlined in Fig.1.1. 

The ability of existing BESS sizing approaches to model important project 

planning goals must first be determined. To achieve this, an already established 

program for project planning is required. The Front-End Planning (FEP) framework 

is the project planning program used in this dissertation to provide a 

comprehensive list of possible goals used by project planners for a range of 

different project types. FEP, which is described further in Section 2.2, is a process in 

which important project scoping elements are defined for a potential project and 

assessed for their completeness before embarking. The level of completeness of 

each scoping element informs if the project is worthwhile to continue (i.e. 

acceptance criteria resulting in either pass or fail). Such a framework provides a 

selection of BESS project goals to choose from. These goals are referred to as 

planning objectives herein. 

1.2 PROBLEM STATEMENT 
Within the scope of this dissertation, a review of the literature shows that 

BESS sizing approaches are lacking in three key planning objectives called 

Investment Scale, Investment Timing and Dispatch Adaptability. Arriving at this 

conclusion was done by reviewing existing BESS sizing approaches’ inclusiveness of 

select FEP scoping elements (see Chapter 2). These three planning objectives are 

identified as the problems requiring resolution through this research. These are 
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significant problems when BESS sizing approaches are used as planning tools. Not 

only does this study seek to rectify these problems but also highlights and brings 

awareness as they are not widely explored within the BESS sizing community. The 

reflection of this can be seen in the literature review of this study which is 

designated largely for confirmation of this problem statement. Through review of 

literature, two other planning objectives are also identified as lacking within BESS 

sizing approaches, called Location and Capacity (Power)2. However, resolution of 

these planning objectives requires grid system modelling and electricity competitive 

market modelling which is outside the scope of this research. Nevertheless, they 

are included within the literature review as a point of reference for future work. 

1.3 PLANNING OBJECTIVE DESCRIPTION  
Expanding further from the problem statement, the following outlines a 

description of the planning objectives.  

1.3.1 INVESTMENT SCALE 
An important planning objective for a BESS project is whether or not the 

capital outlay (also called scale of investment) to achieve the project is wisely 

considered. Typically, selecting a BESS size is based on maximising a financial 

objective function such as the difference between potential benefit and cost (i.e. 

maximum profit), or minimising cost of operation. By maximising these types of 

objective functions an optimal BESS size is based on argmax or argmin. However, 

this may not always be desirable. If one was to look at all BESS sizes from 0 MWh up 

to the optimal BESS size, it is possible that the objective function would show 

diminishing returns for ever larger BESS sizes. In such a scenario, selection of 

optimal BESS size can become unclear for a project under design. Ultimately, the 

best BESS size choice is one which balances maximum/minimum objective function 

value and scale of investment. Therefore, implementing the Investment Scale 

planning objective requires selecting BESS sizes away from optimal argmax or 

argmin. These BESS sizes represent a sounder investment choice.  

 
2 Capacity of a BESS can mean both the energy capacity and/or power capacity. This dissertation’s 
primary aim is sizing the optimal energy capacity of a BESS. However, the FEP framework refers to all 
capacity decisions. Therefore, to distinguish power capacity from energy capacity, the term Capacity 
(Power) is used.  
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1.3.2 INVESTMENT TIMING 
The Investment Timing planning objective is complementary to BESS sizing. 

Traditionally, existing BESS sizing objective functions have used financial objectives 

such as NPV or annualised cost. These types of objective functions size a BESS for 

only the initial year of BESS project operation. However, BESS sizing can also have a 

timing dimension. This situation appears after the initial capacity installation with 

subsequent capacity installed at intervening years. Including this timing dimension 

as part of BESS sizing fundamentally changes the structure of BESS sizing objective 

function compared to NPV, as an example. Firstly, the number of BESS sizing 

decision variables increases from one to twenty (if it is assumed that BESS capacity 

can be added each year of a 20-year project lifecycle), Secondly, the consideration 

of future expansion relies on simulation of future events such as electricity market 

clearing prices which are stochastic. Furthermore, introducing this timing dimension 

as part of BESS sizing means that other specific factors need to be considered which 

could influence the sizing and timing decisions. Two such factors considered as part 

of this study are future BESS capital costs and BESS degradation. The structure of an 

objective function which captures all these requirements for Investment Timing can 

be referred to as Real Options, which is capable of modelling dynamic and 

stochastic decisions.  

1.3.3 DISPATCH ADAPTABILITY 
Simulation of BESS operational decisions are required as part of an objective 

function so that BESS benefits can form part of the optimisation. Most BESS sizing 

approaches up until now have simulated stationary BESS operational decisions. 

These daily dispatch decisions are modelled as once-a-day decisions, and not 

modified at available permitted intervals. This represents potential loss of predicted 

revenue by not optimally adapting daily dispatch decisions through cross-market 

arbitrage. The Dispatch Adaptability planning objective refers to the simulation of 

BESS operational decisions ability to change at different epochs. This adaptability 

can be viewed in a positive sense, as optional adaptable operational decisions are 

only pursued under the premise of achieving greater project benefit. As BESS 
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benefit is modelled as part sizing objective functions, this adaptability will directly 

influence BESS size and/or improve financial performance.  

1.4 RESEARCH QUESTION  
To assess the validity of including the aforementioned planning objectives as 

part of BESS sizing, the following research questions have been developed. This 

research seeks to answer the following questions: 

1. Is it possible to form the planning objectives Investment Scale, Investment 

Timing and Dispatch Adaptability as part of optimising energy capacity size 

for new BESS installation seeking maximum profit?  

2. Are there any circumstances where the inclusion of planning objectives 

Investment Scale, Investment Timing and Dispatch Adaptability as part of 

BESS sizing helps overcome shortcomings of existing sizing approaches? 

It is prudent at this juncture to ask the question: why should the reader care 

about whether or not BESS sizing approaches include project planning objectives? 

In answer to this question, if the inclusion of planning objectives as part of BESS 

sizing approaches has a positive effect on BESS optimal size and/or financial 

performance then this could hasten the development of BESS projects. However, 

the opposite is also true, and if the effect is negative it could paint a bleaker picture 

which could have harmful connotations. Irrespective of positive or negative results 

that will be presented throughout this study, the knowledge must be obtained 

regardless. In view of this fact, planning objectives are focused and deliberate ways 

of ensuring that the correct projects are built. Therefore, the motivation of this 

dissertation is to develop BESS sizing optimisation approaches that include the 

project planning objectives of Investment Scale, Investment Timing, and Dispatch 

Adaptability. 

1.5 AIMS AND OBJECTIVES 
The first aim of this dissertation is to study the effects of employing opposing 

financial objective functions maximised using multi-objective optimisation (MOO) 

as an approach to form the planning objective Investment Scale as part of BESS 

sizing.  
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RO1.13 Objectively, this will be achieved by utilising and comparing two 

different MOO models called Paired Comparison and Rating Method. 

RO1.2 The next objective applies both models to BESS sizing for a simple 

microgrid under various electricity price scenarios with the optimal 

BESS size and financial performance noted.   

The second aim of this dissertation is to analyse the effects of separating BESS 

sizing optimisation into hourly (operational decisions i.e. BESS dispatch) and yearly 

decisions (BESS size at different yearly intervals) as an approach to form the 

planning objective Investment Timing as part of BESS sizing, resulting in two 

different models, called the operational model and the planning model.  

RO2.1  Objectively, this will be achieved by employing reinforcement 

learning as the operational model solution method and global 

optimisation as solution method for the planning model. 

RO2.2  Use data from the Integrated Single Electricity Market (I-SEM) Day-

Ahead Market as the test bed for the operational model, while the 

planning model utilises various future BESS CAPEX and degradation 

scenarios.  

RO2.3 NPV will also be solved for comparison purposes through modified 

constraints. 

The third aim of this dissertation is to examine the effects of utilising model-

based and model-free stochastic optimisation methods as a means to form the 

planning objective Dispatch Adaptability as part of BESS sizing.  

RO3.1 Objectively, this will be achieved for model-free optimisation by 

suitably utilising deep reinforcement learning methods as an 

approach to allow for Day-Ahead and Intraday Market BESS dispatch. 

Similarly, stochastic programming will be utilised as the solution 

method for model-based approach.  

 
3 Research Objective (RO) 



INTRODUCTION AIMS AND OBJECTIVES 

 
8 

 

RO3.2 The next objective will test both approaches on historical Day-Ahead 

and Intraday Markets electricity clearing prices from the Integrated 

Single Electricity Market (I-SEM).  

RO3.3  Removing of Intraday dispatch capability will also be achieved so that 

comparison with and without planning objective Dispatch 

Adaptability is possible. 

Fig.1.2 is an illustrative relationship of this dissertation’s research question, 

aims and research objectives. The research question is the overarching question 

that this dissertation seeks to answer (i.e. high level research idea), which in this 

case is made up of three different distinctive strands, called Investment Scale, 

Investment Timing and Dispatch Adaptability. Within this dissertation each of these 

strands are examined in isolation of one another, with each strand having its own 

dedicated research chapter. This is done so as to allow examination of effects of 

each strand individually on BESS sizing rather than collectively. One analogy which 

is helpful is partial differentiation. Each strand has its own singular aim, which 

outlines what each chapter seeks to achieve, which will ultimately inform on 

research question answers. Furthermore, each aim has Research Objectives (RO), 

which outline the steps taken to achieve each aim. 

 

Fig.1.2 – Interaction between Research Question, Aims and Research Objectives 
throughout this dissertation. 

 

Research Question

Investment Scale 
- Chapter 3

First Aim of 
Research

RO1.1 RO1.2

Investment Timing -
Chapter 4

Second Aim of Research

RO2.1 RO2.2 RO2.3

Dispatch Adapatbility -
Chapter 5

Third Aim of Research

RO3.1 RO3.2 RO3.3



INTRODUCTION DOCUMENT STRUCTURE AND LAYOUT 

 
9 

 

1.6 DOCUMENT STRUCTURE AND LAYOUT 
The emphasis of the literature review in Chapter 2 is to confirm the problem 

statement existence from Section 1.2 through appraising existing BESS sizing 

approaches inclusiveness of planning objectives. There are also shorter and more 

focused literature reviews within each research chapter (Section 3.3, 4.3 and 5.3). 

These shorter reviews are concentrated on any literature that has similar tendency 

for modelling planning objectives but not too far removed from BESS sizing topic 

area. Casting a wider net allows for a review of useful solution methods or 

modelling techniques used in similar topics or areas that may not have found their 

way into BESS sizing research field.  

The aims/objectives, methods, results and discussions in relation to planning 

objectives Investment Scale, Investment Timing, and Dispatch Adaptability are set 

out in Chapters 3, 4 and 5 respectively. Inherently, each planning objective has its 

own dedicated research chapter. 

1.7 PROPOSED OUTCOMES 
The following outlines possible outcomes of forming the aforementioned 

planning objectives as part of BESS sizing approaches. A brief description of the 

approach taken within this dissertation to incorporate the planning objective as 

part of BESS sizing, the hypothesis and implications of this hypothesis are provided. 

To incorporate the planning objective Investment Scale as part of BESS 

sizing, two competing financial objectives are maximised for optimal BESS size via 

Multi-Objective Optimisation. It is hypothesised that such an approach will prevent 

nonsensible BESS sizes from being suggested as possible solutions. This is achieved 

through opposing objective functions with dissimilar rates of change. For example, 

if one objective function’s rate of change diminishes significantly at a certain BESS 

size and the other objective function’s rate of change remains constant, then a 

distinctive knee region will form as part of Pareto front. If this region is convex 

under maximisation, then BESS sizes outside this region may represent less gains 

for greater outlay (i.e. diminishing returns), and therefore may not represent a 

satisfactory BESS size choice. Depending on the application, using the above 
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approach will result in a smaller BESS size with less profit. However, the financial 

performance will improve compared with the investment undertaken. Confirmation 

of this hypothesis through this research implies that sizing a BESS with maximum 

profit is not always the best approach.  

Forming the planning objective Investment Timing as part of BESS sizing is 

done through utilising two different models called operational model (hourly 

decisions) and planning model (yearly decisions) which are maximised for profit. It 

is hypothesised that the inclusion of Investment Timing as part of BESS sizing will 

defer BESS investment from Year 1 to a later year. This deferral is driven by the fact 

that BESS costs are due to decline in coming years and are modelled as such in this 

dissertation. Therefore, future BESS sizing decisions can avail of less expensive 

capacity expansion. Another possible outcome is that BESS size at year 1 will remain 

the same with Investment Timing modelled as compared with the same scenario 

modelled without Investment Timing. Although, it is expected that capacity 

expansion may happen at a later year. Another aspect that can influence the timing 

and size of BESS investment is degradation, although at this point the outcome is 

unclear. It is possible that BESS capacity will not be replaced closer to end of project 

life as there will be less time to recoup investment. It is also possible that the 

inclusion of Investment Timing will reduce financial performance of a BESS project. 

This is due to the degradation effect, along with the cost of replacing degraded 

capacity. If the above hypotheses hold true, the consequences for BESS sizing as a 

whole is that without the inclusion of future decisions the true value of the project 

cannot be known. This could lead to false beliefs about profit maximisation value of 

BESS sizes unless Investment Timing is incorporated.  

To model the planning objective Dispatch Adaptability as part of BESS sizing, 

two different approaches known as Deep Reinforcement Learning and Stochastic 

Programming are utilised and compared. The proposed result of these approaches 

has two mutually exclusive outcomes that may occur. The first possible outcome is 

that modelling Dispatch Adaptability as part of BESS sizing optimisation will result in 

smaller optimal BESS sizes when compared to sizing approach without Dispatch 

Adaptability. This is due to the fact that cross-market dispatch adaptability does not 
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require extra BESS capacity, but rather is based on modifying already established 

dispatch decisions. Therefore, the same level of revenue can be achieved utilising a 

smaller BESS with Dispatch Adaptability compared with a larger BESS without 

Dispatch Adaptability. This only leaves the cost component of the objective function 

which is less for a smaller BESS, and therefore through maximisation, the optimal 

BESS size will be smaller. The second possible outcome is that optimal BESS size will 

remain the same but profitability will increase, when sized with Dispatch 

Adaptability compared without. The primary reason is that inclusion of Dispatch 

Adaptability will result in all BESS sizes increasing revenue. If the scale of this 

increase is similar for all BESS sizes, then a change in optimal BESS size is unlikely as 

BESS cost has not changed through the inclusion of the planning objective Dispatch 

Adaptability. If the proposed outcome of increased profitability comes to fruition 

through this research, then there is potential to utilise Dispatch Adaptability for 

converting unprofitable BESS projects into profitable ones.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

The purpose of this literature review is to confirm the problem statement set 

out earlier in Section 1.2. The problem statement, set out that existing BESS sizing 

approaches are lacking in three key planning objectives called Investment Scale, 

Investment Timing and Dispatch Adaptability. Arriving at this conclusion was done 

through a two-step process which is set out in this chapter. The requirement for 

this two-step process is described herein.  

2.1 OVERVIEW 
At the beginning of this research, the extent of knowledge was that a BESS 

sizing objective function should include as many planning objectives as possible if 

utilised as a planning tool (refer to Section 1.1). Introduced later within Section 2.2 

of this chapter, the Front-End Planning (FEP) framework provides an evidence 

based rigorous approach to scoping necessary planning objectives for certain 

project types for which BESS can be considered. The FEP framework was chosen for 

this study due to the usability of toolkits provided (described later in Section 2.2) as 

part of FEP. Furthermore, these toolkits were derived from extensive survey efforts 

of project development professionals undertaken by Construction Industry Institute 

(CII) which demonstrates the ability of FEP application to a wide variety of project 

types. Including all planning objectives derived from FEP as part of BESS sizing 

would present too large a task for this study. Therefore, to fit within the confines of 

this dissertation, the number of planning objectives investigated was reduced to 

three: Investment Scale, Investment Timing and Dispatch Adaptability. The 

remainder of this chapter is dedicated to outlining this two-step reduction process. 

The first step seeks to reduce the number of FEP planning objectives to a subset via 

suggested significance to BESS sizing. The second step reviews existing BESS sizing 
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literature against this subset of planning objectives to establish the “research gap”, 

and through deduction confirm the Problem Statement.   

For now, the discussion will revert from planning objectives to scoping 

elements. “Scoping element” is a FEP term. As part of this dissertation, multiple 

scoping elements can form a planning objective. Reverting back to planning 

objectives occurs at the end of this chapter through consolidation and renaming of 

scoping elements into planning objectives. As will be shown, the FEP framework 

provides a list of scoping elements that are required for wide range of different 

project types.  

Step one involves a description of the relationship between the FEP 

framework and its toolkits (Section 2.2.1 and 2.2.2). The toolkits provide a list of 

scoping elements to select from. Some scoping elements within toolkits are 

applicable, while others are unrelated to BESS projects. Of those being applicable, it 

is also the case that some of these scoping elements may present as difficult to 

incorporate within an objective function. Regardless, the number of scoping 

elements is reduced to a workable subset for this dissertation. Rather than selecting 

scoping elements arbitrarily, some thought is given to the selection process. The 

approach taken to developing a subset of scoping elements is to suggest likely 

significant relationships between these scoping elements and BESS sizing at the 

outset. In other words, a significant relationship is one where optimising any 

objective function modelled with a scoping element would likely result in very a 

dissimilar optimal BESS size compared with the same optimised objective function 

without the scoping element. Likewise, a less significant relationship is one where 

the change in optimal BESS size is minimal with or without a scoping element as 

part of objective function. This is not to suggest that scoping elements deemed less 

significant would not alter BESS size. Scoping elements deemed less significant at 

this stage could form future research to either confirm or deny this attribution.  

Step two, completed within Sections 2.3 through to 2.8 of this chapter, 

reviews existing BESS sizing approaches from literature against the previously 

suggested subset of scoping elements. In total, 32 suitable BESS sizing journal 
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articles have been identified [9-40]. This was achieved by compiling a database of 

200 most cited research articles over the past decade using the search term 

“energy storage sizing”. This list was reduced by removing non-BESS sizing articles, 

review articles, microgrid/grid sizing articles and non-electrical grid applications. 

Each remaining article is reviewed against its inclusiveness of each scoping element 

from subset. The results of this gives a status quo, which confirms the premise 

within the Problem Statement.  

Lastly, within Section 2.9, consolidation and renaming of scoping elements 

into planning objectives which can be studied as part of this dissertation is 

provided. 

2.2 SELECTING SCOPING ELEMENTS FOR STUDY 
Formalisation of the FEP process was undertaken by the Construction 

Industry Institute (CII) in the mid-nineties [41]. Officially, FEP can be defined as “The 

essential process of developing sufficient strategic information with which owners 

can address risk and make decisions to commit resources in order to maximize the 

potential for a successful project” [42].  Other terms which are synonymous with 

FEP and may be familiar to the reader are front-end engineering design (FEED), 

front end loading (FEL), pre-project planning (PPP), feasibility analysis, 

programming and conceptual planning [42]. See Fig.2.1 for an illustration of FEP 

dominion within project development, extracted from [43].  

The CII sought FEP improvement via the development of scoping tools [44]. 

Three overarching Project Definition Rating Index (PDRI) toolkits were developed as 

methods to scope building projects [45], industrial projects [46] and infrastructure 

projects [47]. These toolkits were developed through collaboration with project 

development professionals. Each toolkit contains necessary scoping elements (i.e. 

 

Fig.2.1 – Occurrence of Front-End Planning within project development 
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“strategic information” from the FEP definition). The scoping elements within each 

toolkit are deliberately maintained as generic to cover a wide variety of project 

types e.g. waste processing, chemical plants, dams, air terminals, etc. Of the three 

PDRI toolkits available, only the infrastructure toolkit (see Table 2.1 extracted from 

[47]) and the industrial toolkit (see Table 2.2 extracted from [46]) are applicable to 

BESS installations, given that each toolkit can be applied to “power generation 

facilities” which is the closest facility type to a BESS installation. The infrastructure 

toolkit and the industrial toolkit follow the same section classification approach. 

They also share similar categories and elements but on the whole are devised in 

such a way as to capture unique characterises of infrastructure projects and 

industrial projects. New BESS installations can fall between these two classifications 

which is why both toolkits are utilised. A review of both toolkits and the likely 

significant impact of scoping elements on BESS sizing is dialogued subsequent to 

this section.  

2.2.1 REVIEWING FEP INFRASTRUCTURE TOOLKIT 
The scoping elements within Table 2.1 under Section III – Execution 

Approach for the infrastructure toolkit are most concerned with project execution 

plan subsequent to the scoping stage and therefore are deemed to have minimal 

impact on BESS size. For example, J. – Land Acquisition Strategy and K. – 

Procurement Strategy would likely not alter optimal BESS size if modelled as part of 

an objective function. Important scoping elements for any facility type are M.1 – 

Safety Procedures and L.4 – Project Schedule Control, but these remain unlikely to 

meaningfully alter BESS size if modelled.  

Within Section II – Basis of Design from Table 2.1, there are numerous 

important elements for consideration. Any environmental elements should be given 

the utmost importance when designing a BESS facility. Environmental elements in 

this context refers to the impact of BESS installations and not BESS manufacturing. 

However, it is currently difficult to see any extensive change in BESS size with the 

inclusion of environmental aspects as part of an objective function. An interesting 

scoping element is presented with F.4 – Permitting Requirements. It is probable 

that greater BESS sizes give way to exponentially harder permit authorisation from 
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governing authorises for BESS installations. However, this does have a degree of 

subjectivity attached to it from governing authorises and therefore would prove 

impractical to model as part of an optimisation problem. Another significant 

scoping element exists in I.1 – Capacity. More specifically, a Capacity scoping 

element refers to any sizing decision for a project. Designing a BESS project can 

involve at a minimum two sizing decisions, the energy capacity and power capacity.  

Sizing BESS energy capacity is already the sole focus of this dissertation. The 

subsequent literature review examines the inclusiveness of each proposed scoping 

element within existing BESS energy capacity sizing approaches. Therefore, energy 

capacity does not warrant its own dedicated scoping element section within the 

literature review, as it is the overarching concept of this dissertation through which 

all scoping elements are reviewed. Sizing BESS power capacity will not be 

undertaken as part of this dissertation. That being said, sizing BESS power capacity 

Table 2.1 – Scoping Elements of PDRI for Infrastructure Projects 

SECTION I. BASIS OF PROJECT DECISION G.3 Cross-Sectional Elements 

A. Project Strategy G.4 Control of Access 

A.1 Need & Purpose Documentation H. Associated Structures and Equipment 

A.2 Investment Studies & Alternatives Assessments H.1 Support Structures 

A.3 Key Team Member Coordination H.2 Hydraulic Structures 

A.4 Public Involvement H.3 Miscellaneous Elements 

B. Owner/Operator Philosophies H.4 Equipment List 

B.1 Design Philosophy H.5 Equipment Utility Requirements 

B.2 Operating Philosophy I. Project Design Parameters 

B.3 Maintenance Philosophy I.1 Capacity 

B.4 Future Expansion & Alteration Considerations I.2 Safety & Hazards 

C. Project Funding and Timing I.3 Civil/Structural 

C.1 Funding & Programming I.4 Mechanical/Equipment 

C.2 Preliminary Project Schedule I.5 Electrical/Controls 

C.3 Contingencies I.6 Operations/Maintenance 

D. Project Requirements SECTION III. EXECUTION APPROACH 

D.1 Project Objectives Statement J. Land Acquisition Strategy 

D.2 Functional Classification & Use J.1 Local Public Agencies Contracts & Agreements 

D.3 Evaluation of Compliance Req. J.2 Long-Lead Parcel & Utility Adjustment Identification 

D.4 Existing Environmental Conditions J.3 Utility Agreement & Joint Use Contract 

D.5 Site Characteristics Available vs. Req. J.4 Land Appraisal Requirements 

D.6 Dismantling & Demolition Req. J.5 Advance Land Acquisition Req. 

D.7 Determination of Utility Impacts K. Procurement Strategy 

D.8 Lead/Discipline Scope of Work K.1 Project Delivery Method & Contracting Strategies 

E. Value Analysis K.2 Long-Lead/Critical Equipment & Materials Identification 

E.1 Value Engineering Procedures K.3 Procurement Procedures & Plans 

E.2 Design Simplification K.4 Procurement Responsibility Matrix 

E.3 Material Alternatives Considered L. Project Control  

E.4 Constructability Procedures L.1 Right-of-Way & Utilities Cost Estimate 

SECTION II. BASIS OF DESIGN L.2 Design & Construction Cost Estimate  

F. Site Information L.3 Project Cost Control 

F.1 Geotechnical Characteristics L.4 Project Schedule Control 

F.2 Hydrological Characteristics L.5 Project Quality Assurance & Control 

F.3 Surveys & Mapping M. Project Execution Plan 

F.4 Permitting Requirements M.1 Safety Procedures 

F.5 Environmental Documentation M.2 Owner Approval Requirements 

F.6 Environmental Commitments & Mitigation M.3 Documentation/Deliverables 

F.7 Property Descriptions M.4 Computing & CADD/Model Req. 

F.8 Right-of-Way Mapping & Site Issues M.5 Design/Construction Plan & Approach 

G. Location and Geometry M.6 Intercompany & Interagency Coordination & agreements 

G.1 Schematic Layouts M.7 Work Zone and Transportation Plan 

G.2 Horizontal & Vertical Alignment M.8 Project Completion Requirements 
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as part of sizing BESS energy capacity will be reviewed as part of this literature 

review (see Section 2.8), which will outline a justification for excluding BESS power 

capacity sizing from this dissertation and also inform on possible future work for its 

inclusion. As a clarification step, the “Capacity” scoping element will be reverted to 

“Capacity (Power)” for this dissertation to distinguish between power capacity and 

energy capacity. For the remaining elements within G. – Location and Geometry 

and H. – Associated Structures/Equipment it is proposed that their significance to 

altering BESS sizes is minimal if included as part of optimisation.  

Also contained in Table 2.1 is Section I – Basis of Project Decision which has 

three elements with probable significant impact on BESS sizing. The first element is 

A.2 – Investment Studies and Alternatives Assessments, which seeks to understand 

if the investment into a BESS project is sensibly considered.  Depending on the level 

of investment, significantly varying BESS sizes can be expected as the final optimal 

result. The second element is B.2 – Operating Philosophy. Here, modelling BESS 

operation is required to size a BESS through an optimisation problem. It is 

hypothesised that operating strategy choice could have a wide-ranging effect on 

overall BESS performance and in turn affect optimal BESS size. The second element 

is B.4 – Future Expansion & Alteration Considerations. This accounts for factors 

which could affect the future state of BESS energy storage capacity. One such factor 

is degradation which reduces the available energy storage capacity over time and 

through repeated use. Depending on the rate of degradation, it is theorised that 

replacement of this lost capacity could make financial sense. Another factor is the 

decline in future BESS cost which could present a situation where it makes sense to 

hold off BESS installation until a later date. Outside of this, all other scoping 

elements as part of Section I – Basis of Project Decision remain important but less 

significant, and will therefore not be considered candidates for inclusion as part of 

this dissertation.   

2.2.2 REVIEWING FEP INDUSTRIAL TOOLKIT 
To begin with, the industrial toolkit shown in Table 2.2 has various similar 

scoping elements to that of the infrastructure toolkit. Moreover, the industrial 

toolkit also contains scoping elements which are already identified as having a 
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proposed significant impact on BESS sizing. These include B6. – Future Expansion 

Considerations, A.3 – Operating Philosophy, as well as I.1 – Capacity (Power). 

Similar also to the infrastructure toolkit, the industrial toolkit contains important 

scoping elements for project design but less significant for altering BESS size such as 

F3. – Environmental Assessment and P. – Project Execution Plan. An additional 

scoping element which gets little attention is D4. – Dismantling & Demolition 

Requirements. However, it is not included as part of the FEP framework moving 

forward as the requirements are expected to increase linearly with increasing BESS 

size. 

A notable scoping element from Table 2.2 within Section II. – Front End 

Definition which is likely to have a significant impact on BESS sizing is F1. – Site 

Location. Potential connection points of a BESS installation to an electrical grid 

Table 2.2 – Scoping Elements of PDRI for Industrial Projects 

SECTION I. BASIS OF PROJECT DECISION G8. Plot Plan 

A. Manufacturing Objectives G9. Mechanical Equipment List 

A1. Reliability Philosophy G10. Line List 

A2. Maintenance Philosophy G11. Tie-in List 

A3. Operating Philosophy G12. Piping Specialty Items List 

B. Business Objectives G13. Instrument Index 

B1. Products H. Equipment Scope 

B2. Market Strategy H1. Equipment Status 

B3. Project Strategy H2. Equipment Location Drawings 

B4. Affordability/Feasibility H3. Equipment Utility Requirements 

B5. Capacities I. Civil, Structural, & Architectural 

B6. Future Expansion Considerations I1. Civil I Structural Requirements 

B7. Expected Project Life Cycle I2. Architectural Requirements 

B8. Social Issues J. Infrastructure 

C. Basic Data Research & Development J1. Water Treatment Requirements 

C1. Technology J2. Loading/Unloading/Storage Facilities Req'mts. 

C2. Processes J3. Transportation Requirements 

D. Project Scope K. Instrument & Electrical 

D1. Project Objectives Statement K1. Control Philosophy 

D2. Project Design Criteria K2. Logic Diagrams 

D3. Site Characteristics Available vs. Req'd K3. Electrical Area Classifications 

D4. Dismantling & Demolition Requirements K4. Substation Req'mts./Power Sources Identified 

D5. Lead/Discipline Scope of Work K5. Electrical Single line Diagrams 

D6. Project Schedule K6. Instrument & Electrical Specs. 

E. Value Engineering SECTION III. EXECUTION APPROACH 

E1. Process Simplification L. Procurement Strategy 

E2. Design & Material Alternatives  L1. Long Lead/Critical Equipment & Materials 

E3. Design for Constructability Analysis L2. Procurement Procedures and Plans 

SECTION II. FRONT END DEFINITION L3. Procurement Responsibility Matrix 

F. Site Information M. Deliverables 

F1. Site Location M1. CADDI Model Requirements 

F2. Surveys & Soil Tests M2. Deliverables Defined 

F3. Environmental Assessment M3. Distribution Matrix 

F4. Permit Requirements N. Project Control 

F5. Utility Sources with Supply Conditions N1. Project Control Requirements 

F6. Fire Protection & Safety Considerations N2. Project Accounting Requirements 

G. Process/Mechanical N3. Risk Analysis 

G1. Process Flow Sheets P. Project Execution Plan 

G2. Heat & Material Balances P1. Owner Approval Requirements 

G3. Piping & Instrumentation Diags. (P&ID's) P2. Engr./Constr. Plan & Approach 

G4. Process Safety Management (PSM) P3. Shut Down/Turn-Around Req'mts. 

G5. Utility Flow Diagrams P4. Pre-Commissioning Turnover Sequence Req'mts. 

G6. Specifications P5. Startup Requirements 

G7. Piping System Requirements P6. Training Requirements 
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cannot all be treated equally. Some connection points may require substantial grid 

upgrades for larger BESS sizes resulting in higher costs, while other connection 

points may have local marginal pricing which can affect revenue. It is connection 

point differences similar to the aforementioned which could have significant 

influence on optimal BESS size. Finally, the scoping element C1. – Technology can 

significantly alter optimal BESS size as different BESS technologies have varying 

functionalities. This functionality, when incorporated into an optimisation problem, 

has the potential to alter BESS size significantly and therefore also needs to be 

investigated.   

2.2.3 SUMMARY 
In summary, and after reviewing each toolkit, the following is a list of scoping 

elements which are proposed as having the most significant impact on BESS sizing 

presently: Investment Studies and Alternatives Assessments, Future Expansion, 

Operation Philosophy, Technology, Location, and Capacity (Power). Each of these 

elements will form the basis on which to assess existing BESS sizing methodologies. 

In doing this, a status quo is established between existing BESS sizing 

methodologies and their applicability as planning tools. The subsequent questions 

outlined in bullet point form are framed in such a way as to provide a method of 

investigating existing BESS approaches’ applicability as a planning tool for each 

proposed scoping element respectively. The results are presented in Sections (2.3 

to 2.8) and will lay the foundations on which the aims and objectives of this work 

can be pursued.   

• Investment Studies and Alternative Assessments 

o What are the financial objective functions used within existing BESS 

sizing methodologies, and do they account for scale of investment?  

o Are there any restrictions on capital spend as part of existing BESS sizing 

approaches? 

• Future Expansion 

o Do existing BESS sizing methodologies have full view of future capacity 

expansion potential? 
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o What parameters are maintained as uncertain for future decisions 

concerning BESS sizing? 

• Operation Philosophy  

o What are the key criteria for simulating the operation of BESS within 

sizing methodologies?  

o Are existing BESS approaches towards Operation Philosophy geared 

towards wider grid benefit or sole BESS benefit?  

• Technology 

o How do current BESS sizing methodologies account for different BESS 

technology types? 

o Are there different BESS technology traits that need to be modelled 

which could have significant impact on optimal BESS size or can 

methodologies be maintained generic? 

• Location 

o Do existing BESS sizing methodologies also account for optimal location 

placement within electrical grid? 

o Are these approaches applicable in deregulated electricity markets? 

• Capacity (Power) 

o How is the power capacity design variable accounted for within BESS 

sizing methodologies? 

o Are these approaches applicable in deregulated electricity markets? 

2.3 REVIEWING INVESTMENT STUDIES AND ALTERNATIVE 

ASSESSMENTS SCOPING ELEMENT WITHIN BESS SIZING 
By its very nature, optimising a BESS sizing objective function is synonymous 

with selecting an optimal BESS over alternative BESS sizes i.e. Alternative 

Assessment. This can be done either one of two ways: 1) through Analytical means 

[10, 13, 14, 16, 20, 21, 23, 24, 26, 27, 31, 39], where BESS dispatch variables are 

optimised for maximum or minimum objective function value at different constant 

BESS sizes and 2) Direct-Searched Based Methods [11, 12, 17-19, 22, 25, 29, 30, 32, 

34-36, 38, 40], which optimises over a BESS size variable and BESS dispatch 

variables simultaneously. However, none of these approaches informs on 
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diminishing returns for ever larger BESS sizes. A simplified illustrative version of this 

issue can be seen graphically in Fig.2.2, where depending on objective function 

formulation (𝑓1, 𝑓2, 𝑓3), the path from zero to optimal maximum value can vary. 

Assuming the scale of 𝑓(𝑥, 𝑦) and 𝑥 are similar, it makes little sense selecting a 

BESS size which gives maximum optimal objective function value if the rate of 

change nearing maximum optimal 𝑓(𝑥, 𝑦) value is lessened significantly. One has to 

remember that the variable 𝑥 represents BESS project capital cost, and 𝑥 should be 

expended as sparingly as possible. This may give rise to a situation whereby 

selecting BESS size coinciding with the optimal value of 𝑓(𝑥, 𝑦) it is not always the 

best decision. The issue can be seen more distinctly in 𝑓3(𝑥, 𝑦) which shows a much 

lesser rate of change compared with 𝑓2(𝑥, 𝑦). In this instance, it is more considered 

to select a BESS size smaller (i.e. less expensive) than optimal point BESS size for 

 

Fig.2.2 – Demonstration of different rate of change for diverse objective function 
formulations.  

𝑥 in this instance represents capital expenditure of BESS project which starts at 
zero in the bottom left corner with cost increasing from left to right in equal 
units. Typically, the greater BESS project size equates to greater cost. Therefore, 
the increase in cost from left to right can also be seen as an increase in BESS size. 
𝑓(𝑥, 𝑦) represents the objective function used to select BESS size. Typically, this 
objective function is Net Present Value, profit or return of the BESS project which, 
along with capital expenditure 𝑥, includes a benefit variable denoted here as 𝑦. 
The optimal value of the objective function will have accompanying cost and 
benefit value based on one distinct BESS size. 
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𝑓3(𝑥, 𝑦), as the return of 𝑓3(𝑥, 𝑦) stays near constant approaching optimal point all 

the while 𝑥 increases at the same rate. Whereas, it can be argued that optimal 

point BESS size is a better choice for 𝑓2(𝑥, 𝑦) as the rate of change for 𝑓2(𝑥, 𝑦) 

nearing optimal point is more comparable with 𝑥. It is likely that such phenomena 

explained thus far are application specific, similar to the illustration provided in 

Fig.2.2. Nevertheless, it cannot be determined if the issue occurs, let alone can be 

fixed, using existing BESS size approaches from the literature. Therefore, a new 

BESS sizing approach is required which can achieve two outcomes. The first is to 

select a smaller BESS size compared with optimal BESS size when situations arise 

similar to those in 𝑓3(𝑥, 𝑦). The second is to select optimal BESS size when rates of 

change do not diminish significantly as optimal objective function value is 

approached, such as those in 𝑓2(𝑥, 𝑦). 

The BESS sizing problem as discussed thus far can be considered one of scale. 

In other words, the objective functions typically used in literature (i.e. Net Present 

Value, Annualised Cost, etc.) do not account for the scale of investment to reach 

maximum or minimum value, and as a result do not discourage ever larger BESS 

sizes with diminishing returns. One approach taken within the literature to reduce 

the impact of this scaling issue is to apply a budget/investment constraint [16, 22]. 

Here, the authors define a level of investment that is not to be exceeded, which 

also enforces that BESS sizes remain smaller, but only if cost of optimal BESS size is 

greater than investment constraint. This approach, although useful, does not 

achieve the aforementioned two desired outcomes for a BESS sizing approach when 

the capital expenditure for the optimal BESS size is much less than the budget 

constraint value. Therefore, a new approach is required.  

2.4 REVIEWING FUTURE EXPANSION SCOPING ELEMENT 

WITHIN BESS SIZING 
Expansion in this instance is used to describe potential opportunities during 

the lifecycle of a BESS project to increase the overall MWh rating of the project. 

There are two points to note when introducing future expansion as part of BESS 

sizing. The first point is that with any potential BESS installation project requiring 
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capital, the BESS size decision is based on existing belief of future outcomes. For 

example, before investment it is required to estimate future electricity market price 

assumptions so that the likely benefit can be approximated, which in turn will 

inform the optimal BESS size. As with any assumption of future events it may not be 

realised when the time arrives. Therefore, accounting for this uncertainty is 

paramount and to size BESS accordingly. This uncertainty typically takes the form of 

objective function parameters and/or constraint parameters. The second point to 

note in addition to uncertainty is that dynamic decisions also form part of 

investment. This situation arrives after the initial decision (i.e. BESS size) to invest 

where new decisions are presented at multiple future intervals. If these future 

decisions are omitted within the optimisation problem, the initial decision can be 

suboptimal. Future expansion is one such dynamic decision. Outlined herein is a 

review of uncertainty and dynamic decisions application within existing BESS sizing 

literature.  

Of the 32 BESS sizing literature sources identified at the beginning of this 

chapter, only 12 have considered uncertainty parameters as part of an objective 

function. The most common uncertainty parameters are load [11, 13, 17, 22, 23, 32, 

33, 38] and renewable generation [11, 17, 22, 23, 32, 33, 38]. The addition of load 

and renewable generation parameters within objective functions by these authors 

is part of a grid expansion problem, where addition of a BESS to an electrical grid is 

sought. A less common uncertainty parameter is electricity clearing price [11, 22, 

32, 33]. Others have not modelled the electricity clearing price parameter [17], or 

assume a deterministic value [13, 16, 23, 38]. Outside of case studies meeting grid 

load, renewable generation is the most commonly-occurring uncertainty parameter 

in the literature, with electricity clearing price not forming part of the optimisation 

problem [18, 19]. Of the discussed literature so far, no studies have extended the 

problem setting to include dynamic decisions (i.e. future expansion) over a planning 

horizon of one year. Only one previous study has applied future expansion as part 

of a BESS methodology while also including load and renewable generation 

uncertainties [26]. Here, the authors took a 10-year planning horizon and sought 

the addition of increased BESS capacity for each year. The inclusion of future BESS 
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expansion over ten years was shown to reduce operation cost by 9.4% when 

compared with BESS sizing installation restricted to year one. Furthermore, the size 

of year one BESS capacity reduced by 91.3% when future expansion was 

permissible. To compensate for this reduction in capacity, year two sees a large 

increase in BESS size. Also, each of the 10 years saw an expansion of BESS capacity 

for three different battery technologies.  

The applicability of the previously-discussed BESS sizing literature to this 

dissertation project will be further discussed now. Firstly, the inclusion of load as an 

uncertainty parameter should not be considered as this responsibility is with grid 

operators. A BESS enters competition with other entities to meet grid load, which 

can be successful or unsuccessful. Therefore, load is not a constraint and will not be 

included as an uncertain parameter for Future Expansion. Next, the inclusion of 

renewable generation remains important for BESS coupled to wind or solar. 

However, this work only considers standalone BESS and therefore has no 

requirement to include renewable generation uncertainty. Another uncertain 

parameter discussed thus far was the inclusion of electricity market clearing prices. 

Given that the expected benefit for a BESS project is determined via the revenue 

collected from participation within electricity markets, electricity clearing price will 

be included as an uncertain parameter in this study. The merits of future expansion 

have been shown by [26], and will also be modelled as part of this work. An 

important component of future expansion is the future BESS cost. This was not 

included in [26] but will be utilised in this work. Lastly, none of the previous studies 

allowed for delay of the initial BESS size decision until a later date. The previous 

approach was to expand capacity on the initial size decision of Year 1 at different 

subsequent yearly epochs [26]. This dissertation will seek to allow delay of initial 

size decision. 

2.5 REVIEWING OPERATIONAL PHILOSOPHY SCOPING 

ELEMENT WITHIN BESS SIZING 
Typically, when sizing a BESS through objective function optimisation, there 

are two types of variables solved for: the energy capacity variable which is the 
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primary interest of this dissertation, and operational variables whose purpose is to 

simulate BESS operation so that benefit of BESS inclusion can be determined. What 

is clear from the majority of previous BESS sizing attempts cited in this chapter is 

that the operational strategies are purposefully utilized for the socialised benefit of 

a wider grid or microgrid. In such a scenario, the addition of a BESS is sought for the 

overall benefit of a grid system, be it large or small. As a result, little attention has 

been given to BESS sizing where the sole economic beneficiary is the independent 

owner of a BESS. For example, much focus has been on the addition of a BESS to 

reduce the operational cost of microgrid [11, 13, 15, 17, 20, 26, 31, 38], all the while 

ensuring microgrid load is matched with generation. Others have included different 

grid system services as part of this optimisation either through maintaining 

reliability constraints for a grid [16, 29, 33], spinning reserve [21, 24, 27, 35], grid 

voltage support [14, 25, 32, 37, 39], reduced grid congestion [34] or frequency 

response [9, 28].  The operational strategies used in these studies has been 

designed in such a way to allow the grid owner/operator take the benefit of BESS 

inclusion. Transferring these approaches for BESS as part of larger grids is 

problematic, as outlined in European Directive 2019/944, “System operators should 

not own, develop, manage or operate energy storage facilities” [48]. This means 

that independent project developers must undertake the task of supplying BESS 

projects. Therefore, it can be argued that operational strategies used to size a BESS 

for transmission or distribution networks do not require any elements outside the 

BESS developer’s control, such as meeting load, reducing grid operating costs, 

maintaining grid reliability, providing adequate spinning reserve, etc. Rather, BESS 

sizing operational strategies should be more concerned with the benefit of being 

successful in competitive auctions created by grid and market operators, and the 

intricacies of such auctions modelled accurately as part of the operational strategy.   

The importance of developing sizing approaches for BESS projects as the sole 

beneficiary can be seen in Fig.1.1, where proposed BESS capacity numbers are 

based on connection to geographical transmission and distribution systems for the 

EU-28. Given that much of these countries operate a deregulated competitive 

electricity markets, a BESS operating in such a market can only be concerned with 
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its own benefit. As shown thus far, BESS sizing approaches to operational 

philosophy within literature are not readily transferrable when BESS sizing is 

concerned with its own benefit. To correct this, new BESS sizing approaches are 

required which will model operational philosophies that are focused on owners of 

BESS being the sole beneficiary. This has been previously attempted, although in a 

somewhat limited manner. For example, the authors in [18, 19] sized BESS to 

reduce forecast uncertainty associated with a windfarm. However, their approaches 

did not account for the benefit of doing so and therefore sizing was not done on a 

purely economic basis. Another example, albeit still reducing microgrid operating 

cost, uses a minimum acceptable profit constraint for a BESS installation [22, 23]. 

This type of approach does alleviate some concerns for BESS project developers but 

does not seek to extract the maximum amount of benefit from a project. Another 

approach taken in [10] could readily be applied to size a BESS as part of reducing 

curtailment levels of an individual windfarm (both co-owned), although some work 

needs to be done to extend the economic benefits of doing so. A different approach 

which fully focuses on the sole benefit of energy storage within Alberta electricity 

market is given by [30].   

To further develop sole beneficiary BESS sizing as part of this dissertation, a 

number of different singular operational strategies or combinations of operational 

strategies could be explored. For example, singular trading in day-ahead markets, 

participation in reserve auctions both short and long term, partaking in capacity 

markets towards scarcity, etc. However, it is the author’s opinion that the most 

significant BESS sizing operational strategy worthy of investigation within this 

dissertation is cross-market arbitrage. Such an approach would allow operational 

decision modification at different trading epochs, where changes in electricity 

wholesale prices at these epochs could present opportunities for greater benefit. As 

of yet, and to the best of the author’s knowledge, this approach has not been 

applied to BESS sizing. In doing so through this study, will plug a gap in knowledge 

and further align BESS sizing with a more suitable operational philosophy, all the 

while increasing the likely benefit of BESS projects.   
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2.6 REVIEWING TECHNOLOGY SCOPING ELEMENT WITHIN 

BESS SIZING 
Currently, there is a variety of different BESS technologies available to select 

from. Each technology has characteristics that differentiate one from another. A 

review of BESS technologies’ dominant characteristics has been identified [49]. 

Although somewhat dated, the said review shows the key technological features 

that can influence a potential BESS installation. For discussion within this literature 

review, efficiency, degradation (called reduced storage capacity in [49]) and self-

discharge are selected as the key BESS features for connecting to an electrical grid. 

These key BESS features are always present as they are a consequence of BESS 

technologies, however the values associated with these BESS features continue to 

improve year on year. Other features from [49] which are not discussed within this 

literature review are specific energy (energy capacity per mass) and energy density 

(energy capacity per volume). Although useful metrics for BESS comparisons, 

specific energy and energy density do not play a critical role in grid storage 

applications compared with automotive applications as an example. Also, two other 

features outlined in [49] are the number of useable cycles and autonomy (i.e. C-

Rate). However, these two features can be considered functional inputs rather than 

characteristics to include in BESS sizing objective functions or constraints. In other 

words, efficiency, degradation and self-discharge are functions of cycle numbers 

and C-Rate. Therefore, the inclusion of efficiency, degradation and self-discharge 

within BESS sizing models will implicitly also include the effects of cycle numbers 

and C-Rate.   

The efficiency, degradation and self-discharge features can each play an 

important role throughout the lifecycle of a BESS installation, and can directly 

influence the potential benefit/value of a project. Through BESS use (cycle 

numbers) and how it’s used (C-Rate) triggers the internal impedance of BESS to 

increase thereby reducing efficiency, causing degradation and increasing self-

discharge. This is outlined for lithium-ion batteries where an increase in internal 

impedance was seen to cause reduced efficiency in a study by Waag et al., 2013 

[50]. Similarly, the internal resistance of sodium-sulphur batteries has also been 
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shown to increase with use [51]. Likewise, efficiency is dependent on the 

instantaneous state of charge of BESS [52, 53]. This makes efficiency a dynamic 

parameter as part of a BESS sizing objective function. For degradation, Fig.2.3 

(extracted from [54]) outlines the phenomenon that is present within lithium-ion 

batteries, showing effect of cycle number and C-rate. This reduction in energy 

capacity over time can have a significant impact on BESS project viability. A similar 

outcome is caused through the use of lead-acid batteries [55]. In another review, 

the authors outlined that room temperature sodium-sulphur battery degradation is 

also a function of cycle number and C-rate [56]. An example of a BESS technology 

which exhibits very little degradation is redox flow batteries such as vanadium 

which can achieve 200,000 cycles without significant degradation [57], while 

different chemistries of Aqueous Organic Redox Flow Batteries have shown on 

average less than 0.1% energy capacity degradation over 1000 cycles [58]. The 

impedance rise in lithium-ion batteries through use has also been noted to modify 

the rate of self-discharge (i.e. increase) [59]. Self-discharge can also take other 

 

Fig.2.3 – Empirical (marks) and fitted (lines) model of lithium-ion energy capacity 
reduction via degradation.  
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forms. In molten sodium-sulphur batteries self-discharge is primarily due to thermal 

energy losses, where self-discharge rate can increase due to the corrosion of the 

insulator [60]. In short, efficiency, degradation and self-discharge are dynamic 

parameters rather than static parameters. If modelled as part of a BESS sizing 

objective function, the simulated operation of BESS dispatch actions will cause 

technology efficiency, degradation and self-discharge to worsen.  

The existing BESS sizing methodology literature is assessed against its effort 

to incorporate the above BESS features (efficiency, degradation, self-discharge), 

and against how inclusive these features are (i.e. static or dynamic). Firstly, only 

one member of previously identified literature has incorporated dynamic efficiency 

within BESS constraints of a Vanadium Redox flow battery [31]. Their approach 

applied the charge and discharge efficiencies curves shown in Fig.2.4 (extracted 

from [31]), which vary based on the dispatch decisions shown along the x-axis and 

efficiency shown on the y-axis. All other literature applied either a static efficiency 

approach [10-13, 15, 17, 19-24, 26-29, 34-36, 38-40] (i.e. constant efficiency value 

regardless of BESS operation) or no efficiency parameters [9, 14, 16, 18, 25, 33]. In 

terms of modelling degradation, two different approaches have been observed. 

 

Fig.2.4 – Dynamic charging and discharging efficiency values for Vanadium Redox 
flow battery. 
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One approach applies a lifecycle constraint [11, 26, 36, 39], whereby the point of 

BESS failure (i.e. state of battery health below some minimum threshold) is 

incorporated within BESS sizing model. This ensures the throughput does not 

exceed required limits. The second approach taken applies a somewhat subjective 

residual value to remaining good health energy capacity at year’s end [40]. If this is 

included within an objective function, the optimiser attempts to maintain a high-

level residual capacity. Both these approaches to degradation provide no modelling 

link between degraded energy capacity and dispatch variables, and therefore are 

limited in their ability to incorporate the effects of degradation. Other literature did 

not consider degradation [9, 10, 12-25, 27-29, 31, 33-35, 38].  Alternatively, self-

discharge was included within a BESS sizing model [40], albeit maintained as static 

and not adaptive to BESS health over time. Also, the authors in [29] sized a sodium-

sulphur BESS on the basis that this technology doesn’t exhibit self-discharge. This 

approach is consistent with no electrochemical self-discharge but doesn’t account 

for the thermal losses of molten sodium-sulphur BESS. While slightly outside the 

scope of this work, an energy storage sizing model that included a flywheel did not 

account for self-discharge [38], even though flywheel technology has high rates of 

self-discharge. Lastly, BESS sizing approaches have remained mostly technology 

agnostic [14, 16, 18, 19, 22, 23, 25, 28, 33, 34]. Others have sized individual BESS 

such as Lithium-Ion [10, 15, 17, 21, 27, 35, 38, 39], Lead-Acid [24, 36], Vanadium 

Redox [31] and Sodium-Sulphur [29]. A comparison analysis of different 

technologies has been achieved, whereby BESS sizing model is solved separately for 

varying technology types [12, 13, 26, 40]. A slight variation on this incorporates 

technology selection as part of the objective function and therefore technology 

choice is directly optimised [11, 38]. In light of the similar characteristics of each 

BESS technologies, the value of a generic approach is clear.  

Based on the review of literature presented, constant efficiency (i.e. static) 

values rather than dynamic values are used throughout this work. Also, self-

discharge will not be included within any BESS sizing methodologies. These two 

decisions are taken to reduce the computational complexities that dynamic 

efficiency and self-discharge would introduce. For example, inserting dynamic 
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efficiency values within a BESS sizing methodology has the potential convert a linear 

formulation into a nonlinear formulation, given that the product of efficiency and 

dispatch decisions must be included in either the objective function or constraints. 

The same can also be said of self-discharge as this would form a product with the 

same or possibly other variables (e.g. sum of dispatch decisions). Furthermore, all 

dispatch decisions as part of BESS sizing methodologies used throughout this work 

are based on a 24-hour time horizon. This short time horizon means the 

implications of self-discharge are reduced. From 2015, self-discharge losses are 

estimated for lithium-ion batteries at 0.5% per week [61], lead-acid batteries at 1-

5% per month [62] and redox flow batteries at less than 5% per month [63] . The 

self-discharge values are low for these popular BESS technologies and therefore are 

unlikely to greatly affect the profitability of a BESS installation. Therefore, the 

modelling advantages of self-dispatch omission outweigh its admission. One BESS 

technology which has a higher self-discharge rate than others is molten sodium-

based BESS such as sodium-sulphur. This is due to thermal losses through molten 

based electrolytes, with self-discharge rates up to 5% per day [64]. However, 

molten based sodium-sulphur batteries have seen significant safety concerns over 

recent years. Research now is focused on developing room temperature sodium-

sulphur battery chemistries without thermal losses [65].  

While the addition of degradation will also induce computational 

complexities, the negative difficulties of modelling degradation as part of BESS 

sizing optimisation are outweighed by the positives of degradation inclusion. This is 

largely due to aggressive rate of BESS degradation and loss of capacity, as seen in 

Fig.2.3. Additionally, previous attempts by literature are limited in their application 

of degradation to BESS sizing. Therefore, degradation will be discussed further and 

modelled as part of BESS sizing methodology used in dissertation. Lastly, application 

of all BESS sizing approaches within this work will be confined to lithium-ion BESS. 

As has already been established, all BESS technologies discussed experience the 

same traits of efficiency, degradation and self-discharge, with only the values of 

each varying. The purpose of this work is to test the validity of proposed BESS sizing 

methodologies and not to inform technology selection. Therefore, as part of this 
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work, there is a requirement to develop generic sizing methodologies which can 

maintain transferability to different BESS technologies.  

2.7 REVIEWING LOCATION SCOPING ELEMENT WITHIN BESS 

SIZING 
When connecting BESS to an electrical grid, there is only a finite number of 

locations available for a possible connection. The connection process is usually 

handled by either the Transmission System Operator (TSO) or Distribution System 

Operator (DSO). Using Ireland as an example, this will typically be ≥110kV (TSO) for 

any generation projects greater than 50MW and ≤38kV (DSO) for generation 

projects less than 40MW [66], although each project is assessed on a case-by-case 

basis. Before a discussion on existing BESS sizing methodologies approach to grid 

location can take place, a summary of the influence of the grid connection process 

on BESS investment projects is provided herein.  

In deregulated electricity market jurisdictions, new entrants can apply to 

connect to the electrical grid. For grid location to have a bearing on potential BESS 

investment, different grid locations must influence either the cost and/or benefit 

(i.e. revenue) of project. Taking cost as an example firstly, each potential grid 

location in a deregulated market can have varying connection costs. This is in part 

due to upgrade (if any) that is required to the electrical grid to accommodate the 

extra generation added through a new grid connection, such as BESS. There is also 

the electricity import aspect that BESS requires which needs to be taken into 

consideration. Secondly, the revenue of a project can be affected by constraining 

actions taken by System Operators (SO) to ensure system stability. This situation 

presents itself when SO has the authority to “dispatch down” electricity market 

participants from their established market positions. The market participant can be 

remunerated for this SO action if all electrical grid upgrades associated with a 

generator are completed. If the opposite is true, it can also not receive 

remuneration (known as non-firm access [67]). Therefore, grid location has the 

potential to affect both the cost and short-term benefit of BESS installation. 

However, these grid location effects are driven by the power rating of a grid 
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connection and not energy capacity. Therefore, any literature discussed within this 

section must incorporate power system modelling to determine the necessary 

upgrades to the electrical grid. This constitutes the deregulated electricity market 

perspective for connecting BESS.  

A significant proportion of the literature does not consider the nuances of 

grid location within the BESS sizing problem. Others have placed BESS sizing 

decisions and grid location decisions within the same objective function as solvable 

variables, known as the allocation problem [10, 11, 14, 22, 23, 32-34, 38]. Not only 

do these approaches solve for the optimal BESS size but they also introduce the 

selection of optimal grid locations for BESS. Continuing on, each source that 

searches for optimal grid locations is assessed in terms of its grid location cost 

parameters and benefit. The presence of these parameters within an objective 

function is necessary to model varying connection costs and benefits. Assessing cost 

first, none of the existing BESS sizing methodologies and optimal grid location 

research have varying connection cost parameters attributed to power capacity of a 

new BESS installation [10-14, 22, 23, 25, 32-34, 37, 38, 40]. One approach did 

incorporate the cost of upgrading the electrical grid within an NPV objective 

function, however this was in the context of competing with BESS to meet future 

load requirements of a microgrid, which similar to other studies, does not account 

for varying connection costs [20]. Another cost component that has been modelled 

is power losses, which the authors reduced through placing BESS at different 

locations throughout a distribution system [12]. However, the reduction of 

systemwide power losses cannot be considered a singular objective of a BESS 

project developer. Power loss charges are a function of all generation and demand 

within an electrical grid, and are calculated as such. Therefore, due to the fact that 

a BESS project will not have control over how electrical grids change over time, 

there is little point in reducing grid power losses. Rather than reducing power 

losses, location-specific parameter should be included in the objective function to 

capture power losses. These are known as Transmission Use of System (TUoS) 

charges and Distribution Use of System (DUoS) charges [68], though these were not 

included in the literature surveyed.  
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In terms of benefit, the approaches taken in literature are not applicable to 

BESS project developers within deregulated electricity markets. Four separate 

pieces of work sized the addition of a BESS at optimal grid locations for the purpose 

of reducing voltage fluctuations caused by renewable generation [14, 25, 32, 37]. 

While each of these works contributes value to the literature, none incorporate any 

renumeration for providing these services, thereby reducing the usefulness of the 

methodologies. For example, providing voltage support can be remunerated 

through different products within system services market such as Delivering a 

Secure, Sustainable Electricity System (DS3) [69], which can have varying 

remuneration values depending on grid location. One approach did apply a tariff as 

part of offering system balancing services and provision of reactive power to the 

TSO, but did not contain any specific grid location information for this tariff [20]. A 

final point to note is that nodal pricing is used within some jurisdictions, which 

reflects scarcity of energy within the electricity market. Nodal prices can directly 

affect the benefit received by BESS. One such work applied nodal pricing (also 

called Locational Marginal Pricing) to optimal BESS sizing and location [22]. It should 

be noted that this work is within the European context which uses zonal pricing 

compared with nodal pricing used within the United States. 

Of all the literature mentioned so far, none has captured the BESS project 

developer’s perspective regarding either cost and/or benefit of sizing BESS at 

different grid locations. As stated previously, only an objective function with 

parameters for both grid location cost and grid location benefit can achieve this 

outcome. This literature review has demonstrated that there is a substantial 

amount of work that needs to be completed to include grid location as part of BESS 

sizing. However, grid location will not be modelled as part of this work. The use of 

power system modelling to determine estimated grid upgrade costs (for a large 

grid) is outside the scope of this work. System service markets can have enhanced 

benefits for project owners to locate a BESS project at certain grid locations. 

Inclusion of any enhanced locational benefits as part of an optimisation model 

would incentivise locating BESS projects in certain areas of the grid. However, the 

system services market is outside the scope of this work and therefore varying 
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benefits from different grid locations is unattainable. Likewise, zonal pricing is used 

rather than nodal pricing.  

2.8 REVIEWING CAPACITY (POWER) SCOPING ELEMENT 

WITHIN BESS SIZING  
The design variable that will be pursued throughout this dissertation is BESS 

size, which is another name for the energy capacity of a BESS. However, another 

capacity design decision available is BESS power. This design component, Capacity 

(Power), controls the ability to change BESS stored energy per unit time. A higher 

power capacity allows greater changes to BESS stored energy for the same length of 

time. This is an important design component as BESS operation within deregulated 

electricity markets is constrained by the duration of trading periods. The addition of 

power capacity as a decision variable within BESS sizing methodologies has been 

done by numerous authors [10-13, 16, 17, 19, 20, 22-24, 29, 32-34, 38]. Their 

approach was the inclusion of a BESS to reduce the operational cost of a grid. In 

doing this, the objective function they used was minimised thereby putting 

“downward pressure” on costs and BESS energy and power size. This concept can 

be seen graphically in Fig.2.5 (extracted from [16]). Through the use of 

 

Fig.2.5 – Objective function minimisation which uses “downward pressure” 
preventing diverging BESS power and energy capacity variables. 
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minimisation, the optimal power capacity component will not diverge. The use of 

minimisation is not always ideal as this can leave profit for BESS too low (or 

negative). To overcome this in minimisation applications, profit constraints are used 

to ensure that BESS operators can attain enough revenue to be profitable [22].  

However, an issue arises when maximisation (difference between costs and 

benefits) applications are introduced, which is the typical scenario for sole 

beneficiary BESS. If an objective function contains an optimisable power capacity 

variable and is also maximised, there is a possibility that the power capacity 

variable could diverge i.e. become unbounded. To overcome this, one option is to 

place a constraint on the maximum allowable power capacity variable size [31], but 

then selecting this size upper bound becomes subjective. Other options is to 

remove the power capacity variable from the objective function altogether which 

has been considered by many [14, 15, 21, 27, 35, 40], or assume a constant size for 

the power capacity variable but leave the cost component within the objective 

function so that the overall result is more reflective [39]. These methods for 

maximisation can best be considered as mere stopgaps. Ideally, the approach taken 

should be one of actual consequences encountered, that being the competitive 

nature of deregulated electricity markets. Here, if market bidding is done with large 

bids compared to grid size, this could have too much influence on the market 

clearing prices which could then lead to BESS beginning to cannibalising itself and 

becoming unprofitable. Large bids coincide with large available power capacity 

from BESS. Elaborating on this further, if a large enough BESS was to bid generation 

into an electricity market auction at a really low price, it would force more 

expensive generation to be unsuccessful in electricity market auctions. This in turn 

would reduce the price for this auction as electricity markets are usually paid-as-

clear and not paid-as-bid. One approach to overcome this is to bid BESS generation 

at a higher price but this then runs the risk of not getting dispatched in a 

competitive auction. If this type of penalty approach was modelled as part of the 

overall optimisation process, it would prevent BESS power capacity variables from 

diverging (i.e. becoming unbounded). The penalties within the market would put 

“downward pressure” on the power capacity variable. One method reported in the 
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literature applied the above penalty approach for pumped hydro station within the 

grid of Alberta which is transferable to BESS [30]. 

Ultimately, the inclusion of the power capacity variable will not form part of 

this work. This is mainly due to the fact that assumed values for BESS power 

capacity where used, are small values compared to grid size. Where applicable, the 

power capacity variable cost will be included within objective functions, similar to 

the approach used throughout literature. Also, it is important to note that BESS 

energy size variable won’t diverge (i.e. become unbounded) under maximisation. 

Once power capacity is maintained constant, BESS only has a certain amount of 

time to either charge or discharge (i.e. it is not infinite). Therefore, when 

maximising, an ever-bigger BESS size increases costs but does not increase revenue 

which in so doing reduces overall profit.  

2.9 CONSOLIDATION AND RENAMING 
So far, existing BESS sizing approaches have been reviewed through the lens 

of six FEP scoping elements. It has been determined that conventional BESS sizing 

approaches are lacking in all six. Two such scoping elements, Location and Capacity 

(Power), remain outside the domain of this dissertation. Investment Studies and 

Alternative Assessments, Future Expansion, Operational Philosophy and Technology 

are the remaining scoping elements which require consolidation and renaming for 

applicability to BESS projects. Having reviewed all proposed FEP scoping elements 

within BESS sizing, it is now possible to consolidate the proposed scoping elements 

into planning objectives. The term planning objective is the original term set out at 

the beginning of this dissertation and has greater natural connotations within the 

BESS sizing community, given that sizing is typically executed via optimising an 

objective function which is modelled to capture the goals of a BESS project.  

As already mentioned in relation to scoping element Investment Studies and 

Alternative Assessments, the issue for BESS sizing is one of scale i.e. existing 

objective functions do not discourage ever-larger BESS sizes. Therefore, it is fitting 

and straightforward to denote Investment Scale as the BESS sizing planning 

objective which encompasses this issue. Research involving planning objective 



LITERATURE REVIEW  CONSOLIDATION AND RENAMING 

 
38 

 

Investment Scale is associated with the first aim of this dissertation and is 

undertaken in Chapter 3. 

Based on the BESS sizing review concerning scoping elements Future 

Expansion and Technology, there is important crossover between both. Firstly, 

while BESS capacity expansion can be one aspect of BESS sizing, a more accurate 

connotation is timing of multiple BESS size decisions. The addition of a timing 

component allows for the initial sizing decision at year 1 to be delayed or reduced, 

if economically advantageous to do so.  The introduction of long-term BESS timing 

and size decisions opens up to amalgamation of different BESS technological 

characteristics. Such characteristics have already been deliberated as part of 

Section 2.6, with degradation being the one chosen as part of this study. This is of 

particular importance, as future timing decisions coupled with degradation can give 

rise to previously unknown outcomes. Recognising the discussion outlined so far, 

both scoping elements Future Expansion and Technology are consolidated into one 

focused planning objective called Investment Timing. The research associated with 

this planning objective is captured in the second aim of this dissertation and is set 

out in Chapter 4.  

Lastly, on review of existing BESS sizing approaches in relation to the scoping 

element Operational Philosophy, a lack of modelling effort is observed which 

focuses on BESS owner as sole beneficiary. To combat this, cross-market arbitrage is 

suggested as the initial area of focus which this dissertation should partake. 

Therefore, the term Dispatch Adaptability is used to signify the planning objective 

which seeks to include cross-market arbitrage as part of BESS sizing. Use of the 

phrase “dispatch” is in reference to the operational decisions available to BESS 

throughout its lifecycle. This planning objective is encapsulated in the third aim of 

this dissertation and is set out in Chapter 5.  
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CHAPTER 3 

3 OVERCOMING THE INVESTMENT SCALE 

PROBLEM OF ANNUAL WORTH WHEN SIZING 

BATTERY ENERGY STORAGE SYSTEMS 

Incorporating planning objectives as part of BESS sizing is the sole purpose of 

this entire dissertation. In total, three planning objectives have been identified as 

requiring attention in this thesis, and are denoted as Investment Scale, Investment 

Timing and Dispatch Adaptability (see Section 2.9 for how planning objectives were 

determined and consolidated). The specific research within this chapter 

incorporates exclusively the planning objective Investment Scale as part of BESS 

sizing. This chapter was first published in IEEE Transactions on Sustainable Energy 

[70], and remains unchanged.  

3.1 ABSTRACT 
The financial objective, when sizing a Battery Energy Storage System (BESS) 

for installation in a microgrid, is to maximise the difference between discounted 

BESS benefits and discounted BESS costs. This may be described as maximising 

Annual Worth (AW). However, one drawback of sizing microgrid BESS using AW is 

that the scale of investment is not taken into consideration. This can lead to 

unrealistic BESS sizes. This chapter presents two multi-objective optimisation 

(MOO) models to account for the scale of investment required in sizing BESS. The 

first model, Paired Comparison, utilises two objective functions: Daily Worth (DW), 

which maximises daily benefit cost differences a BESS installation provides a 

microgrid; and Daily Cost (DC), which minimises the daily cost of a BESS installation. 

The second model, called Rating Method, uses the objective functions DW and Daily 

Benefit-Cost Ratio (DBCR), the latter of which maximises the relative measure of 
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BESS benefit and BESS cost. Both models are solved for a test microgrid system 

under three different scenarios using Compromise Programming (CP). For system 

designers who rank objective functions by importance, the Rating Method is the 

appropriate approach, whereas system designers who rank objective functions by 

absolute values should use Paired Comparison. 

3.2 INTRODUCTION 
Each year more and more renewable generation is connected to electrical 

grids around the world. The European Union alone has seen a net increase of 

158.3GW of installed wind and 107.3GW of installed solar PV from 2000-2017 [71]. 

The added value of renewable generation is that it reduces CO₂ per MWh of energy 

produced when compared with traditional thermal generation. However, this 

added benefit comes with the disadvantage of intermittency, which can lead to 

scheduling, frequency and voltage difficulties for the grid. To overcome this 

intermittency, Battery Energy Storage Systems (BESS) are one possible solution. For 

a BESS to be connected to a grid (microgrid, distribution grid, etc.) it must be sized 

appropriately. Sizing of BESS entails determining the optimum power rating (e.g. 

MW) and/or energy capacity rating (e.g. MWh). “Optimum” in this case means, that 

for all feasible BESS sizes available for a given grid connection, only one power 

rating and/or one energy capacity rating represents the best-case scenario. 

BESS can have financial objectives or technical objectives as in [72], or a 

hybrid of the two [8]. Outlining BESS objectives before sizing allows optimisation 

models to maximise or minimise power and/or energy ratings, which results in the 

optimum BESS size. This chapter is solely concerned with the treatment of financial 

objectives. The most common financial objective in BESS sizing is reducing the 

operational cost of a either a microgrid [16, 21, 24, 31] or distribution grid [12, 73]. 

Here the addition of BESS to a grid allows the transfer of energy over time, with 

charging and discharging periods optimised to reduce the overall grid operation 

cost. The reduction in grid operation cost can be interpreted as an added benefit of 

installing a BESS within the grid. Optimum BESS size is established when the benefit 

value is furthest from the BESS cost. Other financial objectives include installing a 

BESS to maximise the profit of a renewable energy installation, with a wind farm 
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example given by [74]. While this approach is different to [12, 16, 21, 24, 31, 73], 

the same concept applies, that is, maximising difference between added benefits 

and costs of BESS. The discounted cash flows methods used by [12, 16, 21, 24, 31, 

73] are known as Equivalent Annual Cost (EAC) or Annual Worth (AW) [75]. A 

positive AW value indicates that benefits are greater than costs. AW is analogous to 

Net Present Value (NPV) [76], with AW widely used in the engineering community 

and the accounting community preferring NPV. For simplicity, this chapter uses the 

term AW when referring to the absolute difference between annual discounted 

benefits and costs.  

 Selecting an investment project size by maximising the difference between 

discounted benefits and costs has significant disadvantages. The issue that AW 

demonstrates is one of scale. AW is an absolute measure and therefore does not 

take into account the effort required to achieve the objective. Table (3.1) illustrates 

the scale problem of AW, modified from [77]. Project S is given as the best option 

with an AW twice that of project T. However, the capital expenditure of Project S is 

2000 times that of Project T. As access to capital is limited in real-world cases, 

clearly Project T is the preferred option. As highlighted by [77], for AW to be an 

appropriate metric for comparing and ranking mutually exclusive projects, the 

budget must be fixed and each project must have the same investment, which is 

impracticable for BESS sizing. Importantly, this investment scale problem is 

applicable to BESS sizing methodologies that employ a direct search approach, such 

as those in [40, 74]. This approach uses an algorithmic strategy that does not 

evaluate incremental BESS sizes but rather directly searches for the optimum 

solution. Maximisation of the objective function is carried out using optimisation 

software packages which directly search for values of the decision variables that 

Table 3.1 – Illustration of AW criterion masking scale of effort required 

Project Annual 
Benefit ($) 

Annual 

Cost ($) 
AW ($) 

AW as % 

of cost 

S 2,002,000 2,000,000 2000 0.1 

T 2000 1000 1000 100 
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give the maximum value of the objective function. This direct search approach 

results in a single optimal BESS size that satisfies the maximum AW. All other BESS 

sizes are deemed suboptimal, however there could exist BESS sizes unconsidered 

which retain a significant portion of AW but with much less cost. Since only a single 

optimal BESS size is outputted using direct approaches, this results in BESS sizing by 

direct search suffering the same investment scale issue as those outlined in Table 

3.1. 

 To overcome the scale problem, other financial objectives must be 

considered, while still attempting to maximise AW. These financial objectives must 

address the core issue, i.e. consideration of the scale of investment required. One 

approach is to make investment an objective function itself. Maximising AW while 

minimising investment are conflicting objectives as increasing AW will require a 

larger BESS with higher cost. The other approach is to utilise relative rather than 

absolute measures as an objective function. One such measure is Benefit-Cost Ratio 

(BCR). Maximising BCR and maximising AW are conflicting as BCR is a relative 

measure of the same variables used by AW. It is possible to have both AW and BCR 

increasing over certain BESS size ranges, but ultimately as maximum AW is being 

reached, the rate of change of AW will decrease and therefore BCR will also 

decrease. The investment scale problem is inescapable in any setting which 

maximises AW, regardless of consideration of technical objectives or location. 

Therefore, since technical objectives or location do not negate the issue of 

investment scale they are omitted from this chapter for clarity purposes. 

The aim of this chapter is to investigate if sizing a BESS via multiple financial 

objectives is an effective technique for overcoming the scale problem of AW. The 

multi-objective combinations considered are 1) AW and BESS Cost, and 2) AW and 

BCR. Objectively, this is achieved by developing a microgrid optimisation model 

where the addition of BESS is sought. The multi-objective combinations 1) and 2) 

are optimised for sizing BESS being added to a microgrid. To determine the 

effectiveness of each approach, different scenarios are analysed, and results 

compared. 
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3.3 LITERATURE REVIEW 
While optimising a sole objective function has been extensively studied for 

sizing BESS [12, 16, 21, 24, 31, 73, 74], optimising multiple conflicting objectives has 

been given less attention. One approach taken by [78] optimised simultaneously 

three financial objective functions, 1) maximise operating profit of a BESS 

installation in a distribution grid, 2) minimise BESS energy capital cost and 3) 

minimise BESS power capital cost. This approach did not size a BESS but rather the 

authors determined which BESS capital cost combination would give a positive AW 

and by extension what AW can be expected for a given capital cost combination. A 

constant BESS was chosen, and capital costs varied. As part of future work the 

authors suggest that other financial indicators should be considered such as 

Internal Rate of Return (IRR) and Return of Capital Employed (ROCE). Both these 

indicators offer different investment performance evaluation than AW which makes 

them of interest for this chapter. Calculating IRR is finding the discount rate which 

gives a value of zero AW. IRR can be interpreted as a rate of investment measure. 

Maximising IRR can give conflicting investment decisions compared with maximising 

AW when different project initial investment levels are compared [79, 80]. IRR has 

been used by [81] to evaluate the financial performance of BESS. However, IRR can 

be a complex calculation for direct search optimisation procedures by either trial 

and error approach or extracting the discount rate which is raised to different 

power values for every time period. ROCE is a relative measure and is very similar 

calculation to BCR. BCR has been used by [82] for energy storage planning in 

distribution networks. The authors maximised the AW of energy storage but did not 

co-optimise two other objectives – Discounted Payback Period (DPP) and BCR. 

Rather, DPP and BCR were evaluated at maximum AW. This approach does not 

allow for co-optimisation and therefore the energy storage size is selected post 

optimisation. Others have used BCR to evaluate the performance of optimal power 

flow model for sizing and allocating BESS in a microgrid [83].  

Optimising multiple objective functions has also been applied to objectives 

other than financial indicators. The authors in [84] used multi-objective Mixed 

Integer Linear Programming (MILP) to minimise CO₂ emissions and minimise 
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operating cost for a community energy storage system. A single BESS size is 

considered for multiple battery technologies and the levelized cost of electricity 

and payback period are evaluated. Another study which sized a BESS for a PV-based 

microgrid maximised both the annual net profit and PV consumptive rate [85]. The 

problem was solved using non-dominated sorting genetic algorithm II (NSGA-II). 

Interestingly, [78, 85] did not make any reference to weighting of their respective 

objective functions, whereas [84] indicates that each objective function is equally 

weighted. This implies that the authors were more interested in a set of solutions 

rather than a single output from their models.  

Other works closely related to this study use Bilevel Optimisation (BO) with 

two financial objective functions. BO captures hierarchical processes, where 

optimisation of a lower level objective function acts as a constraint in an upper level 

objective function. If a hierarchical process exists in a problem, then BO is 

considered a suitable method [86]. BO was used by [87] to size and site a BESS 

within a transmission grid. Here the authors considered two financial objectives. 

The upper level objective seeks to minimise the grid operation cost and BESS cost 

with profit constraints, while the lower level objective seeks to minimise grid 

operating cost. Similar to [87], the authors in [88] also used BO for different 

perspectives within the grid. Their model seeks to solve an upper level objective by 

maximising the profit of merchant Energy Storage (ES), while at the same time 

minimising grid operating cost in the lower level objective. While BO is a suitable 

method for hierarchical processes, and a suitable technique for capturing different 

perspectives within the electrical grid, the problem being considered in this chapter 

is a perspective-neutral approach, and therefore does not lend itself to using BO. 

The financial objectives as part of this chapter are competing objectives and not 

hierarchical. Furthermore, both [87] and [88] used profit and investment 

constraints for BESS installation. These constraints can provide some success in 

avoiding the pitfalls of maximum AW, as highlighted in the previous section. Placing 

these constraints into a BESS sizing optimisation model allows minimum rates of 

return to be enforced. However, these constraints have significant disadvantages 

which are discussed from this point onwards. Placing a rate of return within the 
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profit constraint allows the ES owner to apply a relative measure to BESS 

investments, similarly a maximum investment constraint can have the same 

outcome. Although this method can be effective, using the same rate of return 

value while varying model input parameters may lessen its effectiveness for 

overcoming the AW scale problem. Having knowledge about the final solution 

beforehand may allow rate of return adjustment, however this knowledge may not 

be readily available. Another point to note is that rate of return values greater than 

one are difficult to interpret. It is given that investment projects with rate of return 

greater than or equal to one are accepted and those values of less than one are 

rejected [89]. However, deciding on a particular rate of return value from those 

that are greater than one may be difficult, as theoretically all investment projects 

are deemed acceptable. While the authors of both [87] and [88] used profit and 

investment constraints, these were not discussed in the context of overcoming the 

pitfalls of maximising AW. 

3.4 PROBLEM FORMULATION 
Multi-objective optimisation (MOO) allows for tradeoff analysis of two or 

more objective functions. The problem structure is outlined by (3.1) and (3.2) and is 

formulated as two separate MOO problems capturing two different approaches.  

 𝐹1(𝑥) = [𝑓𝐴𝑊(𝑥),  𝑓𝐶𝑜𝑠𝑡(𝑥)]
𝑇 (3.1) 

 𝐹2(𝑥) = [𝑓𝐴𝑊(𝑥),  𝑓𝐵𝐶𝑅(𝑥)]
𝑇 (3.2) 

where 𝑓𝐴𝑊(𝑥) is the AW objective function (3.28),  𝑓𝐶𝑜𝑠𝑡(𝑥) is the cost objective 

function (3.29) and  𝑓𝐵𝐶𝑅(𝑥) is the BCR objective function (3.30). There is a 

significant difference between 𝐹1(𝑥) and 𝐹2(𝑥). This difference is due to the 

individual ability of  𝑓𝐶𝑜𝑠𝑡(𝑥) or  𝑓𝐵𝐶𝑅(𝑥) to size BESS separately of 𝑓𝐴𝑊(𝑥). For 

approach (3.2) both objective functions are capable of sizing BESS autonomously. 

Each contains both benefits and costs within its objective function. For approach 

(3.1) 𝑓𝐴𝑊(𝑥) has this ability, whereas  𝑓𝐶𝑜𝑠𝑡(𝑥) only considers BESS cost and 

therefore is incapable of sizing a BESS independently. Rather,  𝑓𝐶𝑜𝑠𝑡(𝑥) is used as a 

measure of amount spent. This difference leads to different interpretations of the 

tradeoff within each approach. In approach (3.1) the question for tradeoff is, how 

much change is allowed in 𝑓𝐴𝑊(𝑥) with respect to change in  𝑓𝐶𝑜𝑠𝑡(𝑥). In approach 
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(3.2), the question for tradeoff is deciding which objective function is more 

important.  

This difference between 𝐹1(𝑥) and 𝐹2(𝑥) requires different solution 

techniques for MOO methods involving weighted objective functions. Weights are 

assigned to each objective function for a priori articulation of preferences in certain 

MOO methods [90]. The authors of [91] identify two broad classes of approach, 

Paired Comparison and Rating Method. In Paired Comparison the objective 

functions remain in their original state so that tradeoff analysis between absolute 

values of each objective function is permitted. This approach lends itself to 𝐹1(𝑥) 

where the change in AW with respect to change in cost is sought. In the Rating 

Method approach the objective functions are normalised. This provides a unitless 

comparison of the objective functions while also reducing any magnitude 

dominance of either objective function. This allows objective functions to be ranked 

in terms of importance where system designers select a ranking out of 10 for each 

objective function [92]. The Rating Method described is equivalent to the problem 

described by 𝐹2(𝑥). Given that 𝐹1(𝑥) is Paired Comparison and 𝐹2(𝑥) is Rating 

Method, the appropriate techniques are applied to each. Fig.3.1 gives an overview 

of the problem formulation. 

 
Fig.3.1 – Structure of MOO problem formulation used in this chapter. 
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3.5 SYSTEM MODELLING 
A microgrid without a BESS is used as the reference case. The reference 

microgrid consists of two microturbines, wind turbine, solar PV, connection to large 

external grid and load. The owner of the BESS is the owner of the microgrid, who 

also owns the generation and demand. The first microturbine is must run while the 

second has a minimum generation limit with startup cost. No microgrid reserve 

requirement and no power losses is assumed. The addition of a BESS is sought to 

improve the financial performance of the microgrid i.e. to operate the microgrid at 

lower cost. 

3.5.1 MODEL 

3.5.1.1 BESS MODEL 
The BESS energy capacity rating is given by (3.3), where 𝑆𝑖 is a set of parameters 

signifying BESS size and 𝑋𝐵𝑖 is a set of binary decision variables. 

 𝐸𝐵𝐸𝑆𝑆 =∑𝑆𝑖𝑋𝐵𝑖

𝑏

𝑖=1

    ∀𝑖, (3.3) 

There are two reasons for implementing 𝐸𝐵𝐸𝑆𝑆 as a summation of binary variables. 

The first is that BESS are manufactured based on incremental sizes rather than a 

continuous range of sizes. The second reason allows for the linearization of the BCR 

objective function, which is described in more detail in 3.5.2 of this section. 𝑆 is 

given by (3.4). 

 𝑆𝑖+1 = 2 × 𝑆𝑖    ∀𝑖, (3.4) 

The initial value of 𝑆𝑖 is the size increment available for BESS. The value given to 𝑏 

needs to be large enough to capture all available BESS sizes but not so large as to 

increase computation time significantly. 

C-rate is a design constraint that limits the number of power and energy 

rating combinations for BESS and is given by (3.5) and (3.6). 

 𝑋𝑃𝑡
− ≥ 𝐶𝑟𝑎𝑡𝑒𝐸𝐵𝐸𝑆𝑆 ∀𝑡 (3.5) 

 𝑋𝑃𝑡
+ ≤ 𝐶𝑟𝑎𝑡𝑒𝐸𝐵𝐸𝑆𝑆 ∀𝑡 (3.6) 
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Where 𝑡 is time period, 𝑋𝑃𝑡
− and 𝑋𝑃𝑡

+ are the charging and discharging power 

variables respectively, located at the BESS and microgrid connection point and are 

bounded by (3.7) and (3.8). 

 −𝑊𝑃𝑡 − 𝑆𝑃𝑡 ≤ 𝑋𝑃𝑡
− ≤ 0, ∀𝑡 (3.7) 

 0 ≤ 𝑋𝑃𝑡
+, ∀𝑡 (3.8) 

where 𝑊𝑃𝑡 and 𝑆𝑃𝑡 are the amount of power at time 𝑡 interval from wind and solar 

respectively. This constraint enforces BESS charging from renewable energy. 

Allowing 𝑋𝑃𝑡
+to have no upper bound, the C-rate constraint in (3.6) ensures that 

the BESS discharge power variable is within acceptable limits.  

The equations to govern the amount of energy in the BESS during each time 

interval is given by (3.9) and (3.10).  

 
Δ𝑡𝑋𝑃𝑡

−𝜂𝑐 + Δ𝑡𝑋𝑃𝑡
+/𝜂𝑑 +∑Δ𝑡𝑆𝑃𝑖

−𝜂𝑐 +  Δ𝑡𝑆𝑃𝑖
+/𝜂𝑑

𝑡−1

𝑖=1

≤ 0, ∀𝑡 (3.9) 

 
Δ𝑡𝑋𝑃𝑡

−𝜂𝑐 + Δ𝑡𝑋𝑃𝑡
+/𝜂𝑑 +∑Δ𝑡𝑆𝑃𝑖

−𝜂𝑐 + Δ𝑡𝑆𝑃𝑖
+/𝜂𝑑

𝑡−1

𝑖=1

≥ −𝐸𝐵𝐸𝑆𝑆, ∀𝑡 

(3.10) 

Where 𝜂𝑐  and 𝜂𝑑 are the charge and discharge efficiencies respectfully, Δ𝑡 is the 

time interval, 𝑆𝑃𝑖
− and 𝑆𝑃𝑖

+ are BESS power variables and are given by (3.11) and 

(3.12). 

 𝑋𝑃𝑡
− = 𝑆𝑃𝑖

−, 𝑡 = 𝑖 (3.11) 

 𝑋𝑃𝑡
+ = 𝑆𝑃𝑖

+, 𝑡 = 𝑖 (3.12) 

 BESS manufacturers place limits on the allowable energy throughput over a 

period of time, such as a year. In exchange for these limits, customers receive a 

warranty for their BESS. It is assumed that the warranty period is sectionalized into 

yearly limits. This is a further BESS model constraint as is given by (3.13) where 𝑇 is 

the number of time intervals in one year, 𝐸𝑡ℎ𝑟𝑢 is the energy throughput allowed by 

the BESS manufacturer under warranty. 

 ∑Δ𝑡𝑋𝑃𝑡
+/𝜂𝑑 ≤

𝐸𝑡ℎ𝑟𝑢
365

𝑇

𝑡=1

 (3.13) 
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3.5.1.2 MICROGRID MODEL 
The variable 𝐿𝑡 represents the microgrid load at time interval 𝑡. This load 

must equal generation at all times 𝑡 and is specified by (3.14) 

 
𝑋𝑀1,𝑡 + (𝑀2

−)𝑋𝑀2,𝑡
𝑏 + 𝑋𝑀2,𝑡 +𝑊𝑃𝑡 + 𝑆𝑃𝑡 + 𝑋𝑃𝑡

− + 𝑋𝑃𝑡
+ + 𝑋𝐺𝑡

−

+ 𝑋𝐺𝑡
+ = 𝐿𝑡  ∀𝑡 

(3.14) 

where 𝑋𝑀1,𝑡 is the first microturbine (must run) with a minimum value as shown in 

(3.15), the second microturbine has the binary variable 𝑋𝑀2,𝑡
𝑏  for minimum 

generation at start-up (𝑀2
−) and 𝑋𝑀2,𝑡 for dispatchable power, 𝑋𝐺𝑡

− and 𝑋𝐺𝑡
+ are 

power exported and imported from the external grid respectively. No curtailment 

of renewable energy is assumed so that all power from renewable sources must be 

accepted. The variables in (3.14) are bounded by (3.15), (3.16), (3.17) and (3.18). 

 𝑀1
− ≤ 𝑋𝑀1,𝑡 ≤ 𝑀1

+  ∀𝑡 (3.15) 

 0 ≤ 𝑋𝑀2,𝑡 ≤ 𝑀2
+ −𝑀2

−   ∀𝑡 (3.16) 

 −𝐺− ≤ 𝑋𝐺𝑡
− ≤ 0    ∀𝑡 (3.17) 

 0 ≤ 𝑋𝐺𝑡
+ ≤ 𝐺+      ∀𝑡 (3.18) 

Given that the second microturbine requires a minimum generation of 𝑀2
−, 

a further constraint (3.19)  is applied to the model. This ensures that if 𝑋𝑀2,𝑡 is 

selected to run then the minimum generation requirement is imposed. The variable 

𝑋𝑈𝑡 (3.20) is introduced to capture the start-up cost of the second microturbine. 

 (𝑀2
+ −𝑀2

−)𝑋𝑀2,𝑡
𝑏 ≥  𝑋𝑀2,𝑡    ∀𝑡 (3.19)  

 𝑋𝑈𝑡  ≥ 𝑋𝑀2,𝑡+1
𝑏 − 𝑋𝑀2,𝑡

𝑏  ∀𝑡 (3.20) 

  

3.5.1.3 TIME HORIZON 
Typically, AW and BCR are maximised over one year if the same cash flows 

are assumed for each year. The purpose of this chapter is to demonstrate the 

effectiveness of the methodology for a simple microgrid test case. Therefore, to 

save computation time, BESS sizing is done over one day, with 24-hour periods. The 

BESS benefit per day is given by the added benefit over 24 hours, whereas the 

coefficient for BESS cost per day is given by (3.21). This approach has been used by 

[21, 31].   
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 𝐸𝐶𝑜𝑠𝑡 = (((
𝑟(1 + 𝑟)𝑙

(1 + 𝑟)𝑙 − 1
)𝐸𝐶𝐶) + 𝐸𝑀𝐶)

1

365
 (3.21) 

where 𝑟 is the financing interest rate, 𝑙 is length of the project, 𝐸𝐶𝐶  ($/kWh) is the 

capital expense of the BESS along with auxiliary equipment and civil works, 𝐸𝑀𝐶  is 

the annual maintenance cost in $/kWh per year.  

3.5.2 OBJECTIVE FUNCTIONS 
The objective functions used for Paired Comparison are 𝑓𝐴𝑊(𝑥) (3.28) 

consisting of benefits and cost, and 𝑓𝐶𝑜𝑠𝑡(𝑥) (3.29) with only cost. Rather than 

analysing the total benefit and cost of the microgrid for a given day, the added 

benefit of the BESS is considered. This requires optimisation of the microgrid 

without a BESS to find reference case for comparison. The operational cost of the 

microgrid without a BESS is given by (3.22). 

 

𝐶𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆− =∑( 𝑋𝑀1,𝑡𝐶𝑀1 + 𝑋𝑀2,𝑡

𝑆𝑈𝐶𝑀2
𝑆𝑈 + (𝑀2

−)𝑋𝑀2,𝑡
𝑏 𝐶𝑀2

𝑡

+ 𝑋𝑀2,𝑡𝐶𝑀2) 

(3.22) 

where 𝐶𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆− is the cost to run the microgrid with no BESS, 𝑋𝑀2,𝑡

𝑆𝑈 is a binary 

variable for startup cost, 𝐶𝑀1 is the dispatch cost of microturbine 1, 𝐶𝑀2
𝑆𝑈 and 𝐶𝑀2 

are the startup and dispatch costs of microturbine 2 respectively. It is assumed that 

wind, solar, external grid and BESS have no dispatch costs. The total benefits of the 

microgrid without BESS are given by (3.23). 

Where 𝑄𝑡 is the price of electricity for time interval 𝑡. For 𝑋𝐺𝑡
+ the price of 

electricity is negative as this is buying electricity from the external grid. The 

maximum difference between microgrid benefit and cost without a BESS is given by 

(24). This value remains constant and only requires solving once. 

 
𝐵𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆− = ∆𝑡∑ 𝑋𝑀1,𝑡𝑄𝑡 + (𝑀2

−)𝑋𝑀2,𝑡
𝑏 𝑄𝑡 + 𝑋𝑀2,𝑡𝑄𝑡 +𝑊𝑃𝑡𝑄𝑡

𝑡

+ 𝑆𝑃𝑡𝑄𝑡 + 𝑋𝐺𝑡
+(−𝑄𝑡) 

(3.23) 

 𝑂𝐶 = 𝑚𝑎𝑥 (𝐵𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆− − 𝐶𝐺𝑟𝑖𝑑

𝐵𝐸𝑆𝑆−) (3.24) 
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As the BESS considered here has no dispatch cost, then 𝐶𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆− = 𝐶𝐺𝑟𝑖𝑑

𝐵𝐸𝑆𝑆+ , where 

𝐶𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆+is the cost of operating the microgrid when a BESS is installed. The benefit of 

BESS connected to a microgrid is given by (3.25). 

 
𝐵𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆+ = ∆𝑡∑ 𝑋𝑀1,𝑡𝑄𝑡 + (𝑀2

−)𝑋𝑀2,𝑡
𝑏 𝑄𝑡 + 𝑋𝑀2,𝑡𝑄𝑡 +𝑊𝑃𝑡𝑄𝑡

𝑡

+ 𝑆𝑃𝑡𝑄𝑡 + 𝑋𝑃𝑡
−𝑄𝑡 + 𝑋𝑃𝑡

+𝑄𝑡 + 𝑋𝐺𝑡
+(−𝑄𝑡) 

(3.25) 

Therefore, the added benefit of installing a BESS to a microgrid is shown in (3.26) 

and the cost of BESS is shown in (3.27). 

Taking (3.26) and (3.27) as the benefit and cost respectively, the objective functions 

for Paired Comparison are formulated in (3.28) and (3.29). As this analysis is for one 

day, the AW term is restated as Daily Worth 𝑓𝐷𝑊(𝑥) and the term 𝑓𝐶𝑜𝑠𝑡(𝑥) is 

changed to 𝑓𝐷𝐶(𝑥). For the decision variable 𝑥 =

{ 𝑋𝑀1,𝑡, 𝑋𝑀2,𝑡
𝑆𝑈 , 𝑋𝑀2,𝑡

𝑏 , 𝑋𝑀2,𝑡, 𝑋𝑃𝑡
−, 𝑋𝑃𝑡

+, 𝑋𝐺𝑡
−, 𝑋𝐺𝑡

+, 𝑋𝐵𝑖}  

 
𝑓𝐴𝑊(𝑥)

365
= 𝑓𝐷𝑊(𝑥) = 𝐵𝐵𝐸𝑆𝑆 − 𝐶𝐵𝐸𝑆𝑆 (3.28) 

 
𝑓𝐶𝑜𝑠𝑡(𝑥)

365
= 𝑓𝐷𝐶(𝑥) = 𝐶𝐵𝐸𝑆𝑆 (3.29) 

 
 𝑓𝐵𝐶𝑅(𝑥)

365
=  𝑓𝐷𝐵𝐶𝑅(𝑥) =

𝐵𝐵𝐸𝑆𝑆
𝐶𝐵𝐸𝑆𝑆

 (3.30) 

  𝑓𝐷𝐵𝐶𝑅(𝑥) = 𝛾  (3.31) 

 𝑧𝑖 ≤ 𝛾
+𝑋𝐵𝑖 (3.32) 

 𝑧𝑖 ≤ 𝛾 (3.33) 

 𝑧𝑖 ≥ 𝛾 − 𝛾
+(1 − 𝑋𝐵𝑖) (3.34) 

 ∑𝑋𝐵𝑖

𝑎

𝑖=1

≥ 1 (3.35) 

For the Rating Method, objective functions 𝑓𝐷𝑊(𝑥) and  𝑓𝐷𝐵𝐶𝑅(𝑥) are 

optimised. The change of annual BCR to Daily Benefit Cost Ratio (DBCR) is shown as 

 𝑓𝐵𝐶𝑅(𝑥) to  𝑓𝐷𝐵𝐶𝑅(𝑥), where  𝑓𝐷𝐵𝐶𝑅(𝑥) is given by (3.30). 

 𝐵𝐵𝐸𝑆𝑆 = (𝐵𝐺𝑟𝑖𝑑
𝐵𝐸𝑆𝑆+ − 𝐶𝐺𝑟𝑖𝑑

𝐵𝐸𝑆𝑆+) − 𝑂𝐶 (3.26) 

 𝐶𝐵𝐸𝑆𝑆 = 𝐸𝐶𝑜𝑠𝑡𝐸𝐵𝐸𝑆𝑆 (3.27) 
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To ensure that the problem remains linear, the constraints (3.31), (3.32), 

(3.33), (3.34) and (3.35) are applied to convert the nonlinear equation (3.30) to 

linear form, where 𝛾+ is some value larger than the maximum of 𝛾, 𝑧𝑖 is the 

variable assigned to the product of 𝛾 and 𝑋𝐵.  

3.5.3 MULTI OBJECTIVE – PAIRED COMPARISON, 

RATING METHOD AND COMPROMISE PROGRAMMING 
Compromise Programming (CP) is a MOO method which can find non-

convex solutions within a Pareto set. Non-convex solutions are of importance to the 

sizing problems being considered as large benefit gains are expected from the 

reduction in startup cost of microgrid generators. The CP formulation, developed by 

[93, 94], is shown in (3.36) for Paired Comparison and in (3.37) for the Rating 

Method, whose form is applicable to the MOO problem in this chapter. 

where 𝑤 is the corresponding weight for each objective function. The 

interpretation of the weights is given by 𝑑𝐹𝐷𝐶 𝑑𝐹𝐷𝑊 = 𝑤1 𝑤2⁄⁄ . 𝜆 ∈ ℤ+ and is the 

importance of each objective function, 𝑝 is a metric parameter, 𝑓𝐷𝑊
+ , 𝑓𝐷𝐵𝐶𝑅

+  and 𝑓𝐷𝐶
+  

are utopia points,  𝑓𝐷𝑊
−  and 𝑓𝐷𝐵𝐶𝑅

−  are nadir points. 𝑷 is a matrix of Pareto solutions 

for DW and DBCR objective functions. 𝑷 is evaluated using the solution algorithm in 

the next section. As a MOO method, CP attempts to find a set (or point) on the 

Pareto front that is closest to the infeasible utopia point. The Euclidean distance 

from the Pareto front to the utopia point is minimised. Typically, the utopia point is 

the maximum or minimum (depending on problem) of each objective function. 

When 𝑝 is equal to one, this minimises the distance of minimum regret of not 

achieving the utopia point, and when equal to ∞, minimises the distance of 

maximum regret of not achieving the utopia point [93, 94]. Varying 𝑝 from 1 to ∞ 

can also give a set of points on the Pareto front, called the compromise set. 

 
𝑚𝑖𝑛 {[𝑤1(𝑓𝐷𝑊

+ − 𝑷𝑎,1)]
𝑝
+ [𝑤2(𝑓𝐷𝐶

+ − 𝑷𝑎,2)]
𝑝
}
1
𝑝

 
(3.36) 

 

𝑚𝑖𝑛 {[𝜆1 (
𝑓𝐷𝑊
+ − 𝑷𝑎,1
𝑓𝐷𝑊
+ − 𝑓𝐷𝑊

− )]

𝑝

+ [𝜆2 (
𝑓𝐷𝐵𝐶𝑅
+ − 𝑷𝑎,2

𝑓𝐷𝐵𝐶𝑅
+ − 𝑓𝐷𝐵𝐶𝑅

− )]

𝑝

}

1
𝑝

 
(3.37) 
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3.6 SOLUTION ALGORITHM 
The software used for this analysis was MATLAB 9.3 with the intlinprog 

function for optimisation. To utilise CP from the previous section, within MATLAB’s 

functionality, the Pareto Front is evaluated beforehand. The Pareto front is 

developed by employing the Normal Boundary Intersection (NBI) method. NBI is a 

MOO method, and was developed by [95] to overcome disadvantages of the 

Weighted Sum Method, namely, generating points in non-convex regions and even 

spacing of Pareto points. The NBI formulation is shown in (3.38) and is applied to 

the MOO problem in this chapter by (3.39), (3.40) and (3.41), where ℯ is a column 

vector of ones, 𝑗 is DW, 𝑘 is DC when optimising Paired Comparison or DBCR when 

optimising the Rating Method.  

The matrix Φ is also called the pay-off matrix and when combined with 𝛽 

gives the Convex Hull of Individual Minima (CHIM). In two-dimensional space, CHIM 

can be thought of as a line connecting the maximum of two conflicting objective 

functions. The values in Φ are as follows: 𝑓𝑗(𝑥𝑗) which is the value of 𝑓𝑗 when 𝑗 is 

maximised, 𝑓𝑗(𝑥𝑘) which is the value of 𝑓𝑗 when 𝑘 is maximised, 𝑓𝑘(𝑥𝑗) which is the 

value of 𝑓𝑘 when 𝑗 is maximised and 𝑓𝑘(𝑥𝑘) which is the value of 𝑓𝑘 when 𝑘 is 

maximised. Also shown in Φ is the normalisation of the values.  𝑛̂ is the unit normal 

to the CHIM. Therefore, by maximising D, the resulting expression Φ𝛽 + 𝐷𝑛̂ gives 

access to all points along the normal and varying 𝛽 allows for selecting different 

points along CHIM. The equality in (3.38) ensures that the maximum value of 𝐷 is 

 𝑚𝑎𝑥 
𝑥,𝐷

𝐷 𝑠. 𝑡. , Φ𝛽 + 𝐷𝑛̂ = 𝐹(𝑥) (3.38) 

 

Φ𝛽 = 

[
 
 
 
 (
𝑓𝑗(𝑥) − 𝑓𝑗(𝑥𝑗)

𝑓𝑗(𝑥𝑘) − 𝑓𝑗(𝑥𝑗)
) (

𝑓𝑗(𝑥) − 𝑓𝑗(𝑥𝑗)

𝑓𝑗(𝑥𝑘) − 𝑓𝑗(𝑥𝑗)
)

(
𝑓𝑘(𝑥) − 𝑓𝑘(𝑥𝑘)

𝑓𝑘(𝑥𝑗) − 𝑓𝑘(𝑥𝑘)
) (

𝑓𝑘(𝑥) − 𝑓𝑘(𝑥𝑘)

𝑓𝑘(𝑥𝑗) − 𝑓𝑘(𝑥𝑘)
)
]
 
 
 
 

[
𝛽1
𝛽2
] (3.39) 

 𝐷𝑛̂ = 𝐷(−Φℯ) (3.40) 

 

𝐹(𝑥) =

[
 
 
 
 (
𝑓𝑗(𝑥) − 𝑓𝑗(𝑥𝑗)

𝑓𝑗(𝑥𝑘) − 𝑓𝑗(𝑥𝑗)
)

(
𝑓𝑘(𝑥) − 𝑓𝑘(𝑥𝑘)

𝑓𝑘(𝑥𝑗) − 𝑓𝑘(𝑥𝑘)
)
]
 
 
 
 

 (3.41) 



PLANNING OBJECTIVE – INVESTMENT SCALE  SOLUTION ALGORITHM 

 
54 

 

constrained by the boundary of the Pareto Front at 𝐹(𝑥), while maximising 𝑥 gives 

the largest value for 𝐹. The outline for the solution algorithm is shown in Fig.3.2. 

The change in 𝛽 is determined by the number of points that are needed in the 

Pareto front. For every iteration of maximising 𝐷, the value of each objective 

function is recorded in matrix 𝑷. Equation (3.36) and (3.37) is evaluated for every 

row of matrix 𝑷, with the minimum value being the optimum point for CP. The 

algorithm was run on a Dell Latitude E5470 laptop with Intel Core i7-6600 CPU 

@2.60GHz and 16GB of RAM. For scenario 1, with the algorithm running 24 

electricity trading periods of analysis, the time to completion is 22 seconds, for 

comparison with 96 trading periods taking 183 seconds. The number of variables to 

solve for in the 24 electricity periods is 273 with 993 variables to solve for in the 96 

trading periods. 

 

 

Fig.3.2 – Flow diagram of solution algorithm. The NBI method develops the 
Pareto Front first and CP uses the developed Pareto set to find the BESS solution 
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3.7 SCENARIOS AND DATA 
Three different illustrative scenarios of electricity market price are utilised, 

shown in Fig.3.3, so that different Pareto Front shapes can be analysed. This is a 

methodology chapter where the focus is not to generate a specific system design 

but to show the workings of the proposed methodology. Therefore, the scenarios 

are for illustrative purposes. Electricity market price has a significant role in 

determining which generators are dispatched, which in turn influences Pareto Front 

shape. Scenario 1 is a 75% increase in electricity market price for each trading 

period from the scenario based on the widely used paper [21]. Scenarios 2 and 3 

are a 50% and 25% decrease in electricity market price respectively for each trading 

period from the same scenario used in [21]. The price increase of scenario 1 

promotes the dispatch of expensive generation whereas scenario 2 and 3 import 

more electricity from the external grid. Scenario 1 has capital costs (𝐸𝐶𝐶) of 593 

$/kWh, operation and maintenance cost (𝐸𝑀𝐶) of 0.04 $/kWh per year and 

efficiency values 𝜂𝑐  and 𝜂𝑑 both 86% respectively. All values are taken from [96] 

based on Lithium BESS. Scenarios 2 and 3 have capital costs of 342 $/kWh. 

 

 

Fig.3.3 – Market Price scenarios utilised in this study. Variation of market prices 
over one day for three scenarios used in this study. Prices shown in decreasing 

order from scenario 1 with the highest price to scenario 3 with the lowest price. 
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The following assumptions are used for each scenario: 𝐶𝑟𝑎𝑡𝑒 is 0.5, 𝑏 is 14, 

initial 𝑆𝑖 is 1, ∆𝑡 is 1, 𝐸𝑡ℎ𝑟𝑢 is 1kWh throughput per 1kWh of installed BESS capacity, 

Interest rate of finance 𝑟 is 8%, project length is 10 years and 𝛾+ is 10. The load of 

the microgrid (𝐿𝑡) is shown in Fig.3.5 (b) and (c) along with wind (𝑊𝑃𝑡 −

 highlighted blue) and solar (𝑆𝑃𝑡 − highlighted orange) power profile respectively. 

Given that wind and solar must be dispatched, their values do not change for each 

scenario. The data in Table 3.2 is taken from [21] and is the same for each scenario. 

 

3.8 ANALYSIS 
The effectiveness of each approach, Paired Comparison and Rating Method, is 

assessed for their ability to size projects within the “knee” region of the Pareto 

Front. The knee region is a set of points on the Pareto Front where a small change 

in either objective function corresponds to a large change in another objective 

function. The significance of this is that reducing or increasing objective functions 

within the knee region has damaging effect on the optimum solution. Therefore, 

choosing a point within the knee region represents a better decision. This concept 

has been used to find knee regions at any location along a Pareto Front [97, 98]. 

However, the main concern for this chapter is knee regions presented near 

maximum DW which allows focus of this analysis on weighting allocation of each 

objective function. 

 

Table 3.2 – Microgrid Data for Cost and Generation 

Gen 
($/kW) 

variable 

($/start) 

variable 

(Min P kW) 

variable 

(Max P kW) 

variable 

MT1 

(0.13) 

𝐶𝑀1 

N/A 

(1000) 

𝑀1
−

 

(2000) 

𝑀1
+

 

MT2 

(0.35) 

𝐶𝑀2 

(30) 

𝐶𝑀2
𝑆𝑈

 

(100) 

𝑀2
−

 

(1000) 

𝑀2
+

 

External 

Grid 
N/A N/A 

(-1000) 

𝐺− 

1000 

𝐺+ 
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Taking Scenario 1 for each approach, Paired Comparison and Rating Method 

are shown in Fig.3.4 (a) and (b) respectively. For Paired Comparison, objective 

functions DW and Cost are optimised. Point A in Fig.3.4 (a) has a weighting 𝑤1 of 2 

and 𝑤2 of 1, with a 𝑝 value of 2 to realise any non-convex Pareto points. By applying 

these values, the system designer is inferring that they are willing to accept a DW 

change of $1 for a change of $2 in increased cost. Using these weightings, the BESS 

size at Point A is 1964 kWh. However, Point A is not in the knee region. Assigning 

weights in an absolute tradeoff situation, such as in Paired Comparison, only allows 

 

 

 

Fig.3.4 – (a) Paired Comparison of DW and Cost objective functions with tradeoff 
of two different weight values for scenario 1 and (b) Rating Method of DW and 

DBCR objective functions for scenario 1. 

 

A 
B 
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system designers to allocate preference to objective functions by the absolute 

difference between them. This approach does not allow system designers to find 

knee regions. Knee regions can form in any location on the Pareto Front under any 

circumstances. For example, if DW values where changed but the shape of the 

Pareto remained the same, then the weighting values 𝑤1 of 2 and 𝑤2 of 1 could 

give solutions within the knee region but only under these changed DW values. This 

highlights that two Pareto fronts with the same shape, but different absolute 

values, will give different optimal solutions for the knee region when the same 

weightings are used.  Therefore, in Paired Comparison, knowledge about the final 

solution is required to ensure certainty of obtaining values within the knee region. 

One possible workaround is to normalise both DW and Cost objective functions, 

however as stated earlier, the cost objective function is incapable for sizing a BESS 

in isolation and therefore normalising would be meaningless. Point B in Fig.3.4 (a) 

has a weighting 𝑤1 of 8 and 𝑤2 of 1. Point B is located in the knee region. However, 

as stated earlier, these weightings may not work for different Pareto sets. While the 

Paired Comparison approach is not suitable for sizing within knee regions, it does 

have merit. If the system designer understands the tradeoff they are seeking, 

meaning they are unconcerned with finding knee regions, then this method does 

allow for obtaining a meaningful solution.  

Unlike the Paired Comparison approach which infers weightings as absolute 

tradeoff values, the Rating Method determines solutions by importance of each 

objective function. The Rating Method ask system designers to rank each objective 

out of 10. For BESS sizing this presents system designers with an easier question to 

answer than the tradeoff question for Paired Comparison. The Rating Method 

captures the importance of objective functions through normalising. This also 

allows the same weighting allocation across different Pareto Fronts, which is not 

suitable in Paired Comparison. Fig.3.4 (b) outlines the optimum BESS size with 

weightings 𝜆1 and 𝜆2 as 10 and 2 respectively. This can be interrupted as DW with a 

rating of 10 out of 10 and DBCR with a rating of 2 out of 10. These weighting values 

reflect the interest in knees regions close to maximum DW. Selecting a higher value 

for 𝜆2 would move the focus closer to maximum DBCR.  
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Fig.3.5 – (a) DW and DBCR showing effect of microgrid dispatch on Pareto Front (b) 
Dispatch Profile at point D with DW of $47.9 and (c) Dispatch Profile at point C with 

DW of $42.7. All for scenario 2. 

The 𝑝 value is maintained at 2. What is clear from Fig.3.4 (b) is that there is a 

predominat knee region. A significant point to note is the large BESS size difference 

between maximum DW and the optimised BESS size in Fig.3.4 (b). The BESS size at 

C 

D 
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maximum DW ($342) is 3862 kWh whereas the Rating Method solution BESS size is 

2343 kWh with a DW of $331. The Rating Method solution BESS size has 97% of the 

total DW available but achieves this with a BESS size that is 60.7% of the maximum 

BESS size. Therefore, allowing a drop of 3% in (DW) profit will give a reduction of 

39.3% in BESS size and capital spending. This solution represents a more realistic 

sizing approach and helps overcome the AW scaling problem. 

Pareto Front shape and the formation of knees is influenced be several 

factors. For scenario 2, the Pareto front, CP solution, attainable dominated points 

and microgrid dispatch profiles are shown in Fig.3.5. Solution points to the left of 

the vertical dashed line in Fig.3.5 (a) are attainable dominated points and are 

therefore not part of Pareto front. The attainable dominated points undergo a 

significant change between DW $40 and $50, where both functions begin to 

increase. This change is caused by the shutdown of generator two when the BESS 

reached critical size. Fig.3.5 (b) is the dispatch profile at point D where DW is $47.90 

and BESS size is 3379 kWh. Fig.3.5 (c) is the dispatch profile at point C with DW 

equal to $42.7 and BESS size of 3119 kWh. These two points represent a significant 

shift. The main difference occurs at trading period 17, with a smaller difference at 

trading period 14. Point D represents the next BESS size after point C where the DW 

value is greater than $42.7. When the BESS reaches point D, the BESS is large 

enough to shut down microturbine 2 generator for trading period 17. This 

shutdown gives a large sudden increase in benefit value to the microgrid as the 

startup costs are replaced with cheaper electricity stored in a BESS. This reduced 

cost in the form of extra benefit causes a significant rise in DW value along with a 

rise in DBCR. This particular situation occurs when large sudden benefits are 

realised and can have significant effect on the shape of the Pareto. Points C and D 

are attainable dominated points and cannot been recommended as potential BESS 

sizes for this application as better solutions exist on Pareto front. 
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The percentage differences shown for scenario 1 may not exist in every BESS 

sizing problem. The following example show this and why the methods used in this 

chapter hold regardless. Fig.3.6 illustrates the Pareto Front of DW and DBCR for 

scenario 3. The weighting values used for 𝜆1 and 𝜆2  are 10 and 2 respectively. 

Fig.3.6 has no knee region within the vicinity of maximum DW, with only two slight 

knees in the middle and near maximum DBCR. The maximum BESS size 1944 kWh is 

selected for scenario 3. This point is selected as the change in DBCR objective 

function is relatively constant in the region of maximum DW. Therefore, DBCR has 

less influence on the final decision. This demonstrates the ability of the Rating 

method to also select maximum DW BESS sizes. 

System designers need to know which values of 𝑤1, 𝑤2, 𝜆1 and 𝜆2  to use. As 

highlighted previously the main concern for sizing BESS is significant knee regions 

near maximum DW. These knee regions represent a large change in capital spend 

for a small gain in DW (depending on the severity of the knee region). It was shown 

that Paired Comparison is not effective for finding knee regions near maximum DW 

due to the inability of constant 𝑤1 and 𝑤2 values to produce consistent results for 

varying DW values but with similar Pareto Front shapes. Therefore, having a 

prescribed value for 𝑤1 and 𝑤2 is not possible. The only possibility for 𝑤1 and  𝑤2 is 

that the system designer knows the absolute trade-off they want beforehand, 

which may be the case. For the Rating Method, an acceptable value to use is 10 for 

 

 

 

Fig.3.6 – DW and DBCR for scenario 3 showing insignificant knee regions  
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𝜆1 and 2 for 𝜆2 which gives the system designer the flexibility to size BESS up to 

maximum DW when no knee regions are present. Also, this provides protection for 

sizing BESS when knee regions are more pronounced near maximum DW. 

3.9 CONCLUSION 
The problem of scaling associated with sizing BESS by maximising DW is 

addressed utilising the methods outlined in this chapter. This chapter presents a 

novel method for determining BESS size based on multi-objective optimisation of 

two financial objectives. Compromise Programming is utilised to apply weightings 

to objectives functions in both Paired Comparison and Rating Method. Three 

different price scenarios are modelled to show the effectiveness of each approach. 

Analysis of the methods show that: 

• CP is an effective MOO technique for finding the optimal BESS size to overcome 

the investment scale problem. The advantage of using CP is that it provides a 

single solution from a Pareto Front when the weightings are applied to 

represent objective function importance. Also, CP is able to provide solutions in 

non-convex regions which is likely in microgrid settings due to the change in DW 

that occurs from the minimum power start-up requirements of dispatchable 

generators. 

• Applying absolute tradeoff measures for determining knee regions is not an 

effective technique for finding optimum BESS sizes. Absolute value tradeoff is 

suitable for system designers who can clearly identify their absolute tradeoff 

values between objective functions and are not concerned with finding 

solutions in knee regions. 

• The Rating Method is more applicable for BESS sizing. For scenario 1, the Rating 

Method provided a drop in DW of 3% with a capital expenditure drop of 39.3%, 

which represents a more realistic BESS sizing decision. Further to this, not all 

knee regions will give such percentage differences. The Rating Method presents 

an easier question for system designers to answer and is more suitable for 

finding knee regions than Paired Comparison. Also, the Rating Method can find 

maximum DW with no knee region in the Pareto Set.  
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• Finding solutions within the maximum DW regions requires a high weighting 

value for DW objective function and low value for DBCR objective function. The 

values used in this study, 10 for 𝜆1 and 2 for 𝜆2 , represent acceptable 

weightings that can find optimal BESS sizes when the investment scale has and 

doesn’t have a significant influence on the final BESS size. 

It is acknowledged that other objectives rather than just purely financial 

objectives should be considered as part of any future work. For example, system 

operational requirements such as reserve provision or voltage/frequency regulation 

could be incorporated in the approach, or microgrid operational constraints 

associated with dispatch of the MT units and renewable generators. 
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CHAPTER FOUR 

4 OPTIMAL INVESTMENT TIMING AND SIZING FOR 

BATTERY ENERGY STORAGE SYSTEMS 

Incorporating planning objectives as part of BESS sizing is the sole purpose of 

this entire dissertation. In total, three planning objectives have been identified as 

requiring attention in this thesis, and are denoted as Investment Scale, Investment 

Timing and Dispatch Adaptability (see Section 2.9 for how planning objectives were 

determined and consolidated). The specific research within this chapter 

incorporates exclusively the planning objective Investment Timing as part of BESS 

sizing. This chapter was first published in Journal of Energy Storage [99], and 

remains unchanged.  

4.1 ABSTRACT  
Due to electricity market deregulation over the past two decades, the 

responsibility for new generation is with private investors who seek profit 

maximisation. Battery Energy Storage Systems (BESS), which are one solution to 

combat the intermittent nature of renewable energy sources, also require private 

investment for widespread deployment. This chapter develops a methodology for 

applying Real Options Analysis to a BESS project from the perspective of private 

investors to determine the optimal investment time and BESS capacity size (MWh). 

Two models with different timescales are utilized: the operational model which is 

hourly, and the planning model which is yearly. The operational model is solved 

using a reinforcement learning algorithm called Deterministic Policy Gradient, while 

the planning model is solved using a MATLAB inbuilt nonlinear global optimiser 

called patternsearch. The methodology is demonstrated for a 100 MW BESS 

connected to the Irish grid and trading exclusively in the day-ahead market. Three 

different BESS CAPEX future realisations are analysed along with three different 
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BESS manufacturers’ degradation warranties for C-Rates under 0.37C. The results 

show that BESS CAPEX has minimal influence on investment timing but has a 

significant effect on BESS size. Furthermore, extrapolating degradation warranty for 

C-Rates greater than 0.37C does not influence optimal investment timing or sizing, 

while a change in BESS energy retention limit at year 10 can have a significant 

influence on the viability of a BESS project.  

4.2 INTRODUCTION 
Due to the deregulation of electricity markets over the past two decades, 

more responsibility has been placed on private investors (e.g. generation 

companies, renewable energy developers) to meet requirements of the electrical 

grid e.g. replacing existing end-of-life generators, meeting increasing demand, 

increasing the amount of renewable generation. System Operators and Regulators 

must put in place the necessary investment signals to ensure system security. In the 

future, a similar investor approach will be required for widespread Battery Energy 

Storage System (BESS) installations. BESS are already being installed throughout the 

world, with 272 electrochemical BESS above 1 MW operational as of 2019, and a 

further 46 either under construction or announced [100]. BESS allow for the 

decoupling of generation and demand which is necessary given the intermittent 

nature of renewable generation. For investors to consider developing BESS projects, 

the investment must ultimately make financial sense. The most holistic approach to 

assessing the financial viability of a BESS investment is Real Option Analysis (ROA) 

[101]. 

ROA is a capital budgeting method which accounts for the dynamic and 

stochastic elements of any investment. “Dynamic” in this case denotes any 

flexibility offered to investors to modify/change their investment throughout its 

lifetime, and “stochastic” implies accounting for any uncertainty which could affect 

the profitability of a project in the future. This ROA approach is different from that 

of traditional capital budgeting methods such as Net Present Value (NPV) which is 

static and deterministic. Currently, within power system engineering literature, it is 

common to use the term NPV when accounting for multi-stage (i.e. dynamic) 

decisions with uncertainty, even though the term NPV is solely reserved for single-
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stage (i.e. static) deterministic decisions within the financial community [75, 89]. 

Likewise, the financial community have chosen the ROA term to account for 

dynamic stochastic decisions. Given that NPV and ROA are financial terms, and in 

the pursuit of correctness, the author of this chapter has chosen to retain the 

financial terminology NPV for static deterministic problems and ROA for multi-stage 

decisions with uncertainty. Hence, ROA has the advantage of being able to consider 

dynamic stochastic decisions over NPV, which is required for BESS installations 

which have flexible options such as added capacity or delaying installation. See 

Fig.4.1 for a graphical representation of the difference between ROA and NPV 

(extracted from [102]). Flexibility within a project can have a variety of different 

options which are all inherent characteristics of an individual project – examples 

include the option to expand/contract the project in the future, the option to stage 

investment, the option to abandon the project, the option to change operational 

strategy, etc. The authors in [103] reviewed the application of ROA to renewable 

energy projects by type of uncertainty considered, flexibility sought and solution 

methods utilised. The authors found that of the 101 papers reviewed, 41% 

considered the uncertainty of electricity price which was the most frequent 

uncertainty variable. Other uncertainties considered were technology price and 

production levels from renewable generators to name a few. In terms of flexibility, 

 
Fig.4.1 – Illustration of difference between Real Options Analysis and more 

traditional method Net Present Value. This study utilises Real Options which is 
both dynamic and stochastic. 
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the most common theme is investment timing, represented in 60% of papers 

reviewed, with 20% considering investment timing alone. Investment timing is 

significant as it allows the investor to decide to wait for more information to 

become available before investing. To solve ROA, a number of different 

mathematical formulations can be used, such as partial differential equations, 

dynamic programming or Monte Carlo simulation. For investment timing decisions, 

the most common solution method is dynamic programming which is an 

optimisation technique. Given that uncertainty is considered for ROA, a more 

applicable approach would be to utilise stochastic optimisation methods. 

Stochastic optimisation encompasses a vast variety of methodologies and 

notation. In fact, such is the size and diversity of different stochastic optimisation 

techniques, it has been classed as the “jungle of stochastic optimisation” [104]. As 

one example, the operations research community use 𝑥𝑡 for decision variable at 

time 𝑡, while the control and reinforcement learning community use 𝑢𝑡 and 𝑎𝑡 

respectively. Further complicating this is the control community using 𝑥𝑡 to 

represent the state variable. Motivated by this, while identifying the need for a 

stochastic optimisation canonical model (as is already the case with deterministic 

optimisation), the author in [105] developed a unified framework for modeling 

stochastic optimisation. The modeling framework proposed by the author consists 

of five different dimensions – state variables, decision variables, exogenous 

information, transition function and objective function. Given these elements, any 

stochastic problem can be modeled. A larger discussion on these elements and 

their notation is given in Section 4.4. 

For investors wanting to undertake a BESS project, there are a number of 

different uncertainties and flexible options to consider. The three uncertainties as 

part of this work are electricity price, which is a highly stochastic process, BESS 

Capital Expenditure (CAPEX) which is envisaged to decline over the coming years 

and BESS degradation which is not fully deterministic due to environmental and 

operational conditions throughout project lifetime. BESS investments also have 

flexible options such as investment timing, increasing BESS energy capacity (MWh) 

and replacing degraded BESS capacity. Examples of options that are unlikely as part 
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of a BESS project, and are not considered in this chapter, are contraction of project 

size and abandoning. Both these options require a strong after sale market which is 

currently non-existent. The literature review within this chapter will show that no 

existing study simultaneously determines the optimal size and investment time for 

a BESS project; which considers future BESS CAPEX decline and degradation; from 

the perspective of an individual investor. This chapter incorporates all these 

aspects. Studies to date focus on the optimal size and investment time from the 

perspective of the grid, which results in a BESS operational strategy that is not 

maximising the benefit of the investor. Given that investors are the most likely 

avenue for new BESS installations in deregulated electricity markets, their 

perspective must be understood. No study from either grid or investor perspective 

has considered the effect future BESS CAPEX decline will have on optimal size and 

investment timing which must also be understood. 

Therefore, the aim of this research is to develop a methodology for applying 

ROA to BESS projects where flexible options of investment timing and sizing are 

both considered. This is different to other BESS ROA applications which consider 

either timing or sizing but not both. Objectively, a standalone BESS project with a 

notional 100 MW inverter is used as the test case. The developed methodology is 

applied to the day-ahead market within the Integrated Single Electricity Market (I-

SEM) on the island of Ireland. Two different optimisation models are required, 1) 

called the operational model for determining BESS dispatch strategy (also called 

policy) and expected daily revenue from BESS, and 2) the planning model which 

optimises the BESS investment timing and sizing decisions. The operational model is 

solved using a Reinforcement Learning Algorithm called Deterministic Policy 

Gradient (DPG). The planning model is solved as a direct-search based approach 

using a nonlinear optimiser in MATLAB called patternsearch. Various future 

scenarios of BESS CAPEX and BESS degradation are modeled to determine the effect 

of each on timing and sizing decisions.  
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4.3 LITERATURE REVIEW 
Literature related to sizing and investment timing of BESS installations has 

two different perspectives. One perspective is the grid (e.g. transmission, 

distribution, micro) as a whole, where objectives include but are not limited to: 

minimising operating cost, maintaining frequency balance and matching load 

growth. The other perspective is that of an individual investor who responds to 

market forces with a goal of maximising the difference between benefit and costs.  

On the perspective related to the grid, numerous studies have analysed the 

impact of BESS sizes and investment timing, as shown in the comprehensive review 

of distribution networks by [106]. The authors identified each study as either single-

stage planning (only BESS sizing) or multi-stage planning (both sizing and 

investment timing). Multi-stage planning allows for dynamic decisions to be made 

over a given planning horizon. Of the multi-stage planning studies identified [26, 

107-111] , each considered planning objectives which incorporated BESS installation 

flexibility over multiple stages. In a different approach shown by [112], the authors 

sized wind and diesel units by trialling four different BESS separately, which is 

analogous to an Analytical Method (discussed later within this section). From these 

studies, the BESS operational strategy is to minimise the installation and operating 

cost of the grid. Only the authors in [112] seek to maximise the arbitrage benefit of 

a BESS. However, this is still in respect to minimising the overall gird planning cost 

i.e. it is assumed that the distribution generation units are owned and operated by 

the grid distribution company. None of the aforementioned studies considered 

future BESS declining capital costs or BESS degradation. In [109], the authors did 

conduct a sensitivity analysis of BESS capital cost but only on the initial stage cost 

which was maintained constant throughout all subsequent stages. Also, the authors 

in [112] did account for replacement costs of BESS due to degradation, however 

their approach specifies that if BESS capacity is installed it must be replaced which 

is not a fully flexible model.  

Studies which focus on the perspective of the investor are more relevant to 

this chapter. Only one approach reported so far in the literature has applied ROA to 
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appraise a BESS project from the perspective of an individual investor [113]. The 

authors determined a single optimal investment time for two Lithium-Ion BESS 

projects participating in Germany and United Kingdom day-ahead and reserve 

markets respectively. A single BESS size of 10 MWh was considered along with 

future BESS CAPEX decline. Their approach is limited in the number of flexible 

options available to BESS projects, such as option to expand BESS energy capacity. 

Furthermore, it was not determined if 10 MWh was the optimum BESS size, and 

therefore a higher RO could be available, which then would have the potential to 

alter the aforementioned optimum investment time. Of particular notice is the lack 

of attention given to degradation. Given the significant role of degradation in 

energy capacity availability as time passes, it is clear that flexible options related to 

degradation should be considered. Others have applied ROA to energy storage 

technologies other than BESS. Implementing the same flexible option as [113], but 

only modelling the day-ahead market, the author in [114] presented a methodology 

for finding the optimal investment time for a technology neutral energy storage 

system. The approach tells investors the optimal profit threshold they need to 

attain for each time step (i.e. yearly). The optimal time to invest is based on 

whatever time step the profit is greater than threshold value. This method still 

leaves the investor with a separate optimisation step to solve for the chosen 

technology to ascertain the attainable profit, along with implementing any 

constraints that are necessary, be they technology or application specific. Another 

ROA undertaken on energy storage is the addition of a hydrogen energy storage 

project to a wind farm [115]. Here, the authors considered the optimal investment 

time option along with different operational strategies. A single hydrogen storage 

capacity was modelled. This is less significant for hydrogen energy storage 

compared with BESS, as the hydrogen storage device is the least expensive 

component of the system when compared to fuel cells. While no future CAPEX was 

modelled (necessary given that grid-connected hydrogen is a less mature 

technology than BESS), the authors did consider future improvement in energy 

conversion efficiency. The efficiency analysis was presented as sensitivity and 

showed that with increasing efficiency the value of waiting decreases. 
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One important aspect from studies [113-115] is that energy storage size is not 

optimised. For energy storage systems, the MWh energy capacity (i.e. size) is a 

unique aspect, as this is what drives the economic return. For BESS, considerable 

effort has been applied to finding optimum sizes, highlighted by a review of BESS 

sizing methodologies [8]. Of the methodologies reviewed by the authors, static NPV 

approaches (Section (a) of Fig.4.1) are most popular BESS sizing method when 

optimising financial objectives across multiple applications such as microgrids, 

standalone hybrid renewable energy systems and renewable power plants. In terms 

of finding the optimal size, two important solution methods were identified, 

Analytical Method and Directed Search-Based Methods. The distinction between 

both has influenced the methodology of this chapter. Using Analytical Methods, 

optimising some decision variables is achieved by manually varying the variables 

across a range of possible values, after which the maximum or minimum of the 

objective function from this range of possible values is given as the optimal 

solution. This approach may seem intuitive to use for ROA. However, in Direct 

Search-Based Methods no variables are manually altered, with the optimising 

algorithm solving for all variables. This removes the burden of variable granularity 

choice as is the case with Analytical Methods. This chapter will solve ROA using a 

Direct Search-Based approach.   

Previous literature which combines ROA and sizing is naturally closely related 

to this study. In [116], the authors applied ROA and capacity choice to a pumped 

hydropower storage project. The option in question was whether project 

construction should wait or start immediately. It was found that an optimal wait 

time of 8 years was appropriate when an annual increase of 8% in electricity 

volatility is modeled. Capacity choice was based on determining the RO for a set of 

five different MW options (analogous to the Analytical Method mentioned 

previously). The optimal capacity was 2,400 MW which is the maximum capacity 

modeled. This approach did not optimise pumped hydropower storage energy size 

(assumed to be 75,000MWh). Rather than predicting future technology costs, a 

sensitivity analysis was done to understand the effect of increased/decreased 

CAPEX on RO, with a 25% reduction in CAPEX modifying the optimal from year 8 to 
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year 5. A similar approach is used in this chapter for future BESS CAPEX and also 

used by [115] for changes in future hydrogen storage conversion efficiencies. A 

different approach to energy storage sizing with ROA was taken by [117]. Here the 

authors “pre-sized” a Pumped Hydro Storage project and Compressed Air Energy 

Storage project before undergoing ROA for three different flexibility options. The 

Analytical Method was used to determine the optimal size with traditional NPV 

used as the objective function. It is unclear if this approach would give a different 

optimal BESS size to that when determining the optimal BESS size within ROA. This 

point will be addressed within this chapter. 

As part of this research, three uncertainties are accounted for (electricity 

market clearing price within the day-head market, future BESS CAPEX, BESS 

degradation). Importantly, the treatment of uncertainty in ROA is not a “one size 

fits all” approach. Two different important categories of uncertainty within ROA are 

identified by [118]: parametric uncertainty and structured uncertainty. Therefore, it 

is important to understand which uncertainty category electricity market clearing 

price, BESS CAPEX and degradation fall into, and what is the consequence of this. 

Parametric uncertainty (electricity markets fall under this category) is when the 

underlying uncertainty is knowledge of parameters, is classed as quantitative and 

generally a probability distribution is known. Structural uncertainty (which applies 

to BESS CAPEX and degradation) is when less information about the underlying 

system is available, is classed as qualitative and generally a probability distribution 

is not known. The authors in [118] highlight that ROA can be applied to parametric 

uncertainty but the effectiveness on structural uncertainty is debatable, and some 

methods can only give ‘rough’ answers. Therefore, rather than simulating future 

BESS CAPEX and degradation, a sensitivity analysis is done on different future 

realizations of each. The chapter presented herein throughout can be viewed as 

ROA of the parametric uncertainty (electricity price) with sensitivity analysis of the 

structural uncertainty (BESS CAPEX and degradation). 

 Lastly, determining the optimal dispatch strategy for a BESS via stochastic 

optimisation is given by [119, 120], and is closely related to this chapter. Optimal 

BESS dispatch is required so that BESS revenue can be modelled. While their study 
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covers the area of modelling and different classes of policy in stochastic 

optimisation, the BESS is used as a test case for their modelling and policy classes 

with little given in terms of the algorithmic structure used. The same modelling 

notation is used in this chapter.  

4.4 MODELING 
Optimal decisions over two different timescales are required as part of the 

methodology used in this chapter – the optimal dispatch of BESS which is hourly 

and BESS investment timing and sizing decisions which are yearly. While yearly 

decisions are the main topic of this chapter, optimal hourly dispatch decisions are 

also required for calculating BESS revenue. To account for this timescale difference, 

an operational model and planning model are developed for hourly and yearly 

decisions respectively. Similar terminology has been used by [121], referring to the 

planning model as the strategic model. The operational model is solved first and 

determines how the asset (i.e. BESS) will operate, whereas the planning model is 

solved afterwards and uses the expected daily revenue output of the operational 

model.  

 

4.4.1 OPERATIONAL MODEL 
Revenue from a BESS project operating in the day-ahead market is based on 

optimal dispatch for arbitrage opportunities (i.e. charging BESS when electricity 

 

 

Fig.4.2 – Outline of operational model and planning model, their interactions and 
inputs. 
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market price is low and discharging when high). Electricity is traded for one trading 

day broken into hourly segments. Given that electricity market price is uncertain, 

stochastic optimisation is used to solve for the operational model. As mentioned 

previously, a stochastic optimisation problem can be modelled using five 

dimensions as shown here. For a more detailed discussion interested readers are 

referred to [105]. To keep computation requirements low, the time horizon of the 

operational model is maintained at 24 hours. The stored energy within the BESS will 

always be in a state of empty at the beginning and end of trading day. 

4.4.1.1 STATE VARIABLE 
The state variable encompasses all the information required to compute the 

cost function, decision function and transition function from time 𝑡𝑜 onwards. The 

state variable for the operational model (4.1) is composed of three different 

components 

 𝑆𝑡𝑜 = (𝐸𝑡𝑜 , 𝑃𝑒,𝑡𝑜 , 𝐵) (4.1) 

𝐸𝑡𝑜  which is the amount of energy stored (MWh) in the BESS at time 𝑡𝑜, 𝑃𝑒,𝑡𝑜is the 

electricity market clearing price (€/MWh) for the day-ahead market at time 𝑡𝑜 and 

𝐵 is the BESS size (MWh) which is constant across each iteration (𝜅). The 𝐸𝑡𝑜  value 

changes for each timestep depending if the BESS was charged or discharged. 𝑃𝑒,𝑡𝑜  is 

sampled from previous electricity market data for the day-ahead market. 

4.4.1.2 DECISION VARIABLE 
The decision variable for the operational model, 𝑥𝑡𝑜, is how much energy 

(MWh) should be charged or discharged to/from the BESS at each 𝑡𝑜. 𝑥𝑡𝑜  is 

bounded by the following constraints shown in (4.2) and (4.3). 

 η × (max (−Y × 𝑡𝑑, 0 − 𝐸𝑡𝑜−1)) ≤ 𝑥𝑡𝑜  (4.2) 

 
𝑥𝑡𝑜 ≤

min (Y × 𝑡𝑑, 𝐵 − 𝐸𝑡𝑜−1)

η
 (4.3) 

These constraints ensure that 𝑥𝑡𝑜 does not overcharge or over discharge the 

BESS, where 𝑆𝑡𝑜−1 is the state variable at the previous time step, 𝑡𝑑 is the duration 

of time for the trading period set to 1 hour for this study, η is the conversion 

efficiency of the BESS set at 0.87 [122], and 𝑌 is the inverter size which is assumed 
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to be 100 MW for this study. 𝑥𝑡𝑜  is positive for charging and negative for 

discharging. 

4.4.1.3 EXOGENOUS INFORMATION 
Exogenous information is the information that is revealed at time 𝑡𝑜 and is 

available when decision 𝑥𝑡𝑜  is made. For the methodology used in this chapter, the 

decision maker has access to the electricity market clearing price for each trading 

period when making decision 𝑥𝑡𝑜for that trading period. The exogenous electricity 

trading price is given by 𝑃̂𝑒,𝑡𝑜. 

4.4.1.4 TRANSITION FUNCTION 
Linking the state variable and decision variable is the transition function. 

This models how the state of the BESS changes with time depending on what 

decisions are made. Equations (4.4), (4.5) and (4.6) outline the transition of the 

energy stored variable 𝐸𝑡𝑜and 𝑃𝑒,𝑡𝑜.  

 

𝐸𝑡𝑜+1 = {

𝐸𝑡𝑜 + (𝜂 × 𝑥𝑡𝑜), 𝑥𝑡𝑜 < 0

𝐸𝑡𝑜 +
𝑥𝑡𝑜
𝜂
, 𝑥𝑡𝑜 > 0

 (4.4) 

 𝑃𝑒,𝑡𝑜+1 = 𝑃̂𝑒,𝑡𝑜+1 (4.5) 

 𝑆𝑡𝑜+1 = (𝐸𝑡𝑜+1, 𝑃𝑒,𝑡𝑜+1, 𝐵) (4.6) 

Given that the electricity market clearing price is known when the decision is made 

at 𝑡𝑜, there is no transition relationship modeled for 𝑃𝑒 between 𝑡𝑜 and 𝑡𝑜 + 1. 𝐵 

remains constant throughout state transitions for the trading day, and 𝑆𝑡𝑜+1 

represents the state variable at 𝑡𝑜 + 1. 

4.4.1.5 OBJECTIVE FUNCTION – (OPERATIONAL MODEL) 
The canonical form for the objective function in stochastic optimisation is 

given by (4.7). 

 

𝑚𝑎𝑥 
𝜋∈Π

𝔼𝜋 ∑ 𝐶(𝑆𝑡𝑜 , 𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜))

𝑇𝑜

𝑡𝑜=1

 (4.7) 

 𝐶(𝑆𝑡𝑜 , 𝑥𝑡𝑜) = 𝑃𝑒,𝑡𝑜𝑥𝑡𝑜  (4.8) 

For the operational model, equation (4.8) quantifies how much energy is bought 

and sold at price 𝑃𝑒,𝑡𝑜  for each trading period within the trading day. 𝑇𝑜 is the time 
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horizon for the trading day which is 24 trading periods. Rather than specifying the 

decision variable 𝑥𝑡𝑜  in (4.7) for time 𝑡𝑜, stochastic optimisation maps the function 

from state to policy, which determines the best decision to take given the current 

state. This is known as a policy and is signified by 𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜), where 𝜋 is a policy and 

is an element of all possible policies Π. For definition of 𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜) see Section 4.5.1. 

The goal of stochastic optimisation is to find the best policy, the result being a 

function which maps states to decisions.   

 

4.4.2 PLANNING MODEL 
The planning model time scale is yearly, through which decisions are based 

on how much BESS capacity should be invested in at every year of the project, 

considering the decline of BESS CAPEX and BESS degradation over time.  

4.4.2.1 OBJECTIVE FUNCTION – (PLANNING MODEL) 
The planning model objective function is shown in (4.9). The goal is to 

maximise the value of a BESS project. The baseline function 𝑉 (equation (4.20)) 

from the operational model gives the daily expected revenue for a BESS when 𝑡𝑜 is 

1.  This baseline function is inputted into planning model objective function to give 

yearly revenue. Equation (4.9) is solved using MATLAB global optimisation function 

patternsearch which can be applied to nonlinear objectives functions and 

constraints.  

 

𝑚𝑎𝑥 
𝐵𝑡𝑝

∑ 𝛾𝑝,𝑡𝑝

(

 
 
∑

(

 
 
𝑉𝑣1 (𝐵𝑡𝑝,𝑗 −

𝐷𝑡𝑝+1
𝐽 ) × 365

𝐽

)

 
 

𝐽

𝑗=1

𝑇𝑝

𝑡𝑝=1

− 𝑃𝐵(𝑡𝑝) (
𝐵𝑡𝑝 −𝐻𝑡𝑝

𝑈𝐿
) − 𝑃𝐼𝑌𝑡𝑝

)

 
 

 

(4.9) 

where 𝐵𝑡𝑝 (MWh)  is the usable BESS size investment decision variable at time 𝑡𝑝 

which is yearly, 𝑌𝑡𝑝  signifies the inverter’s first year of operation (enforced by 

constraint (4.17)) , 𝑇𝑝 is the lifetime of the project  at 20 years, where 𝛾𝑝,𝑡𝑝 is the 
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time value of money given by 
1

(1+𝑟)𝑡𝑝
 with the discount rate 𝑟 at 0.08. To improve 

accuracy, degradation is accounted for within yearly revenue in objective function 

(4.9) by assigning a value to 𝐽. A higher value of 𝐽 will improve accuracy but increase 

computation time. The maximum value of 𝐽 is 365. 𝐽 is set to 4 for this study (i.e. 

setting 𝐽 to 4 ensures that degradation is accounted for quarterly). 𝐷𝑡𝑝+1 is the 

degradation after year 𝑡𝑝 but before the year beginning 𝑡𝑝+1. 𝐵𝑡𝑝,𝑗 is the BESS 

capacity left after degradation every quarter when 𝐽 is 4. 𝑃𝐵(𝑡𝑝) is BESS capacity 

CAPEX at time 𝑡𝑝 (see Section 4.6.2), 𝑃𝐼 is the BESS inverter CAPEX, 𝐻𝑡𝑝 is the 

amount of usable BESS capacity already installed at time 𝑡𝑝 and 𝑈𝐿 is the usable 

energy limit of the BESS capacity set arbitrarily at 95% for this study. The use of this 

usable limit implies that more capacity must be purchased above what is available 

for use by the operational model. For Section 4.4.2.2 and 4.6.3, it is assumed that 

all constraints and degradation modeling are referring to the usable energy 

amount. 

4.4.2.2 CONSTRAINTS 
Given that degradation is dependent on the size of the BESS installed, the 

constraints are nonlinear. Equations (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), 

(4.16) and (4.17) outline the constraints applied to the planning model. Equation 

(4.13) ensures that no added BESS capacity ever falls below 30% (when 𝑄 is equal 

to 0.3) of initial value throughout the lifetime of the project. This helps alleviate the 

issue of BESS capacity becoming redundant. Constraint (4.16) allows the planning 

model to select battery sizes between 20 and 500 MWh. These values have been 

chosen arbitrarily to reflect a C-rate of 5 and 0.2 respectively, which ensures a wide 

enough range of possible BESS sizes. 𝐿𝑡𝑝 is the amount of BESS capacity that has 

been installed cumulatively at time 𝑡𝑝, 𝐷𝐶  is the energy retention limit (see Section 

4.6.3).  

In this chapter, a ROA model of a BESS project is optimised using only the 

upper term in equation (4.14). However, an NPV model of the same BESS project 

(see scenario 1 in Section 4.7) was also optimised. This was done as a reference 

point, as NPV is more common than ROA. To change the model from ROA to NPV, 
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only the lower term in equation (4.14) is used. The lower term in equation (4.14) 

constraints the model to only one decision at the initial decision stage. 

 𝐻𝑡𝑝+1 = 𝐵𝑡𝑝 −𝐷𝑡𝑝+1 (4.10) 

 𝐿𝑡𝑝+1 = 𝐵𝑡𝑝 − 𝐻𝑡𝑝 + 𝐿𝑡𝑝  (4.11) 

 
𝐷𝑡𝑝+1 = min(

𝐿𝑡𝑝+1 × 𝐷𝐶(𝐿𝑡𝑝+1)

10
, 𝐵𝑡𝑝) (4.12) 

 

(𝐵𝑡𝑝 − 𝐻𝑡𝑝) − (𝑚𝑖𝑛(
(𝐵𝑡𝑝 − 𝐻𝑡𝑝) × 𝐷𝐶(𝐿𝑡𝑝+1)

10
, 𝐵𝑡𝑝 − 𝐻𝑡𝑝)

× (𝑇𝑝 − 𝑡𝑝)) ≥ (𝐵𝑡𝑝 − 𝐻𝑡𝑝)𝑄 

(4.13) 

 
{
𝐵𝑡𝑝 − 𝐵𝑡𝑝+1 ≤ 𝐷𝑡𝑝+1, 𝑤ℎ𝑒𝑛 𝑅𝑂𝐴

𝐵𝑡𝑝 − 𝐵𝑡𝑝+1 = 𝐷𝑡𝑝+1, 𝑤ℎ𝑒𝑛 𝑆𝑡𝑎𝑡𝑖𝑐 𝑁𝑃𝑉
 (4.14) 

 𝐻1 = 0,𝐷1 = 0, 𝐿1 = 0 (4.15) 

 20 ≤ 𝐵𝑡𝑝 ≤ 500 (4.16) 

 
𝑌𝑡𝑝 = {

𝑌, 𝐻𝑡𝑝 = 0 𝑎𝑛𝑑 𝐵𝑡𝑝 > 0    

0,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.17) 

 

4.5 REINFORCEMENT LEARNING ALGORITHM 
The optimal BESS dispatch policy for the operational model is determined 

using a reinforcement learning algorithm called Deterministic Policy Gradient (DPG) 

[123] subject to equations (4.1)-(4.8). Reinforcement learning was used as the 

stochastic optimisation method in this study as a means to learn an optimal 

function approximator of the operational model. The reinforcement learning choice 

was fundamental in allowing the splitting of operational and planning decisions into 

two different models. Reinforcement learning is predominantly a computer science 

discipline. The problem faced by this community is sequential decision making 

under uncertainty, which is the same problem faced when dispatching a BESS 

within day-ahead electricity market. References such as [124, 125] give an 

introduction into this vast subject. More recently, more advanced reinforcement 
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learning algorithms have gained distinction for their ability to master the game of 

Go [126] and greater than human level performance in a selection of Atari games 

[127]. Reinforcement learning can optimise within two different spaces, the value 

function space or the policy space, with a large number of algorithms to choose 

from such as Monte Carlo, SARSA, Q-Learning, REINFORCE, etc. The algorithm used 

in this study (DPG) is a hybrid of policy and value functions known as actor-critic. 

Unlike other policy gradient reinforcement learning algorithms, DPG output is a 

deterministic policy rather than stochastic. This is beneficial for dispatching a BESS 

system, as BESS operators’ decisions are not probabilistic. 

Expanding reinforcement learning to large scale problems requires 

approximating the function space. For continuous state space and decision space, 

the number of possible realisations is infinite. To overcome this, a function 

approximator is utilised. This study applies tile coding to the state space. Tile coding 

discretizes the state space with overlapping tilings divided into equally sized 

squares called tiles. The benefit of tile coding is that this overlapping allows for 

generalisation from one state to another, thereby removing the need to account for 

every state. For a more detailed description of tile coding, see [125] pp. 217. The 

number of tilings used in this study is 16 which follows the rule 𝑁𝑡𝑖𝑙𝑖𝑛𝑔𝑠 = 2
𝑧 ≥ 4𝑞 

given by [125] pp. 220, where 𝑞 is the dimension of the state variable and 𝑧 must be 

a positive integer. The width of the tiles is given an arbitrary value of 95 which 

ensures a balance between generalisation of the state space and computation time. 

The number of tiles per tiling is 1728. Each tile represents one feature of the 

feature vector 𝜙(𝑆𝑡), which has a length equal to the total number of features. 

Activation of features occurs when 𝑆𝑡 is inside the boundary of a particular 

tile/feature which is then assigned a value of 1. All other features are set to zero. 

4.5.1 DETERMINISTIC POLICY GRADIENT ALGORITHM 
Of particular interest for this study is the ability of DPG to handle continuous 

decision space (i.e. dispatching a BESS in day-ahead market allows any value of 

charge/discharge between equation (4.2) and (4.3)). Furthermore, even though 

DPG is a bootstrapping algorithm, no bias is introduced into the solution through 
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the use of a compatible function approximator. Another common issue in 

reinforcement learning is the topic of exploration of the state space. To ensure 

adequate exploration, the deterministic policy 𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜) is learnt from trajectories of 

a stochastic policy 𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜), which is categorized as off-policy learning. The DPG 

algorithm uses gradient Q-learning in the critic to prevent divergence.  

Fig.4.3 outlines the DPG algorithm. This form of the algorithm is modified to 

fit the BESS dispatch problem. For the generic form of this algorithm, readers are 

referred to [123]. The focus of the DPG algorithm is to learn the parameter values 

𝜽𝒕𝒐 , 𝒘𝒕𝒐 , 𝒗𝒕𝒐 , 𝒖𝒕𝒐. The parameter 𝜽𝒕𝒐 is the actor parameter which, when coupled 

with the feature vector 𝜙(𝑆𝑡0), learns the deterministic policy 𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜) =

𝜽𝒕𝒐
T𝜙(𝑆𝑡0). The parameters 𝒘𝒕𝒐 and 𝒗𝒕𝒐 are critic parameters and learn the value 

of being in state 𝑆𝑡𝑜  and taking a decision from the stochastic policy 𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜). The 

 

Fig.4.3 – Deterministic Policy Gradient Algorithm applied to BESS dispatch 
problem. The introduction of decision clipping ensures that decisions stay 

bounded.  
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critic value function is shown in equation (4.18) and is made up of an advantage 

function (4.19) and a baseline function (4.20). 

where ∇𝜃𝑡𝑜𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜) = 𝜙(𝑆𝑡) and 𝜆 is a small deviation from the deterministic 

policy and is set to 𝜆 =
𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜)−𝑋𝑡𝑜

𝜋 (𝑆𝑡𝑜)

𝑌
. The parameter 𝒖𝒕𝒐 is learned to negate the 

potential divergence of the parameters under off-policy learning through stochastic 

policy 𝛽. 

The hyperparameters 𝛼𝜃,𝑡0 , 𝛼𝑤,𝑡0 , 𝛼𝑣,𝑡0 , 𝛼𝑢,𝑡0 follow conditions similar to 

those outlined by [128], shown in (4.21) and (4.22).  

 
𝛼𝜃,𝑡0 =

0.001

𝑡𝑜 × 𝑁𝑡𝑖𝑙𝑖𝑛𝑔𝑠
 (4.21) 

 
𝛼𝑤,𝑡0 , 𝛼𝑣,𝑡0 , 𝛼𝑢,𝑡0 =

0.1

𝑡𝑜
2
3 × 𝑁𝑡𝑖𝑙𝑖𝑛𝑔𝑠

 (4.22) 

This ensures that the critic learns at a faster rate than the actor. The number 

of iterations (𝜅) is set large enough to guarantee algorithm convergence (1 million 

iterations were used in this chapter). For line 2.1 of Fig.4.3, the amount of energy 

stored in the BESS (𝐸1) at the beginning of a trading day is initialized to zero, 

initialization of BESS size (𝐵) is taken from a uniform random distribution of 

available BESS sizes (20 MWh – 500 MWh). 𝑃𝑒,1 is initialized using historical data 

from day-ahead electricity market clearing prices in I-SEM (see Section 4.6.1). Once 

the algorithm runs through all available trading day data, it restarts at the initial 

data point. This process is repeated until the DPG algorithm converges. For line 

2.2.3 in Fig.4.3 the value of 𝜎𝛽
2 set to 80 MWh to enforce adequate exploration. In 

line 2.2.6, the value of 𝑅𝑡𝑜  is calculated at every time step using (4.23) and the value 

of gamma (𝛾𝑜) is set to 1. 

 
𝑄𝑤𝑡𝑜 (𝑆𝑡𝑜 , 𝑋𝑡𝑜

𝛽
(𝑆𝑡𝑜)) = 𝐴

𝑤𝑡𝑜 (𝑆𝑡𝑜 , 𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜)) + 𝑉

𝑣𝑡𝑜(𝑆𝑡𝑜) 
(4.18) 

 

 𝐴𝑤𝑡𝑜(𝑆𝑡𝑜 , 𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜) + 𝜆) = 𝜆

T∇𝜃𝑡𝑜𝑋𝑡𝑜
𝜋 (𝑆𝑡𝑜)

T
𝒘𝒕𝒐 (4.19) 

 
𝑉𝑣𝑡𝑜(𝑆𝑡𝑜) = 𝒗𝒕𝒐

T𝜙(𝑆𝑡) (4.20) 
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 𝑅𝑡𝑜 = 𝑃𝑒,𝑡𝑜𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜) (4.23) 

In line 2.2.7, the parameter 𝜽𝒕𝒐 is clipped using the approach given by [129]. This 

ensures that any decisions learnt must be within boundary limits otherwise the 

problem would keep learning to infinity. Lastly, the critic features 𝜙 (𝑆𝑡𝑜 , 𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜)) 

are given by 𝜙(𝑆𝑡) ×
𝑋𝑡𝑜
𝛽
(𝑆𝑡𝑜)

Y
.  

4.6 DATA AND MODEL INPUTS 

4.6.1 DAY-AHEAD ELECTRICITY PRICE 
The electricity market in Ireland covers the whole of the island. Until 

October 2018, Ireland’s electricity market was a gross mandatory pool market with 

single-sided participation of generators. Since October 2018, Ireland has been 

operating a new market called Integrated Single Electricity Market (I-SEM) which is 

more closely aligned with other power markets in the EU. Any generator greater 

than or equal to 10 MW must participate in the market. The data shown in Fig.4.4 is 

taken from I-SEM power exchange [130]. This data is assigned the variable 𝑃𝑒,𝑡𝑜, 

where 𝑡𝑜 is a trading period from 1 to 24, with trading period 1 starting at 23:00 

hours. 𝑃𝑒,𝑡𝑜  is used in the operational model objective function (4.8) to determine 

the optimal trading strategy and expected daily revenue of BESS. It is assumed that 

any scheduled dispatch established by the BESS in the day-market is adhered to in 

 

 

Fig.4.4 – Boxplot showing the variation of electricity market clearing prices 
within the I-SEM day-ahead market from October 2018 until July 2019.  
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real time, therefore no penalties for deviations from this scheduled dispatch is 

considered. 

4.6.2 BESS CAPEX 
Currently, Lithium-ion BESS CAPEX is predicted to decline over the coming 

years. The Lazard’s Energy Storage document published in November 2018 outlines 

a Compounded Annual Growth Rate (CAGR) of 8% decrease over the next 5 years 

[122]. CAGR was averaged by Lazards over all possible BESS sizes. For this study, the 

decline predicted by [122] is modeled along with two alternatives, referenced as 

CAPEX Path 2 and CAPEX Path 3, whose purpose are for sensitivity analysis. 

Equation (4.24), which is CAGR formula rearranged algebraically, models BESS 

CAPEX before year 5. After 5 years, an exponential decaying function is used, given 

by equation (4.25).  

 

𝑃𝐵(𝑡𝑝) = {
𝑃𝑆 × (𝑑𝐶𝐴𝐺𝑅 + 1)

𝑡𝑝 , 𝑡𝑝 ≤ 5

𝑃𝐿 + (𝑃𝐵(5) − 𝑃𝐿)𝑒
(−𝑘×(𝑡𝑝−1)), 𝑡𝑝 > 5

 
(4.24) 

(4.25) 

where 𝑃𝐵(𝑡𝑝) is predicted future CAPEX of BESS at year 𝑡𝑝, 𝑃𝑆 is the current CAPEX 

of BESS at 𝑡𝑝 = 1, 𝑑𝐶𝐴𝐺𝑅 = −
𝐶𝐴𝐺𝑅

5
× (𝑡𝑝 − 1) and 𝑡𝑝 is planning model discrete 

time interval. 𝑃𝐿 is the predicted BESS CAPEX at the end of project life and 𝑘 is 

decay rate. The values for the above variables are outlined in Table 4.1 for three 

different paths. The 𝑃𝑆 value is taken from [122], and is representative of large- 

scale energy storage systems and is applied across all paths. The range of 𝑃𝑆 values 

given by [122] for large scale lithium-ion is 210–360 (€/kWh) when currency 

 

 

Table 4.1 – BESS CAPEX Data 

 CAPEX Path 1 CAPEX Path 2 CAPEX Path 3 Unit 

𝑃𝑆  210 210 210 €k/MWh 

𝐶𝐴𝐺𝑅 0.08 0.065 0.05 - 

𝑃𝐿 65 77 90 €k/MWh 

𝑘 0.45 0.29 0.2 - 
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exchange from August 2019 (1€=1.11$) is used. For this study, the lower value of 

210 (€/kWh) is applied. CAGR for CAPEX Path 1 is also taken from [122], while all 

other values are assumed. Fig.4.5 illustrates each CAPEX path. The value given by 𝑃𝑆 

also includes BESS Operating Expenditure (OPEX). Furthermore, CAPEX for the BESS 

inverter (AC part) 𝑃𝑙  is also taken from [122] using the lower value similar to 𝑃𝑆. 𝑃𝑙  

has a value of 44.14 (€/kW) when using the same currency exchange as above. 

 

4.6.3 BESS DEGRADATION 
Lithium-ion BESS undergo degradation via two mechanisms, cycling 

degradation which is degradation caused through charging/discharging BESS, and 

calendar degradation which is degradation caused by BESS age and environmental 

effects. Accurately modeling BESS degradation is highly complex and represents a 

risk for potential investors. To lessen this risk, BESS manufacturers provide 

investors with a warranty, which guarantees a certain level of BESS performance 

until a particular year of operation. The planning model in this chapter applies BESS 

manufacturers’ warranty data for degradation. This negates the necessity to model 

actual degradation, thereby reducing complexity while also demonstrating the 

 

Fig.4.5 – Three BESS CAPEX paths used in the analysis of this study. CAPEX Path 1 
is representative of predicted decline, while CAPEX Path 2 and 3 are for sensitivity 

analysis. 
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effect degradation has on potential investments. Typically, manufacturers outline 

their performance guarantee with an energy capacity retention limit at some time 

interval in the future. This limit will be used as worst-case performance for this 

study (i.e. the worst performance that can be expected at a certain year, as 

manufacturers will maintain this performance). Lithium-ion Nickel-Manganese-

Cobalt BESS technology used by Tesla is the degradation model to test this 

chapter’s methodology and has a value of 80% energy capacity retention at 10 

years, which is used as the worst performance an investor can expect for a BESS C-

rate of 0.37 [131, 132]. This also allows for a cycle limit of 37.8 MWh of aggregate 

throughput. However, for the purposes of this chapter it is assumed that the BESS 

has unlimited cycles available. This is in keeping with utility scale BESS warranties 

and also existing trends within the industry. Energy capacity retention limit changes 

are based on C-Rate, with a higher C-rate reducing the limit. Extrapolation of energy 

capacity limit to BESS sizes with a different C-Rate is done using the approach 

outlined in equation (4.26) and (4.27).  

 
𝐷𝐶(𝐿𝑡𝑝+1) = 𝑚

100

(𝐿𝑡𝑝+1)
+ 𝑐𝑑 (4.26) 

 𝑐𝑑 = (1 − 𝑅𝐸) − (𝑚𝐶𝑅) (4.27) 

𝑐𝑑 is determined from [132], where 𝑅𝐸  is energy retention limit at 80% and 𝐶𝑅 is 

the C-rate of that retention limit at 0.37C. 𝑚 gives the rate of change of energy 

capacity limit to BESS size. Three different values of 𝑚 are modeled in this study to 

determine the sensitivity of degradation to investment timing and sizing decisions, 

shown in Fig.4.6. The degradation options in Fig.4.6 are for an energy capacity 

retention limit at year 10. To extrapolate this over the full-time range of the 

planning model (i.e. year 1 to 20), a linear assumption was used (i.e. a constant 

annual energy capacity reduction is applied, equal to 1/10 of the reported energy 

capacity reduction over 10 years). This is due to the lack of available warranty data 

for years outside of year 10. Another point to note from Fig.4.6 is that if more 

capacity is added to a BESS project throughout its lifecycle then the increased BESS 

size will cause 𝐷𝐶  degradation to decline. Therefore, the degradation amount is not 

based on the added capacity but rather on the existing capacity plus the added 
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capacity.  

 

4.7 ANALYSIS 
The operational model was solved using the reinforcement learning algorithm 

DPG. The expected daily revenue of the operational model is shown Fig.4.7. This is 

based on the learned deterministic policy, 𝜋, for optimal BESS dispatch strategy. 

𝑃𝑒,1 is the electricity market clearing price state variable for the decision epoch at 

 

 

Fig.4.7 – Expected Daily Revenue given BESS size and 𝑃𝑒,1. 𝑃𝑒,1 state variable gives 
the expected daily revenue as it is the first stage of trading day.  

 

Fig.4.6 – Three different inferred degradation options for year 10 of BESS life. A 
common point for each inferred degradation is a C-rate of 0.37, which occurs at 

270MWh for this 100MW study. 
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first stage, with BESS size 𝐵 the other state variable. The active energy stored state 

variable 𝐸𝑡𝑜  is not shown here as it is assumed to be zero for the first stage (𝑡𝑜=1). A 

certain tendency observed from Fig.4.7 is the rate of change between expected 

daily revenue and BESS size remains approximately constant from 20 MWh to 

500MWh for 𝑃𝑒,1 less than approximately 36 €/MWh. This trend is based on a 

higher likelihood of more revenue when the initial electricity market price is low. 

When the electricity market clearing price is lower for the initial stage, the 

probability of subsequent stages (𝑡𝑜 > 1) having a higher clearing price is 

increased. This gives the BESS more opportunity to obtain arbitrage benefits and 

therefore extra revenue. As a result, the BESS charges more often during low 𝑃𝑒,1. 

This learnt strategy is illustrated further in Fig.4.8, which shows the learnt 

deterministic policy. One noticeable difference in Fig.4.8 is that for values of 𝑃𝑒,1 

under 10 €/MWh, the policy indicates significant charging instructions for all BESS 

sizes. For values of 𝑃𝑒,1 between 10 and 50 €/MWh, even though the expected daily 

revenue rate of change is increasing, the policy for BESS sizes under approximately 

300 MWh tend to instruct no charging, whereas BESS sizes above tend to charge. 

This learnt strategy is based on 𝑃𝑒,1 having a higher value on average than trading 

periods up to and including trading period 8, as shown in Fig.4.4. This strategy 

shows that it is more beneficial for smaller BESS sizes to wait to charge as there is 

higher likelihood of lower prices at later trading periods. Larger BESS sizes are able 

 

Fig.4.8 – Learnt deterministic policy for trading period 1 from solving 
operational model with Deterministic Policy Gradient Algorithm. 
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to capture both the low price of trading period 1 and other subsequent lower 

trading prices. One might expect to see more uniform, smooth results between 

adjacent states in Fig.4.8. However, it should be noted that the goal in stochastic 

optimisation is to obtain a good policy for a given state rather than optimal decision 

for every time step.  

The planning model is solved using MATLAB version R2018b with a global 

optimisation function called patternsearch from the global optimisation toolbox 

version 4.0. The planning model requires three uncertainty inputs – 1) operational 

model value function 𝑉𝑣1(𝑆1), 2) a BESS CAPEX path and 3) a degradation option. 

These three inputs signify the uncertainty parameters for the planning model. To 

determine the effect of BESS CAPEX on investment decisions, the planning model 

was solved for the following scenarios: 

• Scenario 1 – A traditional static NPV with operational model uncertainty is 

used as a base case scenario.  The BESS CAPEX is maintained at 𝑃𝑆 for 𝑡𝑝 = 1 

as there are no dynamic decisions allowed. Constraint (4.14) is set to static 

NPV. Degradation option is set to 𝑚 = 0.2. 

• Scenarios 2,3,4 – are real option analysis for CAPEX Path 1,2,3 respectively. 

Full dynamic decisions are allowed by setting constraint (4.14) to ROA. The 

degradation option is held at 𝑚 = 0.2. 

For scenario 1, the constraint (4.14) enforces that no decision is allowed after the 

first year. No BESS size available between 20 and 500MWh gave a positive value 

(which is needed for project to be accepted). The highest project value was zero 

with a BESS of 0 MWh, which is optimal. All other BESS sizes gave a negative project 

value. Therefore, using static NPV objective function, the project would not be built.  

Fig.4.9 (a) outlines the optimal decision result for scenario 2, which is based 

on CAPEX Path 1 predicted by [122]. Scenario 2 allows for dynamic decisions at each 

decision epoch by setting constraint (4.14) to ROA. The optimal decision for 

scenario 2 is not to invest in BESS for the first 5 years. At year 6, investment in a 149 

MWh BESS is deemed optimal. In year 7, a further 22 MWh is required which is 

based on further BESS CAPEX decline. All other years which add BESS capacity to 

the project do so in order to maintain overall capacity levels that would otherwise 



PLANNING OBJECTIVE – INVESTMENT TIMING  ANALYSIS 

 
89 

 

be lost to degradation. For the last 6 years of the project, no maintaining or 

expanding capacity is pursued as any further increase in CAPEX would not yield 

enough revenue to sustain the extra investment. Rather, the BESS capacity is 

 

Fig.4.9 – The optimal investment timing and sizing for a 100MW BESS operating 
within the day-ahead market in I-SEM. (a) scenario 2 with CAPEX path 1 and 

degradation m =0.2 (b) scenario 3 with CAPEX path 2 and degradation m =0.2 (c) 
scenario 4 with CAPEX path 3 and degradation m =0.2. 
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allowed to reduce. The cumulative degradation at 20 years is 62.8 MWh with a 

project value of €5.85M. Based on this being the highest positive value obtainable, 

it is recommended to wait 5 years before starting this project for scenario 2.  

In contrast to scenario 2, the optimal result of the third scenario has 

distinctive differences, shown in Fig.4.9 (b). Firstly, the proposed BESS size at year 6 

is 70 MWh which is substantially smaller than scenario 2. Secondly, in year 8 a 

significant expansion is sought to bring BESS capacity up to 149 MWh. This capacity 

level is maintained against degradation effects until year 11 when BESS capacity is 

expanded once more to its maximum of 171MWh, which is the same maximum as 

scenario 2. Scenario 2 reaches its maximum size at year 7. This is attributed to more 

aggressive BESS CAPEX decline for scenario 2. Thirdly and similar to scenario 2, 

scenario 3 does not fully compensate for degraded BESS capacity after year 14 

unlike the intervening years from 7 to 13. Scenario 3 has a cumulative degradation 

of 58.49 MWh at 20 years which is less than scenario 2 due to less BESS capacity 

installed. Scenario 3’s project value is €3.21M which is therefore deemed 

investable. 

 For scenario 4, shown in Fig.4.9 (c), the initial investment time and size is 

different from that of scenario 2 and 3. In year 8, and initial BESS capacity of 70 

MWh is deemed optimal. Three more expansions of capacity are sought in year 10, 

11 and 14. This is attributed to scenario 4 having longer to wait for BESS CAPEX 

decline. The maximum value of BESS capacity at year 14 is 171 MWh. Scenario 4 has 

a project value of €0.93M. Similar to scenario 2 and 3, compensating for degraded 

BESS capacity is not fulfilled from year 15 to 20. 

Two more scenarios are analysed to determine the effect degradation 

extrapolation to BESS sizes greater and less than 0.37C has on investment timing 

and sizing decisions. Scenario 5 and 6 are CAPEX path 1 with 𝑚 equal to 0.5 and 0.8 

respectively. When comparing scenario 2 to both scenario 5 and 6, neither scenario 

altered the initial investment timing or sizing capacity of scenario 2. Rather, 𝐵𝑡𝑝 

decisions were the same except for how much capacity had to be replaced after 

degradation. Therefore, the extrapolation of year 10 warranty energy retention 

limit for C-rate’s other than 0.37C does not significantly affect the investment 
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timing and sizing decisions. This is due the fact that the energy retention limit for 

BESS sizes changes only slightly near the optimal size for this study. The cumulative 

degradation for scenario 5 and 6 is 74.13 and 84.58 MWh respectively. Project 

values for scenario 5 and 6 are less than scenario 2 at €5.31M and €5.03M 

respectively. In addition to the above degradation sensitivity analysis, a further 

scenario 7 was analysed. Scenario 7 is hypothetical scenario representing increased 

degradation, where 𝑐𝑑 is determined from 𝑅𝐸 at 60%, 𝐶𝑅 at 0.5C, CAPEX Path 2 and 

𝑚 equal to 0.2. Fig.4.10 outlines the results of scenario 7 with a project value of 

€1.03M, which is significantly less value than the corresponding CAPEX Path 2 for 

scenario 3 at €3.21M. The amount of degraded capacity is 123.9 MWh. The initial 

BESS capacity investment for scenario 7 is also much greater than scenario 3 due to 

the application of constraint (4.13) with the higher degradation of scenario 7. This 

could be relaxed if the value 𝑄 of constraint (4.13) was reduced from 30%. When 

compared to scenario 3, the optimal design now incorporates new BESS capacity for 

year 15, 16, 17 and 19, which is due to greater degradation of scenario 7. For the 

analysis of scenario 7, it is determined that the warranty available for a BESS has a 

consequential influence on the amount of degraded capacity that is accounted for 

with new capacity and also the project value. 

 

 

Fig.4.10 – The optimal investment timing and sizing for a 100MW BESS 
operating within the day-ahead market in I-SEM. Scenario 7 with an energy 

retention limit at 60%, a C-Rate of 0.5C, with CAPEX Path 2 and 𝑚 equal to 0.2. 
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In general, regardless of BESS CAPEX realisation over the coming years, it is 

advisable to wait for 5 to 7 years before operating a BESS solely within the day-

ahead market in I-SEM. While this shows somewhat low sensitivity of BESS CAPEX 

to investment timing, the optimal size of BESS over the first two to three years can 

be greatly affected by BESS CAPEX. Also, all scenarios maintained capacity levels 

that would otherwise be lost to degradation, up until the cost of doing so 

outweighs the benefits.  

4.8 CONCLUSION AND FUTURE WORK 
Given the success of reinforcement learning on gaming problems of late, it is 

applied here to determine the optimal dispatch of a BESS operating in the I-SEM day-

ahead electricity market. The Deterministic Policy Gradient algorithm is used to solve 

a BESS operational model with the result being used in the planning model. The DPG 

is an effective method for finding optimal BESS dispatch strategy and calculating 

expected daily revenue. It should be noted that DPG goal is to find good policies and 

not the most optimal decision for every time step.  

Using static NPV as a financial analysis method does not tell the entire 

picture. BESS investment projects have a variety of dynamic decisions available. 

ROA utilises dynamic decisions along with uncertainty. The application of ROA in 

this study is an effective technique for finding the optimal investment timing and 

BESS size. 

Different future BESS CAPEX paths have minimal influence on the optimal 

investment time for a project. Rather, the optimal BESS size is heavily influenced by 

future CAPEX paths. This is a favorable outcome for investors. Given that the 

quantity of BESS capacity purchased is the most CAPEX intensive component of a 

project, investors do not need to upfront the investment at year 1, but can wait 

until year 7 or 8 to determine BESS CAPEX and then more accurately make a 

decision on how much capacity to purchase. Also, while benefits outweigh costs, 

the yearly degradation should be replenished with added capacity.  

Accurately modeling degradation is a complex undertaking which is why 

manufacturers supply warranties to investors to reduce risk. Using a 10-year 

warranty retention limit as a worst-case scenario and considering different 
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degradation options for values under a 0.37 C-Rate, degradation has little effect on 

the optimal investment timing and sizing. However, degradation does affect the 

value of a project.  

For future work, more revenue streams need to be exploited to bring forward 

the optimal investment time and increase project value. Such revenue streams 

include, participation in the intra-day market and capacity market and co-location 

with a wind farm to reduce forecasting penalties. Furthermore, for this study the 

MW inverter parameter 𝑌 was held constant. To accurately reflect all decisions 

available to investors, this parameter can also be a decision variable which could 

impact investment timing.  
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CHAPTER FIVE 

5 INCORPORATING CROSS-MARKET DISPATCH 

ADAPTABILITY WHEN SIZING BATTERY ENERGY 

STORAGE SYSTEMS  

Incorporating planning objectives as part of BESS sizing is the sole purpose of 

this entire dissertation. In total, three planning objectives have been identified as 

requiring attention in this thesis, and are denoted as Investment Scale, Investment 

Timing and Dispatch Adaptability (see Section 2.9 for how planning objectives were 

determined and consolidated). The specific research within this chapter 

incorporates exclusively the planning objective Dispatch Adaptability as part of 

BESS sizing. This chapter has been submitted for review to a peer reviewed journal.  

5.1 ABSTRACT  
Existing operational strategies within literature are modelled as part of 

Battery Energy Storage Sizing (BESS) for the socialised benefit of a wider grid or 

microgrid. However, this does not comply with European Directive 2019/944 which 

states that “System operators should not own, develop, manage or operate energy 

storage facilities”. This has created a disconnect between current BESS sizing 

approaches and the needs of future BESS sizing. In other words, BESS sizing needs 

to be capable of incorporating the requirements of BESS projects as sole 

beneficiaries rather than just wider grid benefits. The author of this chapter has put 

forward Dispatch Adaptability as one such requirement which has not been 

included in BESS sizing to date. Dispatch Adaptability is the term used to signify 

market participants’ ability to change energy position in different markets. This 

ability allows for potential cross-market arbitrage, which if traded correctly, could 

increase the benefit received by market participants. The purpose of this chapter is 

to determine if it’s possible to incorporate Dispatch Adaptability as part of 
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optimising energy capacity size for new BESS installation seeking maximum profit in 

a deregulated electricity market. Two models are formed, a model-based 

formulation which is solved via Stochastic Programming and a model-free 

formulation which is solved via the TD3 deep reinforcement learning algorithm. 

Both models are run using historical electricity market data without perfect 

foresight. Scenarios for model-based formulation are developed using the k-means 

algorithm. Artificial Neural Network inputs for the model-free formulation are taken 

directly from historical data (e.g. forecast data, previous market data). The results 

show that it is possible to incorporate Dispatch Adaptability as part of BESS sizing. 

The Stochastic Programming model-based approach outperformed the model-free 

approach when a simple artificial neural network was used. Furthermore, financially 

non-viable potential BESS installations can become financially viable projects with 

the inclusion of Dispatch Adaptability. Lastly, allowing BESS Dispatch Adaptability to 

avail of non-technically feasible trades in permitted markets can further improve 

Benefit-Cost Ratio (BCR). 

5.2 INTRODUCTION 
Dispatch adaptability is evident through different intraday market 

mechanisms, where jurisdictions have varying market designs [133, 134]. The 

example shown in Fig.5.1 (extracted from [135]) outlines dispatch adaptability 

available to market participants within the Integrated Single Electricity Market (I-

 

Fig.5.1 – Day-Ahead and Intraday Markets available within the 
Integrated Single Electricity Market. 
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SEM), which is the electricity market for the island of Ireland and is used as the test 

case in this chapter. There are four separate markets where a BESS can adapt its 

energy position: the Day-Ahead Market (DAM) and three Intraday Markets (IDM1-

3). DAM opens 19 days before the trading day (𝐷), has 24 hourly trading periods 

and closes at 11:00 𝐷-1 where market participants must submit their bids/offers 

before this closure. IDM also open at 𝐷-19 with IDM1 closing 15:30 on 𝐷-1, IDM2 

closing at 08:00 on 𝐷 and IDM3 closing at 14:00 on 𝐷. All IDMs are based on half-

hour trading periods, meaning IDM1 trades the entire 48 trading periods for 𝐷, 

while IDM2 trades the last 24 trading periods and IDM3 trades the last 12 trading 

periods. Along with IDM auctions, there is also a continuous trade matching service 

where bids and offers are matched as traded. Continuous trading is not considered 

as part of this research. These four markets offer participants the chance to alter 

their energy positions due to price differentials between each market (i.e. cross 

market arbitrage). For example, under certain circumstances it may be beneficial 

for a BESS to buy back energy sold in DAM for a certain trading period and sell at a 

higher price in IDM1 for a different trading period. Likewise, a BESS can avail of 

trades whereby energy is bought in IDM2 only to sell it again in IDM3 at a higher 

price. It is this dispatch adaptability through different markets which is of interest 

for this chapter, namely how to incorporate this adaptability into the optimisation 

of an objective function consisting of expected benefit and cost in order to size a 

BESS. For examples of trading options/strategies available to different market 

participants within I-SEM see “Industry Guide to I-SEM” published by Single 

Electricity Market Operator [136]. 

To model dispatch adaptability, an optimisation approach which can account 

for decision making under uncertainty at different epochs is required. One 

approach is to utilise a model-based formulation which is solved using deterministic 

linear equivalent Stochastic Programming (SP) via linear solvers. Another promising 

approach is solve a model-free formulation through Deep Reinforcement Learning 

(DRL) which has increased in popularity over recent years for use in power system 

applications [137, 138].  In essence, model-free DRL learns the transition function 

from past data samples. In this chapter, the DRL algorithm must accommodate 
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multi-dimensional continuous action and state spaces. Two such Actor-Critic DRL 

algorithms that fit these requirements are Deep Deterministic Policy Gradient 

(DDPG) [139] and Twin Delayed Deep Deterministic Policy Gradient (TD3) [140]. 

Actor-Critic DRL algorithms maintain separate Artificial Neural Networks for the 

Actor (optimal decision) and Critic (value of optimal decision), where weight 

parameters for each network are learned through experience. This is described 

further in Section 5.4.2.1. The TD3 algorithm is an extension of DDPG where 

function approximation error is reduced through clipping exploration and delaying 

updates of target and policy networks. Both model-based and model-free 

approaches are used in this chapter. 

The aim of this chapter is to determine if it is possible to incorporate Dispatch 

Adaptability as part of optimising energy capacity size for new BESS installation 

seeking maximum profit in a deregulated electricity market. Two sizing optimisation 

problems, model-based approach and model-free approach, are compared and 

contrasted. This is achieved through the following objectives: 1) utilise SP and TD3 

to solve model-based and model-free respectively for the optimal BESS energy 

capacity size for a notional fixed 36MW import/export power capacity BESS coupled 

with historical I-SEM market price data with BCR as the objective function, 2) run 

multiple setups of different constraints to reflect bid/offer freedom within 

deregulated electricity markets. 

5.3 LITERATURE REVIEW 
Prior research on BESS sizing focussed on deterministic problems, as 

demonstrated by Yang et al., in [8]. Additionally, there is a lack of research which 

focuses on merchant electricity market participants’ point of view. This literature 

review concentrates on BESS sizing for merchant entities, as this is the motivation 

for this chapter. To move BESS sizing from deterministic to the stochastic setting, a 

different approach is required, which can depend on the uncertainty type and the 

dynamic nature of decisions involved. A small number of different approaches have 

been considered by researchers to account for operational strategy decision-

making under uncertainty for merchant BESS sizing. In [141] the authors used 
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Receding Horizon Control to maximise the profit of a wind farm by appropriately 

sizing a BESS for participation in the DAM and the balancing market. While their 

approach included wind, it did not allow for BESS scheduling within the DAM when 

the schedule deviation was set to zero within their model. This type of approach is 

too restrictive for BESS sizing within I-SEM, as BESS can set their position in the 

DAM. Another approach traded energy in IDM from a scheduled position in DAM to 

maximise NPV but did not allow for multiple stages of decision making [142]. The 

authors in [143] minimised the penalty costs of not meeting forecast generation but 

again available dispatch adaptability within deregulated electricity markets at 

different stages was not considered beyond altering the hourly BESS power output 

closer in time to the balancing market. There are two points to note from [141-

143]. The first is that each used an objective function based on maximum difference 

between benefit and cost. However, the choice of objective function is not 

inconsequential, as maximising for net profit from discounted benefits and costs 

does not take account of the scale of effort required to achieve this net profit as has 

been previously shown by the author [70]. In fact, different objective functions 

have the potential to be inversely proportional to one another and therefore can 

recommend largely different optimal BESS sizes. Another option can be to select a 

relative measure (e.g. BCR) as the objective or to perform multi-objective 

optimisation of competing relative and absolute functions.  

The second point to note is that no previous studies permitted the trading of 

the BESS within DAM, which will be addressed in this chapter. Furthermore, a 

consistent theme for the studies mentioned so far which considered stochastic 

optimisation, regardless of whether one or more different auctions were 

considered, is that each approached the optimisation problem using model-based 

forecasts (e.g. wind forecast, price forecast). The approach presented in this 

chapter not only uses a model-based formulation but also seeks to apply model-

free stochastic optimisation through DRL. One other approach has used a model-

free method for BESS sizing, however, it did not reflect any market rules and used a 

linear approximator without feature input [99].  
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Another area of research outside of merchant BESS sizing, but closely related, 

is the operational strategy used by merchant BESS. This serialises efforts for 

determining optimal dispatch decisions for a BESS operating in deregulated 

electricity markets under an assumed BESS size. Reviewing the literature associated 

with the operational strategy of merchant energy storage provides insight for 

solving the sizing problem, given that both include the same operational variables 

and parameters. Furthermore, literature which gives account of dynamic decisions 

across different electricity markets is sought, unlike the approach taken in [144, 

145]  which optimises merchant BESS participation in a single DAM and [146] which 

seeks the same but also considers market clearing as a bilevel optimisation 

problem. Two very similar dispatch modelling approaches to the one proposed in 

this chapter are presented in [147, 148]. For these, the authors modelled the 

participation of a BESS-coupled wind farm taking part in DAM, IDM and imbalance 

markets with stochastic programming used as the solution method. The approach 

taken in [149] accounts for dispatch decision by optimising over a longer time 

horizon. This is akin to modelling dispatch decision-making for two consecutive 

DAMs. This approach targets the question of whether energy should be stored for 

subsequent days for more profitable dispatch. This is outside the scope of this 

proposed research. Other research as shown by the authors in [150] for BESS and in 

[151] for Compressed Air Energy Storage (CAES), model dispatch decisions across 

different sequential markets. Their method called for solving two separate 

optimisation problems, for both the day-ahead and balancing market. This 

effectively means DAM decisions do not explicitly take account of balancing market 

decisions thereby negating the ability to trade across different markets. This is 

where the approach taken in this chapter differs. Others have focused on optimal 

dispatch concerning energy and reserve markets [88, 152]. This typically involves 

allocating a portion of BESS dispatch ability to either the energy market or the 

reserve market at any particular time period. However, neither of the studies 

incorporated the ability to modify dispatch decision in future markets so that a 

truer estimate of increased BESS value could be determined.  
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In addition to the above, studies have applied DRL and Reinforcement 

Learning (RL) to BESS dispatch adaptability in isolation from the BESS sizing 

question. These studies focused on the dispatch of a BESS where the size of the 

BESS is fixed. To compare previous DRL and RL studies with this research chapter, 

each is assessed using three of the five model dimensions proposed by [105], those 

being state variables, decision variables, and objective function. The choice of each 

can influence the selection of a suitable reinforcement learning algorithm. Another 

useful criterion by which to assess previous literature is the type of function 

approximation used and the reward function, which again influences the choice of 

reinforcement learning algorithm. In [153], the authors modelled arbitrage for a 

BESS using a discretised action space (i.e. a decision variable). This discretisation 

split the action space into five, thereby allowing five different values of the same 

decision variable available at each time step. Using this method permitted the 

authors to use Deep Q-Network (DQN) algorithms and further variations of DQN. 

Discretising the action space can lead to suboptimal dispatch strategies given that 

all the action space is not available to the DRL algorithm. These previous studies 

also included the degradation cost as part of the reward function, which is of 

noteworthy given that the reward function used in this chapter is BCR. Forecasted 

electricity price along with the BESS state of charge were used as the state variable. 

Similar to [153], the authors in [154] discretised the actions space. In [155], the 

authors also discretised the action space but used policy function approximation. 

They represented the state space for continuous trading within the German 

intraday market via offers available in the order book, capacity of the storage unit, 

previous market clearing prices, time to market closure, amount already traded, 

imbalance prevention and value of observable bids. The authors proved that these 

state variables are useful in the continuous trading problem setting. However, given 

that the approach used in this study is auction-based, all but one of these state 

variables are not relevant. The only similar state variable that is used in this study is 

the previous market clearing price.  

Another important point to note from the DRL and RL papers reviewed thus 

far is that none modelled multi-dimensional decisions at decision epochs (i.e. more 
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than one decision needed at each time step). Multi-dimensional decisions are more 

reflective of actual BESS market participation and are used in this study. For 

example, the DAM in I-SEM requires 24 decisions by market closure whereas the 

IDM1 market requires 48 decisions.  The uniqueness of Actor-Critic DRL algorithms 

is that they can handle continuous multi-dimensional actions.  

5.4 MODEL MATHEMATICAL FORMULATION 
Benefit-cost ratio is chosen as the objective function. Two different variable 

types are involved when sizing a BESS, those being energy capacity decision and 

dispatch decisions. The BCR objective function contains both these variables, 

however solving for energy capacity decision and dispatch decision will be done 

separately. This can be understood as splitting out the BCR objective function into 

its constituent parts of expected benefit and cost, which presents distinct 

computational advantages. Firstly, it removes the need to solve for a non-linear 

objective function. Secondly, expected benefit is known once dispatch decision 

variables are solved for a particular BESS size, which leaves a simple evaluation of 

BCR using cost. This makes formulation of model-based and model-free approaches 

simpler. Therefore, dispatch decisions will be solved via Direct Search whereas 

energy capacity decision will be solved using Analytical Search. For a clearer 

illustration of the difference between Direct Search and Analytical Search see [8]. 

For the purpose of clarity, in this chapter energy capacity decision will also be 

referred to as 𝐵 and BESS size. Dispatch decision may be referred to as bids/offers, 

charge/discharge, dispatch strategy, trading strategy, optimal policy, or trades. The 

choice of term used will depend on the context, as multiple names are used to 

accommodate the different perspectives of investors, market participants, system 

operators and optimisation communities. 

5.4.1 BENEFIT-COST RATIO AND COST 
Equation (5.1) outlines the BCR objective function for each BESS size, where 𝐵𝑒 and 

𝐶𝑜 are the expected benefit and cost of a BESS respectively. Equation (5.1) is not 

solved via an optimisation algorithm but rather is evaluated once 𝐵𝑒 and 𝐶𝑜 are 

known for each possible BESS size. The maximum value for all evaluations of (5.1)  
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 gives the optimal BESS size. Equation (5.2) gives the maximum expected benefit 

available for each BESS size and is solved using either SP or TD3. The cost of a BESS 

installation 𝐶𝑜 is given by (5.3) which accounts for both the energy capacity cost 

and power cost, where 𝑟 is the discount rate set at 8%, 𝑙 is the length of time the 

BESS is installed, set at 20 years, 𝐵𝑚𝑐 is the BESS maintenance cost at the value of € 

267.43/MWh [156], 𝑃𝑐  is the power cost element at €52.4/MW and 𝑃𝐼 is the size of 

the power element set arbitrarily at 36MW. Economies of scale are integrated via 

(5.4), where larger BESS cost less per MWh, 𝑃𝐿 is the lower cost limit at 

€148.8k/MWh, 𝑃𝑈 is the upper cost limit at €215.6k/MWh and 𝑘 is a constant set at 

0.2. The lower/upper limit and 𝑃𝑐  are taken from [156] and converted to EUR using 

an exchange rate of USD 1 = EUR 0.8455. As can be seen in (5.3) both components 

of 𝐶𝑜 are multiplied by 1/365, which transforms the discounted yearly cost into a 

daily cost. This allows 𝐵𝑒 to be estimated on a daily basis. Therefore, any references 

to BCR, expected benefit or cost throughout this chapter are implicitly referring to 

the daily BCR, daily expected benefit and daily cost respectively.  

5.4.2 EXPECTED BENEFIT OF BESS 
Establishing expected benefit for a particular BESS size requires estimating 

dispatch decisions (DD) coupled with historical electricity market clearing price 

parameters. Determining DD using SP and TD3 is categorically different due the 

variances between each solution method. Regardless of method, both model-based 

and model-free approaches must account for dispatch adaptability available within 

 
𝐵𝐶𝑅(𝐵) =

𝐵𝑒

𝐶𝑜
 (5.1) 

 
𝐵𝑒 = {

𝔼𝐵𝑒𝑆𝑃(𝐵, 𝑃𝑠), 𝑖𝑓 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝑆𝑃

𝔼𝐵𝑒𝑇𝐷3(𝜋, 𝑆), 𝑖𝑓 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑢𝑠𝑖𝑛𝑔 𝑇𝐷3
 (5.2) 

 

𝐶𝑜 =  𝐵 × ((((
𝑟(1 + 𝑟)𝑙

(1 + 𝑟)𝑙 − 1
)𝐵𝑐(𝐵)) + 𝐵𝑚𝑐)

1

365
)

+ ((
𝑟(1 + 𝑟)𝑙

(1 + 𝑟)𝑙 − 1
)𝑃𝑐 × 𝑃𝐼)

1

365
 

(5.3) 

 
𝐵𝑐(𝐵) = 𝑃𝐿 + (𝑃𝑈 − 𝑃𝐿)𝑒

(−𝑘×(
𝐵
10
−1))

 
(5.4) 
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the I-SEM market as shown in Fig.5.1. Section 5.4.2.1 outlines how dispatch 

adaptability decisions available within I-SEM (as shown in Fig.5.1) are formulated 

for both model-based and model-free approaches. Another point to note is that 

when operating within the I-SEM, market participants’ successful bids/offers are 

pay-as-clear. For the purposes of this research, all price-quantity pairs (€/MWh, 

MWh) assume a price value of zero to guarantee dispatch which also assumes that 

BESS trading strategy does not significantly influence market clearing prices. 

Furthermore, the I-SEM balancing market is not modelled. The balancing market 

compels all participants less than the de minimis threshold to submit Physical 

Notifications (PN), Commercial Offer Data (COD) and Technical Offer Data (TOD) so 

that their energy positions can be adjusted closer to real time but after the closure 

of Intraday markets i.e. one before trading period. This allows the system operator 

to adjust participants’ energy positions for system security reasons or where the 

result of the auction is either long or short. Not modelling the balancing market 

imposes no variation between submitted bids/offers and the level of dispatch. 

Another I-SEM market which is not modelled, as the solution methods used here 

are only suitable for discrete time steps, is the Continuous Intraday Market (CIDM). 

The CIDM matches bids and offers from participants on a continuous basis, after 

the closure of DAM but before the opening of the balancing market. 

5.4.2.1 DISPATCH MODELS 
The expected benefit for the model-based formulation is given by the 

objective function (5.5), where I-SEM dispatch adaptability from Section 5.2 is 

captured through four stages, where 𝑎 represents the trading periods within stage 

1 (Day-Ahead Market), 𝑏 represents the trading periods within Stage 2 (Intraday 

Market 1), 𝑐 represents the trading periods within Stage 3 (Intraday Market 2) and 

𝑑 represents the trading periods within Stage 4 (Intraday Market 3). This model-

based formulation uses scenarios of electricity market clearing prices given by 𝑃𝑠 

for each stage and scenario 𝑛, with the probability of each scenario given by 𝑌𝑛. See 

Section 5.5.1 outlining derivation of 𝑃𝑠 and 𝑌𝑛.  



PLANNING OBJECTIVE – DISPATCH ADAPTABILITY  MODEL MATHEMATICAL FORMULATION 

 
104 

 

𝔼𝐵𝑒𝑆𝑃(𝐵, 𝑃𝑠) = 𝑚𝑎𝑥 
𝑥
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+ 𝑃𝑠𝑛,2
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𝐷𝐴𝑀)⏟              
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𝑁
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𝐼𝐷𝑀2 − 𝑥𝑐,𝑛
𝐼𝐷𝑀1)⏟              

𝑆𝑡𝑎𝑔𝑒 3

+ 𝑃𝑠𝑛,4
⊤(𝑥𝑑,𝑛

𝐼𝐷𝑀3 − 𝑥𝑑,𝑛
𝐼𝐷𝑀2)⏟              

𝑆𝑡𝑎𝑔𝑒 4

) 

(5.5) 

𝑥𝐷𝐴𝑀 =

[
 
 
 
 
 
𝑥𝑎,𝑛
𝑐

𝜂
+ 𝑥𝑎,𝑛

𝑑 . 𝜂

⋮
𝑥𝑎,𝑁
𝑐

𝜂
+ 𝑥𝑎,𝑁

𝑑 . 𝜂
]
 
 
 
 
 

, 𝑥𝐼𝐷𝑀1 =

[
 
 
 
 
 
𝑥𝑏,𝑛
𝑐

𝜂
+ 𝑥𝑏,𝑛

𝑑 . 𝜂

⋮
𝑥𝑏,𝑁
𝑐

𝜂
+ 𝑥𝑏,𝑁

𝑑 . 𝜂
]
 
 
 
 
 

, 

𝑥𝐼𝐷𝑀2 =

[
 
 
 
 
 
𝑥𝑐,𝑛
𝑐

𝜂
+ 𝑥𝑐,𝑛

𝑑 . 𝜂

⋮
𝑥𝑐,𝑁
𝑐

𝜂
+ 𝑥𝑐,𝑁

𝑑 . 𝜂
]
 
 
 
 
 

, 𝑥𝐼𝐷𝑀3 =

[
 
 
 
 
 
𝑥𝑑,𝑛
𝑐

𝜂
+ 𝑥𝑑,𝑛

𝑑 . 𝜂

⋮
𝑥𝑑,𝑁
𝑐

𝜂
+ 𝑥𝑑,𝑁

𝑑 . 𝜂
]
 
 
 
 
 

 

(5.6) 

𝑎 = {1,… ,24},  𝑏 = {1,… ,24},  𝑐 = {13, … ,24},  𝑑 = {19, … ,24} (5.7) 

 

The efficiency is given by 𝜂 and is assumed to be the same for both charging 

and discharging at 0.95 [156]. The variables of 𝑥𝐷𝐴𝑀 , 𝑥𝐼𝐷𝑀1, 𝑥𝐼𝐷𝑀2 and 𝑥𝐼𝐷𝑀3 shown 

in (5.6) are the DD associated with stage 1, 2, 3 and 4 respectively for each scenario 

𝑛. Solving for 𝑥𝐷𝐴𝑀, 𝑥𝐼𝐷𝑀1, 𝑥𝐼𝐷𝑀2 and 𝑥𝐼𝐷𝑀3 is done via transforming (5.5) into a 

linear deterministic equivalent and solved using MATLAB solver (linprog). 

Linear deterministic equivalent programming can be used to determine DD 

for the model-based formulation. For the model-free formulation, the DD (called an 

optimal policy within the DRL research community) is ascertained via learned and 

𝜋𝜙𝑡(𝑆𝑡) 
(5.8) 

𝑆𝑡

= {

(𝐹𝑡,𝑒 , 𝐸𝑡, 𝐵), 𝑡 = 1

(𝐹𝑡,𝑒 , 𝑉𝑡−1,𝑒, 𝑃𝑡−1,𝑒, 𝜋𝜙𝑡−1(𝑆𝑡−1), 𝐸𝑡, 𝐵), 𝑡 > 1

(𝐹𝑡,𝑒 , , 𝑉𝑡−1,𝑒, 𝑃𝑡−1,𝑒 , 𝑎𝑡−1, 𝐸𝑡, 𝐵), 𝑡 > 1 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑢𝑠𝑖𝑛𝑔 𝑎𝑡

 
(5.9) 

𝑄𝜃𝑡(𝑆𝑡, 𝑎𝑡) = 𝑅𝑡(𝑆𝑡, 𝑎𝑡) + 𝑄𝜃𝑡+1 (𝑆𝑡+1, 𝜋𝜙𝑡+1(𝑆𝑡+1)) (5.10) 

𝑅𝑡(𝑆𝑡, 𝑎𝑡) = {
(−𝑎𝑡 ∗ 𝜂𝑡)

⊤𝑃𝑡,𝑒), 𝑡 = 1

((−𝑎𝑡 − (−𝑎𝑡−1)) ∗ 𝜂𝑡)
⊤𝑃𝑡,𝑒), 𝑡 > 1

 (5.11) 
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updating weight parameters 𝜙𝑡 of an Artificial Neural Network (ANN) through 

experience. Optimal policy ANNs are given by (5.8) and referred to as an Actor. Four 

different Actors are used to model I-SEM dispatch adaptability as shown in Fig.5.1, 

where vector 𝑡 = {1,2,3,4} represents the four different stages (i.e. markets) of I-

SEM. Using four different Actors is divergent from usual DRL approaches which only 

apply one Actor for each stage. However, the dispatch adaptability problem 

requires different Actor inputs/outputs at each stage thereby necessitating 

separate ANN arrangements. The Actor input is known as the state variable (5.9), 

where 𝐹𝑡,𝑒 is the grid’s demand forecast less the grid’s wind forecast, 𝑉𝑡−1,𝑒 is the 

previous market energy volumes traded, 𝑃𝑡−1,𝑒 is the previous market clearing 

price, 𝐸𝑡 is the stored energy within BESS before the market at stage 𝑡 closes 

(calculated using (5.28)) and 𝐵 is the BESS size. Model-free formulation is ensured 

as the variables within 𝑆𝑡 are known before a decision is made by 𝜋𝜙𝑡(𝑆𝑡), further 

outlined in Section 5.5.2. As can be seen in (5.9) the Actor at stage 1 (Day-Ahead 

Market) does not include previous dispatch instructions or electricity market 

information as these are not available at stage 1. To learn the optimal policy, the 

gradient of the Q-function ∇𝜋𝜙𝑡(𝑆𝑡)𝑄𝜃𝑡(𝑆𝑡, 𝜋𝜙𝑡
(𝑆𝑡)) with respect to the optimal 

policy (5.8) is used to iteratively update the weight parameters 𝜙𝑡 of the Actor, 

which is in accordance with the deterministic policy gradient theorem [123]. The Q-

function 𝑄𝜃𝑡(𝑆𝑡, 𝑎𝑡) is also an ANN with weight parameters 𝜃𝑡 which is estimated 

using the Bellman Equation (5.10) and updated iteratively via the Adam Optimiser.  

The Q-function (also called the Critic) can be thought of as the value of being in a 

certain state 𝑆𝑡 and taking a certain action 𝑎𝑡. Actions 𝑎𝑡 are the exploration of 

different dispatch instructions needed to find the optimal policy and are 

determined by adding noise to 𝜋𝜙𝑡(𝑆𝑡). The reward function (5.11) is modified for 

stage 1, where 𝑃𝑡,𝑒 is historical I-SEM market clearing prices for market 𝑡 and 𝜂𝑡 is 

efficiency which is an equal sized vector to 𝑎𝑡 taking an element value of 1/0.95 

when the corresponding (−𝑎𝑡) element is negative and 0.95 when the 

corresponding (−𝑎𝑡) element is positive. Forecast of grid demand net wind, energy 

volumes traded and market clearing price form the tuple 〈𝐹𝑡,𝑒 , 𝑉𝑡,𝑒𝑃𝑡,𝑒〉 of previous 

experience i.e. historic I-SEM data. Demand net wind forecast [157], energy volume 
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Fig.5.2 – Artificial Neural Networks used for both Actor and Critic for all 
electricity markets. Also, timing of TSO/market information and bid/offer 

submissions.  
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traded and market price pairs [158] are extracted from the I-SEM websites for dates 

between 1st Oct 2018 and 28th Feb 2020. After the removal of missing/errors in 

data, 463 tuple pairs are useable. During learning, the TD3 algorithm samples these 

tuples for the initial state 𝑆1 by random uniform selection of an element from the 

set 𝑒 where {𝑒 ∈ ℤ|1 ≤ 𝑒 ≤ 463}. The Actor and Critic networks learn from 

experience generated through exploration by 𝑎𝑡. Once learning is completed, the 

optimal policy inputted into the Critic gives the maximum likely value. For further 

details on how the TD3 algorithm works see reference [140]. Fig.5.2 outlines the 

ANNs used, which are all Multi-Layered Perception (MLP) neural networks. Eight 

separate MLPs are formed, four Actors for each market and four Critics for each 

market. Separate Actor and Critic networks are a requirement for the TD3 

algorithm. The number of nodes for each of the hidden layers is also shown within 

Fig.5.2 underneath each Critic network. The same number of nodes apply for the 

Actor. Normally, DAM has 24 trading periods of one hour each while IDMs utilise 

half-hour trading periods. To reduce computational effort, a one-hour rather than a 

30-minute DAM trading period duration is used. This simplification is also used for 

the model-based formulation. A further reduction in the computation burden is 

provided by using the grid demand net of wind forecast variable 𝐹𝑡,𝑒 as part of the 

state variable rather than separate grid demand and grid wind forecasts, thereby 

reducing the number of inputs by half. EirGrid, the transmission system operator 

(TSO) on the island of Ireland publishes the grid demand forecast every hour and 

grid wind forecast every six hours, each for the upcoming four days. The grid 

demand forecast is given in half hour intervals and grid wind forecast in 15-minute 

intervals. The model-free expected benefit of a BESS can be estimated by 𝜋(𝑆) via 

(5.12), where the benefit is summed over a dataset of size 𝑁𝑑 and 𝑒 can be any 

number between 1 and 𝑁𝑑.  

𝔼𝐵𝑒𝑇𝐷3(𝜋, 𝑆) =∑
1

𝑁𝑑
. (

𝑅1 (𝑆1, 𝜋𝜙1(𝑆1)) + 𝑅2 (𝑆2, 𝜋𝜙2(𝑆2))

+ 𝑅3 (𝑆3, 𝜋𝜙3(𝑆3)) + 𝑅4 (𝑆4, 𝜋𝜙4(𝑆4))
)

𝑒

 

Where: 

𝑆1 = (𝐹1,𝑒 , 𝐸𝑡 , 𝐵) 

(5.12) 
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5.4.2.2 CONSTRAINTS AND BOUNDS 
Trading across different markets allows market participants to adjust their 

energy positions closer to real time as previously outlined in Section 5.2 and Fig.5.1. 

It is this characteristic that gives market participants freedom to decide bids/offers 

which reflect their belief about the market rather than the technical capacities of 

their connection point, be it availability of BESS due to its stored energy level, or 

renewable availability such as wind or solar. Normally, any deviation in real-time 

from a participant’s accepted bids/offers is charged or paid out at the balancing 

market price, depending on whether the participant is dispatched up or down by 

the system operator. However, as the balancing market is not modelled as part of 

this research and BESS are energy restricted devices, constraints are necessary to 

ensure that the final bid/offer for a trading day matches BESS technical ability. This 

is achieved through applying constraints (5.13) and (5.14), where 𝑡𝑝 is a trading 

period within 𝐷 numbered 1 to 24. 

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤min (𝑡𝑝,12)

+ ∑ 𝑥𝑐,𝑛
𝑐 + 𝑥𝑐,𝑛

𝑑

𝑐≤min (𝑡𝑝,18)

+ ∑ 𝑥𝑑,𝑛
𝑐 + 𝑥𝑑,𝑛

𝑑

𝑑≤𝑡𝑝

≥ 0, ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

(5.13) 

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤min (𝑡𝑝,12)

+ ∑ 𝑥𝑐,𝑛
𝑐 + 𝑥𝑐,𝑛

𝑑

𝑐≤min (𝑡𝑝,18)

+ ∑ 𝑥𝑑,𝑛
𝑐 + 𝑥𝑑,𝑛

𝑑

𝑑≤𝑡𝑝

≤ 𝐵, ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

(5.14) 

𝑎𝑐𝑡,𝑖 = 𝑎𝑡,𝑡𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑡𝑝 (5.15) 

𝑎𝑐𝑡,𝑖 =

{
  
 

  
 
max(−(𝐸𝑡 +∑𝑎𝑐𝑡,𝑗−1

𝑖

𝑗=1

) ,−𝐼𝑁) , 𝐸𝑡 +∑𝑎𝑐𝑡,𝑗

𝑖

𝑗=1

< 0

min(𝐵 − 𝐸𝑡 +∑𝑎𝑐𝑡,𝑗−1

𝑖

𝑗=1

, 𝐼𝑁) , 𝐸𝑡 +∑𝑎𝑐𝑡,𝑗

𝑖

𝑗=1

> 𝐵

,∀ 𝑖 (5.16) 

𝑆2 = (𝐹2,𝑒 , 𝑉2−1,𝑒, 𝑃2−1,𝑒, 𝜋𝜙2−1(𝑆2−1), 𝐸2, 𝐵) 

𝑆3 = (𝐹3,𝑒 , 𝑉3−1,𝑒, 𝑃3−1,𝑒, 𝜋𝜙3−1(𝑆3−1), 𝐸3, 𝐵) 

𝑆4 = (𝐹4,𝑒 , 𝑉4−1,𝑒, 𝑃4−1,𝑒, 𝜋𝜙4−1(𝑆4−1), 𝐸4, 𝐵) 
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𝑃𝑦𝑡(𝑎𝑡, 𝑎𝑐𝑡, 𝐵) = 𝑎𝑏𝑠(𝑎𝑡 − 𝑎𝑐𝑡)
⊤(−5) 

(5.17) 

For the model-free approach, rather than applying constraints through the 

final output layer of the Actor network, constraints are implemented through a 

penalty function given by (5.17). The penalty function is summed to the reward 

function (5.11) which gives the total reward for each set of actions, where 𝑎𝑐𝑡 are 

actions that do not violate the constraints. Initially 𝑎𝑐𝑡 is equal to 𝑎𝑡 through (5.15), 

which is updated via (5.16). The penalty rate within (5.17) is set to negative 

€5/MWh which performed well under testing. The state variable 𝐸𝑡 is determined 

using (5.28). 

Applying said constraints to all trading periods in every market is not 

obligatory and can be overly restrictive, where 𝐼𝑁 is the power capacity of the 

BESS, set at 36MW. For example, it is possible to adjust all established positions 

from DAM in IDM1. This means that bids/offers to the DAM do not have to follow 

the technical capabilities of a BESS, which is energy-limited, and therefore a BESS 

can benefit from constraint-free bids/offers. This is also true for IDM2 and IDM3 

albeit for an ever-smaller number of trading periods as Balancing Market 

commencement is approached. This can be understood further by setting 

parameters 𝑅𝑢𝑙𝑒𝐿 and/or 𝑅𝑢𝑙𝑒𝑈 within constraints (5.18), (5.19), (5.20) and (5.21) 

to varying values. Here, two different rulesets are used and results compared within 

Section 5.6. Rule 1 sets 𝑅𝑢𝑙𝑒𝐿 and 𝑅𝑢𝑙𝑒𝑈 to 0 and 𝐵 respectively, while Rule 2 sets 

𝑅𝑢𝑙𝑒𝐿 and 𝑅𝑢𝑙𝑒𝑈 to −𝐵 and 𝐵 respectively. Setting 𝑅𝑢𝑙𝑒𝐿 to −𝐵 permits discharge 

variables 𝑥𝑑 to discharge without the energy limiting constraint of a BESS but only 

for trading periods where 𝑥𝑑 can be adjusted at a later stage (i.e. a later market). 

Rule 1 is applied to both the model-based and model-free formulations while Rule 2 

is only applied to model-based. 

∑ 𝑥𝑎,𝑛
𝑐 + 𝑥𝑎,𝑛

𝑑

𝑎≤𝑡𝑝

≥ 𝑅𝑢𝑙𝑒𝐿 , ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

 ∑ 𝑥𝑎,𝑛
𝑐 + 𝑥𝑎,𝑛

𝑑

𝑎≤𝑡𝑝

≤ 𝑅𝑢𝑙𝑒𝑈, ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

(5.18) 
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∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤𝑡𝑝

≥ 𝑅𝑢𝑙𝑒𝐿 , ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛  

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤𝑡𝑝

≤ 𝑅𝑢𝑙𝑒𝑈, ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

(5.19) 

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤12

+ ∑ 𝑥𝑐,𝑛
𝑐 + 𝑥𝑐,𝑛

𝑑

𝑐≤𝑡𝑝

≥ 𝑅𝑢𝑙𝑒𝐿 , ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛  

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤12

+ ∑ 𝑥𝑐,𝑛
𝑐 + 𝑥𝑐,𝑛

𝑑

𝑐≤𝑡𝑝

≤ 𝑅𝑢𝑙𝑒𝑈, ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

(5.20) 

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤12

+ ∑ 𝑥𝑐,𝑛
𝑐 + 𝑥𝑐,𝑛

𝑑

𝑐≤18

+ ∑ 𝑥𝑑,𝑛
𝑐 + 𝑥𝑑,𝑛

𝑑

𝑑≤𝑡𝑝

≥ 𝑅𝑢𝑙𝑒𝐿 , ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

∑ 𝑥𝑏,𝑛
𝑐 + 𝑥𝑏,𝑛

𝑑

𝑏≤12

+ ∑ 𝑥𝑐,𝑛
𝑐 + 𝑥𝑐,𝑛

𝑑

𝑐≤18

+ ∑ 𝑥𝑑,𝑛
𝑐 + 𝑥𝑑,𝑛

𝑑

𝑑≤𝑡𝑝

≤ 𝑅𝑢𝑙𝑒𝑈, ∀ 𝑡𝑝 𝑎𝑛𝑑 𝑛 

(5.21) 

Both model-based and model-free dispatch decision variables are arbitrarily 

bounded to values of 36MW for charging and -36MW for discharging. Implementing 

this within the TD3 algorithm is done through (5.22) which is a bounding method 

utilised by [129] for continuous action spaces. The gradient of the Critic Network 

with respect to the Actor policy, ∇𝜋𝜙𝑡(𝑆𝑡)𝑄𝜃𝑡(𝑆𝑡, 𝜋𝜙𝑡
(𝑆𝑡)), is adjusted so that the 

suggested change in Actor policy is within the bounds of allowable values. 

∇𝜋𝜙𝑡(𝑆𝑡)
𝑄𝜃𝑡(𝑆𝑡 , 𝜋𝜙𝑡(𝑆𝑡)) =

{
 
 

 
 𝐼𝑁 − 𝜋𝜙𝑡(𝑆𝑡)

𝐼𝑁 − (−𝐼𝑁)
, ∇𝜋𝜙𝑡(𝑆𝑡)

𝑄𝜃𝑡(𝑆𝑡 , 𝜋𝜙𝑡(𝑆𝑡)) > 0

𝜋𝜙𝑡(𝑆𝑡) − (−𝐼𝑁)

𝐼𝑁 − (−𝐼𝑁)
, ∇𝜋𝜙𝑡(𝑆𝑡)

𝑄𝜃𝑡(𝑆𝑡 , 𝜋𝜙𝑡(𝑆𝑡)) ≤ 0

 (5.22) 

 

5.5 IMPLEMENTATION 
As stated previously, expected benefit solutions for both model-based and 

model-free formulations are to be estimated using historical data i.e. past 

electricity market clearing prices for model-based along with past forecast data, 

energy volumes traded and electricity market clearing prices for model-free 

formulation. Given that the data used is historical, inputting them directly into 

model-based and model-free formulations as perfect foresight would lend itself to a 

unworthwhile analysis for future prediction of expected benefit. It is of more value 

to ensure that both model-based and model-free formulations use historical data in 
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such a way that perfect foresight of electricity market clearing prices is not 

assumed. The following sections outline how historical data is incorporated along 

with the necessary implementation steps for each method.  

5.5.1 MODEL-BASED STOCHASTIC PROGRAMMING 
A linear deterministic equivalent SP is used to solve for DD in model-based 

formulations using (5.5) and (5.6). This requires 𝑁 number of price path scenarios 

𝑃𝑠𝑛,𝑡 along with scenario probability 𝑌𝑛. Of particular importance is the need to 

ensure that perfect foresight is not allowable when selecting scenarios. Therefore, 

rather than using known historical electricity market clearing prices with transition 

probabilities equal to 1, the k-means algorithm is used to generate price path 

clusters 𝐶 from historical electricity market prices 𝑃𝑡,𝑒. This concept is shown in 

Fig.5.3 which has five different price path clusters for each electricity market for 

illustrative purposes. The actual number of price paths clusters used in this analysis 

is 15 for each electricity market which keeps computation requirements low at 𝑁 =

154.  Also shown in Fig.5.3 are the price path cluster transition matrix probabilities 

for each stage given by 𝑌𝐷𝐴𝑀→𝐼𝐷𝑀1, 𝑌𝐼𝐷𝑀1→𝐼𝐷𝑀2 and 𝑌𝐼𝐷𝑀2→𝐼𝐷𝑀3. The value of 𝑦𝑖,𝑗 

is determined via the number of 𝑃𝑡,𝑒 observations belonging to price path cluster 𝑖, 

 

Fig.5.3 – Price path clusters developed from historical electricity market prices using k-
means. Five clusters shown for illustrative purposes. 
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that transition into 𝑃𝑡+1,𝑒 observations belonging to price path cluster 𝑗, divided by 

the total number of 𝑃𝑡,𝑒 observations belonging to price path cluster 𝑖 that 

transition into 𝑃𝑡+1,𝑒 observations belonging to all price path clusters for stage 𝑡 +

1. The 𝑃𝑡,𝑒 observations of historical electricity market clearing prices are the same 

electricity prices used within the tuples 〈𝐹𝑡,𝑒 , 𝑉𝑡,𝑒 , 𝑃𝑡,𝑒〉 from Section 5.4.2.1 . 

To construct each price path probability scenario 𝑌𝑛 for a linear 

deterministic equivalent model (5.5), each value of 𝑛 has a unique order pair of 4-

tuple from 𝑧, determined via Cartesian Product (5.24) of the sets 𝐴, 𝐵, 𝐶 and 𝐷 

(5.23). Using this unique order  

 𝐴 = {1,… ,15}, 𝐴 = 𝐵 = 𝐶 = 𝐷 (5.23) 

 𝑧 = 𝐴 × 𝐵 × 𝐶 × 𝐷 

𝑣 = {(𝑧1, 𝑧2), (𝑧2, 𝑧3), (𝑧3, 𝑧4)} 
(5.24) 

 
𝑃𝑠𝑛 = [𝐶𝑧1

𝐷𝐴𝑀, 𝐶𝑧2
𝐼𝐷𝑀1, 𝐶𝑧3

𝐼𝐷𝑀2, 𝐶𝑧4
𝐼𝐷𝑀3],     ∀ 𝑁 (5.25) 

 
𝑌𝑛 = 𝑌𝑣1

𝐷𝐴𝑀→𝐼𝐷𝑀1 ∙ 𝑌𝑣2
𝐼𝐷𝑀1→𝐼𝐷𝑀2 ∙ 𝑌𝑣3

𝐼𝐷𝑀2→𝐼𝐷𝑀3,    ∀ 𝑁 (5.26) 

pair gives all possible price path scenarios (5.25). Non-anticipative constraints are 

implemented for each price path cluster in each respective stage. The probability of 

each scenario is given by 𝑌𝑛 (5.26) which utilises the same order pair as (5.25) only 

indexed by 𝑣 (5.24) rather than 𝑧 to establish transitions. 

Additionally, a single stage Day-Ahead Market is also modelled so that a 

meaningfully comparison with/without dispatch adaptability can be done. This 

involves modelling only stage 1 of (5.5), removing constraints (5.13) and (5.14), 

setting constraint (5.18) to Rule 1 and removal of constraints (5.19), (5.20) and 

(5.21). 

5.5.2 MODEL-FREE TD3 ALGORITHM  
Unlike the implementation of model-based formulation which assumes that 

no historical information is available during decision making, the model-free 

formulation has access to state variable 𝐹𝑡,𝑒, previous market energy volumes 

traded 𝑉𝑡−1,𝑒 and previous market electricity clearing prices 𝑃𝑡−1,𝑒 before dispatch 

decisions are required. See Fig.5.2 for the timeline of decision making. 
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Consequently, using historical 𝐹𝑡,𝑒, 𝑉𝑡−1,𝑒, 𝑃𝑡−1,𝑒 as part of the state variable rather 

than historical 𝑃𝑡,𝑒 ensures that perfect foresight is not used and that the approach 

remains model-free.  

For implementing the TD3 algorithm, updates of both Critic and Actor 

networks are done using the ADAM optimiser [159] along with backpropagation to 

determine the gradients of each network. The hyperparameters for ADAM are the 

same as outlined in [159], with the learning rate for the Critic and Actor networks 

set to 10−2 and 10−3 respectively. The initial weight parameters (𝜙𝑡 and 𝜃𝑡) of each 

network are determined via (5.27), where each weight used as an input for a 

specific node is calculated using the number of weights entering that node 𝑛𝑤 and 

sampled from a normal distribution 𝒩 with mean 0 and standard deviation of 1. 

The choice of activation function for the hidden network layers is leaky ReLu, with 

parameterisation set to 0.1 for negative inputs. A linear activation function is used 

for the output layer of both Critic and Actor, while the MLP inputs are normalised 

before being passed through. The number of nodes and layers are shown in Fig.5.2.  

 

𝒩(0,1) × √
2

𝑛𝑤
 (5.27) 

Other hyperparameters include, a batch size of 32, a replay buffer size of 240,000 

tuple pairs of past experience, target networks updated every two iterations by 

0.005 of learned network with Actor network also updated every two iterations, an 

exploration strategy using normal distribution with standard deviation of 7, with 

also target policy smoothing exploration using standard deviation of 0.5, and the 

reward function 𝑅𝑡(𝑆𝑡, 𝑎𝑡) scaled by 0.001. The model-free formulation is solved for 

BESS sizes 𝐵 from a range of values between 10MWh and 200MWh in intervals of 

20MWh to reduce computation effort. The BESS size corresponding to the 

maximum value of (5.12) is noted. Proceeding this, the TD3 algorithm is employed 

again on two more BESS sizes (+/- 10MWh of the BESS size from (5.12)) to increase 

the final accuracy level.  
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The energy state of the BESS (𝐸𝑡) is required and known for the Critic and 

Actor networks in IDM2 and IDM3, seen in Fig.5.2 and outlined in (5.28). To model a 

single stage Day-Ahead Market for comparative purposes, the TD3 algorithm only 

learns the Actor and Critic Network for the first stage i.e. iterative learning starts 

and stops at 𝑡 = 1. 

5.6 RESULTS AND DISCUSSION 
Model-based BCR results of (5.1) for single stage (i.e. Day-Ahead Market only) 

and multiple stages (Rule 1 and Rule 2) are shown in Fig.5.4. A BCR value greater 

than or equal to 1 is required for BESS installations to be permissible. From Fig.5.4 it 

is shown that when no dispatch adaptability is considered (i.e. single stage), none of 

the proposed BESS sizes have a BCR value greater than or equal to 1 and are 

therefore not permissible. The highest achievable BCR value for a single stage is 

0.825 at 70 MWh. Only when dispatch adaptability is included (i.e. multiple stages) 

are BESS deemed allowable, with sizes from 40 MWh to 150 MWh permissible 

under Rule 1 and sizes 20 MWh to 180 MWh permissible when utilising Rule 2. Rule 

1 allows for BESS technically feasible bids/offers in all markets while Rule 2 allows 

bids/offers which are less constrained by hourly BESS energy storage levels as 

outlined in Section 5.4.2.2. With greater bid/offer freedom in Rule 2, a superior BCR 

value is achievable as BESS can utilise dispatch adaptability to bid/offer energy 

quantities that are not technically feasible for the BESS, only to correct a technically 

feasible energy position in a later market. In doing this, and if market clearing prices 

are favourable, Rule 2 has more opportunity for expected revenue than Rule 1. It is 

noteworthy that the absolute difference between BCR Rule 1 and Rule 2 values 

reduces as BESS size increases, due to Rule 2’s diminishing influence for larger BESS 

sizes. The only difference between both rules is that Rule 2 allows for cumulative 

 

𝐸𝑡 =

{
  
 

  
 

0, 𝑡 ≤ 2

∑𝑎𝑐𝑡−1,𝑖

12

𝑖=1

, 𝑡 = 3

𝐸𝑡−1 + ∑ 𝑎𝑐𝑡−1,𝑖

18

𝑖=13

, 𝑡 = 4

 (5.28) 
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bids/offers to reach −𝐵 for any trading period as per constraints (5.18), (5.19), 

(5.20) and (5.21).  

Explaining this further using IDM2 as one possible example, it is highly 

probable that a BESS is significantly charged at trading period 18 in IDM2 given the 

need to be in position to avail of higher clearing prices in trading periods 19, 20, 21 

and 22. In addition, the only way to reach −𝐵 is to discharge more than charge. 

Therefore, the state of charge at trading period 18 in IDM2 heavily influences the 

likelihood of reaching −𝐵 for trading periods 19 to 24 in IDM2 and IDM3. For a 

smaller BESS fully charged at IDM2 trading period 18, Rule 2 is required to achieve 

non-technically feasible favourable trades as a smaller BESS does not have sufficient 

capacity. However, due to their larger capacity, a fully charged larger BESS 

(compared to a smaller BESS) has greater opportunity to achieve favourable trades 

without requiring technically unfeasible trades and is therefore less reliant on Rule 

2 to achieve favourable trades. Consequently, as BESS size increases, the BCR value 

for Rule 1 and Rule 2 begin to converge. Furthermore, the BESS size with the 

greatest BCR for both Rule 1 and Rule 2 is 70 MWh, with a BCR value for each at 

1.11 and 1.213 respectively. Analysis of the above suggests that incorporating 

dispatch adaptability into BESS sizing model-based formulations solved using SP has 

 

Fig.5.4 – BCR values for different BESS sizes of model-based formulation solved 
via Stochastic Programming for single stage and multistage. All BESS sizes on or 

above BESS permissible line are deemed acceptable.  
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the potential to make initially unviable proposed BESS projects viable. Also, while 

the inclusion of dispatch adaptability improves BESS profitability, optimal BESS size 

remains the same for single stage and multiple stages. Additionally, and depending 

on the ruleset used as part of dispatch adaptability, smaller BESS sizes have greater 

potential to gain advantages from dispatch adaptability.  

As demonstrated thus far, the use of SP to solve for DD is based on k-means 

algorithm price clusters 𝐶 developed from the entire historical electricity market 

clearing price dataset 𝑃𝑡,𝑒 ∀ 𝑡, 𝑒. Similarly, the TD3 algorithm was given access to 

the entire dataset of tuples 〈𝐹𝑡,𝑒 , 𝑉𝑡,𝑒 , 𝑃𝑡,𝑒〉 ∀ 𝑡, 𝑒 to learn DD. However, constant 

fluctuations in 𝑄𝜃1(𝑆1, 𝜋𝜙1(𝑆1)) were observed after varying amounts of learning 

time resulting in non-convergence of 𝑄𝜃1(𝑆1, 𝜋𝜙1(𝑆1)). This underfitting behaviour 

indicates MLP type and size does not have the capacity to generalise well over the 

entire dataset 〈𝐹𝑡,𝑒 , 𝑉𝑡,𝑒 , 𝑃𝑡,𝑒〉 ∀ 𝑡, 𝑒. Due to computation limitations, the MLP ANN 

remained unchanged. To improve convergence, the TD3 algorithm access was 

condensed to a smaller subset of historical data (one month of data). The risk of 

overfitting is reduced in DRL through exploration via stochastic policy. Furthermore, 

the exploration policy is used as a state variable for subsequent stages thereby 

reducing overfitting risk further through the addition of new replay buffer training 

samples after each training iteration.  

The model-free BCR results of (5.1) are shown in Fig.5.5 for single stage and 

multiple stages using Rule 1. Inclusion of dispatch adaptability (i.e. multiple stages) 

through model-free formulation increases BCR value for each BESS size, again 

demonstrating the value of modelling dispatch adaptability when sizing BESS. 

Conversely to the model-based BCR case, single-stage model-free BCR is largely 

greater than or equal to 1 with only the 10 MWh single stage BESS size not 

permissible. Overall, BCR values for model-free are greater than those of model-

based with the optimal BESS size the same for both. The optimal BCR value for BESS 

size 70 MWh for single stage and multiple stages is 1.30 and 1.95 respectively. It 

can be reasoned that BCR values for model-based and model-free cases could 

converge further if the TD3 algorithm was able to train over the entire dataset (𝑁𝑑 

equal to 463 days of data). However, both methods suggest 70 MWh as the optimal 
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BESS size which reinforces the results. For purely informational purposes, BCR 

estimation using MLP ANN trained on 1 month of data evaluated on the entire 

dataset (𝑁𝑑 equal to 463) is also presented in Fig.5.5 where no BESS sizes are 

permissible. Clearly an MLP ANN trained on a 1-month dataset is not sufficient to 

evaluate over the entire dataset. The BCR evaluation over the entire dataset (𝑁𝑑 

equal to 463) is not outlined in Fig.5.5 to suggest meaningful BCR values but rather 

to indicate level of improvement required in ANN architecture to gain parity with 

model-based BCR. Although the model-free formulation trained/evaluated over 1-

month dataset shows promising BCR results, training over entire dataset would give 

greater confidence in final BCR value. However, the trained/evaluated model-free 

formulation under the smaller training set of 1-month is capable of capturing 

dispatch adaptability as part of BESS sizing. This suggests that an improved ANN 

architecture trained over the entire dataset could yield a more reflective BCR value.  

Another useful component of analysis when integrating dispatch adaptability 

is examining bid/offer quality of optimised BESS sizing models. Rephrasing this as a 

question: are optimised BESS sizing models selecting good dispatch decisions to 

maximise the expected benefit for a particular BESS size? This type of question only 

 

Fig.5.5. – BCR values for different BESS sizes of model-free formulation solved via 
TD3 Algorithm for single stage and multistage. 𝑁𝑑 at 463 is evaluation over 
entire dataset. All BESS sizes on or above BESS permissible line are deemed 

acceptable. 
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presents itself under stochastic dynamic optimisation problems. Applying this 

question to the model-based formulation used in this chapter would yield little 

insight as it is solved using a linear deterministic equivalent stochastic program. 

Therefore, model-based formulation bid/offer quality is only related to the accuracy 

of electricity price scenarios 𝑃𝑠𝑛 used, which are solely based on historical 

electricity market clearing prices without perfect foresight (see Section 5.5.1). 

Contrastingly, the model-free formulation does not rely on scenarios. Only 

historical information available at a decision epoch is inputted into the MLP ANN, 

allowing the Actor to learn a dispatch strategy based on this input and not from 

historical electricity clearing prices. Hence, the choice of Actor MLP ANN input 

affects its ability to select dispatch-adaptable high reward bids/offers. The bid/offer 

quality for a 70 MWh BESS size is shown in Fig.5.6 (d) for an example trading day 

(i.e. 𝑒 value for 2nd April 2019) from historical dataset. The normalised MLP ANN 

inputs for the same trading day are shown in Fig.5.6 (a) for demand net wind grid 

forecast (𝐹𝑡,𝑒) for DAM and IDMs, in Fig.5.6 (b) for market energy volumes traded 

(𝑉𝑡,𝑒) and in Fig.5.6 (c) for market clearing prices (𝑃𝑡,𝑒). Looking at the Day-Ahead 

Market dispatch decisions Fig.5.6 (d), very few bids/offers are established which is 

in contrast to the volumes of energy normally traded by market participants within 

DAM compared to IDMs. Market participants reduce their risk by establishing 

bids/offers in the highly liquid DAM. This element of risk is not incorporated into 

model-free formulation. However, even without this risk element, favourable 

trades within DAM are not achievable. The DAM MLP ANN singular input (demand 

net wind grid forecast) has a low capability of capturing the complex reward 

structure of DAM and subsequent markets. The combining factors of risk-free 

bid/offer establishment and lack of suitable available DAM MLP ANN inputs from I-

SEM results in the DAM MLP ANN unable to suggest meaningful trades and 

therefore defers establishment of energy positions until later markets. Improved 

bid/offer establishment is shown in markets after DAM as a result of the greater 

number and diversity of ANN inputs for subsequent markets. As DAM is the first 

market, it does not have access to previous market data (i.e. price, volumes, 

bids/offers) which has shown to improve bids/offers in IDMs. This improvement in 
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IDM bids/offers is due to the inclusion of previous market clearing prices (𝑃𝑡−1,𝑒) as 

a proxy input to IDMs MLP ANN. Ultimately, the parallel between 𝑃𝑡−1,𝑒 and 𝑃𝑡,𝑒 is  

akin to knowing the market clearing price beforehand, which follow similar peak 

trough paths as can be seen in Fig.5.6 (c). This allows the MLP ANN at time 𝑡 to use 

 

 

Fig.5.6. – Illustration example of trading day 2nd April 2019 for a 70MWh BESS 
where (a) is the ANN input demand net wind grid forecast which shows changed 

forecast as real time approaches, (b) is the IDM ANN input (for 𝑡 ≤ 3) market 
volumes traded which is available after closure of each market showing higher 

liquidity for DAM, (c) is the IDM ANN input (for 𝑡 ≤ 3) market clearing prices which 
is available after closure of each market showing increased clearing prices for later 
markets IDM2 and IDM3, (d) recommended dispatch decisions by ANN output for 

each market. 
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𝑃𝑡−1,𝑒 to inform itself of potentially good decisions. This is demonstrated further for 

IDM1 in Fig.5.6 (d) where the BESS is charged between trading period 4 and 6 only 

to be discharged at trading period 9, 10 and 11. This represents good decisions 

based on the eventual electricity market clearing price peaks and troughs of 𝑃2,𝑒 

shown in Fig.5.6 (c).  This learned bid/offer behaviour is key for BESS which rely on 

market electricity clearing price peaks troughs to perform arbitrage for generating 

revenue. Not only do MLP ANNs require establishing good decisions corresponding 

to eventual market price peaks and troughs (i.e. within market arbitrage), good 

decisions must also take advantage of dispatch adaptability which is based on 

eventual price differentials between markets (i.e. cross market arbitrage). Good 

dispatch adaptability decisions are estimated by the TD3 algorithm through learning 

the state 𝑆𝑡 to state 𝑆𝑡+1 transitions based on the ANN input dataset.  

To help reduce errors in estimating state to state transitions, other MLP ANN 

inputs are required in addition to proxy input 𝑃𝑡−1,𝑒. Two datasets are utilised for 

this purpose and further improve on the ability of proxy input (𝑃𝑡−1,𝑒). The first is 

demand net wind grid forecast 𝐹𝑡,𝑒 where changes closer to real time can suggest a 

movement from proxy input (𝑃𝑡−1,𝑒). For example, if 𝐹2,𝑒 was underestimated 

before the closure of IDM1 only for improved forecast accuracy (wind grid forecast 

reduced) before the closure of IDM2, then the market clearing price (𝑃3,𝑒) is likely 

to increase from that of proxy input (𝑃2,𝑒). The second dataset used as part of IDM 

MLP ANN input is the previous market energy volumes traded (𝑉𝑡−1,𝑒). Here, high 

volumes of trades in IDM markets are an indication that the market participant’s 

energy position within DAM is not suitable anymore. Typically, this is infrequent as 

the liquidity levels within IDM remain lower than DAM. However, when IDM energy 

traded volumes increase there is a movement of participants from their 

established positions which can be a further indication of differences between 

proxy input 𝑃𝑡−1,𝑒 and eventual 𝑃𝑡,𝑒. An example of cross market arbitrage is shown 

in Intraday Market 2 Fig.5.6 (d), where MLP ANN for IDM2 is taking advantage of a 

price differential to perform dispatch adaptability. This is achieved through buying 

back energy sold in IDM1 for trading periods 20, 21 and 22. Initially, IDM1 

bids/offers correlated well to peaks (trading periods 9, 10, 11, 20, 21 and 22) and 
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troughs (trading periods 4, 5, 6, 16, 17 and 18) as the DAM clearing price performed 

adequately as a proxy for the IDM1 clearing price. However, before the closure of 

IDM2, demand net wind grid forecast 𝐹3,𝑒 started to increase (in this instance 

caused by reduced wind forecast) suggesting a possible rise in market clearing 

prices for the latter half of the trading day in subsequent markets. Therefore, IDM2 

Actor MLP ANN suggests a buyback of energy sold in IDM1 for trading periods 20, 

21 and 22. This turned out to be a good decision as the clearing price for trading 

periods 20, 21 and 22 did increase for IDM2 and IDM3. Ensuring IDM2 bids/offers 

remained close to zero at IDM2 closure allowed the BESS to avail of much higher 

clearing prices of IDM3, and therefore maximise expected benefit. The goal of 

bid/offer quality analysis is to show if market Actor MLP ANNs are making good 

decisions on the whole. Ultimately, not all dispatch decisions will be the right one as 

Actor MLP ANN makes decisions based on imperfect knowledge along with 

estimating likely transition to subsequent states. One such situation is the choice to 

discharge at trading period 19 for IDM3 in Fig.5.6 (d). Once 𝑃4,𝑒 information 

becomes available after IDM3 closure, discharging at trading period 22 instead of 

trading period 19 would have been a better decision. However, the action taken by 

IDM2 Actor MLP ANN for trading period 19, 20 and 21 can be seen as a corrective 

action from the dispatch decisions made in IDM1 and shows that the MLP ANN 

used in this research is capable of dispatch adaptability.  

Ideally, a model-free approach should be sought as the appropriate solution 

method for sizing BESS. This reduces the need to produce accurate models of 

realisations, thereby permitting BESS sizing on purely raw historical data alone. 

However, the MLP ANN used in this research is not sufficient. To that end, a model-

based approach must be recommended as the more appropriate BESS sizing model 

when compared to the model-free approach used in this research. Nevertheless, an 

improved ANN architecture could warrant the use of model-free over model-based. 

A further advantage of using model-free method is that once a BESS is installed, the 

learned Actor MLP NN can be used as the dispatch strategy when BESS becomes 

operational without the need to rely on further modelling of clearing prices.  
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5.7 CONCLUSION AND FUTURE WORK  
The inclusion of dispatch adaptability in BESS sizing models using model-

based and model-free methods is shown to improve the profitability for both 

methods. This is a welcome addition to the BESS sizing research field as previously-

proposed BESS battery projects which were deemed unviable could become viable 

if dispatch adaptability is included in the modelling process. Under the assumptions 

used here, the optimal storage size for a 36/-36 MW BESS operating solely in Day-

Ahead Market and Intraday Markets 1 to 3 within Integrated Single Electricity 

Market of Ireland is 70MWh. While profitability for both model-based and model-

free methods increases with the inclusion of dispatch adaptability, the optimal BESS 

size remains the same. This is also a welcome result as it demonstrates the 

robustness of the solutions, along with utilising dispatch adaptability solely for 

determining project viability. Furthermore, the level of dispatch freedom directly 

affects the amount of dispatch adaptability achievable, which in turn directly affects 

the realisable BCR value. Increasing dispatch freedom has a greater influence on 

smaller BESS sizes. The use of model-free methods has shown promise when 

training on smaller datasets but requires further ANN development to reduce 

underfitting and allow training on datasets greater than one month. The MLP ANN 

inputs for model-free formulation perform well in IDM especially using previous 

market clearing price as a proxy input for subsequent market clearing price. Due to 

the limited data available from I-SEM before the closure of DAM, the demand net 

wind grid forecast does not perform well when used singularly as an MLP ANN 

input. 

Expanding the MLP ANN architecture in terms of size and type is required so 

that training can happen over the entire dataset. Some promising approaches are 

Convolutional Neural Networks combined with the necessary computation 

capabilities. These ANNs have more capacity than MLP networks to represent 

complex information. While the selected MLP ANN inputs performed well for IDMs, 

other inputs should be considered moving forward. For example, projected market 

clearing price information could be used as part of MLP ANN input, especially for 

DAM. Moreover, rather than modelling projected market clearing prices, the inputs 
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to that model could be directly inputted into MLP ANN, thereby utilising the full 

ability of model-free optimisation. Normally, market participants submit pairs (price 

and quantity) when trading in electricity markets. As part of this research only 

quantity values are employed. To improve on this research, the price portion of 

submitted bids/offers should be included in decision outputs. In doing so will add 

an element of risk to the decision-making process including energy position 

establishment, which could help alleviate the lack of dispatch decisions seen in the 

DAM. Lastly, allowing total dispatch freedom (i.e. no constraints) is possible if the 

balancing market is modelled as an extra stage after IDMs. Market participants will 

get paid/pay-out at the balancing market clearing price. Therefore, the balancing 

market could be used as a penalty for using non-technically feasible bids/offers. 

This would be more representative of a realistic trading environment.  
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CHAPTER SIX 

6 CONCLUSION 

At the beginning of this study, two research questions were asked regarding 

the formation of planning objectives Investment Scale, Investment Timing and 

Dispatch Adaptability as part of BESS sizing. Within Chapter 1, the Research 

Objectives (RO) were set out in such a way as to actively seek answers to those 

questions. Herein lies a conclusion on the successfulness of this dissertation’s 

research objectives in answering the research questions.  

Research Question 1: Is it possible to form the planning objectives Investment Scale, 

Investment Timing and Dispatch Adaptability as part of optimising energy capacity 

size for new BESS installation seeking maximum profit? 

Subsequent to the research conducted throughout this dissertation, it is 

concluded that the planning objectives Investment Scale, Investment Timing and 

Dispatch Adaptability can be incorporated as part of BESS sizing. This deduction is 

based on the successful completion of research objectives and results described 

herein. Consequently, the improvements made throughout thesis, make BESS sizing 

more applicable as a planning tool for BESS project developers, such as those 

seeking BESS installations in Fig.1.1.  

As part of RO1.1, competing objective functions under two MOO methods 

called Rating Method and Paired Comparison were used as an approach to 

incorporate Investment Scale as part of BESS sizing. This approach was simulated 

for a microgrid as part of RO1.2 and was described in Chapter 3. In doing so, it was 

found that the Rating Method performed best when selecting BESS size in knee 

regions near maximum DW, which was designated as the area of greatest interest. 

An added bonus of the Rating Method is that it can select optimal BESS size at 

maximum DW when less significant knee regions are present. This approach gives 

an appropriate balance between forming the planning objective Investment Scale 
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and maximising profit. The significance of these results is that Rating Method is 

capable of forming the planning objective Investment Timing as part BESS sizing 

which is in answer to the first planning objective of Research Question 1. 

RO2.1 modelled the separation of BESS dispatch (i.e. operational) and BESS 

sizing decisions (i.e. planning) through employing Reinforcement Learning as the 

operational model solution method and Global Optimisation for the planning model 

as an approach to from the Investment Timing planning objective as part of BESS 

sizing. As per RO2.2 and completed per Chapter 4, the aforementioned approach 

was trialled on data from the Integrated Single Electricity Market (I-SEM) Day-

Ahead Market for the operational model, while the planning model utilised various 

future BESS CAPEX and degradation scenarios. It was found that splitting BESS 

operational decisions and BESS planning decisions into two different models is an 

effective technique. The effectiveness can be seen in the ability of the planning 

model to sample value functions from the operational model, thereby removing the 

need to simultaneously solve operational decisions and temporal BESS sizing 

decisions. This resulted in a more tractable planning model where a solution was 

determined via Global Optimisation. Also, the operational model need only be 

solved once, as it is sampled subsequently by the planning model, thereby allowing 

different scenarios to be tested. All in all, through the use of split models, it is 

possible to incorporate the planning objective Investment Timing as part of BESS 

sizing. This is supportive of an answer to the second planning objective of Research 

Question 1.  

Completion of RO3.1 utilised model-based (Stochastic Programming) and 

model-free (Deep Reinforcement Learning) stochastic optimisation methods as a 

means to form the planning objective Dispatch Adaptability as part of BESS sizing. 

This was tested on historical Day-Ahead and Intraday Markets electricity clearing 

prices from the I-SEM as part of RO3.2, which is documented in Chapter 5. Through 

this, it was found that model-based approach of SP outperformed the model-free 

approach of TD3. However, it is not clear that such a broad statement can be made 

about model-free and model-based approaches on the results gained in Chapter 5. 

The advantages of model-free methods are well known and are gaining popularity. 
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As already noted, an improved ANN architecture for model-free approach as part of 

future work (discussed later) may produce better results. That being said, the 

results of the SP model-based approach show that the planning objective Dispatch 

Adaptability can be incorporated as part of BESS, while the TD3 model-free 

approach shows promise when trained on a limited sample set and relatively simple 

ANN. This provides a positive answer to the last planning objective of Research 

Question 1.  

Research Question 2: Are there any circumstances where the inclusion of planning 

objectives Investment Scale, Investment Timing and Dispatch Adaptability as part of 

BESS sizing helps overcome shortcomings of existing sizing approaches? 

As outlined within the Introduction, the purpose of including planning 

objectives as part of BESS sizing is to ensure that a built BESS project is the right 

BESS project, and aligns a BESS project with any goals set out before execution. 

However, it is important to note any findings from this thesis which have the 

potential to alleviate other shortcomings facing the BESS sizing community. These 

include undesirable outcomes that existing BESS sizing approaches can produce.  

On completion of RO2.3 in Chapter 4, it was discovered that the maximised 

NPV objective function under all chosen scenarios returned a value of zero with a 

BESS size of 0 MWh, which is a shortcoming of using NPV as an objective function. 

This portends that no available BESS size installed at year 1 would operate with a 

profit. Therefore, it is not possible to size a BESS under these circumstances. In 

comparison with reviewed literature, previous works have not reported 0 MWh as 

the optimal BESS size for any application. These historical outcomes are 

questionable at best, given the quantity of research undertaken in this area and the 

nascent stage of BESS deployment. Nevertheless, if a researcher is faced with the 

prospect of 0MWh as the optimal BESS and all things being equal, the next logical 

question should be: when will it be possible to size a BESS for my given application? 

The approach taken within Chapter 4 to forming the planning objective Investment 

Timing as part of BESS sizing can be used answer this question.  
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The findings associated with RO3.3 within Chapter 5 showed that BESS 

operating simple arbitrage within the Day-Ahead Market was not enough to make 

optimally sized BESS project profitable when solved using Stochastic Programming. 

Therefore, under this circumstance, BESS is optimally sized (positive BCR value) but 

project is deemed unprofitable (BCR value is less than one). This result is possible 

when using BCR as the objective function but not possible when using NPV as the 

objective function. Arbitrage is a hallmark of existing BESS sizing literature. 

However, similar to the questionable point made regarding Investment Timing, 

previous works only report optimal BESS sizes that are profitable and report none 

that are unprofitable. There is somewhat of a caveat here, in that BCR is less 

popular as an objective function. As with any project, if cost can be maintained 

constant and revenues improved then profitability increases. This is what cross-

market arbitrage achieves. Researchers sizing a BESS for arbitrage in Day-Ahead 

Market using BCR objective function should seek to use cross-market arbitrage if 

the initial optimal BESS size (positive BCR value) is unprofitable (BCR value is less 

than one). The approaches taken within Chapter 5 to incorporating the planning 

objective Dispatch Adaptability as part of BESS sizing can be used for this purpose.  

None of the findings as part of research concerning Investment Scale 

planning objective within Chapter 3 gave any indication of being able to overcome 

shortcomings facing researchers using existing sizing approaches.  

Contribution to Knowledge  

First and foremost, this thesis’s initial original contribution to knowledge is 

uncovering the fact that existing BESS sizing approaches are lacking in their ability 

to be used as a planning tool. This knowledge was gained via the literature review 

within this dissertation which used FEP framework as a lens to review existing BESS 

sizing approaches. Without this method of investigation into literature, the problem 

of BESS sizing planning objectives would have gone unnoticed. Furthermore, this 

problem is not inconsequential. Taking a look as Fig.1.1, it is clear that within 

Europe alone there is a large current predicted future uptake of BESS installations. 

Such projects require BESS sizing to be more aligned with project planning. Another 
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school of thought is that there is little point in having BESS sizing approaches 

available which do not go some way to furthering the development of actual BESS 

projects. 

This thesis’s next original contribution to knowledge is the forward movement of 

BESS sizing approaches from specifically focused goals as shown in literature, 

towards being more functional and adaptable for project planning purposes. This 

was achieved through formation of planning objectives Investment Scale, 

Investment Timing and Dispatch Adaptability as part of BESS sizing optimisation. 

Through the development of BESS sizing approaches as part of this research, it is 

now possible to size BESS:  

1. which does not suffer scale issues resulting from ever greater diminishing 

returns of larger BESS sizes,  

2. where the timing of the investment can be chosen optimally rather than 

assuming “here and now” investment, 

3. where the operational strategy employed to simulate BESS dispatch is more 

reflective of actual BESS use and adaptability. 

Wider Impact of this Research  

First and foremost, this research will have greatest impact on communities 

of BESS project developers undertaking BESS projects as those outlined in Fig.1.1. 

Likewise, for all other BESS project developers worldwide undergoing similar 

projects. These developers seek BESS sizing approaches which are suited to 

successful project planning. This is where the BESS sizing approaches developed in 

this thesis are well suited to the aspirations of such developers.  

It must be remembered that uptake and predicted uptake of BESS 

installations throughout the world is predominantly a result of increased 

penetration of renewable generation as part of overall electricity mix. It is possible 

to combine these sets of technologies, which results in dispatchable and 

controllable electricity. Therefore, one could surmise that the success of renewable 

generation reaching high penetration levels is directly linked to uptake of BESS 

projects, which in turn is linked to how successfully BESS projects are planned. 
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Given that this thesis focused on including planning objectives as part of BESS 

sizing, the impact of this research could go some way to influencing renewable 

generation penetration in the future.  

For researchers who in the traditional sense use BESS sizing as an 

experimental proving ground, the results of this dissertation show that forming 

planning objectives as part of their BESS sizing problems can be useful. This implies 

that researchers need not ignore the results of this work but rather embrace it as a 

means for solving problems of their own concern. This represents a significant shift 

in thinking as researchers are somewhat detached from planning objective matters, 

as evidenced by the literature review of this thesis. 

The findings of this thesis show that there is potential to opening pathways 

for a new BESS sizing research area, namely forming planning objectives as part of 

BESS sizing. This is inferred through the numerous potential planning objectives 

within FEP toolkits that have yet to be researched and/or incorporated as part of 

BESS sizing. Also, the confines of this thesis is only a flavour of what could be 

researched in terms of planning objective as part of BESS sizing. The approach taken 

in this dissertation, along with results achieved, is significantly different compared 

with traditional sizing approach, and therefore warrants further research into 

forming planning objectives as part of BESS sizing as a whole. 

Future Work and Recommendations 

The Dispatch Adaptability planning objective used as part of Chapter 5, 

requires its ANN to be improved significantly as already mentioned in Section 5.7. 

One approach may be to change the architecture type from MLP to Convolutional 

Neural Network, which has gained recent success in image and pattern recognition 

applications. Other neural network inputs should be considered, such as forecasted 

electricity market clearing prices. Also, expanding the approach to include balancing 

markets is another key aspect, as this will be an even more accurate reflection of 

market rules and therefore will give a truer reflection on BESS capability when 

sizing. 
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As mentioned at the beginning of this work through a thought-provoking 

question: how can one take confidence in sizing a BESS correctly unless the 

objective function contains all project goals (i.e. planning objective) either directly 

or indirectly? The modelling choices as part of this work remained cognisant of the 

fact that the end goal should be for a singular BESS sizing approach incorporating all 

planning objectives of the user. Therefore, future work should maintain splitting 

apart operational decisions (i.e. BESS dispatch) and planning decisions (i.e. BESS size 

and time) as this is a sound choice. The operational model in Chapter 4 (which is 

reinforcement learning) should be replaced with deep reinforcement learning 

model from Chapter 5, albeit with improved ANN Dispatch Adaptability planning 

objective as previously mentioned as part of future work. Doing so would combine 

the planning objectives Dispatch Adaptability and Investment Timing. Furthermore, 

the planning model in Chapter 4 should be augmented to multi-objective Rating 

Method used in Chapter 3. This augmentation would convert the multi-objective 

problem from linear to non-linear. Capturing all the suggested changes above 

would ensure that all three planning objectives would form part of a singular BESS 

sizing approach. The results of this should be sought in future work.  

As already mentioned within research impact, the FEP framework has 

numerous potential planning objectives which could be explored as part of future 

research. Two such planning objectives that were included as part of this study’s 

literature review, but not modelled as part of BESS sizing, are Location and Capacity 

(Power). Firstly, to form the planning objective Location as part of BESS sizing will 

require the inclusion of power system modelling as part of the BESS sizing objective 

function. This would then inform the optimisation model of what the benefit and 

cost of each location on the grid is, and optimise accordingly. Secondly, to form the 

planning objective Capacity (Power) as part of BESS sizing, a more holistic method 

of modelling electricity market interactions of other participants is one method of 

choice. This would capture the negative connotations of too large a Capacity Power 

size in one market, thereby putting “downward pressure” on such a design variable.  

 



 

 
131 

 

REFERENCES 

[1] T. M. Gür, "Review of electrical energy storage technologies, materials and 

systems: challenges and prospects for large-scale grid storage," Energy & 

Environmental Science, vol. 11, pp. 2696-2767, 2018. 

[2] S. Hoff and A. Mey. (March 25, 2021). Utility-scale battery storage costs 

decreased nearly 70% between 2015 and 2018. Available: 

https://www.eia.gov/todayinenergy/detail.php?id=45596 

[3] European Commission. (August 8, 2020). Study on energy storage: 

Contribution to the security of the electricity supply in Europe. Available: 

https://op.europa.eu/en/publication-detail/-/publication/a6eba083-932e-

11ea-aac4-01aa75ed71a1/language-

en?WT.mc_id=Searchresult&WT.ria_c=37085&WT.ria_f=3608&WT.ria_ev=s

earch 

[4] EirGrid. (November 15, 2021). TSO PR5 RES-E: Multi-Year Plan 2022-2026. 

Available: https://www.eirgridgroup.com/site-files/library/EirGrid/PR5-RES-

E-Incentive-Multi-Year-Plan-Consultation-Paper.pdf 

[5] EirGrid. (2021). DS3 Consultations and Publications. Available: 

https://www.eirgridgroup.com/how-the-grid-works/ds3-programme/ds3-

consultations-and-pub/ 

[6] C. K. Das, O. Bass, G. Kothapalli, T. S. Mahmoud, and D. Habibi, "Overview of 

energy storage systems in distribution networks: Placement, sizing, 

operation, and power quality," Renewable and Sustainable Energy Reviews, 

vol. 91, pp. 1205-1230, 2018/08/01/ 2018. 

[7] L. A. Wong, V. K. Ramachandaramurthy, P. Taylor, J. B. Ekanayake, S. L. 

Walker, and S. Padmanaban, "Review on the optimal placement, sizing and 

control of an energy storage system in the distribution network," Journal of 

Energy Storage, vol. 21, pp. 489-504, 2019/02/01/ 2019. 

[8] Y. Yang, S. Bremner, C. Menictas, and M. Kay, "Battery energy storage 

system size determination in renewable energy systems: A review," 

Renewable and Sustainable Energy Reviews, vol. 91, pp. 109-125, 2018. 

https://www.eia.gov/todayinenergy/detail.php?id=45596
https://op.europa.eu/en/publication-detail/-/publication/a6eba083-932e-11ea-aac4-01aa75ed71a1/language-en?WT.mc_id=Searchresult&WT.ria_c=37085&WT.ria_f=3608&WT.ria_ev=search
https://op.europa.eu/en/publication-detail/-/publication/a6eba083-932e-11ea-aac4-01aa75ed71a1/language-en?WT.mc_id=Searchresult&WT.ria_c=37085&WT.ria_f=3608&WT.ria_ev=search
https://op.europa.eu/en/publication-detail/-/publication/a6eba083-932e-11ea-aac4-01aa75ed71a1/language-en?WT.mc_id=Searchresult&WT.ria_c=37085&WT.ria_f=3608&WT.ria_ev=search
https://op.europa.eu/en/publication-detail/-/publication/a6eba083-932e-11ea-aac4-01aa75ed71a1/language-en?WT.mc_id=Searchresult&WT.ria_c=37085&WT.ria_f=3608&WT.ria_ev=search
https://www.eirgridgroup.com/site-files/library/EirGrid/PR5-RES-E-Incentive-Multi-Year-Plan-Consultation-Paper.pdf
https://www.eirgridgroup.com/site-files/library/EirGrid/PR5-RES-E-Incentive-Multi-Year-Plan-Consultation-Paper.pdf
https://www.eirgridgroup.com/how-the-grid-works/ds3-programme/ds3-consultations-and-pub/
https://www.eirgridgroup.com/how-the-grid-works/ds3-programme/ds3-consultations-and-pub/


 

 
132 

 

[9] M. R. Aghamohammadi and H. Abdolahinia, "A new approach for optimal 

sizing of battery energy storage system for primary frequency control of 

islanded Microgrid," International Journal of Electrical Power and Energy 

Systems, vol. 54, pp. 325-333, 2014. 

[10] S. W. Alnaser and L. F. Ochoa, "Optimal Sizing and Control of Energy Storage 

in Wind Power-Rich Distribution Networks," IEEE Transactions on Power 

Systems, vol. 31, pp. 2004-2013, 2016. 

[11] I. Alsaidan, A. Khodaei, and W. Gao, "A Comprehensive Battery Energy 

Storage Optimal Sizing Model for Microgrid Applications," IEEE Transactions 

on Power Systems, vol. 33, pp. 3968-3980, 2018. 

[12] Y. M. Atwa and E. F. El-Saadany, "Optimal Allocation of ESS in Distribution 

Systems With a High Penetration of Wind Energy," IEEE Transactions on 

Power Systems, vol. 25, pp. 1815-1822, 2010. 

[13] A. S. A. Awad, T. H. M. El-Fouly, and M. M. A. Salama, "Optimal ESS 

Allocation for Benefit Maximization in Distribution Networks," IEEE 

Transactions on Smart Grid, vol. 8, pp. 1668-1678, 2017. 

[14] O. Babacan, W. Torre, and J. Kleissl, "Siting and sizing of distributed energy 

storage to mitigate voltage impact by solar PV in distribution systems," Solar 

Energy, vol. 146, pp. 199-208, 2017. 

[15] B. Bahmani-Firouzi and R. Azizipanah-Abarghooee, "Optimal sizing of battery 

energy storage for micro-grid operation management using a new improved 

bat algorithm," International Journal of Electrical Power and Energy Systems, 

vol. 56, pp. 42-54, 2014. 

[16] S. Bahramirad, W. Reder, and A. Khodaei, "Reliability-Constrained Optimal 

Sizing of Energy Storage System in a Microgrid," IEEE Transactions on Smart 

Grid, vol. 3, pp. 2056-2062, 2012. 

[17] K. Baker, G. Hug, and X. Li, "Energy Storage Sizing Taking Into Account 

Forecast Uncertainties and Receding Horizon Operation," IEEE Transactions 

on Sustainable Energy, vol. 8, pp. 331-340, 2017. 



 

 
133 

 

[18] H. Bludszuweit and J. A. Domínguez-Navarro, "A probabilistic method for 

energy storage sizing based on wind power forecast uncertainty," IEEE 

Transactions on Power Systems, vol. 26, pp. 1651-1658, 2011. 

[19] T. K. A. Brekken, A. Yokochi, A. Von Jouanne, Z. Z. Yen, H. M. Hapke, and D. 

A. Halamay, "Optimal energy storage sizing and control for wind power 

applications," IEEE Transactions on Sustainable Energy, vol. 2, pp. 69-77, 

2011. 

[20] G. Carpinelli, G. Celli, S. Mocci, F. Mottola, F. Pilo, and D. Proto, "Optimal 

integration of distributed energy storage devices in smart grids," IEEE 

Transactions on Smart Grid, vol. 4, pp. 985-995, 2013. 

[21] S. X. Chen, H. B. Gooi, and M. Q. Wang, "Sizing of Energy Storage for 

Microgrids," IEEE Transactions on Smart Grid, vol. 3, pp. 142-151, 2012. 

[22] Y. Dvorkin, R. Fernandez-Blanco, D. S. Kirschen, H. Pandzic, J. P. Watson, and 

C. A. Silva-Monroy, "Ensuring Profitability of Energy Storage," IEEE 

Transactions on Power Systems, vol. 32, pp. 611-623, 2017. 

[23] R. Fernández-Blanco, Y. Dvorkin, B. Xu, Y. Wang, and D. S. Kirschen, "Optimal 

Energy Storage Siting and Sizing: A WECC Case Study," IEEE Transactions on 

Sustainable Energy, vol. 8, pp. 733-743, 2017. 

[24] J. P. Fossati, A. Galarza, A. Martín-Villate, and L. Fontán, "A method for 

optimal sizing energy storage systems for microgrids," Renewable Energy, 

vol. 77, pp. 539-549, 2015/05/01/ 2015. 

[25] A. Giannitrapani, S. Paoletti, A. Vicino, and D. Zarrilli, "Optimal Allocation of 

Energy Storage Systems for Voltage Control in LV Distribution Networks," 

IEEE Transactions on Smart Grid, vol. 8, pp. 2859-2870, 2017. 

[26] E. Hajipour, M. Bozorg, and M. Fotuhi-Firuzabad, "Stochastic Capacity 

Expansion Planning of Remote Microgrids With Wind Farms and Energy 

Storage," IEEE Transactions on Sustainable Energy, vol. 6, pp. 491-498, 2015. 

[27] H. Khorramdel, J. Aghaei, B. Khorramdel, and P. Siano, "Optimal Battery 

Sizing in Microgrids Using Probabilistic Unit Commitment," IEEE Transactions 

on Industrial Informatics, vol. 12, pp. 834-843, 2016. 



 

 
134 

 

[28] V. Knap, S. K. Chaudhary, D. I. Stroe, M. Swierczynski, B. I. Craciun, and R. 

Teodorescu, "Sizing of an energy storage system for grid inertial response 

and primary frequency reserve," IEEE Transactions on Power Systems, vol. 

31, pp. 3447-3456, 2016. 

[29] Y. Luo, L. Shi, and G. Tu, "Optimal sizing and control strategy of isolated grid 

with wind power and energy storage system," Energy Conversion and 

Management, vol. 80, pp. 407-415, 2014. 

[30] E. Nasrolahpour, S. J. Kazempour, H. Zareipour, and W. D. Rosehart, 

"Strategic sizing of energy storage facilities in electricity markets," IEEE 

Transactions on Sustainable Energy, vol. 7, pp. 1462-1472, 2016. 

[31] T. A. Nguyen, M. L. Crow, and A. C. Elmore, "Optimal Sizing of a Vanadium 

Redox Battery System for Microgrid Systems," IEEE Transactions on 

Sustainable Energy, vol. 6, pp. 729-737, 2015. 

[32] M. Nick, R. Cherkaoui, and M. Paolone, "Optimal siting and sizing of 

distributed energy storage systems via alternating direction method of 

multipliers," International Journal of Electrical Power and Energy Systems, 

vol. 72, pp. 33-39, 2015. 

[33] S. Nojavan, M. Majidi, and N. N. Esfetanaj, "An efficient cost-reliability 

optimization model for optimal siting and sizing of energy storage system in 

a microgrid in the presence of responsible load management," Energy, vol. 

139, pp. 89-97, 2017. 

[34] H. Pandzic, Y. Wang, T. Qiu, Y. Dvorkin, and D. S. Kirschen, "Near-Optimal 

Method for Siting and Sizing of Distributed Storage in a Transmission 

Network," IEEE Transactions on Power Systems, vol. 30, pp. 2288-2300, 

2015. 

[35] S. Sharma, S. Bhattacharjee, and A. Bhattacharya, "Grey wolf optimisation 

for optimal sizing of battery energy storage device to minimise operation 

cost of microgrid," IET Generation, Transmission and Distribution, vol. 10, 

pp. 625-637, 2016. 



 

 
135 

 

[36] E. I. Vrettos and S. A. Papathanassiou, "Operating policy and optimal sizing 

of a high penetration RES-BESS system for small isolated grids," IEEE 

Transactions on Energy Conversion, vol. 26, pp. 744-756, 2011. 

[37] S. Wen, H. Lan, Q. Fu, D. C. Yu, and L. Zhang, "Economic allocation for energy 

storage system considering wind power distribution," IEEE Transactions on 

Power Systems, vol. 30, pp. 644-652, 2015. 

[38] S. Wogrin and D. F. Gayme, "Optimizing Storage Siting, Sizing, and 

Technology Portfolios in Transmission-Constrained Networks," IEEE 

Transactions on Power Systems, vol. 30, pp. 3304-3313, 2015. 

[39] Y. Yang, H. Li, A. Aichhorn, J. Zheng, and M. Greenleaf, "Sizing strategy of 

distributed battery storage system with high penetration of photovoltaic for 

voltage regulation and peak load shaving," IEEE Transactions on Smart Grid, 

vol. 5, pp. 982-991, 2014. 

[40] Y. Zheng, Z. Y. Dong, F. J. Luo, K. Meng, J. Qiu, and K. P. Wong, "Optimal 

Allocation of Energy Storage System for Risk Mitigation of DISCOs With High 

Renewable Penetrations," IEEE Transactions on Power Systems, vol. 29, pp. 

212-220, 2014. 

[41] G. E. Gibson and R. Haggard, Pre-project Planning Handbook. Austin, Texas: 

Construction Industry Institute, 1995. 

[42] Construction Industry Institute. (Mar 20, 2021). Glossary. Available: 

https://www.construction-institute.org/resources/knowledgebase/about-

the-knowledge-base/glossary 

[43] Construction Industry Institute. (Mar 20, 2021). Project Definition Rating 

Index (PDRI) Overview. Available: https://www.construction-

institute.org/resources/knowledgebase/pdri-overview 

[44] G. Gibson, T. Podesta, J. Fish, D. Halicks, E. Carlsson, B. Werle, et al., Adding 

Value Through Front End Planning. Austin, Texas: Construction Industry 

Institute, 2012. 

[45] C.-S. Cho and G. E. Gibson, "Building Project Scope Definition Using Project 

Definition Rating Index," Journal of Architectural Engineering, vol. 7, pp. 

115-125, 2001. 

https://www.construction-institute.org/resources/knowledgebase/about-the-knowledge-base/glossary
https://www.construction-institute.org/resources/knowledgebase/about-the-knowledge-base/glossary
https://www.construction-institute.org/resources/knowledgebase/pdri-overview
https://www.construction-institute.org/resources/knowledgebase/pdri-overview


 

 
136 

 

[46] P. R. Dumont, G. E. Gibson, and J. R. Fish, "Scope Management Using Project 

Definition Rating Index," Journal of Management in Engineering, vol. 13, pp. 

54-60, 1997. 

[47] E. Bingham and G. E. Gibson, "Infrastructure Project Scope Definition Using 

Project Definition Rating Index," Journal of Management in Engineering, vol. 

33, p. 04016037, 2017. 

[48] European Parliament, "DIRECTIVE (EU) 2019/944  on common rules for the 

internal market for electricity and amending Directive 2012/27/EU," ed, 

2019. 

[49] H. Ibrahim, A. Ilinca, and J. Perron, "Energy storage systems—Characteristics 

and comparisons," Renewable and Sustainable Energy Reviews, vol. 12, pp. 

1221-1250, 2008/06/01/ 2008. 

[50] W. Waag, S. Käbitz, and D. U. Sauer, "Experimental investigation of the 

lithium-ion battery impedance characteristic at various conditions and aging 

states and its influence on the application," Applied Energy, vol. 102, pp. 

885-897, 2013/02/01/ 2013. 

[51] C. Lee Wei, M. F. M. Siam, A. B. Ismail, and Z. F. Hussien, "Modeling and 

simulation of sodium sulfur battery for battery-energy storage system and 

custom power devices," in PECon 2004. Proceedings. National Power and 

Energy Conference, 2004., 2004, pp. 205-210. 

[52] S.-J. Kwon, S.-E. Lee, J.-H. Lim, J. Choi, and J. Kim, "Performance and Life 

Degradation Characteristics Analysis of NCM LIB for BESS," Electronics, vol. 

7, p. 406, 2018. 

[53] N. K. Noyanbayev, A. J. Forsyth, and T. Feehally, "Efficiency analysis for a 

grid-connected battery energy storage system," Materials Today: 

Proceedings, vol. 5, pp. 22811-22818, 2018/01/01/ 2018. 

[54] A. Gailani, M. Al-Greer, M. Short, and T. Crosbie, "Degradation Cost Analysis 

of Li-Ion Batteries in the Capacity Market with Different Degradation 

Models," Electronics, vol. 9, p. 90, 2020. 

[55] W. Marańda, "Capacity degradation of lead-acid batteries under variable-

depth cycling operation in photovoltaic system," in 2015 22nd International 



 

 
137 

 

Conference Mixed Design of Integrated Circuits & Systems (MIXDES), 2015, 

pp. 552-555. 

[56] N. Chawla and M. Safa, "Sodium Batteries: A Review on Sodium-Sulfur and 

Sodium-Air Batteries," Electronics, vol. 8, p. 1201, 2019. 

[57] G. Tomazic and M. Skyllas-Kazacos, "Chapter 17 - Redox Flow Batteries," in 

Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 

P. T. Moseley and J. Garche, Eds., ed Amsterdam: Elsevier, 2015, pp. 309-

336. 

[58] E. Sánchez-Díez, E. Ventosa, M. Guarnieri, A. Trovò, C. Flox, R. Marcilla, et 

al., "Redox flow batteries: Status and perspective towards sustainable 

stationary energy storage," Journal of Power Sources, vol. 481, p. 228804, 

2021/01/01/ 2021. 

[59] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, et 

al., "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, 

vol. 147, pp. 269-281, 2005/09/09/ 2005. 

[60] S. Sabihuddin, A. E. Kiprakis, and M. Mueller, "A Numerical and Graphical 

Review of Energy Storage Technologies," Energies, vol. 8, pp. 172-216, 2015. 

[61] P. Kurzweil, "Chapter 16 - Lithium Battery Energy Storage: State of the Art 

Including Lithium–Air and Lithium–Sulfur Systems," in Electrochemical 

Energy Storage for Renewable Sources and Grid Balancing, P. T. Moseley and 

J. Garche, Eds., ed Amsterdam: Elsevier, 2015, pp. 269-307. 

[62] D. A. J. Rand and P. T. Moseley, "Chapter 13 - Energy Storage with Lead–Acid 

Batteries," in Electrochemical Energy Storage for Renewable Sources and 

Grid Balancing, P. T. Moseley and J. Garche, Eds., ed Amsterdam: Elsevier, 

2015, pp. 201-222. 

[63] M. Steilen and L. Jörissen, "Chapter 10 - Hydrogen Conversion into Electricity 

and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries," in 

Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 

P. T. Moseley and J. Garche, Eds., ed Amsterdam: Elsevier, 2015, pp. 143-

158. 



 

 
138 

 

[64] P. T. Moseley and D. A. J. Rand, "Chapter 15 - High-Temperature Sodium 

Batteries for Energy Storage," in Electrochemical Energy Storage for 

Renewable Sources and Grid Balancing, P. T. Moseley and J. Garche, Eds., ed 

Amsterdam: Elsevier, 2015, pp. 253-268. 

[65] X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, et al., "A room-temperature 

sodium–sulfur battery with high capacity and stable cycling performance," 

Nature Communications, vol. 9, p. 3870, 2018/09/24 2018. 

[66] EirGrid and ESB. (April 4th, 2021). ECP2 - Node Assignment Rules. Available: 

https://www.eirgridgroup.com/site-files/library/EirGrid/Node-Assignment-

Rules-ECP-2.pdf 

[67] CRU. (April 4th, 2021). Enduring Connection Policy Stage 2 (ECP-2). Available: 

https://www.cru.ie/wp-content/uploads/2020/06/CRU20060-ECP-2-

Decision.pdf 

[68] EirGrid. (April 6th , 2021). Statement of Charges - Applicable from 1st 

October 2020. Available: https://www.eirgridgroup.com/site-

files/library/EirGrid/Statement-of-Charges-2020_21-_final.pdf 

[69] CRU. (April 6th, 2021). DS3 System Services Technical Definitions Decision 

Paper (SEM-13-098). Available: 

https://www.semcommittee.com/sites/semcommittee.com/files/media-

files/SEM-13-

098%20%20DS3%20System%20Services%20Technical%20Definitions%20De

cision%20Paper%20-%20FINAL_1.pdf 

[70] J. J. Kelly and P. G. Leahy, "Sizing Battery Energy Storage Systems: Using 

Multi-Objective Optimisation to Overcome the Investment Scale Problem of 

Annual Worth," IEEE Transactions on Sustainable Energy, pp. 1-1, 2019. 

[71] I. Pineda and P. Tardieu. (2018, 29/01/19). Wind in power 2017: Annual 

combined onshore and offshore wind energy statistics. Available: 

https://windeurope.org/wp-content/uploads/files/about-

wind/statistics/WindEurope-Annual-Statistics-2017.pdf 

https://www.eirgridgroup.com/site-files/library/EirGrid/Node-Assignment-Rules-ECP-2.pdf
https://www.eirgridgroup.com/site-files/library/EirGrid/Node-Assignment-Rules-ECP-2.pdf
https://www.cru.ie/wp-content/uploads/2020/06/CRU20060-ECP-2-Decision.pdf
https://www.cru.ie/wp-content/uploads/2020/06/CRU20060-ECP-2-Decision.pdf
https://www.eirgridgroup.com/site-files/library/EirGrid/Statement-of-Charges-2020_21-_final.pdf
https://www.eirgridgroup.com/site-files/library/EirGrid/Statement-of-Charges-2020_21-_final.pdf
https://www.semcommittee.com/sites/semcommittee.com/files/media-files/SEM-13-098%20%20DS3%20System%20Services%20Technical%20Definitions%20Decision%20Paper%20-%20FINAL_1.pdf
https://www.semcommittee.com/sites/semcommittee.com/files/media-files/SEM-13-098%20%20DS3%20System%20Services%20Technical%20Definitions%20Decision%20Paper%20-%20FINAL_1.pdf
https://www.semcommittee.com/sites/semcommittee.com/files/media-files/SEM-13-098%20%20DS3%20System%20Services%20Technical%20Definitions%20Decision%20Paper%20-%20FINAL_1.pdf
https://www.semcommittee.com/sites/semcommittee.com/files/media-files/SEM-13-098%20%20DS3%20System%20Services%20Technical%20Definitions%20Decision%20Paper%20-%20FINAL_1.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2017.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2017.pdf


 

 
139 

 

[72] J. Devlin, K. Li, P. Higgins, and A. Foley, "System flexibility provision using 

short term grid scale storage," IET Generation, Transmission & Distribution, 

vol. 10, pp. 697-703, 2016. 

[73] Y. Zhang, Z. Y. Dong, F. Luo, Y. Zheng, K. Meng, and K. P. Wong, "Optimal 

allocation of battery energy storage systems in distribution networks with 

high wind power penetration," IET Renewable Power Generation, vol. 10, 

pp. 1105-1113, 2016. 

[74] L. Johnston, F. Díaz-González, O. Gomis-Bellmunt, C. Corchero-García, and 

M. Cruz-Zambrano, "Methodology for the economic optimisation of energy 

storage systems for frequency support in wind power plants," Applied 

Energy, vol. 137, pp. 660-669, 2015. 

[75] F. K. Crundwell, Finance for Engineers: Evaluation and Funding of Capital 

Projects: Springer, London, 2008. 

[76] T. W. Jones and J. D. Smith, "An Historical Perspective of Net Present Value 

and Equivalent Annual Cost," The Accounting Historians Journal, vol. 9, pp. 

103-110, 1982. 

[77] R. de Neufville, Applied Systems Analysis: Engineering Planning and 

Technology Management: McGraw-Hill, Inc; New York, New York, USA, 

1990. 

[78] F. A. Chacra, P. Bastard, G. Fleury, and R. Clavreul, "Impact of energy storage 

costs on economical performance in a distribution substation," IEEE 

Transactions on Power Systems, vol. 20, pp. 684-691, 2005. 

[79] L. J. Robison, P. J. Barry, and R. J. Myers, "Consistent IRR and NPV rankings," 

Agricultural Finance Review, vol. 75, pp. 499-513, 2015. 

[80] M. Park, Y. Chu, H. S. Lee, and W. Kim, "Evaluation methods for construction 

projects," Journal of Civil Engineering and Management, vol. 15, pp. 349-

359, 2009/01/01 2009. 

[81] X. Yan, X. Zhang, H. Chen, Y. Xu, and C. Tan, "Techno-economic and social 

analysis of energy storage for commercial buildings," Energy Conversion and 

Management, vol. 78, pp. 125-136, 2014/02/01/ 2014. 



 

 
140 

 

[82] J. Sardi, N. Mithulananthan, M. Gallagher, and D. Q. Hung, "Multiple 

community energy storage planning in distribution networks using a cost-

benefit analysis," Applied Energy, vol. 190, pp. 453-463, 2017/03/15/ 2017. 

[83] M. Göransson, N. Larsson, L. A. Tuan, and D. Steen, "Cost-benefit analysis of 

battery storage investment for microgrid of Chalmers university campus 

using μ-OPF framework," in 2017 IEEE Manchester PowerTech, 2017, pp. 1-

6. 

[84] T. Terlouw, T. AlSkaif, C. Bauer, and W. van Sark, "Multi-objective 

optimization of energy arbitrage in community energy storage systems using 

different battery technologies," Applied Energy, vol. 239, pp. 356-372, 

2019/04/01/ 2019. 

[85] N. Zhou, N. Liu, J. Zhang, and J. Lei, "Multi-Objective Optimal Sizing for 

Battery Storage of PV-Based Microgrid with Demand Response," Energies, 

vol. 9, 2016. 

[86] A. Sinha, P. Malo, and K. Deb, "A Review on Bilevel Optimization: From 

Classical to Evolutionary Approaches and Applications," IEEE Transactions on 

Evolutionary Computation, vol. 22, pp. 276-295, 2018. 

[87] Y. Dvorkin, R. Fernández-Blanco, D. S. Kirschen, H. Pandžić, J. Watson, and C. 

A. Silva-Monroy, "Ensuring Profitability of Energy Storage," IEEE 

Transactions on Power Systems, vol. 32, pp. 611-623, 2017. 

[88] H. Pandžić, Y. Dvorkin, and M. Carrión, "Investments in merchant energy 

storage: Trading-off between energy and reserve markets," Applied Energy, 

vol. 230, pp. 277-286, 2018. 

[89] W. G. Sullivan, E. M. Wicks, and C. P. Koelling, Engineering Economy, 

Sixteenth edition ed. New Jersey: Pearson, 2015. 

[90] R. T. Marler and J. S. Arora, "Survey of multi-objective optimization methods 

for engineering," Structural and Multidisciplinary Optimization, vol. 26, pp. 

369-395, 2004/04/01 2004. 

[91] R. T. Marler and J. S. Arora, "The weighted sum method for multi-objective 

optimization: new insights," Structural and Multidisciplinary Optimization, 

vol. 41, pp. 853-862, 2010/06/01 2010. 



 

 
141 

 

[92] B. F. Hobbs, "A Comparison of Weighting Methods in Power Plant Siting*," 

Decision Sciences, vol. 11, pp. 725-737, 1980/10/01 1980. 

[93] P. L. Yu, "A Class of Solutions for Group Decision Problems," Management 

Science, vol. 19, pp. 936-946, 1973. 

[94] M. Zelany, "A concept of compromise solutions and the method of the 

displaced ideal," Computers & Operations Research, vol. 1, pp. 479-496, 

1974/12/01/ 1974. 

[95] I. Das and J. Dennis, "Normal-Boundary Intersection: A New Method for 

Generating the Pareto Surface in Nonlinear Multicriteria Optimization 

Problems," SIAM Journal on Optimization, vol. 8, pp. 631-657, 1998/08/01 

1998. 

[96] Lazard, "Levelized Cost of Storage Analysis—Version 3.0," ed, 2017, p. 49. 

[97] J. Branke, K. Deb, H. Dierolf, and M. Osswald, "Finding Knees in Multi-

objective Optimization," in Parallel Problem Solving from Nature - PPSN VIII, 

Berlin, Heidelberg, 2004, pp. 722-731. 

[98] I. Das, "On characterizing the “knee” of the Pareto curve based on Normal-

Boundary Intersection," Structural optimization, vol. 18, pp. 107-115, 

1999/10/01 1999. 

[99] J. J. Kelly and P. G. Leahy, "Optimal investment timing and sizing for battery 

energy storage systems," Journal of Energy Storage, vol. 28, p. 101272, 

2020. 

[100] U. S. Department of Energy. (2019, 13th Aug 2019). DoE Global Energy 

Storage Database. Available: 

https://www.energystorageexchange.org/projects 

[101] C. S. Lai, Y. Tao, L. L. Lai, K. F. Tsang, T. C. Lai, and H. Wang, "A Review on 

Techno-Economics and Financing for Grid Energy Storage Systems," in 2019 

IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 

1613-1619. 

[102] A. Botterud and M. Korpås, "A stochastic dynamic model for optimal timing 

of investments in new generation capacity in restructured power systems," 

https://www.energystorageexchange.org/projects


 

 
142 

 

International Journal of Electrical Power & Energy Systems, vol. 29, pp. 163-

174, 2007/02/01/ 2007. 

[103] M. Kozlova, "Real option valuation in renewable energy literature: Research 

focus, trends and design," Renewable and Sustainable Energy Reviews, vol. 

80, pp. 180-196, 2017/12/01/ 2017. 

[104] W. B. Powell, "Clearing the Jungle of Stochastic Optimization," in Bridging 

Data and Decisions, ed, 2014, pp. 109-137. 

[105] W. B. Powell, "A unified framework for stochastic optimization," European 

Journal of Operational Research, vol. 275, pp. 795-821, 2019. 

[106] H. Saboori, R. Hemmati, S. M. S. Ghiasi, and S. Dehghan, "Energy storage 

planning in electric power distribution networks – A state-of-the-art 

review," Renewable and Sustainable Energy Reviews, vol. 79, pp. 1108-1121, 

2017/11/01/ 2017. 

[107] M. Asensio, P. M. d. Quevedo, G. Muñoz-Delgado, and J. Contreras, "Joint 

Distribution Network and Renewable Energy Expansion Planning 

Considering Demand Response and Energy Storage—Part II: Numerical 

Results," IEEE Transactions on Smart Grid, vol. 9, pp. 667-675, 2018. 

[108] M. Asensio, P. M. d. Quevedo, G. Muñoz-Delgado, and J. Contreras, "Joint 

Distribution Network and Renewable Energy Expansion Planning 

Considering Demand Response and Energy Storage—Part I: Stochastic 

Programming Model," IEEE Transactions on Smart Grid, vol. 9, pp. 655-666, 

2018. 

[109] H. Saboori, R. Hemmati, and V. Abbasi, "Multistage distribution network 

expansion planning considering the emerging energy storage systems," 

Energy Conversion and Management, vol. 105, pp. 938-945, 2015/11/15/ 

2015. 

[110] S. F. Santos, D. Z. Fitiwi, M. Shafie-khah, A. W. Bizuayehu, C. M. P. Cabrita, 

and J. P. S. Catalão, "New Multi-Stage and Stochastic Mathematical Model 

for Maximizing RES Hosting Capacity—Part II: Numerical Results," IEEE 

Transactions on Sustainable Energy, vol. 8, pp. 320-330, 2017. 



 

 
143 

 

[111] S. F. Santos, D. Z. Fitiwi, M. Shafie-Khah, A. W. Bizuayehu, C. M. P. Cabrita, 

and J. P. S. Catalão, "New Multistage and Stochastic Mathematical Model for 

Maximizing RES Hosting Capacity—Part I: Problem Formulation," IEEE 

Transactions on Sustainable Energy, vol. 8, pp. 304-319, 2017. 

[112] A. S. A. Awad, T. H. M. E.-. Fouly, and M. M. A. Salama, "Optimal ESS 

Allocation for Benefit Maximization in Distribution Networks," IEEE 

Transactions on Smart Grid, vol. 8, pp. 1668-1678, 2017. 

[113] I. Bakke, S.-E. Fleten, L. I. Hagfors, V. Hagspiel, B. Norheim, and S. Wogrin, 

"Investment in electric energy storage under uncertainty: a real options 

approach," Computational Management Science, vol. 13, pp. 483-500, July 

01 2016. 

[114] Y. Moon, "Optimal Time to Invest Energy Storage System under Uncertainty 

Conditions," Energies, vol. 7, pp. 2701-2719, 2014. 

[115] D. Kroniger and R. Madlener, "Hydrogen storage for wind parks: A real 

options evaluation for an optimal investment in more flexibility," Applied 

Energy, vol. 136, pp. 931-946, 2014/12/31/ 2014. 

[116] E. Fertig, A. M. Heggedal, G. Doorman, and J. Apt, "Optimal investment 

timing and capacity choice for pumped hydropower storage," Energy 

Systems, vol. 5, pp. 285-306, June 01 2014. 

[117] G. Locatelli, D. C. Invernizzi, and M. Mancini, "Investment and risk appraisal 

in energy storage systems: A real options approach," Energy, vol. 104, pp. 

114-131, 2016/06/01/ 2016. 

[118] M. Collan, T. Haahtela, and K. Kyläheiko, "On the usability of real option 

valuation model types under different types of uncertainty," International 

Journal of Business Innovation and Research, vol. 11, pp. 18-37, 2016. 

[119] W. B. Powell and S. Meisel, "Tutorial on Stochastic Optimization in Energy—

Part I: Modeling and Policies," IEEE Transactions on Power Systems, vol. 31, 

pp. 1459-1467, 2016. 

[120] W. B. Powell and S. Meisel, "Tutorial on Stochastic Optimization in Energy—

Part II: An Energy Storage Illustration," IEEE Transactions on Power Systems, 

vol. 31, pp. 1468-1475, 2016. 



 

 
144 

 

[121] M. Kaut, K. T. Midthun, A. S. Werner, A. Tomasgard, L. Hellemo, and M. 

Fodstad, "Multi-horizon stochastic programming," Computational 

Management Science, vol. 11, pp. 179-193, January 01 2014. 

[122] Lazard. (2018). Levelized Cost of Storage Analysis—Version 4.0. Available: 

https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-

version-40-vfinal.pdf 

[123] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, 

"Deterministic Policy Gradient Algorithms," presented at the Proceedings of 

the 31st International Conference on Machine Learning, Bejing, China, 2014. 

[124] M. L. Puterman, Markov Decision Processes, First Edition ed. Hoboken, New 

Jersey: John Wiley & Sons, Inc., 1994. 

[125] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 

Second Edition ed. Cambridge, MA: MIT Press, 2018. 

[126] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, et 

al., "Mastering the game of Go with deep neural networks and tree search," 

Nature, vol. 529, p. 484, 01/27/online 2016. 

[127] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, et 

al., "Human-level control through deep reinforcement learning," Nature, 

vol. 518, p. 529, 02/25/online 2015. 

[128] T. Degris, M. White, and R. S. Sutton, "Off-policy actor-critic," presented at 

the Proceedings of the 29th International Coference on International 

Conference on Machine Learning, Edinburgh, Scotland, 2012. 

[129] M. J. Hausknecht and P. Stone, "Deep Reinforcement Learning in 

Parameterized Action Space," presented at the 4th International Conference 

on Learning Representations, San Juan, Puerto Rico, 2016. 

[130] SEMOpx. (2019). Day-Ahead Market Results. Available: 

https://reports.semopx.com/api/v1/documents/static-

reports?Group=Market%20Data&name=ETS%20Market%20Results&page= 

[131] Tesla. Tesla Powerwall 2 Specifications Available: 

https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202

_AC_Datasheet_en_GB.pdf 

https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf
https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf
https://reports.semopx.com/api/v1/documents/static-reports?Group=Market%20Data&name=ETS%20Market%20Results&page=
https://reports.semopx.com/api/v1/documents/static-reports?Group=Market%20Data&name=ETS%20Market%20Results&page=
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_GB.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_GB.pdf


 

 
145 

 

[132] Tesla. (2017). Tesla Powerwall 2 Warranty. Available: 

https://www.tesla.com/sites/default/files/pdfs/powerwall/powerwall_2_ac

_warranty_europe_1-5_english.pdf 

[133] F. Ocker and V. Jaenisch, "The way towards European electricity intraday 

auctions – Status quo and future developments," Energy Policy, vol. 145, p. 

111731, 2020. 

[134] P. Shinde and M. Amelin, "A Literature Review of Intraday Electricity 

Markets and Prices," in IEEE Milan PowerTech, Milan, Italy, 2019. 

[135] SEMO. (November 01, 2020). Industry Guide to the I-SEM. Available: 

https://www.sem-o.com/documents/general-publications/I-SEM-Industry-

Guide.pdf 

[136] SEMO. (November 20, 2020). Trading - Industry Guide to the I-SEM. 

Available: https://www.sem-o.com/training/modules/market-

overview/Trading.pdf 

[137] T. Yang, L. Zhao, W. Li, and A. Y. Zomaya, "Reinforcement learning in 

sustainable energy and electric systems: a survey," Annual Reviews in 

Control, vol. 49, pp. 145-163, 2020. 

[138] Z. Zhang, D. Zhang, and R. C. Qiu, "Deep reinforcement learning for power 

system applications: An overview," CSEE Journal of Power and Energy 

Systems, vol. 6, pp. 213-225, 2020. 

[139] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al., 

"Continuous control with deep reinforcement learning," presented at the 

4th International Conference on Learning Representations, San Juan, Puerto 

Rico, 2016. 

[140] S. Fujimoto, H. v. Hoof, and D. Meger, "Addressing Function Approximation 

Error in Actor-Critic Methods," presented at the Proceedings of the 35th 

International Conference on Machine Learning, Stockholm, Sweden, 2018. 

[141] I. N. Moghaddam, B. Chowdhury, and M. Doostan, "Optimal Sizing and 

Operation of Battery Energy Storage Systems Connected to Wind Farms 

Participating in Electricity Markets," IEEE Transactions on Sustainable 

Energy, vol. 10, pp. 1184-1193, 2019. 

https://www.tesla.com/sites/default/files/pdfs/powerwall/powerwall_2_ac_warranty_europe_1-5_english.pdf
https://www.tesla.com/sites/default/files/pdfs/powerwall/powerwall_2_ac_warranty_europe_1-5_english.pdf
https://www.sem-o.com/documents/general-publications/I-SEM-Industry-Guide.pdf
https://www.sem-o.com/documents/general-publications/I-SEM-Industry-Guide.pdf
https://www.sem-o.com/training/modules/market-overview/Trading.pdf
https://www.sem-o.com/training/modules/market-overview/Trading.pdf


 

 
146 

 

[142] I. Hauer, S. Balischewski, and C. Ziegler, "Design and operation strategy for 

multi-use application of battery energy storage in wind farms," Journal of 

Energy Storage, vol. 31, p. 101572, 2020. 

[143] J. Wu, B. Zhang, H. Li, Z. Li, Y. Chen, and X. Miao, "Statistical distribution for 

wind power forecast error and its application to determine optimal size of 

energy storage system," International Journal of Electrical Power & Energy 

Systems, vol. 55, pp. 100-107, 2014. 

[144] S. Shafiee, H. Zareipour, and A. M. Knight, "Developing Bidding and Offering 

Curves of a Price-Maker Energy Storage Facility Based on Robust 

Optimization," IEEE Transactions on Smart Grid, vol. 10, pp. 650-660, 2019. 

[145] D. McConnell, T. Forcey, and M. Sandiford, "Estimating the value of 

electricity storage in an energy-only wholesale market," Applied Energy, vol. 

159, pp. 422-432, 2015. 

[146] K. Pandžić, H. Pandžić, and I. Kuzle, "Virtual storage plant offering strategy in 

the day-ahead electricity market," International Journal of Electrical Power 

& Energy Systems, vol. 104, pp. 401-413, 2019. 

[147] F. J. Heredia, M. D. Cuadrado, and C. Corchero, "On optimal participation in 

the electricity markets of wind power plants with battery energy storage 

systems," Computers & Operations Research, vol. 96, pp. 316-329, 2018. 

[148] J. L. Crespo-Vazquez, C. Carrillo, E. Diaz-Dorado, J. A. Martinez-Lorenzo, and 

M. Noor-E-Alam, "A machine learning based stochastic optimization 

framework for a wind and storage power plant participating in energy pool 

market," Applied Energy, vol. 232, pp. 341-357, 2018. 

[149] Y. Wang, Y. Dvorkin, R. Fernández-Blanco, B. Xu, T. Qiu, and D. S. Kirschen, 

"Look-Ahead Bidding Strategy for Energy Storage," IEEE Transactions on 

Sustainable Energy, vol. 8, pp. 1106-1117, 2017. 

[150] D. Krishnamurthy, C. Uckun, Z. Zhou, P. R. Thimmapuram, and A. Botterud, 

"Energy Storage Arbitrage Under Day-Ahead and Real-Time Price 

Uncertainty," IEEE Transactions on Power Systems, vol. 33, pp. 84-93, 2018. 



 

 
147 

 

[151] S. Nojavan, A. Akbari-Dibavar, and K. Zare, "Optimal energy management of 

compressed air energy storage in day-ahead and real-time energy markets," 

IET Generation, Transmission & Distribution, vol. 13, pp. 3673-3679, 2019. 

[152] E. Nasrolahpour, J. Kazempour, H. Zareipour, and W. D. Rosehart, "A Bilevel 

Model for Participation of a Storage System in Energy and Reserve Markets," 

IEEE Transactions on Sustainable Energy, vol. 9, pp. 582-598, 2018. 

[153] J. Cao, D. Harrold, Z. Fan, T. Morstyn, D. Healey, and K. Li, "Deep 

Reinforcement Learning-Based Energy Storage Arbitrage With Accurate 

Lithium-Ion Battery Degradation Model," IEEE Transactions on Smart Grid, 

vol. 11, pp. 4513-4521, 2020. 

[154] H. Wang and B. Zhang, "Energy Storage Arbitrage in Real-Time Markets via 

Reinforcement Learning," in 2018 IEEE Power & Energy Society General 

Meeting (PESGM), Portland, USA, 2018. 

[155] G. Bertrand and A. Papavasiliou, "Adaptive Trading in Continuous Intraday 

Electricity Markets for a Storage Unit," IEEE Transactions on Power Systems, 

vol. 35, pp. 2339-2350, 2020. 

[156] Lazard. (June 30, 2020). Levelized Cost of Storage Analysis—Version 5.0. 

Available: https://www.lazard.com/media/451087/lazards-levelized-cost-of-

storage-version-50-vf.pdf 

[157] SEMO. (November 15, 2020). Wind and Grid Forecast Data. Available: 

https://www.sem-o.com/market-data/static-reports/index.xml 

[158] SEMOpx. (November 15, 2020). Electricity Market Clearing Prices. Available: 

https://www.semopx.com/market-data/static-reports/semopx-historical-

market-data-final-v2.pdf 

[159] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 

presented at the 3rd International Conference for Learning Representations, 

San Diego, 2015. 

 

 

https://www.lazard.com/media/451087/lazards-levelized-cost-of-storage-version-50-vf.pdf
https://www.lazard.com/media/451087/lazards-levelized-cost-of-storage-version-50-vf.pdf
https://www.sem-o.com/market-data/static-reports/index.xml
https://www.semopx.com/market-data/static-reports/semopx-historical-market-data-final-v2.pdf
https://www.semopx.com/market-data/static-reports/semopx-historical-market-data-final-v2.pdf

	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Planning Objective Description
	1.3.1 Investment Scale
	1.3.2 Investment Timing
	1.3.3 Dispatch Adaptability

	1.4 Research Question
	1.5 Aims and Objectives
	1.6 Document Structure and Layout
	1.7 Proposed Outcomes

	2 Literature Review
	2.1 Overview
	2.2 Selecting Scoping Elements for Study
	2.2.1 Reviewing FEP Infrastructure Toolkit
	2.2.2 Reviewing FEP Industrial Toolkit
	2.2.3 Summary

	2.3 Reviewing Investment Studies and Alternative Assessments scoping element within BESS sizing
	2.4 Reviewing Future Expansion scoping element within BESS sizing
	2.5 Reviewing Operational Philosophy scoping element within BESS sizing
	2.6 Reviewing Technology scoping element within BESS sizing
	2.7 Reviewing Location scoping element within BESS sizing
	2.8 Reviewing Capacity (Power) scoping element within BESS sizing
	2.9 Consolidation and Renaming

	3 Overcoming the Investment Scale Problem of Annual Worth when sizing Battery Energy Storage Systems
	3.1 Abstract
	3.2 Introduction
	3.3 Literature Review
	3.4 Problem Formulation
	3.5 System Modelling
	3.5.1 Model
	3.5.1.1 BESS Model
	3.5.1.2 Microgrid Model
	3.5.1.3 Time Horizon

	3.5.2 Objective Functions
	3.5.3 Multi Objective – Paired Comparison, Rating Method and Compromise Programming

	3.6 Solution Algorithm
	3.7 Scenarios and Data
	3.8 Analysis
	3.9 Conclusion

	4 Optimal Investment Timing and Sizing for Battery Energy Storage Systems
	4.1 Abstract
	4.2 Introduction
	4.3 Literature Review
	4.4 Modeling
	4.4.1 Operational Model
	4.4.1.1 State Variable
	4.4.1.2 Decision Variable
	4.4.1.3 Exogenous Information
	4.4.1.4 Transition Function
	4.4.1.5 Objective Function – (Operational Model)

	4.4.2 Planning Model
	4.4.2.1 Objective Function – (Planning Model)
	4.4.2.2 Constraints


	4.5 Reinforcement Learning Algorithm
	4.5.1 Deterministic Policy Gradient Algorithm

	4.6 Data and Model Inputs
	4.6.1 Day-Ahead Electricity Price
	4.6.2 BESS CAPEX
	4.6.3 BESS Degradation

	4.7 Analysis
	4.8 Conclusion and Future Work

	5 Incorporating cross-market dispatch adaptability when sizing battery energy storage systems
	5.1 Abstract
	5.2 Introduction
	5.3 Literature Review
	5.4 Model Mathematical Formulation
	5.4.1 Benefit-Cost Ratio and Cost
	5.4.2 Expected Benefit of BESS
	5.4.2.1 Dispatch Models
	5.4.2.2 Constraints and Bounds


	5.5 Implementation
	5.5.1 Model-based Stochastic Programming
	5.5.2 Model-free TD3 Algorithm

	5.6 Results and Discussion
	5.7 Conclusion and Future Work

	6 Conclusion
	References

