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Abstract

The thesis introduces a new method, the MC-Tree method, for pricing certain finan-

cial derivatives, especially options with high accuracy and efficiency. Our solution

is to combine Monte Carlo (MC) method and Tree method by doing a mixing

distribution on the tree, and the output is the compound distribution on the tree.

The compound distribution in the tree output (after a logarithmic transformation

of the asset prices) is not the ideal Gaussian distribution but has entropy values

close to the maximum possible Gaussian entropy. We can get closer using entropy

maximization. We introduce two correction techniques: distribution correction and

bias correction to improve the accuracy and completeness of the model. The thesis

presents an algorithm and numerical results for calculations of CVA on an American

put option using the MC-Tree method.

The MC-Tree method with the distribution correction technique significantly im-

proves accuracy, resulting in practically exact solutions, compared to analytical

solutions, at the tree depth N = 50 or 100 and MC-drawings M = 105. The bias-

correction technique makes the resulting tree model complete in the sense of financial

mathematics and obtains the risk-neutral probability. Besides, we have obtained

new formulae for the calculations of the entropy and the Kullback-Leibler divergence

for rational densities and approximate entropy of finite Gaussian mixture.
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Glossary

Q denotes the risk-neutral measure.

τ denotes a parameter characterizing the tree of arbitrary tree depth.

δ denotes the time-step length.

C(x) denotes the distribution correction factor.

Od denotes the set of dx d orthogonal matrices.

R = ||X||2 =
√
x2

1 + x2
2 + ...+ x2

d denotes the radius of a point in Rd.

Rk,m denotes a drawing of the radius at the kth node in the mth tree.

Rk = ||Xk|| denotes the radius of the vectors at the nodes k in the tree.

P = R2

2N
denotes the standardized squared radius.

Counterparty credit risk (CCR) is the risk that a party (a counterparty) in an

over-the-counter (OTC) derivatives contract is incapable of following its obligation

due to its default, which causes a significant loss to the other party (bank).

Credit Valuation Adjustment (CVA) value shows a change to the market value

of derivative instruments after taking into account the possibility of a counterparty’s

default.

Netting set is a group of transactions with a single counterparty.

Mark to Market (MtM) recovery value is the recovery value based on the

current market value of investments.
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Chapter 1

Introduction

1.1. Motivation

1.1.1. Benefits and Drawbacks of Monte Carlo Simulation and Tree Meth-

ods

Monte Carlo Simulation is popular in pricing single and multi-asset derivatives due

to some reasons. Firstly, the error converges to zero at the rate 1√
M

, where M is

the number of simulations, which does not depend on the dimension of the problem.

A higher number of simulations is required to obtain better accuracy. This is the

result of the central limit theorem. Secondly, Monte Carlo simulation is a simple

implementation because correlations and path dependency can be easily modelled

and handled. The simple workload is to simulate paths and corresponding cash flows,

average the payoff and take the present value.

The main advantage of classical methods such as the Tree or Lattice method is its

simplicity for implementation in option pricing. A higher tree depth is required to
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get good precision. Tree methods have a drawback with high-dimensional pricing

problems because the number of nodes grows exponentially with the dimension.

The combination with Monte Carlo can handle this drawback of the tree methods.

Besides, we use the recombining multinomial tree (binomial tree) based on Pascal’s

simplex in [40] (Pascal’s triangle) to reduce the number of nodes of classical tree

methods. As a result, the computational cost is reduced. We refer to [40] for details of

the model: recombining multinomial trees based on Pascal’s simplex on multi-assets

options.

1.1.2. An MC-Tree Method

The research problem is to introduce a fast pricing method for certain financial

derivatives, especially options with the requirement of high accuracy. MC-Tree

method allows to generate parameters of each tree with a chosen probability distribu-

tion. MC-Tree method holds benefits of both the Monte Carlo and the tree method.

Also, one advantage of the MC-tree approach is that it allows us to work with the

confidence interval of the MC simulations. If we use only the tree method, we can

not have the confidence interval and its benefit. The confidence interval depends on

the number of simulations. The maximal depth of the tree used in MC-Tree method

is expected to be limited due to computational constraints for the multi-asset case.

Options form a large class of derivatives on the financial market. The majority of

exchange-traded options on a single stock tend to be American style, while options

on indexes are European. Unlike a European option, an American option gives the

holder the right (but not the obligation) to exercise at any time before the expiration

date. The American options have a cash flow that depends on the price path of the
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underlying assets and the decisions of the holder. We look at options and financial

derivatives for which the payout only depends on the share prices at the expiry date.

Note that some other options can still be valued with tree methods, but we do not

go into that in this thesis.

After the financial crisis of 2007-2008, there was a requirement for a significant change

in financial modeling and risk management. The financial regulators require banks

to hold an amount of capital to capture the credit risk in portfolios. The BIS (Bank

of International Settlements) issued the Basel Accords-Basel I, Basel II, and Basel

III (see [2], [3] ) for the calculations of the required capital. The BIS published Basel

III to work along with Basel II in response to the deficiencies in banking regulation

in Basel I. Basel III presents a new measure, named credit valuation adjustment

(CVA), which is the market value of counterparty credit risk (CCR) [3]. This is the

motivation for developing the algorithm to calculate CVA on an American option

using the MC-Tree method.

This research is significant because we introduce a new method to obtain faster

and more accurate option pricing calculations. The method could be very useful

for the financial industry, especially the derivative pricing and risk management

industry. Besides, in this thesis, as a spin-off of our research into the MC-Tree

method, we develop analytic formulae for the entropy and the Kullback-Leibler

(KL) divergence of rational densities, which play an important role in mathematical

statistics, information theory, mathematical systems theory, and related fields.

All numerical experiments were conducted on the machine I5-10210U, 8GB memory

with programming language R i386 3.5.1. We used the R package: ”far” for generat-

ing the matrix H in chapter three. In this thesis, we have relied on existing routines

in Mathematica symbolic computation to find the analytic compound density.



4 Introduction

1.2. Literature Review

The pioneering work of Bachelier (1900) is now seen as the forerunner of what would

become a massive usage of mathematical models in finance since the last quarter

of the 20th century. There is a demand for fast and accurate methods for pricing

options as more exotic financial instruments are developed and traded on the market

over the years. Black and Scholes [5] derived the Black-Scholes partial differential

equation to price simple European options on a single asset. Cox et al. in [18]

extended it to the generalized Black-Scholes equation to price derivatives on multiple

assets. Subsequently, analytical solutions for quite a number of derivatives have been

derived, using either the Black-Scholes partial differential equation or the discounted

risk-neutral expectation method, but it is too difficult to solve the equation analytic-

ally for many other derivatives. Based on the Black-Scholes model for those cases

for which no useful analytical solution is available many methods for approximate

option valuation have been developed, but there is still room for improvement. Our

contribution is to introduce a new computational approach to find the value of

financial derivatives with arbitrary boundary conditions and generalization to the

case of American options and other classes of options such as barrier options.

Boyle [6] introduced the Monte Carlo approach to option pricing, and it is still very

popular because of its flexibility to approximate all kinds of option prices. Monte

Carlo simulation has been extended in pricing American options with popular meth-

ods such as the Stochastic Mesh [14], the Least Square Monte Carlo [35], and the

State-Space partition method [44], and so on. Longstaff and Schwartz [35] introduced

a least square regression method (LSM) to approximate the prices of American

options. Much research has been done subsequently to give the analysis and the
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convergence properties of the LSM.

Lattice-type models for pricing options were implemented in many works ( [7], [8]).

Various choices for tree parameters lead to different existing binomial models. The

first proposed formulation of the binomial tree in financial mathematics was the

research by Cox, Ross, and Rubinstein [19], providing a simplified discrete approach

to option pricing on one asset using the recombining binomial trees based on Pascal’s

triangle. The authors in this article proposed to take u = 1/d, where u, d represent

upward and downward movements. The work is still very popular today. One

benefit of this binomial tree is that it exhibits a unique risk-neutral probability.

Sierag and Hanzon [40] extended this to multi-asset option pricing using recombining

multinomial trees based on Pascal’s simplex. A second popular model was the

research by Jarrow and Rudd [29], also known as the equal-probability model. One

drawback is that the model is no longer a risk-neutral model although it matches

the risk-neutral continuous-time model in the limit for the time-step length going to

zero. Authors in ( [19], [29]) matched the first two moments of the multiplicative

tree to the risk-neutral continuous model, leading to a system of two equations for

three unknowns. Tian’s approach [43] was to equate the third moment to handle the

issue of this free variable. Leisen and Reimer [32] presented the most different choice

of the model parameters u, d and p among the approaches mentioned above. They

devoted attention to improving the convergence speed for European call options

when approximating the Gaussian distribution. Leisen [31] presented a convergence

analysis for binomial models in pricing American put options.

Although many research advances have been proposed so far to price American

option contracts, the valuation of American options has not been fully solved, and

it remains an interesting topic for researchers in financial mathematics. Pricing
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American options requires complex and time-consuming methods to ensure high

accuracy due to the absence of analytical solutions in a simple form.

CCR is the risk that a party (a counterparty) in an over-the-counter (OTC) derivat-

ives contract is incapable of following its obligation due to its default, which causes a

significant loss to the other party (bank). CVA calculations are complicated because

modelling CVA consists of at least three components: the exposure, the default

probability of the counterparty, and the loss given default (LGD) (see [22]). The

default probability depends on the credit quality of the counterparty. If the exposure

profile and the credit quality of the counterparty are positively or negatively related,

so-called right-way risk (RWR) or wrong-way risk (WWR) occurs. Otherwise, one

speaks about unilateral CVA.

Many studies worked on CVA to meet the requirement of the advanced risk man-

agement in banks or other financial institutions. There are existing approaches in

the literature. Direct approach for CVA works well with derivatives in the portfolio

for which one has analytical pricing formulas available. This method consists of the

following three steps. Step one is to simulate paths of the risk factors such as the

short rate for interest rate derivatives, stock prices for option on the stock, and so on

at time grid t0 = t, t1, ..., tN = T. Then they value the exposure at each time step

ti and for each simulated path k, 1 ≤ k ≤M at step two. Step three is to calculate

the expected positive exposure at each time step ti. The direct approach does not

work well with complex derivatives, which do not have an available analytical pricing

formula. An alternative method, Least Squares Monte Carlo (LSMC), was introduced

to solve this problem. LSMC approach for CVA has been investigated in a variety

of papers. LSMC is the combination of Monte Carlo simulation with least-squares

regression. In this thesis, we present a new approach: MC-Tree approach for CVA.
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The article by Zhu (see [45]) focused on pricing counterparty risk and modelling credit

exposure at the contract and counterparty levels. The article also gave an example

of calculating unilateral CVA without WWR for a portfolio of vanilla interest swaps

with a counterparty. This example used the classical MC method, which cannot

work for products without a closed-form or analytic pricing. The default probability

for the counterparty was implied from the current spreads market of its CDS, and

a Matlab function was used to generate the cumulative probability of default at

each simulation date. Authors in [35] used LSM to price path-dependent derivatives,

Cesari et al. [16] recommended the combination with the Monte Carlo simulation

for the calculation of expected exposures and CVA. Broadie and Glasserman [13]

observed a bias in estimating the conditional expectation function if they use the

same set of simulated sample paths. Hence, the first simulation of the underlying

asset is added to estimate the regression coefficients before the second simulation in

calculations of the continuation values. Authors in [33] calculated the unilateral CVA

for a vanilla swap portfolio based on the nested LSMC method. Reference to [38]

developed Stochastic Grid Bundling Method (SGBM) to calculate the exposure

profile for Bermudan options under the Heston model. The accuracy of SGBM will

further be improved using multi-variable monomials under multi-dimensional models

such as the Heston Hull-White model and the H1HW model. This reference studied

CVA with WWR for European and Bermudan options using an intensity model. The

paper presented three models to show the dependency between the underlying assets

and the intensity in the affine-jump diffusion (AJD) class (see [39], [20], [27], [11]),

and [21]). Reference [27] introduced a simple model for the calculations of CVA with

RWR and WWR. The WWR is modeled by a deterministic relation between the

underlying market factors and the intensity. The research by Y. Shen (see [39]) cal-
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culated CVA with WWR on the exposure profiles for multi-asset Bermudan options

under the GBM asset dynamics. Authors in [21] have drawn attention to research in

which the intensity is modeled by a CIR jump-diffusion model, and in which there is

a correlation between the diffusion term and the short rate for portfolios of swaps.

Similarly, reference [11] worked on credit spread options.

In this thesis, unilateral CVA will be computed for an American put option based

on standard assumptions, using the MC-Tree method.



Chapter 2

Pricing Single-Asset Options Using

MC-Tree Method

2.1. Introduction

Various existing versions of binomial models use different choices for parameters. We

aim to improve the accuracy and speed of the binomial method by applying Monte

Carlo simulation on these parameters. The idea is to generate the tree directions

and probabilities through a parameter. This parameter is drawn from a probability

density, called the mixing density. A formula will be provided for the resulting

compound density that is then generated by the tree. The goal is to find a mixing

density such that the corresponding compound density is close to a Gaussian density

when working with the additive representation of the tree. It does not seem to be

possible to find a mixing density for which the compound density is exactly Gaussian.

We succeed in specifying a class of mixing densities for which the compound density
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is rational (and hence smooth). The standard Gaussian density can be approximated

by rational densities as follows from the following well-known limit:

lim
N→∞

1√
2π

(1 + x2/2
N

)N
=

1√
2π
e−

x2

2 .

Therefore, it is not unreasonable to construct rational compound densities to approx-

imate the standard Gaussian density function. It is well-known from the literature

that the standard Gaussian distribution N (0, 1) with the pdf f(x) = 1√
2π
e−

x2

2

maximizes the entropy integral

Ent(f) := −
� ∞
∞

f(x) log(f(x))dx,

subject to the constraints

� ∞
−∞

f(x)dx = 1,

� ∞
−∞

xf(x)dx = 0,

� ∞
−∞

x2f(x)dx = 1, f(x) ≥ 0 ∀x ∈ R

and more generally a Gaussian density with given mean and variance maximizes the

entropy among all probability densities with that same mean and variance.

2.2. Parameters

Set a mesh on the time horizon [0, T ]: 0 = t0 < t1 < · · · < tN = T with tn = δn

for n = 0, 1, . . . , N where δ := T
N

. Let Sn ≈ S(tn) = S(δn) where S(tn) is

the true underlying asset price at time tn generated by the dynamic process, e.g.

the Geometric Brownian motion (GBM). If we have reached time point nδ and
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the corresponding asset price Sn, then the multiplicative binomial tree has the

probability p1 > 0 of moving ”down” to Sned and p2 > 0 of moving ”up” to Sneu,

where p1 + p2 = 1, Sn > 0, S0 = S0 > 0 fixed. Here, u > d; this is actually all that is

required, and u > 0 and d < 0 is not required. So for n = 0, 1, . . . , we have

S(n+1) =

 Sneu with prob p2

Sned with prob p1.

Equivalently, we have the following additive tree.

log(S(n+1)) =

 log(Sn) + u with prob p2

log(Sn) + d with prob p1.

As the mean and variance can always be adapted using an affine transformation,

we will first consider the case in which S0 = 1, mean=0 and variance=1 for each

time-step. This implies

p2 + p1 = 1,

p2u+ p1d = 0,

p2u
2 + p1d

2 = 1,

p2 > 0, p1 > 0.

The family of all solutions can be parametrized by an angle θ, with 0 < θ < π
2
, as

follows:

� p
1/2
1 = cos(θ),

� p
1/2
2 = sin(θ),
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� u =
√

p1

p2
,

� d = −
√

p2

p1
.

For a geometric interpretation of the angle θ, we refer to Sierag and Hanzon [40].

Hence, we now consider θ to be a random variable with distribution function Pm,

supported on (0, π/2), providing us with a mixing distribution on the tree. We can

summarize this schematically as follows:

log(SN) | θ ∼ Binomial, θ ∼ Pm.

Here by ”Binomial” we mean the distribution of log(SN ) at the final nodes of the tree.

Combining the binomial distribution on the log-asset-prices with the distribution on

θ will result in a compound density for log(SN). We will say more about how the

compound density can be calculated in the next section.

The proposed approach is now to try to compute an expected value of a payoff

function defined on log(SN), with respect to the compound density by

1. assembling, say, M drawings of the variable θ and

2. for each θ to ”run the tree” to obtain an approximation to the expected value

of the payoff, and

3. to compute the average and standard deviation of the tree-outcomes to obtain a

Monte Carlo estimation of the expected payoff, as well as a confidence interval.

Informally we refer to this procedure as ”shaking the tree”. In terms of Monte Carlo

theory, this method falls under the category ”variance reduction by conditioning” [9].

The idea is that because the tree outcomes will already be very close to the true
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value (especially for deeper trees), the Monte Carlo outcomes will be very accurate.

Instead of θ, we can also use τ = tan(θ) in which case d = −τ, u = 1
τ
. This is

illustrated by the two-step additive tree in Figure 2.1.

Figure 2.1: Evolution of St in a two-step additive binomial tree. Here

p2 = τ2

1+τ2 , p1 = 1
1+τ2 .

2.3. Preliminaries to the Derivation of the General Compound Density

Formula

To get good approximations of the Gaussian distribution, we try to find mixing

densities for which the entropy of the compound density is high. The motivation is

that our tree construction forces it to have a distribution on the end-nodes at step N

with zero mean and variance equal to N . This will then also hold for the compound

density of any such MC-Tree. If τ denotes a parameter characterizing a 1-step tree

and hence the corresponding tree of arbitrary tree depth, and X the random variable
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resulting from the MC-Tree procedure at time step N , then

EX|τ (X) = 0, EX|τ (X2) = N.

This implies that

EX(X) = Eτ (EX|τ (X | τ)) = 0, EX(X2) = Eτ (EX|τ (X2 | τ)) = N.

Let N ∈ N. Define the log-price of the asset at the final step from the additive tree

xN,k = −(N − k)τ + k
1

τ
, τ > 0, k = 0, 1, 2, . . . , N.

Note that

Range of xN,k =


(−∞, 0) if k = 0,

R if k = 1, 2, . . . , N − 1,

(0,∞) if k = N.

As the derivative x′N,k(τ) = −(N − k)− k
τ2 < 0 ∀ τ ∈ (0,∞), it follows that xN,k is

monotonically decreasing for each N ∈ N and k ∈ {0, 1, . . . , N}. Hence, xN,k(τ) has

an inverse function τk(x) with domain (−∞, 0) if k = 0, R if k = 1, . . . , N − 1 and

(0,∞) if k = N ; and range (0,∞) in all cases.

As can easily be verified, one has

τ0(x) = − x
N

if x < 0; (2.1)

τk(x) =
−x+

√
x2 + 4k(N − k)

2(N − k)
if k 6= 0, N ; (2.2)

τN(x) =
N

x
if x > 0. (2.3)
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Note that τk(x)τN−k(−x) = 1 holds for all x for which the left hand side is defined.

For later reference, we also define

yk(x) =
√
x2 + 4k(N − k), k = 1, 2, . . . , N − 1. (2.4)

The variable yk can also be expressed in terms of τk, as follows.

yk(x) = (N − k)τk + k
1

τk
= (N − k)τk(x) + kτN−k(−x).

Now, for an additive binomial tree with d = −τ with the probability 1
1+τ2 and u = 1

τ

with the probability τ2

1+τ2 , the probability distribution of the values at the nodes at

the tree depth N can be expressed as:

XN |τ =


xN,0(τ) with prob g0(τ) := 1

(1+τ2)N
,

xN,k(τ) with prob gk(τ) :=
(
N
k

) (τ2)k

(1+τ2)N
, k = 1, N − 1,

xN,N(τ) with prob gN(τ) := (τ2)N

(1+τ2)N
.

(2.5)

Note that XN |τ is the sum of N stochastically independent copies of the random

variable X1|τ , and hence it has mean E[XN |τ ] = 0, and the variance at E[(XN |τ )
2] = N.

So 1√
N
XN |τ is a random variable with mean zero and variance one.

Application of the Central Limit Theorem tells us that the cumulative distribution

function (cdf) of 1√
N
XN |τ converges weakly in distribution to the cdf of a standard

Gaussian random variable for N →∞ (and τ > 0 fixed) (see [34]). The cdf of XN |τ



16 Pricing Single-Asset Options Using MC-Tree Method

can be described as follows.

F (x | τ) = P (XN |τ ≤ x | τ) = g0(τ)1{x≥xN,0(τ) & x<0}

+
N−1∑
k=1

gk(τ)1{x≥xN,k(τ)} + gN(τ)1{x≥xN,N (τ)>0}.

If we now consider the tree parameter τ as random with the probability density

function pm(τ) (we will call pm(τ) the ”mixing density”) then the resulting compound

cdf of X will be Q(x) :=
�∞

0
F (x | t)pm(t)dt.

2.4. General Compound Density Formula

Theorem 2.4.1. The compound probability density function q(x) = Q′(x) of X

satisfies the following formula

q(x) =
N∑
k=0

Ck(x), (2.6)

where:

� C0(x) = 1
(1+τ2

0 )N
pm(τ0) 1

N
1{x≤0},

� CN(x) =
(τ2
N )N

(1+τ2
N )N

pm(τN)N
x21{x>0},

� Ck(x) =
(
N
k

) (τ2
k )k

(1+τ2
k )N

pm(τk)
τk
yk
, k = 1, N − 1.

Proof. Fix N. As for each k ∈ {0, . . . , N}, the function xN,k(τ) is monotonically
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decreasing with inverse τk(x), we can write

Q(x) =

� ∞
0

F (x | τ)pm(τ)dτ = 1{x<0}

�
{τ≥τ0(x)& x<0}

g0(τ)pm(τ)dτ

+
N−1∑
k=1

�
{τ≥τk(x)}

gk(τ)pm(τ)dτ + 1{x>0}

�
{τ≥τN (x) & x>0}

gN(τ)pm(τ)dτ.

For k = 1, . . . , N − 1, we have

1 =
d

dx
xN,k(τk(x)) = {−(N − k)− k

τ 2
k

}τ ′k = −((N − k)τk + k
1

τk
)
τ ′k
τk

= −yk
τk
τ ′k.

Therefore,

τ ′k(x) = −τk
yk
, k = 1, . . . , N − 1.

Recall τ0(x) = − x
N
⇒ τ ′0(x) = − 1

N
, x < 0, and τN (x) = N

x
⇒ τ ′N (x) = −N

x2 , x > 0.

Now taking the derivative of Q(x), we obtain

q(x) = 1{x<0}g0(τ0(x))pm(τ0(x))
1

N
+

N−1∑
k=1

gk(τk(x))pm(τk(x))
τk(x)

yk(x)

+ 1{x>0}gN(τN(x))pm(τN(x))
N

x2
= C0(x) +

N−1∑
k=1

Ck(x) + CN(x).

Remark: It can be proved that the standard Gaussian distribution can not be

obtained in a 1-step tree. At N = 1, the compound density q(x) = C0(x) + C1(x),
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where

C0(x) =
1

1 + x2
pm(−x)1{x<0},

C1(x) =
1

x2(1 + x2)
pm(

1

x
)1{x>0}.

Set C0(x) = f(x) on the negative half line, where f is the standard Gaussian pdf.

We obtain pm(−x) = f(−x)(1 + x2), x < 0. Then using pm(x), one can explicitly

calculate the corresponding C1(x) =
f( 1
x

)

x4 . Observe that limx→0
f( 1
x

)

x4 = 0. Hence, it

is itself not the standard Gaussian pdf on the positive half line. In other word, the

standard Gaussian pdf can be obtained on the negative half line. This requirement

fully determines the mixing density, and this mixing density produces a compound

density on the positive half-line that is not a standard Gaussian density at all.

2.5. Mixing Density

As is well-known, due to the convexity of the function g(y) = y log(y), if f(x) is a

pdf on R then f(x)+f(−x)
2

has entropy at least as high as f(x). As we are looking for

compound densities with high entropy, the consequence of this is that we can restrict

our search to mixing densities that produce an even compound density function. In

terms of the mixing distribution, this translates into considering mixing densities

which are invariant under a permutation of the two axes in the binomial tree. So we

use mixing probabilities on the recombining binomial tree such that any path and

its reflection have the same probability.
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Proposition 2.5.1. Consider the case the mixing density is c(p
1/2
1 )m1(p

1/2
2 )m2dp1. If

m1 +m2 is odd, then the corresponding pdf of τ is not a rational function. Otherwise,

if m1 +m2 is even, then the pdf of τ is rational, where τ = tan(θ) =
√

p2

p1
.

Proof. We have τ =
√

1
p1
− 1 so p1 = 1

1+τ2 . Hence

dp1 = | −2τ

(1 + τ 2)2
|dτ.

Hence,

c (p
1/2
1 )m1(p

1/2
2 )m2dp1 = 2c (1 + τ 2)−

m1
2 τm2+1(1 + τ 2)−

m2
2 (1 + τ 2)−2dτ

= 2c τm2+1 1

(1 + τ 2)
m1+m2

2
+2
dτ.

It follows that if m1 +m2 is even, the pdf in terms of τ is rational. Otherwise, the

pdf is not rational.

Our strategy is to use polynomials which are a linear combination of monomials

with even total degree.

Proposition 2.5.2. Every symmetric polynomial of the form (p
1/2
1 )m1(p

1/2
2 )m2 +

(p
1/2
1 )m2(p

1/2
2 )m1 with m1 + m2 ∈ 2N and m1,m2 ∈ N is a linear combination of

monomials (p
1/2
1 p

1/2
2 )k, k = 1, 2, ...,m1 ∨m2, where m1 ∨m2 := max(m1,m2).

Proof. First, note that at p1 = 0 as well as at p2 = 0, then polynomial

(p
1/2
1 )m1(p

1/2
2 )m2 + (p

1/2
1 )m2(p

1/2
2 )m1 = 0.
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If this is equal to a linear combination of monomials

(p
1/2
1 p

1/2
2 )k, k ∈ {0, 1, 2, ...,m1 ∨m2 := max(m1,m2)}

then the coefficient of (p
1/2
1 p

1/2
2 )0 = 1 will be zero. Hence, we can restrict the set

of values for k to the set {1, 2, 3, ...,m1 ∨ m2}. We will prove this proposition by

induction on m1 ∨m2.

If m1 ∨m2 = 1 then both m1 = 1 and m2 = 1 because m1, m2 ∈ N. Hence, there is

nothing to prove in this case.

Suppose the statement in the proposition is true for m1 ∨ m2 ≤ m0 (Induction

Hypothesis).

We want to show that the statement also holds in case m1 ∨m2 = m0 + 1.

Without loss of generality, consider

(p
1/2
1 )m1(p

1/2
2 )m2 + (p

1/2
1 )m2(p

1/2
2 )m1 , m1 −m2 = 2∆, ∆ ∈ N, m1 = m0 + 1,

then we can write this polynomial as

(p
1/2
1 )m2(p

1/2
2 )m2{(p1/2

1 )2∆ + (p
1/2
2 )2∆}.

Now consider

(p
1/2
1 )2∆ + (p

1/2
2 )2∆.

If ∆ = 1 then we get p1 + p2 = 1 and hence we are done.
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If ∆ > 1 then we can write

(p
1/2
1 )2∆ + (p

1/2
2 )2∆ = p∆

1 + p∆
2

= (p1 + p2)∆ −
∆−1∑
l=1

(
∆

l

)
{pl1p∆−l

2 }

= 1−
∆−1∑
l=1

(
∆

l

)
{pl1p∆−l

2 }

= 1− 1

2

∆−1∑
l=1

(
∆

l

)
{pl1p∆−l

2 + p∆−l
1 pl2}

= 1− 1

2

∆−1∑
l=1

(
∆

l

)
{(p1/2

1 )2l(p
1/2
2 )(2∆−2l) + (p

1/2
1 )2∆−2l(p

1/2
2 )2l};

and for each index l ∈ {1, 2, ..., (∆− 1)} in the summation, we have

((2l) ∨ 2(∆− l)) ≤ 2∆− 2, so for each term we can apply the induction hypothesis

to conclude that the proposition is true as 2∆− 2 +m2 = m1 − 2 = m0 + 1− 2 =

m0 − 1 ≤ m0. Note that we have used
(

∆
l

)
=
(

∆
∆−l

)
.

Remark:

1. If m1 = 0 or m2 = 0 then statement in the proposition still holds if we allow

k = 0 as well.

2. So it follows that we can write (p
1/2
1 )m1(p

1/2
2 )m2 + (p

1/2
1 )m2(p

1/2
2 )m1 as a linear

combination of (p
1/2
1 )k(p

1/2
2 )k. Now note that in the reduction process the total

degree never increases. Therefore 2k ≤ m1 +m2 ⇔ k ≤ m1+m2

2
.

We can conclude that it suffices if we want to restrict the mixing densities in terms of

p1, p2 to symmetric polynomials in p
1/2
1 , p

1/2
2 corresponding to rational pdfs in terms

of τ =
√

p2

p1
, to linear combination of monomials of the type (p

1/2
1 p

1/2
2 )k, k ∈ N0. For
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given k, such a monomial corresponds to a pdf in τ that can be derived as we will

see shortly.

A relatively simple class of mixing densities satisfying this invariance is given, in

terms of the parameter p1, by

1

2
cm(p

1/2
1 p

1/2
2 )m−2dp1, m ∈ N,

where p1 > 0, p2 > 0, p1 + p2 = 1 and cm is a normalization constant.

Recalling from section 2.2, p1 = cos2(θ), p2 = sin2(θ), the transformation τ = tan(θ)

leads to p1 = 1
1+τ2 , p2 = τ2

1+τ2 , so

1

2
cm(p

1
2
1 p

1
2
2 )m−2dp1 =

1

2
cm(

1

1 + τ 2
)(m−2)/2(

τ 2

1 + τ 2
)(m−2)/2|d(

1

1 + τ 2
)| = cm

τm−1

(1 + τ 2)m
dτ,

(2.7)

where the constant cm is given by

cm =
1�∞

0
τm−1

(1+τ2)m
dτ
. (2.8)

In terms of the parameter θ we obtain a third representation of these mixing densities:

1

2
cm(p

1
2
1 p

1
2
2 )m−2dp1 = cm(cos(θ) sin(θ))m−1dθ. (2.9)

The idea is now to apply the MC technique and draw τ from this probability

distribution on (0,∞). We will also make use of the transformation

τ = tan(θ)⇔ θ = arctan(τ), θ ∈ (0, π/2).
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Drawing τ can then be replaced by drawing θ and using τ = tan(θ).

2.6. Monte Carlo Drawing

In order to carry out the Monte Carlo simulations, we need to be able to draw

independent samples from the mixing distribution. A general technique in case the

cumulative distribution function (cdf) is available is to draw random samples from

the uniform distribution on the interval [0, 1] and to use the inverse function of the

cdf to obtain the desired samples. Note that as our mixing densities are everywhere

positive that the inverse of its cdf exists, and given any drawing from the uniform

distribution, the corresponding sample from the mixing distribution can be found,

for instance, by a bisection method. Therefore what remains is to find the cdf of

our mixing distributions. One way to do that is to work out the cdf of the mixing

density in terms of the angle θ. This can be done as follows:

Note that

pm(θ) = cm cos(θ)m−1 sin(θ)m−1

= cm(
eiθ + e−iθ

2
)m−1(

eiθ − e−iθ

2i
)m−1

= cm2−2(m−1) Re[(−i)m−1(ei2θ − e−i2θ)m−1]

= cm2−2(m−1) Re[(−i)m−1e−i2θ(m−1)((ei4θ − 1)m−1]

= cm2−2(m−1) Re[(−i)m−1e−i2θ(m−1)

m−1∑
s=0

(
m− 1

s

)
ei4sθ(−1)m−1−s]

= cm2−2(m−1) Re[(−i)m−1

m−1∑
s=0

(
m− 1

s

)
ei(4s−2(m−1))θ(−1)m−1−s].
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� In case m is odd, this has the following primitive function

cm2−2(m−1) Re[(−i)m−1

m−1∑
s=0, s6=m−1

2

(
m− 1

s

)
(−1)m−1−s

i(4s− 2(m− 1))
ei(4s−2(m−1))θ

+(−i)m−1

(
m− 1

(m− 1)/2

)
θ(−1)(m−1)/2 + C̃m]

= cm2(−2m+1) Re[(−i)m
m−1∑

s=0, s6=m−1
2

(
m− 1

s

)
(−1)m−1−s

(2s− (m− 1))
ei(4s−2(m−1))θ

+(−1)(m−1)/22

(
m− 1

(m− 1)/2

)
θ(−1)(m−1)/2 + 2C̃m]

= cm2(−2m+1)[(−1)(m−1)/2

m−1∑
s=0, s6=m−1

2

(
m− 1

s

)
(−1)m−1−s

(2s− (m− 1))
sin((4s−2(m−1))θ)

+2

(
m− 1

(m− 1)/2

)
θ + 2C̃m],

where C̃m, m = 1, 2, ... are real integration constants. As the cdf Fm(θ) has its

support on (0, π
2
), we have Fm(0) = 0. Hence, in case m is odd, C̃m = 0.

It follows that

cm =
22m−1(
m−1

(m−1)/2

)
π
.

� In case m is even, we can perform similar calculations, as follows:

pm(θ) has the following primitive function

cm2−2(m−1) Re[(−i)m−1

m−1∑
s=0

(
m− 1

s

)
(−1)m−1−s

i(4s− 2(m− 1))
ei(4s−2(m−1))θ + C̃m]

= cm2(−2m+1) Re[(−i)m
m−1∑
s=0

(
m− 1

s

)
(−1)m−1−s

(2s− (m− 1))
ei(4s−2(m−1))θ + ˜̃Cm]
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= cm2(−2m+1)(−1)(m/2)

m−1∑
s=0

(
m− 1

s

)
(−1)m−1−s

(2s− (m− 1))
cos((4s−2(m−1))θ)+ ˜̃Cm.

˜̃Cm = cm2(−2m+1)(−1)(m/2)+1

m−1∑
s=0

(
m− 1

s

)
1

(2s− (m− 1))
(−1)m−1−s.

2.7. A Particular Compound Density

Theorem 2.7.1. Let m be odd and let the mixing density be given by pm(τ) =

cm
τm−1

(1+τ2)m
, where cm is the normalizing constant as described in Equation 2.8. The

compound density takes the form qm(x) = cm
Am(x)

(x2+N2)N+m , where Am(x) is a polynomial

with rational coefficients and degree at most 2(N +m− 1).

Remark: By abuse of notation, we use pm(τ) for the mixing density in term τ .

Note that pm(τ) is different from pm(θ).

Proof. We distinguish the two following cases.

� N even:

q(x) = (C0 + CN)(x) + CN/2(x) +

N
2
−1∑

k=1

(Ck + CN−k)(x).

� N odd:

q(x) = (C0 + CN)(x) +

N−1
2∑

k=1

(Ck + CN−k)(x).
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From Theorem 2.4.1 combined with the expression pm(τ), we have

C0(x) =
1

(1 + τ 2
0 )N

pm(τ0)
1

N
1{x≤0}

= cm
τm−1

0

(1 + τ 2
0 )N+m

1

N
1{x≤0}

= cm(−1)m−1 x
m−1N (2N+m)

(x2 +N2)N+m
1{x≤0}

= cm
xm−1N (2N+m)

(x2 +N2)N+m
1{x≤0}.

Here we have used (−1)m−1 = 1 as m is odd.

CN(x) =
(τ 2
N)N

(1 + τ 2
N)N

pm(τN)
N

x2
1{x>0}

= cm
τ 2N+m−1
N

(1 + τ 2
N)N+m

N

x2
1{x>0}

= cm
xm−1N (2N+m)

(x2 +N2)N+m
1{x>0}.

It follows that the first term (C0 +CN )(x) can be written explicitly as follows for all

real values of x:

(C0 + CN)(x) = cm
N2N+mxm−1

(x2 +N2)N+m
= cm

Am(x, 0)

(x2 +N2)N+m
,

where Am(x, 0) := N2N+mxm−1. Recall that (m− 1) is even, so (C0 +CN )(x) is even

w.r.t x.

Now we consider the case 1 ≤ k ≤ N. Observe that

(
−x+ yk
2(N − k)

)(
x+ yk

2k
) =

−x2 + y2
k

4(N − k)k
=
−x2 + x2 + 4k(N − k)

4k(N − k)
= 1.
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Hence, as τk = −x+yk
2(N−k)

then τ−1
k = x+yk

2k
and τ−1

N−k = x+yk
2(N−k)

. We rewrite CN−k in

terms of τ−1
N−k as follows:

CN−k(x) =

(
N

N − k

)
(τ 2
N−k)

N−k

(1 + τ 2
N−k)

N
pm(τN−k)

τN−k
yN−k

= cm

(
N

N − k

)
(τ 2
N−k)

N−k

(1 + τ 2
N−k)

N

τm−1
N−k

(1 + τ 2
N−k)

m

τN−k
yN−k

= cm

(
N

N − k

)
(τ 2
N−k)

N−k+m−1
2

+1τ−1
N−k

(1 + τ 2
N−k)

N+myN−k

= cm

(
N

N − k

) 1

(τ−2
N−k)N−k+m−1

2 +1
τ−1
N−k

(1 + 1
τ−2
N−k

)N+myN−k

= cm

(
N

N − k

)
(τ−2
N−k)

k+m−1
2 τ−1

N−k

(1 + τ−2
N−k)

N+myN−k
.

Notice that yN−k = yk and
(

N
N−k

)
=
(
N
k

)
. The term Ck + CN−k can be defined w.r.t

x and yk as follows:

(Ck + CN−k)(x, yk) = cm

(
N

k

)
(τ 2
k )k+m−1

2 τk
(1 + τ 2

k )N+myk
+ cm

(
N

k

)
(τ−2
N−k)

k+m−1
2 τ−1

N−k

(1 + τ−2
N−k)

N+myN−k

= cm

(
N

k

)
1

2(N − k)
[

(τ 2
k )k+m−1

2

(1 + τ 2
k )N+m

(
−x
yk

+ 1)

+
(τ−2
N−k)

k+m−1
2

(1 + τ−2
N−k)

N+m
(
x

yk
+ 1)]

= cm

(
N

k

)
1

2(N − k)
[

(( −x+yk
2(N−k)

)2)k+m−1
2

(1 + ( −x+yk
2(N−k)

)2)N+m
(
−x
yk

+ 1)

+
(( x+yk

2(N−k)
)2)k+m−1

2

(1 + ( x+yk
2(N−k)

)2)N+m
(
x

yk
+ 1)]

= cm

(
N

k

)
(2(N − k))2N−2k+mN(x, yk)

D(x, yk)
,
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where

N(x, yk) = (4(N − k)2 + (−x+ yk)
2)N+m(x+ yk)

2k+m

+ (4(N − k)2 + (x+ yk)
2)N+m(−x+ yk)

2k+m.

D(x, yk) = ((4(N − k)2 + x2 + y2
k)

2 − 4x2y2
k)
N+myk.

Observe that N(x, yk) = −N(x,−yk) and D(x, yk) = −D(x,−yk), so

N(x,yk)
D(x,yk)

= N(x,−yk)
D(x,−yk)

. Hence, (Ck + CN−k)(x, yk) is even in yk. We can see that

N(x, 0) = (4(N − k)2 + (x)2)N+m(x)2k+m − (4(N − k)2 + (x)2)N+m(x)2k+m = 0

Hence, we infer that N(x, yk) is divisible by yk, so both numerator and denominator

are divisible by yk. We have D(x, yk)/yk and Ck + CN−k both are even in yk, so

N(x, yk)/yk is even in yk. This implies that we can express the new numerator

N(x, yk)/yk and the new denominator D(x, yk)/yk both as polynomial in terms of

powers of x and powers of y2
k. Replacing y2

k = x2 + 4k(N − k), we can conclude that

(Ck + CN−k)(x) is rational in x. In a similar way we can see that (Ck + CN−k)(x) is

an even function of x. Observe that

((4(N − k)2 + x2 + y2
k)

2 − 4x2y2
k)

= (4(N − k)2 + x2 + x2 + 4k(N − k)2)2 − 4x2(x2 + 4k(N − k))

= 4{(2(N − k)2 + x2 + 2k(N − k))2 − x4 − 4k(N − k)x2}

= 4{(2N(N − k) + x2)2 − x4 − 4k(N − k)x2}
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= 4{x4 + 4N(N − k)x2 + 4N2(N − k)2 − x4 − 4k(N − k)x2}

= 16(N − k){(N − k)x2 +N2(N − k)} = 16(N − k)2{x2 +N2}.

Hence,

(Ck + CN−k)(x, yk) = cm
Ñ(x, yk)

22N+2k+3m(N−k)2k+m

(Nk)
(x2 +N2)N+m

,

where

Ñ(x, yk) =
N(x, yk)

yk
, dk :=

22N+2k+3m(N − k)2k+m(
N
k

) , Am(x, k) :=
Ñ(x, yk)

dk
.

Therefore, the term (Ck + CN−k)(x) can hence be written as

(Ck + CN−k)(x) = cm
Am(x, k)

(x2 +N2)N+m
,

where Am(x, k) is a polynomial with rational coefficients.

Note that in case k = N/2 this formula implies that Ck(x) = 1
2
cm

Am(x,k)
(x2+N2)N+m .

We have the following cases.

� N even:

Am(x) :=

N
2
−1∑

k=0

Am(x, k) +
1

2
Am(x,

N

2
).

� N odd:

Am(x) :=

N−1
2∑

k=0

Am(x, k).

The compound density q(x) is an even rational function with common denominator

(x2 +N2)N+m because it is the sum of even rational functions with the same denom-

inator. The numerator of q/cm is the sum of polynomials with rational coefficients,
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hence is a polynomial with rational coefficients. Notice that as q has integral one

over the real line and each of the (Ck + CN−k)(x) functions is non-negative, each

such function is integrable and hence its codegree must be at least 2. The same

argument holds for q itself and so the numerator degree of q will be less than or

equal to 2(N +m− 1).

To compute Am(x, k), one could use algebraic manipulation with Euler substi-

tution to eliminate all the occurrences of square roots (see Theorem 3.6.2 for more

on usage of Euler substitution). Alternatively, one could compute Am(x, k) using a

Lagrange interpolation technique that we will now explain. We need to take (N +m)

interpolation points xik, i = 1, 2, . . . , N + m to approximate Am(x, k) because the

degree of numerator Am(x, k) is at most 2(N +m− 1) and Am(x, k) is even. Here k

is fixed for each term (Ck + CN−k)(x). We can calculate the values of Am(xik, k) by

noting that

Am(xik, k) =
1

cm
(Ck + CN−k)(x

i
k)((x

i
k)

2 +N2)N+m.

By applying Lagrange interpolation method, we can obtain



Am(x1k, k)

Am(x2k, k)

.

.

.

Am(xN+m
k

, k)


=



1 (x1k)2 (x1k)4 . . . (x1k)2(N+m−1)

1 (x2k)2 (x2k)4 . . . (x2k)2(N+m−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 (x
(N+m)
k

)2 (x
(N+m)
k

)4 . . . (x
(N+m)
k

)2(N+m−1)





a0

a2

.

.

.

a2(N+m−1)



The matrix is a (N +m) x (N +m) Vandermonde matrix of interpolation points.

It is known to be non-singular as the interpolation points will be distinct. The

Lagrange matrix is the known inverse matrix of this Vandermonde matrix, so we can

obtain the solution by using the Lagrange coefficients explicitly. Alternatively we

can solve this linear system of equations directly by standard methods.

Recall Am(x, k) = Ñ(x, yk)/dk, where Ñ(x, y) = N(x,y)
y

is a known two-variable
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polynomial in x and y with integer coefficients and dk is a known integer. To be able

to get the rational coefficients of Am(x, k) exactly, we need to take the interpolation

points such that both xik and yk(x
i
k) are rational! That is indeed possible as we will

now show. Our approach will be based on an Euler substitution (known from the

theory of integration).

Let zk := −x+ yk = −x+
√
x2 + 4k(N − k) then zk + x = yk. It implies that

z2
k +x2 + 2zkx = x2 + 4k(N −k)⇔ 2zkx = 4k(N −k)− z2

k ⇔ x =
2k(N − k)

zk
− 1

2
zk.

It follows that yk = x+ zk = 2k(N−k)
zk

+ 1
2
zk.

Note that if we choose zk rational and non-zero (zk ∈ Q \ {0}) then both x and yk

will be rational.

Furthermore, for any x̂ ∈ R one can calculate ẑk = −x̂ +
√
x̂2 + 4k(N − k) > 0

and take a positive rational number zk arbitrarily close to ẑk and compute the

corresponding rational values of x and yk. By taking zk sufficiently close to ẑk, the

corresponding values x and yk will be as close as is desired to x̂ and ŷk. (Warning:

care must be taken for cases in which ẑk is close to zero).

The Lagrangian interpolation method now requires us to solve a Vandermonde-type

linear system of (N +m) equations with only rational coefficients. The solution will

be a vector of rational numbers in QN+m. How to solve such systems in case N+m

is large is an active area of research in which considerable advances have been made

by authors in [41].

Remark 1.

Consider a random variable X which has the mean at zero and the variance at N

with the pdf q(x)dx. Then Z := X√
N

has the mean at zero and the variance at 1 with
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the pdf
√
Nq(z

√
N)dz.

Remark 2.

For numerical implementation later on in section 2.10, we only search among odd

values of m as these are giving a rational compound density. Based on our numerical

results on entropy, but also on the Kullback-Leibler (KL) divergence, as well as L1

distance, the best choice for the integer m in our class of mixing densities is at m = 9.

2.8. Option Pricing

2.8.1. Usage of a Bias-Correction

To compute the value of a European option, a price process St is modeled by the

geometric Brownian motion under its associated ”risk-neutral” measure Q

dSt = rStdt+ σStdW t, t ≥ 0

where r is the interest rate, σ ∈ R represents the diffusion coefficient, and W is

a standard Brownian motion process under Q (see [28]). Using Itô’s lemma with

f(S) = log(S) gives a classic result, in which the process log(S) follows the normal

distribution N ((r− σ2/2)T + log(S0), σ2T ) at the end of any interval [0, T ] of length

T .

We consider the payoff function π(X) = max(eX −K, 0) for a call option or

π(X) = max(K − eX , 0) for a put option, where X = log(S).

For option pricing one typically uses the multiplicative tree (as mentioned before).

Using this, a multiplicative upward move, u1, and a multiplicative downward move,
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d1, are defined as

u1 = exp{uσ
√
δ + (r − σ2/2)δ},

d1 = exp{dσ
√
δ + (r − σ2/2)δ},

where u, d, p as described in section 2.2. Here δ > 0 denotes the time-step length

and translation and scaling have been applied to introduce the volatility parameter

σ and the drift term r.

Using bias-corrected directions (see [40]) gives

ũ1 := u1e
λδ,

d̃1 := d1e
λδ,

where the real number λ is solved from pũ1 + (1− p)d̃1 = erδ. We obtain

λ = r − log(pu1 + (1− p)d1)

δ
.

This correction amounts to replacing µ̂ = r − 1
2
σ2 by µ̂ = r − 1

2
σ2 + λ. The resulting

tree model in which u1, d1 are replaced by ũ1, d̃1 has risk neutral probability

(p, (1 − p)), and is complete and free of arbitrage (see [40]). Hence, any options

(financial contingent claim) can be priced in the market described by this tree.

2.8.2. Usage of a Distribution Correction Factor

The compound densities in the additive trees are close to Gaussian but not equal to a

Gaussian exactly. To compensate for that, one can employ a distribution correction



34 Pricing Single-Asset Options Using MC-Tree Method

factor. This technique is known from the Monte Carlo method of importance

sampling [10]. The distribution correction factor, which we will denote by C(x), can

be derived, in the context of option pricing, as follows:

Let P denote the time-zero price of an European option with payoff π(X) at time T ,

where X = log(ST ), then we have

P = e−rTEQ[π(X)] = e−rT
� ∞
−∞

π(x)f(x)dx = e−rT
� ∞
−∞

[π(x)
f(x)

q(x)
]q(x)dx

= e−rT
� ∞
−∞

[π(x)C(x)]q(x)dx = e−rTEq[π(X)C(X)],

where q(x) > 0, ∀x ∈ R is the compound density, and f is the Gaussian density

f(x) ∼ N ((r − σ2/2)T + log(S0), σ2T ).

2.9. Convex Combination and Convex Optimization

In this section, we aim to optimize coefficients of the convex combination of mixing

densities. This optimal mixing density gives the highest entropy of the compound

density when fixing the tree depth and the powers of the mixing densities.

2.9.1. Convex Combination

Our strategy is search among linear combination of the rational densities

pm(τ), m = 1, 2, 3, ... The linear combinations are restricted to have coefficients that

add up to one. Most natural way would be use to convex combination. Consider

a finite convex combination of mixing densities, P̂α(τ) =
∑

m αmpm(τ) such that

αm ≥ 0 and
∑

m αm = 1.
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We know that P̂α(τ) is again a probability density and still holds properties of the mix-

ing density due to the convex combination of probability densities. Given τ0, τk, τN as

defined in Equations (2.1)-(2.3), yk as in Equation 2.4, C0(x), CN (x), Ck(x), pm(τk)

as defined in Theorem 2.4.1, and qm(x) as defined in Theorem 2.7.1, we have

P̂α(τk) :=
∑
m

αmpm(τk).

Cα
0 (x) :=

∑
m

αmC0(x) =
1

(1 + τ 2
0 )N

(
∑
m

αmpm(τ0))
1

N
1{x≤0}

=
1

(1 + τ 2
0 )N

P̂α(τ0)
1

N
1{x≤0}.

Cα
k (x) :=

∑
m

αmCk(x) =

(
N

k

)
(τ 2
k )k

(1 + τ 2
k )N

(
∑
m

αmpm(τk))
τk
yk

=

(
N

k

)
(τ 2
k )k

(1 + τ 2
k )N

P̂α(τk)
τk
yk
, k = 1, N − 1.

Cα
N(x) :=

∑
m

αmCN(x) =
(τ 2
N)N

(1 + τ 2
N)N

(
∑
m

αmpm(τN))
N

x2
1{x>0}

=
(τ 2
N)N

(1 + τ 2
N)N

P̂α(τN)
N

x2
1{x>0}.

Due to the linearity property, we can derive the probability density of the tree, Q̂(x),

where τ ∼ P̂α(τ) as follows.

Q̂(x) =
∑
m

αmqm(x) =
N∑
k=0

(
∑
m

αmCk(x)) =
N∑
k=0

Cα
k (x).

The most natural way would be to use convex optimization.
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2.9.2. Convex Optimization

Our optimization problem can be stated as follows:

maxα f(α) subject to αm ≥ 0,
∑

m αm = 1.

f(α) denotes the entropy of the compound density Q̂(x) =
∑

m αmqm(x).

This optimization problem can be solved by using the Gradient Ascent Method.

Next, the algorithm for this problem will be presented.

Algorithm

� Define a starting vector α(0). We can choose α(0) to be a vector which is already

rather close to the solution to make the algorithm computationally efficient.

We suggest a starting vector that gives weight 1 to the mixing density with

m=9, and other elements of the vector are zero. Then calculate the gradient

∇f(α(0))

� Calculate α(1) = α(0) + δ∇f(α(0)). If f(α(1)) > f(α(0)), we repeat all steps,

where we take α(1) as the new starting vector. Otherwise, we calculate

α(1) = α(0) + δ
2
∇f(α(0)). If this does not work, we take α(1) = α(0) + δ

22∇f(α(0)),

etc until f(α1) > f(α0). If ∇f(α0) 6= 0 then there exists a value k ∈ N such

that f(α0 + δ
2k
∇f(α0)) > f(α0).

� The stopping criterion is that ∇fα∗(x) = 0 and vector α∗ is the solution. Due

to convexity, the global solution will be found in practice if the actual stopping

criterion |∇fα(x)| < ε is satisfied for some ε > 0 sufficiently small.
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2.10. Numerical Results

2.10.1. Numerical Results of Entropy, KL Divergence, and L1 Distance

We work with various experiments for calculations of KL divergence between the

compound density and the Gaussian density, and entropy values for different values

of N and m. It is noticeable that this KL divergence and the entropy values obtain

the minimal and maximal values, respectively, at m = 9 when fixing the tree depth

N . Considering our experimental results in Table 2.1 and Table 2.2, the compound

distribution is best approximated by a Gaussian distribution at m = 9. A good

Table 2.1: KL divergence versus N and m.

N = 10 N = 15 N = 20 N = 50
m = 7 0.000756 0.000321 0.000176 0.000026
m = 9 0.000719 0.000304 0.000167 0.000025
m = 11 0.000724 0.000307 0.000169 0.000026
m = 13 0.000741 0.000314 0.000173 0.000027

Table 2.2: Entropy values versus N and m.

N = 10 N = 15 N = 20 N = 50
m = 7 1.418172 1.418609 1.418755 1.418908
m = 9 1.418213 1.418629 1.418767 1.418910
m = 11 1.418211 1.418628 1.418767 1.418910
m = 13 1.418195 1.418622 1.418764 1.418910

choice of m = 9 can be observed clearly from figure 2.2, when fixing the tree depth

and increasing value of m.

Figure 2.3 shows the similarity between compound density at N = 20, m = 9 and

the standard Gaussian density. Figure 2.4 shows that the entropy values increase and

converge to the entropy of a standard Gaussian density when fixing m and increasing
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Figure 2.2: Entropy behavior when m is an odd number between 1 and
50. Top left: N = 10. Top right: N = 15. Bottom left: N = 20. Bottom

right: N = 50.

the tree depth. This is consistent with the maximal entropy theory.

Figure 2.5 shows that the L1 distance to the Gaussian decreases to zero when fixing

m and rising the tree depth from 10 to 120.
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Figure 2.3: Standard Gaussian density versus compound density at
N = 20, m = 9.

Figure 2.4: Entropy values versus the tree depth N from 1 to 50 when
m = 9 is fixed.
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Figure 2.5: L1 distance versus the tree depth N from 10 to 120 when
m = 9 is fixed.

2.10.2. Distribution Correction Factor

Figure 2.6 shows the behavior of the distribution correction factor for different tree

depths and the corresponding values of m. The distribution correction factor is

the ratio of the Gaussian density to the compound density. It is observed that the

compound density is closer to the Gaussian density when increasing the tree depth

N and fixing m. The compound density and the Gaussian density are almost the



2.10 Numerical Results 41

same in the central distribution but dissimilar in the tails.

Figure 2.6: The distribution correction factor.
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2.10.3. Convex Combination and Convex Optimization

In this section, we implement the Gradient Ascent algorithm in our optimization

problem. We want to find optimal coefficients αm such that the entropy of Q̂(x)

is maximized, where Q̂(x) =
∑35

m=9, odd αmqm(x). Figure 2.7 shows the graphical

representation of the coefficient αm of the corresponding mixing densities with odd

numbers of m from 9 to 35 when fixing N = 20. It is observed that the optimal

Figure 2.7: The plot of optimal coefficients when N = 20. Top: optimal
coefficients αm with m odd numbers from 9 to 35. Bottom: optimal

coefficients αm with odd numbers of m from 11 to 35.
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coefficient α9 = 0.747382 while all other coefficients are decreasing from 0.01948.

The entropy after optimization is obtained at 1.41878, compared with the entropy at

1.41877 when N = 20 and m = 9. There is possibly an in-significant improvement in

the entropy of 10−5.

2.10.4. Pricing European Options

We will present the numerical results of some experiments to price European call

and put options and compare the MC-Tree method with the usage of the bias-

correction and the distribution correction factor with the Monte Carlo (MC) method

and popular binomial tree models. We can obtain the analytical solution from the

well-known Black-Scholes model. The error is the difference between the model value

and the analytical solution.

The following parameters are used throughout these numerical experiments.

� Initial stock prices S0 = 100 (if not stated otherwise).

� Strike price K = 95.

� Expiration T = 1.

� Risk-free rate r = 0.03.

� Volatility σ = 0.2.

� MC-Drawing M = 105.

It is verified that the put-call parity holds for the MC-Tree with the bias-correction,

as shown in Figure 2.8. Given various stock prices S(t) from 1 up to 200 on the
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x-axis, the corresponding values on the y-axis are zero. The MC is not involved in

the experiment, so confidence intervals are not given.

Figure 2.8: Verification of put-call parity. The y-axis represents
C(S(t), t) − P (S(t), t) − S(t) + KB(t, T ), where C(S(t), t), P (S(t), t)

are the call and put option prices, and B(t, T ) = e−r(T−t).
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Table 2.3: Accuracy comparison between MC-Tree and MC method
in pricing European call option. Bias: MC-Tree with the usage of bias-
correction. Corr: MC-Tree with the usage of distribution correction
factor. SD is the estimate of the standard deviation of the random

variable of which the MC estimates the mean.

S N Method Mean SD CI AS
100 50 Corr 12.1798 0.025 (12.17965, 12.17995) 12.1797

50 Bias 12.1905 0.0279 (12.1903, 12.1907)
100 Corr 12.1797 0.0123 (12.17962, 12.17978)
100 Bias 12.1851 0.0155 (12.1850, 12.1852)

MC 12.1867 15.6215 (12.0899, 12.2835)
95 50 Corr 8.9429 0.0431 (8.9426, 8.9431) 8.9427

50 Bias 8.9549 0.0323 (8.9547, 8.9551)
100 Corr 8.9429 0.0254 (8.942743, 8.943057)
100 Bias 8.9489 0.0188 (8.9488, 8.9490)

MC 8.9469 13.4153 (8.8637, 9.0300)
90 50 Corr 6.2125 0.071 (6.2121, 6.2130) 6.2125

50 Bias 6.2230 0.0596 (6.2226, 6.2233)
100 Corr 6.2125 0.0463 (6.212213, 6.212787)
100 Bias 6.2177 0.0401 (6.2175, 6.2180)

MC 6.2143 11.1305 (6.1453, 6.2833)

2.10.4.1. Comparison to Plain MC Method

Table 2.3 and table 2.4 show that MC-Tree is more accurate than MC method.

The usage of the distribution correction factor in option pricing improves accuracy

significantly, resulting in the exact analytical solution at N = 100.

Table 2.5 shows the results from both methods for similar computation time. It is

evident from table 2.5 that the MC-Tree model is still more accurate than the MC

method, even with the same computation time.
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Table 2.4: Accuracy comparison between MC-Tree and MC method
in pricing European put option. Bias: MC-Tree with the usage of bias-
correction. Corr: MC-Tree with the usage of distribution correction

factor.

S N Method Mean SD CI AS
100 50 Corr 4.3720 0.0324 (4.3718, 4.3722) 4.3720

50 Bias 4.3828 0.0279 (4.3827, 4.3830 )
100 Corr 4.3720 0.0185 (4.3719, 4.3721)
100 Bias 4.3774 0.0155 (4.3773, 4.3775 )

MC 4.4107 7.6584 (4.3633, 4.4582)
95 50 Corr 6.1352 0.0278 (6.135, 6.1353) 6.1351

50 Bias 6.1473 0.0323 (6.1471, 6.1475)
100 Corr 6.1352 0.0155 (6.1351, 6.1353)
100 Bias 6.1412 0.0188 (6.1411, 6.1413)

MC 6.1693 8.9348 (6.1139, 6.2247)
90 50 Corr 8.4048 0.0503 (8.4045, 8.4051) 8.4048

50 Bias 8.4153 0.0596 (8.4149, 8.4157)
100 Corr 8.4048 0.0345 (8.4046, 8.4050)
100 Bias 8.4101 0.0401 (8.4098, 8.4103)

MC 8.4352 10.1748 (8.3721, 8.4982)

2.10.4.2. Comparison to Binomial Models

Table 2.6 and table 2.7 show that MC-Tree with the usage of distribution correction

factor performs best. Option price from MC-Tree converges quicker than binomial

models to the analytical price when increasing the tree depth. It is evident from

Figure 2.9 and Figure 2.10 that CRR and JR model is less stable and more volatile

than the MC-Tree model as the tree depth increases. Both figures contain the

confidence interval (CI) of the MC-Tree method without the distribution correction

technique.

Then, we can obtain the mean squared error (MSE) for different models from the

range of tree depth from 1 to 100 in Table 2.8. MSE from the MC-Tree is the lowest

among models.
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Table 2.5: Error and computation time of European call option with
similar running time at N = 50. MC-Tree Corr: MC-Tree with the

distribution correction factor. SE denotes the standard error.

MC-Tree MC
Corr

Option Price 12.1798 12.1800
SE 0.00008 0.00451
CI (12.17965, 12.17995) (12.17117,12.18883)
Error 5.7e-05 3e-04
Computation Time (Seconds) 34.92103 35.50149
M 100,000 12,000,000

Figure 2.11 plots the European call prices with a range of M and the tree depth

from 20 to 200. Clearly, the price is more stable with a rather large M .

2.10.5. Pricing American Put Option

We will present the numerical results of some experiments with the American Put

option and compare them with the LSM and popular binomial tree models to gain

some insight into the performance of the MC-Tree Method. A quadratic polynomial

is used in the regression model (see [35]).

All numerical experiments use the same parameters as mentioned in the previous

section: ”pricing European option”, except M = 2000. We consider various examples

of American option valuation and compare our method with the LSM, CRR, and JR

in the next sections.
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Table 2.6: Accuracy comparison between MC-Tree and binomial models
in pricing European call option. Bias: MC-Tree with the usage of bias-
correction. Corr: MC-Tree with the usage of distribution correction

factor.

S Method N = 50 N = 100 AS
Mean SD CI Mean SD CI

100 Corr 12.1798 0.025 (12.1797, 12.1797 0.0123 (12.1796, 12.1797
12.1800) 12.1798)

Bias 12.1905 0.0279 (12.1903, 12.1851 0.0155 (12.1850,
12.1907) 12.1852)

CRR 12.1733 12.1923
JR 12.1677 12.1984

95 Corr 8.9429 0.0431 (8.9426, 8.9429 0.0254 (8.9427, 8.9427
8.9431) 8.9431)

Bias 8.9549 0.0323 (8.9547, 8.9489 0.0188 (8.9488,
8.9551) 8.9490)

CRR 8.9102 8.9265
JR 8.9513 8.9533

90 Corr 6.2125 0.071 (6.2121, 6.2125 0.0463 (6.2122, 6.2125
6.2130) 6.2128)

Bias 6.2230 0.0596 (6.2226, 6.2177 0.0401 (6.2175,
6.2233) 6.2180)

CRR 6.1912 6.2283
JR 6.2281 6.2084
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Table 2.7: Accuracy comparison between MC-Tree and binomial models
in pricing European put option. Bias: MC-Tree with the usage of bias-
correction. Corr: MC-Tree with the usage of distribution correction

factor.

S Method N = 50 N = 100 AS
Mean SD CI Mean SD CI

100 Corr 4.3720 0.0324 (4.3718, 4.3720 0.0185 (4.3719, 4.3720
4.3722) 4.3721)

Bias 4.3828 0.0279 (4.3827, 4.3774 0.0155 (4.3773,
4.3830 ) 4.3775 )

CRR 4.3657 4.3846
JR 4.3600 4.3907

95 Corr 6.1352 0.0278 (6.135, 6.1352 0.0155 (6.1351, 6.1351
6.1353) 6.1353)

Bias 6.1473 0.0323 (6.1471, 6.1412 0.0188 (6.1411,
6.1475 ) 6.1413)

CRR 6.1025 6.1188
JR 6.1437 6.1456

90 Corr 8.4048 0.0503 (8.4045, 8.4048 0.0345 (8.4046, 8.4048
8.4051) 8.4050)

Bias 8.4153 0.0596 (8.4149, 8.4101 0.0401 (8.4098,
8.4157) 8.4103 )

CRR 8.3835 8.4206
JR 8.4204 8.4008
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Figure 2.9: Option prices versus the tree depth N .
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Figure 2.10: Option prices versus the tree depth N .
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Table 2.8: Mean-squared error for various models.

Models MC-Tree CRR JR
MSE 0.00015354 0.001074532 0.001015309

Figure 2.11: European call prices versus number of MC drawings M
and the tree depth N .

2.10.5.1. Comparison to LSM Method

We will compare the standard deviation of the MC-Tree and LSM method to under-

stand their accuracy. Table 2.9 shows the mean and the standard deviation from
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simulation results with the initial stock price at 100, and the ”true” price at 4.5415.

The ”true” price of an American put option is obtained by the convergent binomial

method with the depth of tree at 50,000.

As shown in the table 2.9, the standard deviation of the LSM is much larger than

Table 2.9: Mean and standard deviation of American put option.

MC-Tree LSM
Mean 4.5483 4.5782
Standard Deviation 0.0319 7.1828

the one of the MC-Tree method when their means are similar. The LSM needs a

significant increase in the number of replications to improve accuracy, which leads to

an increase in the computation time per simulation.

It is evident from Table 2.10 that it is not sufficiently good for the LSM to obtain a

Table 2.10: Mean and standard error (SE) of American put Option
with similar running time.

MC-Tree LSM
Mean 4.5483 4.5274
SE 0.00071 0.01893
Error 0.0068 0.0141
Computation Time (Seconds) 10.4658 10.5423
M 2000 120,000

small standard error as the MC-Tree method, even though the computation time

of both are almost the same. It is concluded that the MC-Tree method provides us

with more accuracy than the LSM at a similar computational cost.
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2.10.5.2. Comparison to Binomial Models

We will use the same model parameters, as mentioned in the previous section. As

shown in Table 2.11 and Table 2.12, the option prices among models are insignificantly

different, and the MC-Tree method produces the smallest error. It can be concluded

that the MC-Tree method performs better than other methods: CRR, JR in terms

of accuracy using the same tree-depth. Researchers in [1] proved that American

option prices of the discrete model also converge to the corresponding value of the

continuous-time model under fairly general conditions. It means that the ”true”

price can be obtained by increasing the tree depth to infinity. Therefore, we also

compare results with the ”true” prices. Figure 2.12 shows two plots for prices of an

Table 2.11: Option Prices

Stock Price MC-Tree CRR JR ”True” Price
95 6.4140 6.3966 6.4141 6.4058
97 5.6058 5.6148 5.6080 5.5973
100 4.5484 4.5511 4.5583 4.5415
102 3.9409 3.9433 3.9240 3.9338
104 3.4007 3.4034 3.4111 3.3960

Table 2.12: Accuracy comparison among models.

Stock Price MC-Tree CRR JR
95 0.0081 0.0093 0.0083
97 0.0084 0.0175 0.0107
100 0.0080 0.0096 0.0168
102 0.0070 0.0095 0.0098
104 0.0047 0.0073 0.0150

American put option by the MC-Tree, CRR, and JR model when increasing the tree

depth. The CRR and JR model both are more volatile than the MC-Tree model.

The MC-Tree model is more stable and convergent toward the ”true” price as N
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increases, compared with the CRR and JR model.

Figure 2.12: Option prices versus the tree depth N .
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2.10.5.3. The optimal N and M of MC-Tree

We also show the range of N and the corresponding M , in which the MC-Tree method

performs high accuracy and reasonable efficiency. We found that computation time

is approximately proportional to the number of nodes at 1
2
N(N + 1) of an N-step

binomial tree. Hence, if we fix the computation time, the optimal choice of the tree

depth, N , and the number of simulations, M , are found in the relation M = C
N(N+1)

,

where C is chosen approximately.

We consider an experiment on an American put option with the same input para-

meters, as mentioned in the previous section.

Figure 2.13 shows that MC-Tree absolute error remains around 0.01 when the

Figure 2.13: Error versus the depth of tree.

computation time is below 2 seconds, N is in the range from around 70 to 500, and

M is an integer part of 2500000
N(N+1)

.



Chapter 3

Pricing Multi-Asset Options Using

An MC-Tree Method

3.1. Introduction

In chapter two, we presented the theory of MC-Tree that combines MC with the

recombining binomial tree based on the Pascal’s triangle for pricing single asset

options. In this chapter, we generalize the theory of MC-Tree that combines the MC

method with the recombining multinomial tree based on Pascal simplex for pricing

multi-asset option. In d assets case, we have a probability vector (p1, p2, ..., pd+1).

Our approach includes applying MC drawings from the Haar measure on the or-

thogonal group, based on the tree construction in the paper by Sierag and Han-

zon in [40]. We will also draw an orthogonal d x d matrix with each drawing of

(p1, p2, ..., pd+1), pj ≥ 0,
∑d+1

j=1 pj = 1, where d is the number of risky assets. The

orthogonal matrix is generated by drawing the d2 elements from a dxd matrix with
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d2 i.i.d standard Gaussian random variables and then apply the Gram-Schmidt

orthogonalization procedure on d columns of the matrix. This matrix is denoted by

H. The determinant of this orthogonal matrix receives both values -1 and 1.

We will describe the kind of mixing densities for consideration, the role of the radius,

compound density entropy, and the derivation of the corresponding compound density

analytically and numerically.

3.2. Mixing Density and MC Drawings

The point is that we do mixing density on the tree parameters: probability vector and

the direction vectors. For each probability vector, we pick the corresponding direction

vectors, then we apply the orthogonal group to rotate and reflect around. We obtain

the uniform measure on the orthogonal group. This gives mixing densities on the

tree. For each mixing distribution on the vector (p1, p2, ..., pd+1), our approach

gives a compound density at time step N which is invariant under application of

the orthogonal group to the target space Rd; i.e, it is invariant under rotations and

reflections in the higher dimensional Euclidean space in the multi-asset case (d ≥ 2).

After we have taken the orthogonal group action by MC generation, we need to work

out the compound density of the radii of the vectors occurring after N steps in the

tree when applying a mixing distribution.

We use the symmetric mixing density because we know that this leads to better or

equal entropy value of compound density in relation to application of rotations and

reflections to the plane in the 2-risky asset case (d = 2) and to higher dimensional

Euclidean space in multi-asset case (d > 2). In this thesis, we will choose to work
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with polynomial mixing density in relation to the parameters p1, p2, . . . , pd+1, for

which we can describe a great result. We can restrict to symmetric polynomials;

P (
√
p1,
√
p2, ...,

√
pd+1), say. For example, the symmetric polynomials are those for

which

P (
√
p1,
√
p2) = P (

√
p2,
√
p1)

in case of d = 1;

P (
√
p1,
√
p2,
√
p3) = P (

√
p1,
√
p3,
√
p2)

= P (
√
p2,
√
p1,
√
p3)

= P (
√
p2,
√
p3,
√
p1)

= P (
√
p3,
√
p1,
√
p2)

= P (
√
p3,
√
p2,
√
p1)

in case of d = 2.

Our choice of mixing density is

c (p
1/2
1 p

1/2
2 p

1/2
3 ...p

1/2
d+1)m−2dp1dp2dp3 . . . dpd (3.1)

for some m ∈ N.

The square roots of the probabilities can be described by spherical coordinates as

follows:
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� p
1/2
1 = cos(θ1),

� p
1/2
2 = sin(θ1) cos(θ2),

� p
1/2
3 = sin(θ1) sin(θ2) cos(θ3),

...

� p
1/2
d = sin(θ1) . . . sin(θd−1) cos(θd),

� p
1/2
d+1 = sin(θ1) . . . sin(θd−1) sin(θd),

� 0 < θi <
π
2
, i = 1, d.

The mixing density can be factorized into univariate factors in which each is a

polynomial in terms of sin(θi), cos(θi), i = 1, d. As the antiderivative is known for

such functions, so we can implement Monte Carlo Drawing, as presented in section

2.6 of the chapter two for each θi.

3.3. The Radius

Xk denotes the vector
∑d+1

i=1 kidi at node k that is reached by taking ki times direction

di,i = 1, ..., d+ 1, k = (k1, k2, ..., kd+1), ‖k| = N at the final step of the tree. The

random variable Rk = ||Xk|| is the radius of the vectors at the node k in the tree.

Theorem 3.3.1. In a two-asset case,

R2
k = ||Xk||2 = ||

3∑
i=1

kidi||2 =
3∑
i=1

k2
i

pi
− |k|2.
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Proof. The proof is based on the constructions presented in [40].

Vector Xk =
∑3

i=1 kidi is corresponding to the orthogonal projection of
∑3

i=1
ki√
pi
ei

along the vector 
|k|p1/2

1

|k|p1/2
2

|k|p1/2
3

 ,
so to the vector X̃k =

∑3
i=1

ki√
pi
ei −

∑3
i=1 |k|

√
piei to be more precise.

The vector Xk is obtained from X̃k by an orthogonal mapping (a rotation), so the

length of this vector X̃k equal to the length of vector Xk. Due to the orthogonality

of the projection, we have

||X̃k||2 + ||
3∑
i=1

|k|√piei||2 = ||
3∑
i=1

ki√
pi
ei||2

⇔ ||X̃k||2 =
3∑
i=1

k2
i

pi
− |k|2.

Remarks

(i) The radius Rk = ||Xk|| of the vector-nodes after |k| steps in the tree has conditional

probability distribution, given (p1, p2, p3):
(|k|
k

)
pk1

1 p
k2
2 p

k3
3 , where probabilities runs

over all possible k, k = (k1, k2, k3), |k| = k1 +k2 +k3, ki ∈ N0, i = 1, 2, 3. However,

note that Rk can be equal for different values of k, in which case the corresponding

probabilities will have to be added to obtain the probability distribution.

(ii) In general, the squared radius R2
k = ||Xk||2 of the vector-nodes after |k| steps in
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the tree is defined by

R2
k = ||

d+1∑
i=1

kidi||2 =
d+1∑
i=1

k2
i

pi
− |k|2.

The radius Rk = ||Xk|| = ||
∑d+1

i=1 kidi|| of the vector-nodes after |k| steps in the tree

has conditional probability distribution given (p1, p2, ..., pd+1)

(
|k|
k

)
pk1

1 p
k2
2 ...p

k+1
d+1,

where k runs over all vectors in Nd+1
0 , k = (k1, k2, k3, ..., kd+1), |k| =

∑d+1
i=1 ki, ki ∈

N0, i = 1, 2, 3, ..., d + 1; and |k| = N . And Xk denotes the random variable with

compound density PXk if a tree of |k| steps is used; Xk = X(k1,k2,...,kd+1) is the vector

value at node (k1, k2, ..., kd+1) given a choice of (p
1/2
1 , p

1/2
2 , ..., p

1/2
d+1).

3.4. RI Entropy

In this section, we consider a rotation invariant density g(x) = f(||x||) on Rd for an

appropriate function f . Function f(r) depends only on the radius r = ||x||2 of the

vector x; S(r) is the surface of a sphere with radius r in d dimension.

We have 1 =
�
x∈Rd g(x)dx =

�
x∈Rd f(r)dx =

�∞
0
f(r)S(r)dr, where S(r) is the

surface of a sphere with radius r in d dimension. Hence f(r)S(r) is a pdf. Let

q(r) := f(r)S(r), q is a pdf on [0,∞). Given q, the RI Entropy of q (RIEnt(q)) is
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equal to the entropy of g (Ent(g)).

Ent(g) = −
�
x∈Rd

g(x) log[g(x)]dx = −
�
x∈Rd

f(r) log[f(r)]dx

= −
� ∞

0

q(r) log[
q(r)

S(r)
]dr =: RIEnt(q),

where f(r) = q(r)
S(r)

= g(x), x ∈ Rd.

Definition: RI Entropy

Let X ∈ Rd have rotation-invariant distribution, and let q be the pdf of the radius

of X. Then the RI Entropy of q is defined by

RIEnt(q) = −
� ∞

0

q(r) log[
q(r)

S(r)
]dr.

Remark: Note that the RI Entropy of q is equal to the entropy of the pdf of X.

3.4.1. RI Entropy in the Two Assets Case

We have

1 =

� ∞
−∞

� ∞
−∞

g(x, y)dxdy =

� ∞
−∞

� ∞
−∞

f(r)dxdy

=

� 2π

0

� ∞
0

f(r)rdrdθ =

� ∞
0

2πf(r)rdr,

so 2πf(r)r is a pdf.

Let q(r) := 2πf(r)r, q is a pdf on [0,∞).

Given q, we can compute the entropy of g, the RI entropy of q (RIEnt(q)), as
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f(r) = q(r)
2πr

= g(x, y), so

Ent(g) = −
� ∞
−∞

� ∞
−∞

g(x, y) log[g(x, y)]dxdy = −
� ∞
−∞

� ∞
−∞

f(r) log[f(r)]dxdy

= −
� 2π

0

� ∞
0

f(r) log[f(r)]rdrdθ = −2π

� ∞
0

f(r) log[f(r)]rdr

= −
� ∞

0

q(r) log[
q(r)

2πr
]dr = RIEnt(q).

In the standard Gaussian case: g(x, y) = f(r) = 1
2π
e−r

2/2, so

q(r) = 2πrf(r) = re−r
2/2.

Then RI entropy of q(r) is

RIEnt(q) = −
� ∞

0

re−r
2/2 log[

re−r
2/2

2πr
]dr = −

� ∞
0

e−r
2/2(−r

2

2
)d(

r2

2
) + log(2π)

= log(2π) + 1.

Entropy of standard Gaussian X ∼ N (0, I2) is log(2πe).

The second moment of R is

E[R2] =

� ∞
0

r2q(r)dr =

� ∞
0

r3e−r
2/2dr.

We have
�
r3e−r

2/2dr = 2
�
vevdv, where v = − r2

2
. We have

�
vevdv = (v− 1)ev +C,

by the integration by parts.

Hence, �
r3e−r

2/2dr = −(r2 + 2)e−r
2/2 + C.

Therefore, E[R2] = 2.
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3.4.2. RI Entropy in the Two Assets Case(Alternative Approach)

We find RI Entropy in the 2-asset case using polar coordinates, as follows.

Let g(x, y)dxdy = f(r)dxdy = f(r)rdrdθ, where r =
√
x2 + y2, then

� ∞
−∞

� ∞
−∞

f(
√
x2 + y2) log(f(

√
x2 + y2))dxdy =

� ∞
r=0

� 2π

θ=0

f(r) log(f(r))rdrdθ

= 2π

� ∞
r=0

f(r) log(f(r))rdr

= 2π

� ∞
ρ=0

f(
√

2ρ) log(f(
√

2ρ))dρ,

where ρ = 1
2
r2. Hence, the pdf of the radius is 2πf(r)r. If we use ρ = 1

2
r2 as a new

coordinate instead of r,

x =
√

2ρcos(θ),

y =
√

2ρsin(θ)

and dρ = rdr, so g(x, y)dxdy = f(
√

2ρ)dxdy = f(
√

2ρ)rdrdθ = f(
√

2ρ)dρdθ.

Let h(ρ) := f(
√

2ρ) = g(x, y) then we have g(x, y)dxdy = h(ρ)dρdθ. It implies that

the pdf of P is q(ρ) = 2πh(ρ)dρ = e−ρ.

Following is for the standard Gaussian case.

The entropy for the standard bivariate Gaussian density X ∼ N(0, I2) is

−
� ∞
−∞

� ∞
−∞

g(x, y) log(g(x, y))dxdy = −
� 2π

θ=0

� ∞
r=0

h(ρ) log(h(ρ))rdrdθ

= −2π

� ∞
0

h(ρ) log(h(ρ))d(
1

2
r2)

= −2π

� ∞
0

h(ρ) log(h(ρ))dρ.
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As we see, up to a factor 2π, the entropy of h(ρ) is the same as the entropy of g, and

h(ρ) = g(x, y) = 1
2π
e−

x2+y2

2 = 1
2π
e−ρ. Hence,

−2π

� ∞
0

h(ρ) log(h(ρ))dρ = −2π

� ∞
0

1

2π
e−ρ log(

1

2π
e−ρ)dρ

= log(2π) + 1 = log(2πe).

We used
�∞

0
ρe−ρdρ = 1. It is noticeable that the pdf of random variable P is

q(ρ) = e−ρdρ, and
�∞

0
ρ2e−ρdρ = 2 so E(P2) = 2. Hence, the random variable P has

the mean at E(P) =
�∞

0
ρe−ρdρ = 1, and the variance V ar(P) = E(P2)− [E(P)]2 = 1.

As well-known in the literature, the exponential distribution with mean 1 is the

distribution with the maximal entropy at 1 among all distribution on (0,∞) with

mean at 1.

We can conclude that maximizing the entropy over the rotation-and reflection-

invariant densities, conditional on the covariance matrix=I2 is equivalent to maxim-

izing the entropy over all densities for P on [0,∞), where P = R2

2N
, conditional on

mean at 1.

Let k(r) denote the radius-density, i.e, the pdf of R, then the relation between the

radius-density of the radius R and the density of P is

k(r) = f(r)r = f(
√

2ρ)
√

2ρ = h(ρ)
√

2ρ⇔ h(ρ) =
k(
√

2ρ)√
2ρ

.

We have

dr =
1

r
dρ =

1√
2ρ
dρ,

so

h(ρ)dρ = k(r)dr.
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3.4.3. RI Entropy in the Three Assets Case

We have

1 =

� ∞
−∞

� ∞
−∞

� ∞
−∞

g(x, y, z)dxdydz =

� ∞
−∞

� ∞
−∞

� ∞
−∞

f(r)dxdydz

=

� ∞
0

f(r)4πr2dr,

so 4πr2f(r) is a pdf.

Let q(r) := 4πr2f(r), q is a pdf on [0,∞).

Given q, we can compute the RI entropy of q (RIEnt(q)), as follows:

f(r) =
q(r)

4πr2
= g(x, y, z),

so−
�∞
−∞

�∞
−∞

�∞
−∞ g(x, y, z) log[g(x, y, z)]dxdydz = −

�∞
0
q(r) log[ q(r)

4πr2 ]dr = RIEnt(q).

In the standard Gaussian case in three dimensions: g(x, y, z) = f(r) = 1√
(2π)3

e−r
2/2,

so q(r) = 4πr2f(r) =
√

2
π
r2e−r

2/2.

Then the RI entropy of q(r) is

RIEnt(q) = −
� ∞

0

√
2

π
r2e−r

2/2 log[
1√

(2π)3
e−r

2/2]dr

=
3

2

√
2

π
log(2π)

� ∞
0

r2e−r
2/2dr +

√
2

π

� ∞
0

r4

2
e−r

2/2dr

=
3

2

√
2

π
log(2π)

√
π

2
+

√
2

π

3
√
π√
8

=
3

2
log(2πe).

The entropy of a standard Gaussian X ∼ N (0, I3) is 3
2

log(2πe).

The second moment of R is
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E[R2] =

� ∞
0

r2q(r)dr =

� ∞
0

√
2

π
r4e−r

2/2dr.

We have � ∞
0

r4e−r
2/2dr = 3

√
2

√
π

2
= 3

√
π

2
.

Therefore, the second moment of R is E[R2] = 3.

3.5. Compound Entropy Maximization

We want to find the entropy of the compound density which is Od invariant in terms

of the marginal pdf PRN (r) of the radius Rk = ||Xk||. Here Od denotes the set

of dx d orthogonal matrices. We consider the general case of a compound density

of the form PXN (x) = PXN (x1, x2, ..., xd) = fN(r), for some function fN , where

R = ||X||2 =
√
x2

1 + x2
2 + ...+ x2

d denotes the radius of a point in Rd. After the way

we set it up, the compound density function in the form fN(r) only depends on the

radius R on Rd space, where R ≥ 0.

Proposition 3.5.1. f(r)rd−1 is equal to the (marginal) pdf of RN = ||XN ||2 up to

normalization by a constant factor.

Proof. The pdf is obtained by computing the marginal density of RN . Let the space

Rd be parametrized by a pair (RN , v), where v ∈ Sd−1 = {ṽ ∈ Rd : ||ṽ|| = 1},

the unit sphere in Rd. We can write the marginal density of RN as PRN (r)dr =
�
v∈rSd−1 f(r)dµr(v)dr =

�
v∈Sd−1 fN(r)rd−1dµ1(v)dr = f(r)rd−1dr ∗ vol(Sd−1), where

µr(v) is the standard measure on the sphere with radius r. Clearly, the measure

scales with the radius according to the rule µr(rV ) = rd−1µ1(v) if V ⊂ Sd is any
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measurable subset of Sd. Hence rV is a measurable subset of rSd, and vol(Sd−1)

denotes the volume ( area in case d = 3, length in case d = 2) of the unit sphere in

Rd. Now note that vol(Sd−1)f(r)rd−1dr = vol(Sd−1)f(r)1
d
d(rd), so the pdf of RN is

actually vol(Sd−1)
d

f(rd), which is equal to f(rd) up to a normalization constant.

As the corollary of Proposition 3.5.1, maximizing compound density entropy boils

down to maximizing the RI Entropy of RN given that

E[R2
N ] = E[traceXNX

′

N ] = trace(EXNX
′

N) = trace(NId) = Nd.

The objective is now to maximize the entropy of compound density
�∞

0
f(r)rd−1 log(f(r))dr, where f(r)rd−1 is the pdf of RN = ||XN ||2. The entropy is

considered up to an increasing affine transformation, i.e. up to an additive constant

and a positive constant factor as this does not affect the maximization.

It is well-known in the literature that the Gaussian density maximizes the entropy

integral under the constraints that the mean is zero vector and the covariance matrix

is NId. As is well known, symmetrizing a density in this way does not decrease the

entropy. We will therefore consider only such symmetrized densities. The entropy

of symmetrized density is
�
T∈Od

PX(Tx)dµ(T ), where Od denotes the group of dxd

orthogonal matrices, and µ denotes the Haar measure on the orthogonal group Od.

In a d assets case, we can conclude that maximizing the entropy over the rotation-and

reflection-invariant densities, conditional on the mean at the zero vector and the

covariance matrix at Id is equivalent to maximizing the so-called RI Entropy over all

densities for R on [0,∞), where R = ||X||2, conditional on E(R2) = d.
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3.6. Analytic Compound Density

In this section, we present our approach for finding the analytic compound density

in a two asset case. Let the mixing density on the vector (
√
p1,
√
p2,
√
p3) be given

by formula (3.1) with d = 2.

Theorem 3.6.1. In a two asset case, the compound density of the radius can be

written as

q(r) =
N∑

k3=0

� 1

0

2q1(
√
A(p3)r2 +B(p3, k3))K(p3, k3)

A(p3)r√
A(p3)r2 +B(p3, k3)

ρ(p3)dp3,

(3.2)

where

A(p3) := 1− p3,

B(p3, k3) := −(
√
p3N −

k3√
p3

)2,

ρ(p3) := ĉm(1− p3)m−1p
m−2

2
3 dp3,

ĉm =
1� 1

0
(1− p3)m−1p

m−2
2

3 dp3

,

K(p3, k3) :=

(
N

k3

)
(1− p3)N−k3pk3

3 .

The function q1(x) has the form q1(x) = cm
Am(x)

(x2+(N−k3)2)N−k3+m , where Am(x) is a

polynomial with rational coefficients and even degree at most 2(N − k3 +m− 1).

Proof. By Proposition 3.3.1, we have

R2 =
k2

1

p1

+
k2

2

p2

+
k2

3

p3

− (k1 + k2 + k3)2
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⇔ R2 − k2
3

p3

+ k2
3 + 2k3(k1 + k2) =

k2
1

p1

+
k2

2

p2

− (k1 + k2)2.

Recall p1 > 0, p2 > 0, p3 > 0 and p1 + p2 + p3 = 1. Let N = |k|. Define

p̃1 := p1

1−p3
, p̃2 := p2

1−p3
, we have

(1− p3)(R2 − k2
3

p3

+ k2
3 + 2k3(k1 + k2)) =

k2
1

p̃1

+
k2

2

p̃2

− (k1 + k2)2(1− p3)

⇔ (1− p3)(R2 − k2
3

p3

+ k2
3 + 2k3(k1 + k2))− p3(k1 + k2)2 =

k2
1

p̃1

+
k2

2

p̃2

− (k1 + k2)2.

Denote

R̂2 := (1− p3)(R2 − k2
3

p3

+ k2
3 + 2k3(k1 + k2))− p3(k1 + k2)2 =: A(p3)R2 +B(p3, k3),

where

A(p3) = (1− p3),

B(p3, k3) = (k2
3 + 2k3(N − k3)− k2

3

p3

)(1− p3)− p3(N − k3)2 = −(
√
p3N −

k3√
p3

)2.

Note that for fixed k3 and given p3 there is a one-to-one relation between R̂2 and R2.

The probability distribution of the nodes Xk, given |k| = N and given the probability

vector p = (p1, p2, p3), can be rewritten as

(
k1 + k2 + k3

k1, k2, k3

)
pk1

1 p
k2
2 p

k3
3 =

(
k1 + k2

k1, k2

)(
k1 + k2 + k3

k1 + k2, k3

)
p̃1
k1 p̃2

k2(1− p3)k1+k2pk3
3

=

(
k1 + k2

k1, k2

)
p̃k1

1 p̃
k2
2 K(p3, k3),

where

K(p3, k3) :=

(
N

k3

)
(1− p3)N−k3pk3

3 .
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Hence, R̂ =
√

k2
1

p̃1
+

k2
2

p̃2
− (k1 + k2)2 has the probability

(
k1+k2

k1,k2

)
p̃1
k1 p̃2

k2K(p3, k3),

where k3 is fixed. The density contribution of R̂ is similar to the density of the radius

in the one dimensional case, up to a factor K(p3, k3) when p3 is fixed. Recall that q1(x)

is the density of x over the whole real line and q1(x) is even. Hence, the density of |x|

is two times q1(|x|). The density of R̂ is supported on non-negative half line. There-

fore, the conditional compound density of R̂, given p3, is q2(r̂) = 2q1(r̂)K(p3, k3),

where k3 is fixed, and q1(x) =
∑N−k3

k2=0 Ck2(x), by applying Theorem 2.7.1. We have

� N − k3 even:

q1(x) = (C0 + CN−k3)(x) + C(N−k3)/2(x) +

N−k3
2
−1∑

k2=1

(Ck2 + CN−k3−k2)(x).

� N − k3 odd:

q1(x) = (C0 + CN−k3)(x) +

N−k3−1
2∑

k2=1

(Ck2 + CN−k3−k2)(x).

Furthermore, from Theorem 2.7.1, we have

(C0 + CN−k3)(x) = cm
Am(x, 0)

(x2 + (N − k3)2)N−k3+m
,

(Ck2 + CN−k3−k2)(x, yk2) = cm

(
N − k3

k2

)
(2(N − k3 − k2))2(N−k3)−2k2+mN(x, yk2)

D(x, yk2)
,
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where

Am(x, 0) = (N − k3)2(N−k3)+mxm−1,

N(x, yk2) = (4(N − k3 − k2)2 + (−x+ yk2)2)N−k3+m(x+ yk2)2k2+m

+ (4(N − k3 − k2)2 + (x+ yk2)2)N−k3+m(−x+ yk2)2k2+m,

D(x, yk2) = ((4(N − k3 − k2)2 + x2 + y2
k2

)2 − 4x2y2
k2

)N−k3+myk2 ,

yk2 =
√
x2 + 4k2(N − k3 − k2).

The function q1(x) has the form q1(x) = cm
Am(x)

(x2+(N−k3)2)N−k3+m , where Am(x) is a

polynomial with rational coefficients and even degree at most 2(N − k3 +m− 1).

The mixing density can be rewritten as

c(p
1/2
1 p

1/2
2 p

1/2
3 )m−2dp1dp3 = [

1

2
cm(p̃

1/2
1 p̃

1/2
2 )m−2dp̃1][ĉm(1− p3)m−1p

m−2
2

3 dp3] (3.3)

where cm = 1
�∞
0

τm−1

(1+τ2)m
dτ

by applying formula (2.5), ĉm = 1
� 1
0 (1−p3)m−1p

m−2
2

3 dp3

,

c = (1
2
cm)ĉm. It follows that the marginal density factorizes and

ρ(p3) := ĉm(1− p3)m−1p
m−2

2
3 dp3 is the marginal density of p3.

We make the transformation to obtain the density contribution of R, given k3

q3(r, k3) = q2(
√
A(p3)r2 +B(p3, k3)) A(p3)r√

A(p3)r2+B(p3,k3)
. The compound density of R is

q(r) =

� 1

p3=0

{
N∑

k3=0

q3(r, k3)ρ(p3)}dp3 =
N∑

k3=0

� 1

p3=0

q3(r, k3)ρ(p3)dp3

=
N∑

k3=0

� 1

p3=0

2q1(
√
A(p3)r2 +B(p3, k3))K(p3, k3)

A(p3)r√
A(p3)r2 +B(p3, k3)

ρ(p3)dp3.
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Theorem 3.6.2. In a two asset case, the compound density of the radius can be

written in another form as

q(r) =
N∑

k3=0

� ∞
t=0

fk3(t; r)dt, (3.4)

where for given r the rational density

fk3(t; r) :=
2
(
N
k3

)
ĉm(α2(t))N−k3+m

2N+ 3m−3
2 s2N+3m−1

N−k3+m∑
i=2

{ ai(vs
2 + yt2)k3+m−1

2
+i

(s2 + t2)N+ 3m+1
2
−iαi1(t)

}, (3.5)

has the degree at 4N − 2k3 + 5m + 1 in the denominator, and degree at most

4N − 2k3 + 5m − 1 in the numerator. And ai are known coefficients from partial

fraction decomposition,

b := r2 + 2Nk3,

u := u(k3) = r
√
r2 + 4k3(N − k3),

v := b+ u =
(r +

√
r2 + 4k3(N − k3))2 + 4k2

3

2
,

y := b− u =
(r −

√
r2 + 4k3(N − k3))2 + 4k2

3

2
,

s =
√
r2 +N2,

ĉm =
1� 1

0
(1− p3)m−1p

m−2
2

3 dp3

.

The polynomial of the degree 4 of t is

α1(t) := (N − k3)2s4v + (N − k3)2yt4 + (2s2u2 + (N − k3)2s2v + (N − k3)2s2y)t2,
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and the quadratic function of t is

α2(t) := t2(2s2 − y) + 2s4 − s2v.

Proof. Our strategy is to apply the Euler’s third substitution to make the transform-

ation of the integral in (3.2) into the integral w.r.t the new variable t, t ∈ [0,∞),

which can be solved.

We have r̂ =
√
A(p3)r2 +B(p3, k3) =

√
ap2

3+bp3+c

p3
, where

a := −(r2 +N2),

b := b(k3) = r2 + 2Nk3,

c := c(k3) = −k2
3.

Solving the inequality r̂ > 0, we obtain 0 < p
(1)
3 < p3 < p

(2)
3 < 1, where

p
(1)
3 =

r2 + 2Nk3 − r
√
r2 + 4k3(N − k3)

2(r2 +N2)
,

p
(2)
3 =

r2 + 2Nk3 + r
√
r2 + 4k3(N − k3)

2(r2 +N2)

are the two zeros of the equation ap2
3 + bp3 + c = 0. Note that at p3 = 0, we have

ap2
3 + bp3 + c = c = −k2

3 < 0 and ap2
3 + bp3 + c = c = −k2

3 = 0 if k3 = 0 in which

case p
(1)
3 = 0.

Similarly, at p3 = 1, we have ap2
3 + bp3 + c = c = −(N + k3)2 < 0.

The parabola opens downward due to a = −(r2 +N2) < 0. We have

d

dp3

(ap2
3 + bp3 + c) = 2ap3 + b.
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At p3 = 0, we have d
dp3

(ap2
3 + bp3 + c) = b > 0.

At p3 = 1, we have d
dp3

(ap2
3 + bp3 + c) = 2a+ b = −2r2− 2N2 + 2Nk3 < 0, as k3 ≤ N .

Hence, p
(1)
3 , p

(2)
3 ∈ [0, 1].

Given k3, (k3 runs from 0 to N), we have

2q1(
√
A(p3)r2 +B(p3, k3))K(p3, k3)

A(p3)r√
A(p3)r2 +B(p3, k3)

ρ(p3)dp3

= (
√
p3(1− p3)K(p3, k3)ρ(p3))

2q1(r̂)r√
ap2

3 + bp3 + c
dp3

=

(
ĉm

(
N

k3

)
(1− p3)N−k3+mp

k3+m−1
2

3

)
2q1(r̂)r√

ap2
3 + bp3 + c

dp3.(1)

Applying Euler’s third substitution, we introduce a new variable t which satisfies the

following equation.

√
ap2

3 + bp3 + c =

√
a(p3 − p(1)

3 )(p3 − p(2)
3 ) = (p3 − p(1)

3 )t.

This yields

p3 =
ap

(2)
3 − p

(1)
3 t2

a− t2
=

vs2 + yt2

2s2(s2 + t2)
,

dp3 = − 2ut

(s2 + t2)2
dt,
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where

u = u(k3) = r
√
r2 + 4k3(N − k3),

v = b+ u =
(r +

√
r2 + 4k3(N − k3))2 + 4k2

3

2
,

y = b− u =
(r −

√
r2 + 4k3(N − k3))2 + 4k2

3

2
,

s =
√
r2 +N2.

We can obtain √
ap2

3 + bp3 + c = (p3 − p(1)
3 )t =

ut

s2 + t2
,

r̂ =

√
ap2

3 + bp3 + c

p3

=

√
2uts√

(s2 + t2)(vs2 + yt2)
.

By partial fraction decomposition, the function q1(x) from Theorem 3.6.1 has the

equivalent form:

q1(x) =

N−k3+m∑
i=2

ai
(x2 + (N − k3)2)i

,

where ai are known coefficients from the partial fraction decomposition.

Hence, the function q1(r̂) can be rewritten as

q1(r̂) =

N−k3+m∑
i=2

ai(s
2 + t2)i(vs2 + yt2)i

(2u2t2s2 + (N − k3)2(s2 + t2)(vs2 + yt2))i
.

We have 2u2t2s2 + (N − k3)
2(s2 + t2)(vs2 + yt2) = (N − k3)

2s4v + (N − k3)
2yt4 +

(2s2u2 + (N − k3)2s2v + (N − k3)2s2y)t2. Denote

α1(t) := (N − k3)2s4v + (N − k3)2yt4 + (2s2u2 + (N − k3)2s2v + (N − k3)2s2y)t2.
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Hence, the function q1(r̂) can be rewritten as

q1(r̂) =

N−k3+m∑
i=2

ai(s
2 + t2)i(vs2 + yt2)i

αi1(t)
, (2)

where ai are known coefficients from the partial fraction decomposition.

We have

(1− p3)N−k3+mp
k3+m−1

2
3 =

(2s2(s2 + t2)− (vs2 + yt2))N−k3+m(vs2 + yt2)k3+m−1
2

2N+ 3m−1
2 s2N+3m−1(s2 + t2)N+ 3m−1

2

.

Hence

r(1− p3)N−k3+mp
k3+m−1

2
3√

ap2
3 + bp3 + c

dp3 = −r(2s
2(s2 + t2)− (vs2 + yt2))N−k3+m(vs2 + yt2)k3+m−1

2

2N+ 3m−3
2

s2N+3m−1(s2+t2)N+ 3m+1
2

dt.

We have

2s2(s2 + t2)− (vs2 + yt2) = t2(2s2 − y) + 2s4 − s2v.

Denote α2(t) := t2(2s2 − y) + 2s4 − s2v.

Hence,

r(1− p3)N−k3+mp
k3+m−1

2
3√

ap2
3 + bp3 + c

dp3 = − r(α2(t))N−k3+m(vs2 + yt2)k3+m−1
2

2N+ 3m−3
2 s2N+3m−1(s2 + t2)N+ 3m+1

2

(3)

Multiplying (2) by (3), we obtain

(
(1− p3)N−k3+mp

k3+m−1
2

3

)
q1(r̂)r√

ap2
3 + bp3 + c

dp3

= − (α2(t))N−k3+m

2N+ 3m−3
2 s2N+3m−1

N−k3+m∑
i=2

{ ai(vs
2 + yt2)k3+m−1

2
+i

(s2 + t2)N+ 3m+1
2
−iαi1(t)

}.(4)
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Substituting (4) into (1), we obtain

2q1(
√
A(p3)r2 +B(p3, k3))K(p3, k3)

A(p3)r√
A(p3)r2 +B(p3, k3)

ρ(p3)dp3

= −
2
(
N
k3

)
ĉm(α2(t))N−k3+m

2N+ 3m−3
2 s2N+3m−1

N−k3+m∑
i=2

{ ai(vs
2 + yt2)k3+m−1

2
+i

(s2 + t2)N+ 3m+1
2
−iαi1(t)

}.

In summary, given k3 (k3 runs from 0 to N), the integrand has the following form

f̂k3(t; r) := −
2
(
N
k3

)
ĉm(α2(t))N−k3+m

2N+ 3m−3
2 s2N+3m−1

N−k3+m∑
i=2

{ ai(vs
2 + yt2)k3+m−1

2
+i

(s2 + t2)N+ 3m+1
2
−iαi1(t)

}.

The equation s2 + t2 = 0 has the pole is in the upper half plane.

We find poles at which α1(t) = 0. Let

a1 = (N − k3)2y,

b1 = s2(2u2 + (N − k3)2(v + y)),

c1 = (N − k3)2s4v.

We have a1, b1, c1 are positive real zeros.

We prove that ∆ = b2
1 − 4a1c1 ≥ 0. We have

∆ ≥ 0

⇔ (2u2 + (N − k3)2(v + y))2 ≥ 4(N − k3)4vy

⇔ 4u2 + 4u2(N − k3)2(v + y) + (N − k3)4(v2 + y2) + (N − k3)42vy ≥ 4(N − k3)4vy

⇔ 4u2 + 4u2(N − k3)2(v + y) + (N − k3)4(v2 + y2)− 2(N − k3)4vy ≥ 0
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⇔ 4u2 + 4u2(N − k3)2(v + y) + ((N − k3)2v − (N − k3)2y)2 ≥ 0,

which is always true. We have

−b1 −
√

∆ = −(b1 +
√

∆) ≤ 0.

We have

−b1 +
√

∆ ≤ 0.

The equation α1(t) = 0 has four complex zeros , where t1, t3 are in the upper half

plane, and t2, t4 in the lower half plane. We have

t1 =

√
−b1 +

√
∆

2a1

= id,

t2 = −

√
−b1 +

√
∆

2a1

= −id,

t3 =

√
−b1 −

√
∆

2a1

= ie,

t4 = −

√
−b1 −

√
∆

2a1

= −ie,

where d =
√

b1−
√

∆
2a1

,

e =
√

b1+
√

∆
2a1

.

Assume t > 0, dt
dp3

< 0, so t(p3) is a decreasing function in p3. Recall that

p3 =
ap

(2)
3 − p

(1)
3 t2

a− t2
,
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so

t2 =
a(p3 − p(2)

3 )

p3 − p(1)
3

.

When p3 = p
(1)
3 , t(p

(1)
3 ) =∞.

When p3 = p
(2)
3 , t(p

(2)
3 ) = 0.

We have

� 1

0

2q1(
√
A(p3)r2 +B(p3, k3))K(p3, k3)

A(p3)r√
A(p3)r2 +B(p3, k3)

ρ(p3)dp3

=

� p
(2)
3

p
(1)
3

2q1(
√
A(p3)r2 +B(p3, k3))K(p3, k3)

A(p3)r√
A(p3)r2 +B(p3, k3)

ρ(p3)dp3

=

� t(p
(2)
3 )

t(p
(1)
3 )

f̂k3(t; r)dt =

� 0

∞
f̂k3(t; r)dt = −

� ∞
0

f̂k3(t; r)dt =

� ∞
0

fk3(t; r)dt,

where fk3(t; r) := −f̂k3(t; r)dt, and fk3(t; r) is non-negative.

Hence, the density of R is q(r) =
∑N

k3=0

�∞
t=0

fk3(t; r)dt.

Now we present how to solve the integral in Formula 3.4.

We have fk3(t; r) is a rational density. Applying partial fraction decomposition over

C, we have fk3(t) = gk3(t)+gk3
(t), where gk3(t) has all poles α1 = is, α2 = id, α3 = ie

in the upper half plane, where s, d, e all positive, s =
√
r2 +N2, d =

√
b1−
√

∆
2a1

, e =√
b1+
√

∆
2a1

, a1, b1, ∆ as in the proof above. And g, and hence g are strictly proper.

Applying a result from [25], we have

� ∞
−∞

fk3(t; r)dt = 2π lim
|t|→∞

|tgk3(t)|.
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Equivalently, � ∞
0

fk3(t; r)dt = π lim
|t|→∞

|tgk3(t)|.

We apply the residue method for calculations of
�∞

0
fk3(t; r)dt. Function gk3(t) is a

rational proper fraction, and can be decomposed into

gk3(t) =
∑
j

∑
i

aij
(t− αi)j

.

We only need
∑

i
ai1

(t−αi) due to lim|t|→∞ |t aij
(t−αi)j | = 0 when j > 1. Each ai1, i = 1, 2, 3

can be obtained using residue theory as follows.

At pole α1 = is with the multiplicity n1, we get the coefficient

a11 =
1

(n1 − 1)!
lim
t→α1

dn1−1

dtn1−1
[(t− α1)n1gk3(t)].

At pole α2 = id with the multiplicity n2, we get the coefficient

a21 =
1

(n2 − 1)!
lim
t→α2

dn2−1

dtn2−1
[(t− α2)n2gk3(t)].

At pole α3 = ie with the multiplicity n3, we get the coefficient

a31 =
1

(n3 − 1)!
lim
t→α3

dn3−1

dtn3−1
[(t− α3)n3gk3(t)].

In the special case that αi is a simple root, we have ai1 = N(αi)

D′ (αi)
, i = 1, 2, 3, where

polynomials N(t), D(t) are the numerator and the denominator of gk3(t).

Figure 3.1 and Figure 3.2 plot the compound density of the standardized radius versus

the ideal density in the analytic approach and a numerical approach, respectively, at
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Figure 3.1: Analytic compound density at N = 2, m = 9.

Figure 3.2: Approximated compound density at N = 2,m = 9.

N = 2, m = 9. The numerical approach will be explained in section 3.12.2. Note

that at this low tree depth, the two are still quite distinct.

3.7. Generating the Histogram

We aim to approximate the compound density of the mixture distribution numerically

when an analytical solution can not be found easily. We run Monte Carlo on the
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variables θi, i = 1, 2, ..., d, where d is the number of risky assets, then a histogram

can be generated numerically. The algorithm for generating the histogram for the

standardized radius is presented as follows:

First, partition along the r-axis 0 = r1 < r1 < ... < rI+1, such that ri ∈ R,

∀i ∈ {1, ..., I + 1} and ri+1 − ri = ∆.

Consider the standardized radius R =

√∑d+1
i=1

k2
i
pi
−N2

N
∼ q(r) such that r ≥ 0, and M

distinct trees of N time-steps are generated. Here q(r) is the scaled pdf of R. Let

Rk,m denotes a drawing of the radius at the kth node in the mth tree. Define

pk,m =

(
|k|
k

)
(pk,m1 )k1(pk,m2 )k2 ...(pk,md+1)kd+1 ,

where k = (k1, k2, k3, .., kd+1) run over all vectors in Nd+1
0 ,

|k| =
d+1∑
i=1

ki = N,

(pk,m1 )1/2 = cos(θm1 ),

(pk,m2 )1/2 = sin(θm1 )cos(θm2 ),

(pk,m3 )1/2 = sin(θm1 )sin(θm2 )cos(θm3 ),

...

(pk,md+1)1/2 = sin(θm1 ) . . . sin(θmd−1)sin(θmd ).

Now define

p(ri) =



∑
k

∑M
m=1

pk,m
M

1{r1 ≤ Rk,m < r2}, i = 1∑
k

∑M
m=1

pk,m
M

1{r2≤Rk,m<r3}, i = 2

...∑
k

∑M
m=1

pk,m
M

1{rI+1≤Rk,m}, i = I + 1
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Then, scaling the probabilities here by 1
∆

, we obtain the following continuous,

piecewise, probability density function, q̂(r), which is a numerical approximation of

the density of the mixture distribution q(r).

q̂(r) =



p(r1)

∆
, r1 ≤ r < r2

p(r2)

∆
, r2 ≤ r < r3

...

p(rI+1)

∆
, rI+1 ≤ r

Note that
�∞

0
q̂(r)dr = p(r1)

∆
∆ + p(r2)

∆
∆ + ...+ p(rI+1)

∆
∆ = 1.

It can be approximately stated that the random variable RN ∼ q(r). Consider

the midpoints of each subintervals: [r1, r2), ..., [rI−1, rI), [rI , rI+1), [rI+1, rI+2), we

get vector r̂ = [(r1 + ∆
2

), (r2 + ∆
2

), ..., (rI+1 + ∆
2

)]T and the corresponding vector

p̂r = [p
(r1)

∆
, p(r2)

∆
, ..., p(rI+1)

∆
]T . The first and the second moments of the histogram

can be calculated

E[RN ] ≈ < r̂, p̂r >,

E[R2
N ] ≈ < diag(r̂T )r̂, p̂r > .

Remark:

In the same way, we can generate the histogram for the standardized squared radius

P = R2

2N
. An example of such a histogram is presented by Figure 3.4 in section 3.12.1.
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3.8. Discrete Entropy

Consider a continuous random variable R with a continuous pdf q(r). The length of

subintervals of the partition along the r-axis is ∆. We have

RIEnt(R) = −
� ∞

0

q(r) log(
q(r)

S(r)
)dr = −

� ∞
0

q(r) log(q(r))dr+

� ∞
0

q(r) log(S(r))dr.

We have

� ∞
0

q(r) log(q(r))dr ≈
� r2

r1

q(r) log(q(r))dr

+

� r3

r2

q(r) log(q(r))dr + · · ·+
� rI+2

rI+1

q(r) log(q(r))dr

≈
I+1∑
i=1

q(ri) log(q(ri))∆.

We have � ∞
0

q(r) log(S(r))dr ≈
I+1∑
i=1

q(ri)

� ri+1

ri

log(S(r))dr.

We define:

RIEnt(R̂∆) := −
∑
i

q(ri)[log(q(ri)∆−Wri ],

where Wri :=
� ri+1

ri
log(S(r))dr.

The RI entropy of variable R, RIEnt(R), can be approximated by RIEnt(R̂∆)

Two Assets Case:

RI Entropy of q(r) is

RIEnt(R) = −
� ∞

0

q(r) log(
q(r)

2πr
)dr.
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In two asset case, we have S(r) = 2πr. We have

Wri =

� ri+1

ri

log(2πr)dr = log(2π)∆ +

� ri+1

ri

log(r)dr

= log(2π)∆ + ri+1 log(ri+1)− ri log(ri)− ri + ri+1

= log(2π)∆ + ri+1 log(ri+1)− ri log(ri)−∆.

RIEnt(R̂∆) := −
∑
i

q(ri)[∆ log(q(ri))−∆ log(2π)−(ri+1 log(ri+1)−ri log(ri)−∆)].

Three Assets Case:

RI Entropy of q(r) is

RIEnt(R) = −
� ∞

0

q(r) log(
q(r)

4πr2
)dr.

In three asset case, we have S(r) = 4πr2. We have

Wri =

� ri+1

ri

log(4πr2)dr = log(4π)∆ +

� ri+1

ri

log(r2)dr

= log(4π)∆ + 2(ri+1 log(ri+1)− ri log(ri)− ri + ri+1)

= log(4π)∆ + 2(ri+1 log(ri+1)− ri log(ri)−∆).

RIEnt(R̂∆) := −
∑
i

q(ri)[∆ log(q(ri))−∆ log(4π)−2(ri+1 log(ri+1)−ri log(ri)−∆)].

The RI entropy of variable R, RIEnt(R), can be approximated by RIEnt(R̂∆).
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3.9. The Characteristic Function and cdf

Let the random variable P denote the standardized squared radius at the final nodes

of a tree of depth N.

The characteristic function is defined as

φP(t) = E[eiPt] = E[E[eitP|Θ]] = E[
∑

k1,k2,k3

eitPpk1,k2,k3(θ1, θ2)]

=
∑

k1,k2,k3,k1+k2+k3=N

� π
2

0

� π
2

0

eitPk(Θ)p(k1,k2,k3)(θ1, θ2)pm(θ1, θ2)dθ1dθ2,

where the mixing density pm(θ1, θ2) = c(p
1/1
1 p

1/2
2 p

1/2
3 )mdp1dp2, c is a normalization

constant, m is the power of the mixing density; pk1,k2,k3(θ1, θ2) = N !
k1!k2!k3!

pk1
1 p

k2
2 p

k3
3 ,

|k| = N, the probabilities of the trinomial distribution.

The cdf can be found as follows:

FP(ρ) = P (P ≤ ρ) = E[1{P≤ρ}] = E[E[1{P≤ρ}|Θ]]

= EΘ[
∑

k1,k2,k3,k1+k2+k3=N

1{Pk(Θ)≤ρ}pk1,k2,k3(θ1, θ2)]

=
∑

k1,k2,k3,k1+k2+k3=N

�
θ1

�
θ2

1{Pk(Θ)≤ρ}pk1,k2,k3(θ1, θ2)pm(θ1, θ2)dθ1dθ2.

The density can be derived from cdf by taking the derivative. The numerical results

of this section can be found in section 3.12.2.
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3.10. Entropy Optimization

3.10.1. Convex Combination

In this section,we still want to fund mixing density with maximal compound density

entropy. We present two approaches. Firstly, the strategy could now be to search

through the class of polynomials up to a certain degree as mixing density to find

the one that maximizes the compound density entropy. Then we could try various

degrees, e.g. m from 1 to 30, to find the best mixing density.

We find the mixing density and corresponding cdf for the range of m from 1 to 30 in

the two assets case. Then we form a convex combination of those mixing densities

and apply our optimization algorithm. Then we find the optimal coefficients in the

convex combination so that the new mixing density maximizes the compound density.

Secondly, we present the idea for a convex combination of symmetrized monomials.

Let consider the case of 2-assets (d = 2). The idea is as follows:

� Step 1: Fix the total degree, m.

� Step 2: Generate all monomials in
√
p1,
√
p2,
√
p3 which have a total degree

at most m.

� Step 3: Symmetrize each one of them. We find the symmetrized version of

each monomial (
√
p1)m1(

√
p2)m2(

√
p3)m3 .

� Step 4: Consider a linear combination which produces non-negative functions

on the set {√p1 ≥ 0,
√
p2 ≥ 0,

√
p3 ≥ 0, p1 + p2 + p3 = 1}.

We could restrict to convex combinations of the normalized versions of these symmet-

rized monomials. Many monomials will give rise to the same symmetrized polynomials.



90 Pricing Multi-Asset Options Using An MC-Tree Method

To deal with that efficiently, alternative approach would be to use max(mi) ≤ m as

an upper bound in our search at step m; i.e, 1 ≤ m3 ≤ m2 ≤ m1 ≤ m. Given m, we

have m(m+1)
2

new monomials in total. Given a value of m, we find the symmetrized

version of each monomial (
√
p1)m1(

√
p2)m2(

√
p3)m3 , as follows:

� If the exponent of each monomials m1 = m2 = m3 = m, then the symmetrized

version is (
√
p1)m(

√
p2)m(

√
p3)m.

� If m1 = m2 = m, the symmetrized version consists of three terms:

1

3
(
√
p1)m(

√
p2)m(

√
p3)m3+

1

3
(
√
p1)m(

√
p2)m3(

√
p3)m+

1

3
(
√
p1)m3(

√
p2)m(

√
p3)m.

If m2 = m3 = m, the symmetrized version consists of three terms:

1

3
(
√
p1)m1(

√
p2)m(

√
p3)m+

1

3
(
√
p1)m(

√
p2)m1(

√
p3)m+

1

3
(
√
p1)m(

√
p2)m(

√
p3)m1 .

If m1 = m3 = m, the symmetrized version consists of three terms:

1

3
(
√
p1)m2(

√
p2)m(

√
p3)m+

1

3
(
√
p1)m(

√
p2)m2(

√
p3)m+

1

3
(
√
p1)m(

√
p2)m(

√
p3)m2 .

We apply random sampling by generating a vector U = (u1, u2, u3) with the

corresponding p = (1
3
, 1

3
, 1

3
) for choosing a new monomial among 3 terms.

� If m1 6= m2 6= m3, the symmetrized version consists 6 terms:

1

6
(
√
p1)m1(

√
p2)m2(

√
p3)m3+

1

6
(
√
p1)m1(

√
p2)m3(

√
p3)m2+

1

6
(
√
p1)m2(

√
p2)m1(

√
p3)m3+

1

6
(
√
p1)m2(

√
p2)m3(

√
p3)m1+

1

6
(
√
p1)m3(

√
p2)m1(

√
p3)m2+

1

6
(
√
p1)m3(

√
p2)m2(

√
p3)m1 ,
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taking (m1,m2,m3), (m1,m3,m2), (m2,m1,m3), (m2,m3,m1), (m3,m1,m2),

(m3,m2,m1) as exponent. We apply random sampling by generating a vec-

tor V = (v1, v2, v3, v4, v5, v6) with the corresponding p = (1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
) for

choosing a new monomial among 6 terms.

For example, given m = 11, there are 11(11+1)
2

= 66 new monomials in total. All

mixing densities and the corresponding cdf can be generated from the notebook file at

https://gitlab.com/trinhthuanyen2017/mixing-densities-and-the-corresponding-cdf-w.r.t-m

3.10.2. Unilateral Optimization

We work in the context of using Monte Carlo based histograms.

Consider a partition P of the nonnegative r-axis: 0 = r1 < r2 < .... < rI+1. And Wri is

defined as in Section 3.8. Let the (total) probability of probability density j ∈ {1, 2, . . . , J}

in the interval r ∈ [ri, ri+1], i = 1, . . . , I + 1 be denoted by qrj .

Proposition 3.10.1. If for each subinterval [ri, ri+1) there is at most one

j ∈ {1, 2, ..., J} with qr,j > 0, then the optimal RI Entropy mixture is given by the formula

cj =
eRIEntj∑
h e

RIEnth
, RIEntj = −

∑
{r:qrj 6=0}

qrj [log(qrj)∆−Wri ],

where cj > 0,
∑J

j=1 cj = 1

Proof. The RI entropy of the mixture (
∑

j cjqrj)r∈P is equal to

RIEnt(
∑
j

cjqrj) = −
∑
{r∈P}

∑
{j:cj>0}

cjqrj [log(cjqrj)∆−Wri ].
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Due to the fact that each subinterval has at most one j for which qρj > 0, we have

RIEnt(
∑
j

cjqrj) = −
∑
{r∈P}

∑
{j:cj>0}

cj log(cj)qrj∆−
∑
{r∈P}

∑
{j:cj>0}

cjqrj [log(qrj)∆−Wri ]

= −
∑

{j:cj>0}

cj log(cj)(
∑
{r∈P}

qrj)∆ +
∑
j

cj(−
∑
{r∈P}

qrj [log(qrj)∆−Wri ])

= −
∑

{j:cj>0}

cj log(cj) +
∑
j

cjRIEntj

because
∑
{r∈P} qrj = 1

∆ and RIEntj = −
∑
{r∈P} qrj [log(qrj)∆−Wri ]. Using Lagrangian

technique to find the optimum for this expression w.r.t c1, c2, ..., cJ with
∑

j cj = 1, we

have

L = −
∑
j

cj log(cj) +
∑
j

cjRIEntj − λ[
∑
j

cj − 1].

Set ∂L
∂cj

= 0, we obtain

− log(cj)− 1 +RIEntj − λ = 0, j = 1, 2, ..., J.

It is implied that

log(cj) = RIEntj − (λ+ 1)⇒ cj = µeRIEntj , µ = e−(λ+1).

We use the constraint
∑

j cj = 1 to determine µ.

∑
j

cj = 1⇔
∑
j

µeRIEntj = µ

J∑
j=1

eRIEntj = 1⇔ µ =
1∑J

j=1 e
RIEntj

,
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so cj = eRIEntj∑
h e

RIEnth
. Using this optimal value of cj , the optimal entropy is

RIEnt(
∑
j

cjqrj) = −
∑
j

cj [log(cj)−RIEntj ]

= −
∑
j

µeRIEntj (log(µ) +RIEntj −RIEntj)

= −µ log(µ)
∑
j

eRIEntj = − log(µ) = log(
∑
j

eRIEntj ).

Equivalently, eRIEnt(
∑
j cjqrj) =

∑
j e

RIEntj .

We can optimize, using the convexity of the entropy as a function of c1, ..., cJ ,∑
j cj = 1, by optimizing ”unilaterally” w.r.t each of the variables but respecting the

restriction
∑

j cj = 1. The ”unilateral” optimization w.r.t cj with the restriction
∑

j cj = 1

proceeds as follows:

1. Iteration 1

� Initialization Step: Fix (c0
1, c

0
2, ..., c

0
J), where c0

j = eRIEntj∑
h e

RIEnth
.

� Step 1: Do ”unilateral” optimization for c1 (j = 1).

Define q0
rj :=

∑
h6=j, h∈{1, 2,..., J} c

0
hqrh

1−c0j
, r ∈ P.

Note that
∑
{h6=j, h∈{1,.., J}} c

0
h = 1− c0

j and
∑

r∈P q
0
rj = 1

∆ . Hence

c0
jqrj + (1− c0

j )q
0
rj =

J∑
h=1

c0
hqrh.

Let g(cj) = −
∑

r∈P(c0
jqrj + (1− c0

j )q
0
rj)[log(c0

jqrj + (1− c0
j )q

0
rj)∆−Wri ]. Then

g′(cj) = −
∑
r∈P

(qrj − q0
rj)[log(c0

jqrj + (1− c0
j )q

0
rj)∆−Wri ].

Hence, g
′′
(cj) = −∆

∑
ρ∈P{

(pρj−q0
ρj)

2

c0jpρj+(1−c0j )q0
ρj
} ≤ 0. There are three following

cases.
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– Case 1: c∗j ∈ (0, 1) is a critical point g
′
(cj) = 0, g(cj) is increasing on

[0, c∗j ] but decreasing on [c∗j , 1]. g(cj) is maximized at the critical point c∗j .

The value c∗j can be found by using the bisection method applied to g
′
.

– Case 2: The critical point c∗j = 1 and g(cj) is increasing on [0, 1], so g(cj)

is maximized at c∗j = 1 if

g
′
(1) = −

∑
ρ∈P

(qρj − q0
ρj)[log(qρj)∆−Wri ] ≥ 0.

– Case 3: The critical point c∗1 = 0 and g(cj) is decreasing on [0,1], so g(cj)

is maximized at c∗j = 0 if

g
′
(0) = −

∑
ρ∈P

(qρj − q0
ρj)[log(q0

ρj)∆−Wri ] ≤ 0.

The above optimization procedure produces the optimal coefficient c1
1 = c∗1,

and c1
j =

1−c11
1−c01

c0
j , j = 2, 3, 4, ..., J.

� Step 2: Update vector c = (c1
1, c

1
2, ..., c

1
J).

If c1
2 = 1, no rebalancing of the weights can be carried out, let alone optimal

rebalancing, so this step leaves the weights vector c unchanged. Otherwise, we

do ”unilateral” optimization for c2 (j = 2) by repeating procedure in step 1

with c = (c1
1, c

1
2, ..., c

1
J) as the starting vector at the initialization step.

The optimization procedure produces the optimal coefficient c2
2 = c∗2, and

c2
j =

1−c22
1−c12

c1
j , j = 1, 3, 4, ..., J.

...

� Step J: We repeat our procedure until step J to obtain the optimal vector at

this step at cJj = c∗J , and cJj =
1−cJj

1−cJ−1
j

cJ−1
j , j = 1, 2, 3, 4, ..., J − 1.

2. Iteration 2:
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We repeat all the steps of the iteration one. However, the starting vector now is the

optimal vector that we obtain in the iteration one.

The process is continued in an analogous fashion until the stopping criteria are reached.

The stopping criteria are that all vectors at each iteration or two consecutive iterates are

identical. The stopping criteria are that there is no further improvement, and an optimum

was reached.

In the case of no further improvement, the gradient of the function on the space

{c = (c1, ..., cJ) :
∑J

j=1 cj = 1} will be zero, and the unique local and hence global

maximum will be reached, due to the convexity.

3.11. Option Pricing Using MC-Tree with the Bias-Correction

To compute a European option, a continuous-time price process of d assets Z is modeled

by the a geometric Brownian motion with drift, given by

dZj = Zjµjdt + ZjσjdWj , for all 1 ≤ j ≤ d, where W = (W1, W2, ..., Wd)
T is a

vector Brownian motion process with the correlation matrix Γ. We will use the direction

vectors vi(j) in case case µj = r, j = 1, 2, ..., d, and corresponding probability vector

p = (p1, p2, ..., pd+1). The direction vector vi(j) is defined as follows:

Let v = {vi}d+1
i=1 be given by

vi(j) := exp{
√
δ(LHM)ij + µ̂jδ},

for all 1 ≤ j ≤ d, for all 1 ≤ i ≤ d + 1, where L is a dxd matrix such that LLT = Σ, Σ

is a covariance matrix, L can be computed by applying Cholesky decomposition; M is

a dx(d+1) matrix, and columns of M is the M-vectors (see [40]); H is a dxd matrix, as

described in section 3.1.
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Using bias-corrected direction vectors vi with elements vi(j) give ṽi(j) := vi(j) exp{λjδ},

1 ≤ i ≤ d+ 1, 1 ≤ j ≤ d, where the real numbers λj , j = 1, 2, ..., d are solved from

p1ṽ1(j) + p2ṽ2(j) + ...+ pd+1ṽd+1(j) = erδ.

This correction amounts to replacing µ̂j = r − 1
2σ

2
j by µ̂j = r − 1

2σ
2
j + λj , j = 1, 2, ..., d.

The bias correction in two assets case is defined as

λ1 = r − log(p1v1(1) + p2v2(1) + p3v3(1))

δ
,

λ2 = r − log(p1v1(2) + p2v2(2) + p3v3(2))

δ
,

where the three direction vectors are denoted by

v1 := (v1(1), v1(2)),

v2 := (v2(1), v2(2)),

v3 := (v3(1), v3(2)).

The resulting tree model is complete and free of arbitrage.

3.12. Numerical Results in the Two Assets Case

3.12.1. Histogram and Discrete Entropy

In this section, we use the following inputs: range=12, numbers of bins=120 for experiments.

Given those inputs, the following histogram in Figure 3.3 is an illustrated example with

MC-drawing M = 104 from the mixing density of the power m = 9. The value of RI
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Entropy is 2.836196, and the second moment is 2.000878. This can be compared with the

theoretical values of 2.83788 for the entropy and 2 for the second moment. Our alternative

approach (see remark in section 3.7) produces the following histogram in Figure 3.4 for

inputs: range=10, numbers of bins=250. The entropy value is 0.9997302, and the second

moment is 1.970511.

Figure 3.5 displays the entropy values as N increases. This experiment tests the effect

on the entropy of mixture distribution when changing the tree depth N . In this experiment,

the tree depth N is in the set {10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50}. Figure 3.6 shows

effects on entropy values with the changes of the bin-width from mixing density with the

power m = 9 and the tree depth N = 10. Both Figure 3.5 and Figure 3.6 show that entropy

values seem to be close and going up, but one could wonder whether we can actually have

the convergence to the exact Gaussian entropy. That is an interesting question for future

research.

3.12.2. The Characteristic Function and the cdf

We partition t from -12 to 12 with the step size 0.01. Figure 3.7 shows the characteristic

function for this partition at N = 10 and m = 9. Figure 3.8 plots the cdf of the standardized

squared radius ρ = R2

2N and the cdf of standard exponential distribution when partitioning ρ

from 0.01 to 8 with 4000 points at N = 30 and m = 30. Figure 3.9 shows the corresponding

PDF.

Figure 3.10 plots cdf of the standardized radius r and cdf of the ideal distribution when

partitioning r from 0.01 to 8 with 4000 points at N = 30 and m = 30. Figure 3.11 shows

the corresponding pdf.
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Figure 3.3: Generated histogram for the standardized radius using
mixing density with m = 9. Red points are the mid points of histogram

bins.
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Figure 3.4: Generated histogram for the standardized square radius
using mixing density with m = 9 by the alternative approach. Red points

are the mid points of histogram bins.
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Figure 3.5: Entropy values versus the tree depth. The dotted blue line
represents the entropy value of standard bivariate Gaussian density at

2.83788.
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Figure 3.6: Entropy values versus bin-width. The dotted blue line
represents the entropy value of standard bivariate Gaussian density at

2.83788.
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Figure 3.7: The characteristic function at N = 10 and m = 9. Red
curve: The ideal characteristic function. Blue curve: Approximated

characteristic function of the standardized squared radius.
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Figure 3.8: The cdf of the standardized squared radius versus the
ideal cdf at N = 30 and m = 30. Blue curve: Approximated cdf of

standardized squared radius. Red curve: Ideal cdf.
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Figure 3.9: Compound density versus standard exponential density of
the standardized squared radius at N = 30 and m = 30. Blue curve:

Approximated compound density. Red curve: Ideal density.
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Figure 3.10: The cdf of standardized radius versus the ideal cdf at
N = 30 and m = 30.
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Figure 3.11: Compound density versus the ideal density of the stand-
ardized radius at N = 30 and m = 30
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3.12.3. Convex Combination and Unilateral Optimization of Mixing Densities

with degree from 1 to 30

In this section, we use the following inputs: range=20, numbers of bins=80 in experiments.

Figure 3.12 shows the graphical representation of optimal coefficients αi of the corresponding

mixing densities with a convex combination of mixing densities from m = 1 to 30 when

fixing N = 10. It is observed that the optimal coefficient is α30 = 0.89797246. The entropy

after optimization is 2.829718, compared with the highest entropy of m = 30 at 2.829633.

There is possibly insignificant improvement in the entropy of 10−3.

3.12.4. Convex Combination and Unilateral Optimization of Symmetric

Monomials

In this section, we use the following inputs: range=20, numbers of bins=80 in experiments.

Random sampling generates u2 = 3 and v6 = 2. Figure 3.13 shows the graphical represent-

ation of optimal coefficients αi of symmetric monomials at k = 11 when fixing N = 10. It

is observed that the optimal coefficient is α66 = 0.8898784, followed by α19 = 0.1101216.

The entropy after optimization is obtained at 2.829364, compared with the entropy of the

symmetric monomial 11, 11, 11 at 2.829279. There is possibly insignificant improvement in

the entropy of 10−3.
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Figure 3.12: The plot of optimal coefficients in the convex combination
of mixing densities when N = 10.
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Figure 3.13: The plot of optimal coefficients in the convex combination
of symmetrized monomials when N = 10.
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3.12.5. Numerical Results of European Options on the Maximum and Min-

imum of Two Assets

We will present numerical results of MC-Tree to the call options on the maximum of assets

and the put options on the minimum of the assets. Then we will compare MC-Tree with

the plain MC, and recombining multinomial trees based on Pascal’s simplex in [40] in

terms of accuracy. The following parameters are used through all numerical experiments.

� Number of replication M = 104.

� Initial stock prices S1 = 40, S2 = 40.

� Expiration T = 7 months.

� Risk-free rate r = 0.05.

� Volatility σ1 = 0.2, σ2 = 0.3.

� The correlation ρ = 0.5.

3.12.5.1. Comparison To the Recombining Multinomial Tree Based on Pascal’s

Simplex

Table 3.1 and table 3.2 show that the standard deviation of Q&P is higher than the

standard deviation of MC-Tree. Q&P method is from the recombining multinomial tree

based on Pascal’s simplex (see [40]). The price of both methods are convergent to the

analytical solution at the tree depth N=200. The analytical solution (AS) is stated by Stulz

(1982) in [42]. We notice the small upward bias on Table 3.2. However, the distribution

correction technique is not applied here, which may cause this bias because the compound

density is not quite Gaussian.
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Table 3.1: Accuracy comparison between MC-Tree and Q&P for the
European call options on the maximum of the assets.

K Method N = 20 N = 50 N = 200 AS
Mean SD Mean SD Mean SD CI

35 MC-Tree 9.428 0.064 9.422 0.040 9.420 0.02 (9.4194, 9.420
9.4202)

Q&P 9.425 0.076 9.421 0.047 9.420 0.023 (9.4191,
9.4200)

40 MC-Tree 5.501 0.084 5.492 0.053 5.488 0.026 (5.4878, 5.488
5.4888)

Q&P 5.499 0.101 5.492 0.063 5.488 0.031 (5.4877,
5.4889)

45 MC-Tree 2.801 0.081 2.797 0.050 2.795 0.025 (2.7943, 2.795
2.7953)

Q&P 2.801 0.122 2.797 0.077 2.795 0.038 (2.7945,
2.7959)

Table 3.2: Accuracy comparison between MC-Tree and Q&P for the
European put options on the minimum of the assets.

K Method N = 20 N = 50 N = 200 AS
Mean SD Mean SD Mean SD CI

35 MC-Tree 1.395 0.036 1.390 0.022 1.388 0.011 (1.3881, 1.387
1.3886)

Q&P 1.392 0.052 1.389 0.032 1.388 0.016 (1.3876,
1.3882)

40 MC-Tree 3.815 0.051 3.805 0.031 3.801 0.016 (3.8002, 3.798
3.8008)

Q&P 3.815 0.062 3.806 0.038 3.801 0.019 (3.8001,
3.8009)

45 MC-Tree 7.512 0.044 7.505 0.027 7.501 0.013 (7.5010, 7.500
7.5015)

Q&P 7.512 0.075 7.506 0.046 7.502 0.023 (7.5011,
7.5020)
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Table 3.3: Accuracy comparison between MC-Tree and plain MC for
the European call options on the maximum of the assets.

K Method Mean SD AS
35 MC-Tree 9.422 0.040 9.420

MC 9.345 7.441
40 MC-Tree 5.492 0.053 5.488

MC 5.435 6.471
45 MC-Tree 2.797 0.050 2.795

MC 2.750 4.963

Table 3.4: Accuracy comparison between MC-Tree and plain MC for
the European put options on the minimum of the assets.

K Method Mean SD AS
35 MC-Tree 1.390 0.022 1.387

MC 1.400 2.615
40 MC-Tree 3.805 0.031 3.798

MC 3.808 4.29
45 MC-Tree 7.505 0.027 7.500

MC 7.480 5.565

3.12.5.2. Comparison To Plain Monte Carlo (MC)

Table 3.3 and table 3.4 show that the standard deviation of the plain MC is higher than

the standard deviation of MC-Tree at the same number of simulations M = 104 (the tree

depth N = 50.)

3.12.6. Numerical Results for American Options on the Maximum and Min-

imum of Two Assets

We will present numerical results of MC-Tree to the American call options on the maximum

of assets and the American put options on the minimum of the assets. Then we will

compare MC-Tree with recombining multinomial trees based on Pascal’s simplex in [40] in

terms of accuracy.
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The following parameters are used through all numerical experiments.

� Number of replication M = 104.

� Initial stock prices S1 = S2 = S.

� Strike price K = 100.

� Expiration T = 1 year.

� Risk-free interest rate r = 0.05.

� Volatility σ1 = 0.2, σ2 = 0.2.

� The correlation ρ = 0.3.

� Dividend rate δ = 0.10.

Table 3.5 and table 3.6 show that the standard deviation of Q&P is higher than the

standard deviation of MC-Tree.
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Table 3.5: Accuracy comparison between MC-Tree and Q&P for the
American call options on the maximum of assets.

S Method N = 10 N = 50
Mean SD Mean SD

70 MC-Tree 0.204 0.069 0.235 0.032
Q&P 0.235 0.137 0.241 0.066

80 MC-Tree 1.229 0.195 1.281 0.086
Q&P 1.234 0.380 1.286 0.163

90 MC-Tree 4.155 0.341 4.181 0.151
Q&P 4.161 0.519 4.184 0.237

100 MC-Tree 9.600 0.455 9.594 0.201
Q&P 9.600 0.600 9.597 0.262

110 MC-Tree 17.306 0.471 17.301 0.208
Q&P 17.292 0.556 17.302 0.246

120 MC-Tree 26.484 0.389 26.494 0.171
Q&P 26.462 0.441 26.493 0.197

130 MC-Tree 36.372 0.292 36.400 0.128
Q&P 36.351 0.332 36.397 0.148

Table 3.6: Accuracy comparison between MC-Tree and Q&P for the
American put options on the minimum of assets.

S Method N = 10 N = 50
Mean SD Mean SD

70 MC-Tree 37.919 0.089 37.887 0.033
Q&P 37.918 0.117 37.888 0.043

80 MC-Tree 29.783 0.083 29.752 0.028
Q&P 29.784 0.135 29.753 0.050

90 MC-Tree 21.967 0.096 21.931 0.033
Q&P 21.961 0.191 21.932 0.073

100 MC-Tree 14.997 0.167 14.942 0.067
Q&P 14.992 0.242 14.942 0.098

110 MC-Tree 9.403 0.215 9.335 0.090
Q&P 9.393 0.265 9.334 0.104

120 MC-Tree 5.399 0.221 5.353 0.092
Q&P 5.387 0.265 5.349 0.112

130 MC-Tree 2.842 0.196 2.835 0.082
Q&P 2.821 0.287 2.829 0.124



Chapter 4

Credit Valuation Adjustment (CVA)

4.1. Unilateral CVA Formulation

Institution A, such as Bank, has a netting set with counterparty B at the expiration

time at T , where T is the longest-maturity of all of the transactions in the netting set.

Institution A is interested in determining the one-sided CVA for this netting set, excluding

the possibility of their default.

Define:

� V (t, T ) is the risk-free value of the netting set at time t for Institution A.

� Ṽ (t, T ) is the risky value of the netting set at time t for Institution A.

� Et[.] is the conditional expectation under the risk-neutral measure taking account of

the information available at time t.

� τ is the default time of the counterparty B.

� LGD is the loss given default to A of the counterparty B. LGD = 1−R, where R is

the recovery rate.
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� D(t, τ) is the discount rate from τ back to t, t ≤ τ .

If there are no netting agreements, the risk-free value of the portfolio is the sum of individual

trades or transactions.

If there are netting agreements, derivatives with negative values at the default time offset

the ones with positive values within each netting set.

We can consider two cases.

Case 1: Courterparty does not default before T .

If the counterparty does not default before T , the risky asset is considered as the risk-free

asset, and the payoff at time t is 1{τ>T}V (t, T ).

Case 2: Counterparty defaults before T .

If counterparty defaults at τ , the payoff is the sum of the value of the payments received

before default time τ , 1{τ≤T}V (t, τ), and the recovery value upon the default. The MtM

recovery value upon the default is defined as 1{τ≤T}(R.max(V (τ, T ), 0) + min(V (τ, T ), 0)).

If the MtM value of the trade is positive at default, the bank will receive a portion of the

trade value; the bank pays an amount to the counterparty if it is negative.

Therefore, the total payoff for the risky asset is the sum of the values in the two cases,

under a risk-neutral assumption. Let V (τ, T ) = D(t, τ)V (τ, T ) be the discounted value,

back to time t, of the random variable V (τ, T ).

Then V (t, T ) = D(t, t)V (t, T ) = V (t, T ) as D(t, t) = 1.

Et[1τ≤T (V (t, τ) + V (τ, T ))] = E[Et[(V (t, τ) + V (τ, T )|τ ≤ T ]]

= E[Et[V (t, T )|τ ≤ T ]] = V (t, T )E[1{τ≤T}]

= V (t, T )E[1{τ≤T}].
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We have

Ṽ (t, T ) = E[1{τ≤T}V (t, τ) + 1{τ≤T}(R.max(V (τ, T ), 0) + min(V (τ, T ), 0)

+ 1{τ>T}V (t, T )]

= E[1{τ≤T}V (t, τ) + 1{τ≤T}(R.max(V (τ, T ), 0) + V (τ, T )−max(V (τ, T ), 0))

+ 1{τ>T}V (t, T )]

= E[1{τ≤T}(V (t, τ) + V (τ, T )) + 1{τ≤T}((R− 1) max(V (τ, T ), 0))

+ 1{τ>T}V (t, T )]

= E[(1{τ>T}V (t, T ) + 1{τ≤T}V (t, T )) + 1{τ≤T}((R− 1) max(V (τ, T ), 0))]

= E[V (t, T ) + 1{τ≤T}((R− 1) max(D(t, τ)V (τ, T ), 0))]

= V (t, T ) + E[D(t, τ)1{τ≤T}((R− 1) max(V (τ, T ), 0))].

CVA is the difference between the CCR-risk free portfolio value and the CCR-risky portfolio

value when the counterparty may default. CVA at time t is defined as

CV A(t) = V (t, T )− Ṽ (t, T ) = E[D(t, τ)(1−R)1{t<τ≤T}max(V (τ, T ), 0)].

CVA formula can be derived in another way. The bank will suffer from a loss in the default

event of a counterparty at time τ ≤ T , as follows:

L = D(t, τ)(1−R)1{τ≤T}max(V (τ, T ), 0).

CVA at time t is defined as the expectation of the loss.

CV A(t) = E[L] = E[D(t, τ)(1−R)1{t<τ≤T}max(V (τ, T ), 0)].
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It is difficult for us to calculate the formula CV A(t) above due to some reasons. The

default can happen at any time between t and T because time is continuous. LGD = 1−R

is stochastic in general and correlated with other variables.

We can make some standard assumptions. Assume that LGD and discount factors are

nonrandom. We assume the possible default event of counterparty and the value of a

netting set V (t, T ) are uncorrelated, which is an assumption of unilateral CVA. We divide

the interval [t, T ] into N subintervals, which are not necessarily equally spaced. Given the

set {t0, t1, t2, ..., tN}, where t0 = t, tN = T.

CV A(t) ≈ (1−R)EQt [
N∑
i=1

1{ti−1<τ≤ti}D(t, ti) max(V (ti, T ), 0)]

= (1−R)D(t, ti)

N∑
i=1

EQt [1{ti−1<τ≤ti}]E
Q
t [max(V (ti, T ), 0)]

= (1−R)D(t, ti)
N∑
i=1

P (ti−1 < τ ≤ τi)EQt [max(V (ti, T ), 0)],

where P (ti−1 < τ ≤ τi) is the risk neutral probability of default between ti−1 and ti

observed at time t. If we assume that a possible default of counterparty B between ti−1

and ti occurs at the middle time and approximates the discounted positive exposure by

the average value corresponding to the extremes of the interval, CV A(t) is defined as

CV A(t) = (1−R)
∑N

i=1 P (ti−1 < τ ≤ ti)(D(t,ti−1)Et[max(V (ti−1,T ),0)]+D(t,ti)Et[max(V (ti,T ),0)]
2 ).

4.2. Default Probability

The first approach is to use an intensity default model. We will use an intensity default

model (see [12]) to calculate the default probability of a counterparty. If the counterparty

survived up to time t, the default probability in an infinitesimal interval [t, t+ dt] is defined

as P (t < τ ≤ t + dt) = λtdt, where λt is a deterministic default intensity or the hazard
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rate. The cumulative distribution function of default time τ of the counterparty is derived

from a poisson process, Φ(t) = P (τ ≤ t) = 1− e−
� t
0 λudu. We can assume a constant hazard

rate or a deterministic piece-wise constant rate. The default probability between ti−1 and

ti is given by

P (ti−1 < τ ≤ ti) = P (τ ≤ ti)− P (τ < ti−1) = eλti−1 ti−1 − eλti ti .

An equivalent method is to use CDS spread or bond credit spread.

P (ti−1 < τ ≤ ti) = max(0, e
− si−1ti−1

(1−R) − e−
siti

(1−R) ),

where si is the credit spread of the counterparty at ti. The expression si
(1−R) approximates

the instantaneous (risk-neutral) intensity of default. We apply a max function to avoid

negative probabilities under some rare cases.

4.3. Expected Exposure

The exposure is the amount of loss if a counterparty cannot make future payments upon the

option contract obligation due to its default at a particular time. The main part of CVA

calculations is the calculations of the expected future exposure EQ
t [max(V (ti, T ), 0)]. The

exposure calculations depend highly on the complexity of the derivatives in the portfolio.

Modelling CVA of an American option is a challenge due to the complexity of CVA

calculations and the characteristics of the American option. We present an algorithm

for the calculation of the expected exposure in the formula of the unilateral CVA for the

American put option using MC-Tree in the next section. Our method of calculations for

the CVA of an American option is not known in the literature, to the best knowledge of

the authors.
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4.3.1. Tree Approach for CVA

We develop the algorithm to calculate CVA on an American put option, using the MC-tree

method, as follows:

Step 1: Run the tree backward to compute the American option value at each node. Label

each node either C for continuation or N for no continuation. Let

1C =

 1 if node label = ”C”,

0 if node label = ”N”.

Step 2: Run the tree forward to compute the probabilities of the American option reaching

a given node.

P (A) = p ∗ P (Lower Predecessor)1C(Lower Predecessor)

+ (1− p) ∗ P (Upper Predecessor)1C(Upper Predecessor).

Step 3: Run the tree backward to compute the expected exposure at time step in the tree

using the probabilities in step 2.
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4.3.2. MC-Tree Approach for CVA

The tree approach for CVA will produce a CVA value for any given tree. The CVA value

from the MC-Tree approach is the mean of all CVA values of all trees.

4.4. Remarks

� We can short two American options in the portfolio, which means that there are

negative values in the netting set. Hence, if there are two American options in the

portfolio, we need to expand the MC-Tree approach for CVA to take account of

possible cases: 1C & 2C, 1N &2N, 1C & 2N,1N & 2C, where 1C & 2C denote the

continuation for the first option and the second option, respectively; 1N & 2N denote

no continuation for the first option and the second option, respectively.

� If there are a larger number of American options in the portfolio (netting set),

CVA calculations become computationally intensive. If all assets in the netting set

are non-negative, we can just compute the probabilities using a tree for each asset

separately, then add up to get the total result.

� For a portfolio with only European options, the probabilities in the tree are unchanged

for European options, and we can do the netting set for each node without taking

account of cases ”alive” or ”dead” for each option.

4.5. Numerical Results of CVA Calculations

The following parameters are used to estimate CVA of an American put option.

Initial stock price S0=80, Strike price K = 100, Expiration T = 1, Interest rate r = 0.03,



122 Credit Valuation Adjustment (CVA)

Volatility σ = 0.2, Dividend rate=0, Recovery rate R = 0.4, Intensity of default λ = 0.03.

CVA value is convergent to 0.34 when we increase the number of simulation M , and the

Table 4.1: CVA values.

N M CVA
50 100 0.2447
75 150 0.3013
100 250 0.3104
250 700 0.3282
250 10000 0.3392
250 100000 0.3440
2000 700 0.3414
4000 700 0.3414

tree depth N , respectively.



Chapter 5

Entropy and Kullback-Leibler for-

mulas for rational densities

5.1. Introduction

We consider integrable univariate rational density functions on the real line, then refer to

them as rational densities henceforth. After normalization, we have rational probability

density functions. This chapter presents an analytic method to compute the entropy of

rational densities and the KL divergence between two rational densities. The entropy

and KL divergence are defined by the usual entropy and KL divergence integrals. The

method will give exact answers only if the poles are known or can be computed exactly. If

the spectral factorization is done by an approximative numerical procedure, the answer

will also be an approximation. There are many works on spectral factorization in the

literature due to its popularity. Here, we mention two noticeable approaches. The study in

the article [24] presented five numerical algorithms for spectral factorization of Laurent

polynomials. Authors in [4] showed an efficient algorithm based on Graeffe iteration for
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polynomial spectral factorization.

Rational probability density functions play an important role in classical statistical inference,

applications in science, and in time series analysis as spectral densities. Although the

Gaussian distribution is dominant in applications of statistical modeling in many areas in

which there is a growing interest in the so-called heavy-tailed distribution. Rational densities

of such heavy-tailed distribution follow important subclass, other types of distributions

have been emphasized in the field.

Hanzon and Ober in [25] investigated a solution to the filtering problem for a linear

time-varying system whose noise inputs have rational probability density functions. They

obtained important results on rational densities and representation of rational densities.

The case of Cauchy noise is also treated in that paper. Hanzon and Scherrer [26] solved the

filtering problem for a class of discrete-time stochastic volatility models. The disturbances

have rational probability density functions such as a Cauchy density or a Student t-density

with odd number of degrees of freedom. Entropy computation is crucial in probability theory,

for instance, in entropy maximization problems over a class of densities. In the literature,

the KL divergence is also applied to integrable spectral densities of finite-dimensional

Gaussian systems (see [23]). Authors in [37] derived mathematical expressions for the

Shannon entropy and cross-entropy of exponential families. The authors concluded that

entropy and the cross-entropy of exponential families are not always available in a closed-

form solution. Reference [17] presented a closed-form expression for the KL divergence

between Cauchy distributions. However, the formula is derived from using the Mgfun

package of the computer algebra system Maple to calculate a parametric definite integral

with six parameters. The formula for the entropy of Student distribution is mentioned

in [30]. However, the authors presented a numerical approximation for the exact expression

because it is difficult to evaluate the effect of the number of degrees of freedom on the

entropy from the formula.
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Entropy and KL divergence between Cauchy densities and Student rational densities are

crucial in many applications, but an analytical derivation is not available in the literature,

to the best of our knowledge.

The chapter is organized as follows. Section 5.2 presents the main theorem which is used to

derive other theorems, and propositions in this chapter. Then we apply those theorems to

derive entropy and KL divergence of the compound density of an MC-Tree in section 5.3,

between Cauchy densities in section 5.4, and between rational Student densities in section

5.5. Section 5.6 extends our approach to calculate entropy and KL divergence for any

(pair of) integrable and non-negative rational function(s). Some examples are illustrated

in subsections 5.6.1 and 5.6.2. Finally, some remarks on possible usage to finite Gaussian

mixture are presented in section 5.7.

5.2. An Application of the Residue Theorem

Let us consider integrals of the type
�∞
−∞ r(x) log(q(x))dx, where r(x) is any absolutely

integrable rational function, and q(x) is a non-negative, not identically zero rational

function. Then q(x) is equal to the quotient of two non-negative polynomials. Of course,

log(q(x)) can be written as the log of the numerator minus the log of the denominator.

Therefore, we can concentrate on the case where we have a nonnegative polynomial in

the log term. As is well-known and not difficult to show q is nonnegative if and only if

there exist a complex polynomial ψ(z) with all its zeros in the closed upper half plane (i.e.

the imaginary parts of the zeros of ψ(z) are non-negative) such that q(x) = |ψ(x)|2 for all

real values of x. Such ψ will be called a spectral factor. The rational function r(z) when

viewed as a function on the closed lower half plane in C has singularities at its poles in the

open lower half plane, say z1, z2, ...., zk, with Im(zj) < 0, j = 1, k with the corresponding

multiplicities µ1, µ2, ...., µk;µj ∈ N, and
∑k

j=1 µj = n, n is called the McMillan degree
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(order) of r(x) (see [25]). Our main theorem is as follows:

Theorem 5.2.1. Le r, q, ψ be as just described. Let r(x) 6≡ 0,

� ∞
−∞

r(x) log(q(x))dx = 2Re{(−2πi)

k∑
j=1

Res(r(z) log(ψ(z)), zj)}

= 2Re

{
(−2πi)

k∑
j=1

1

(µj − 1)!
lim
z→zj

dµj−1

dzµj−1

(
(z − zj)µjr(z) log(ψ(z))

)}
,

where Res(r(z) log(ψ(z)), zj) denotes the residue of the function r(z) log(ψ(z)) at z = zj.

Proof. Note that q and hence ψ, may have real zeros. To deal with this, we consider

qε = q + ε, ε > 0. As qε(x) > 0 ∀x ∈ R it has a spectral factor ψε, say, with all its zeros

in the open upper half plane. So qε = ψεψ
∗
ε > 0, ∀x ∈ R. Its leading coefficient will be

positive. We take ψε to be the spectral factor with real positive leading coefficient. Then for

ε ↓ 0, we have ψε → ψ, as the leading coefficient of ψε converges to the leading coefficient

of ψ and the zero locations of ψε converge to those of ψ (and ψε, ψ are polynomials, hence

completely determined by their zero locations and their leading coefficient).

The residue formula is continuous in terms of the leading coefficient and the zeros of ψ,

hence it will suffice to prove the formula for the case in which q(x) > 0, ∀x ∈ R.

So assume q(x) > 0, ∀x ∈ R. Then q(x) = ψ(x)ψ∗(x), ∀x ∈ R, ψ(z) polynomial with real

positive leading coefficient and with all the zeros of ψ in the open upper half plane.

Now note that

� ∞
−∞

r(x) log(q(x))dx =

� ∞
−∞

r(x) log(|ψ(x)|2)dx =

� ∞
−∞

2r(x) log(|ψ(x)|)dx

= 2Re{
� ∞
−∞

r(z) log(ψ(z))dz}.

Now note that ψ(z) 6= 0, ∀z ∈ G, where G is an open simply connected set containing

the closed lower half plane and is such that G does not contain any of the zero locations
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of ψ. (So for instance, if m = min{Im(z); ψ(z) = 0} then m > 0 and we can take

G = {z : Im(z) < m}). We claim that log(ψ(z)) is analytic on G. To be more specific, the

log function is multivalued and determined up to an additive term of the form k2πi, k ∈ Z.

Let d := deg(ψ), then limx→∞, x∈R
ψ(x)
xd

:= λ > 0, λ the leading coefficient of ψ. Taking

the branch of the logarithm for which limx→∞, x∈R Im(log(ψ(x))) = 0, we obtain a

univalued analytical function log(ψ(z)), z ∈ G. The reason is that ψ(z) is polynomial,

hence analytic and ψ(z) 6= 0, ∀z ∈ G. Hence, log(ψ(z)) has no singularities on G

and G is simply connected, so log(ψ(z)) will indeed be univalued and analytic. As

0 <
�∞
−∞ |r(x)|dx <∞ (by assumption in the theorem), and r(x) rational, it follows that

r(x) can be written as r(x) = rN (x)
rD(x) , where rN , rD are real polynomials and coprime, with

deg(rD) ≥ deg(rN ) + 2. It now follows that we can apply the well-known M -l method

to our integral. For each R > 0, consider the complex integral
�
CR

r(z) log(ψ(z))dz =

� R
−R r(z) log(ψ(z))dz +

�
SR
r(z) log(ψ(z))dz, where SR is a semi-circle in the lower half

plane with centre at the origin and radius R, and orientation of decreasing angle. Then CR

is a closed curve winding clockwise. We take R > 0 sufficiently large such that all poles

(there are finitely many) of r(z) in the open lower half plane have modulus less than R.

Then the residue theorem can be applied to
�
CR

r(z) log(ψ(z))dz. (Note that the clockwise

orientation, gives an extra minus sign).

To show that
�
CR

r(z) log(ψ(z))dz =
�∞
−∞ r(z) log(ψ(z))dz, we use the M -l method to show

that limR→∞
�
SR
r(z) log(ψ(z))dz = 0. The argument runs as follows.

lim
R→∞

|
�
SR

r(z) log(ψ(z))dz| ≤ lim
R→∞

(πR)Maxz∈SR |r(z) log(ψ(z))|

= π lim
R→∞

Maxz∈SR |zr(z) log(ψ(z))|

≤ π lim
R→∞

Maxz∈SR |z
2r(z)|. lim

R→∞
Maxz∈SR |

log(ψ(z))

z
|

= 0.
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The last equality is due to the facts that limR→∞Maxz∈SR |z2r(z)| is a finite limit, and

lim
R→∞

Maxz∈SR |
log(ψ(z))

z
| = 0.

So the residue formula can indeed be applied.

In the following this formula will be worked out further in various special cases.

Theorem 5.2.2. Suppose that the monic polynomial q(x) is nonnegative on the real line

and has degree n (n is even). Then q(z) has the spectral factor

ψ(z) = (z − z1)(z − z2) . . . (z − zn
2
), where zk, k = 1, n2 are zeros in the upper half plane.

Let l ∈ N, we have the general formula for
�∞
−∞

log(q(x))
(x2+1)l

dx, as follows:

� ∞
−∞

log(q(x))

(x2 + 1)l
dx =

n/2∑
k=1

{
23−2lπ(2l − 2)!(−1)2−2l

((l − 1)!)2
log |zk + i|

+π

l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)−2l+2j+12−2l+j+3 1

((1 + bk)2 + a2
k))

j
)

[
(1 + bk)

j

+

j∑
m=2,even

(
j

m

)
(−1)m/2(ak)

m(1 + bk)
j−m

]]}
,

where zk = ak + ibk, bk > 0.

Proof. We have

� ∞
−∞

log(q(x))

(x2 + 1)l
dx = 2Re

{
−2πi

(l − 1)!
lim
z→−i

dl−1

dzl−1

[ log(ψ(z))

(z − i)l
]}

=

n/2∑
k=1

2Re

{
−2πi

(l − 1)!
lim
z→−i

dl−1

dzl−1

[ log(z − zk)
(z − i)l

]}
.
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Applying general Leibniz rule, we have

dl−1

dzl−1

log(z − zk)
(z − i)l

=

l−1∑
j=0

(
l − 1

j

)
dj

dzj
(log(z − zk))

dl−1−j

dzl−1−j ((z − i)−l)

= log(z − zk)(−1)l−1l(l + 1) . . . (l + l − 2)(z − i)−2l+1

+
l−1∑
j=1

(
l − 1

j

)
(−1)l−2(j − 1)!(z − zk)−jl(l + 1) . . . (2l − j − 2)(z − i)−2l+1+j

= log(z − zk)(−1)l−1 (2l − 2)!

(l − 1)!
(z − i)−2l+1

+
l−1∑
j=1

(l − 1)!

j!(l − 1− j)!
(−1)l−2(j − 1)!(z − zk)−j

(2l − j − 2)!

(l − 1)!
(z − i)−2l+1+j

= log(z − zk)(−1)l−1 (2l − 2)!

(l − 1)!
(z − i)−2l+1

+

l−1∑
j=1

(
2l − j − 2

l − 1

)
(l − 1)!

j
(−1)l−2(z − zk)−j(z − i)−2l+1+j .

We have

� ∞
−∞

log(q(x))

(x2 + 1)l
dx =

n/2∑
k=1

2Re

{
−2πi

(l − 1)!
lim
z→−i

dl−1

dzl−1

[
log(z − zk)

(z − i)l

]}

=

n/2∑
k=1

{
2Re

{
(−2πi)

[
log(−i− zk)(−1)l−1(2l − 2)!(−2i)−2l+1

((l − 1)!)2

+
l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)l−2(−i− zk)−j(−2i)−2l+1+j

]]}}

=

n/2∑
k=1

{
2Re

{
(−2πi)

[
log(−i− zk)(−1)−l(2l − 2)!(2i)−2l+1

((l − 1)!)2

+
l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)−l−1+j(−i− zk)−j(2i)−2l+1+j

]]}}
.
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We have used

dj

dzj
log(z − zk) = (−1)j−1(j − 1)!(z − zk)−j .

dl−1−j

dzl−1−j [(z − i)−l] = (−1)l−1−jl(l + 1) . . . (2l − 1− j − 1)(z − i)−(2l−1−j).

We consider the first part

2Re{(−2πi)[
log(−i− zk)(−1)−l(2l − 2)!(2i)−2l+1

((l − 1)!)2
]} =

23−2lπ(2l − 2)!(−1)2−2l

((l − 1)!)2
Re[log(−i− zk)]

=
23−2lπ(2l − 2)!(−1)2−2l

((l − 1)!)2
log |zk + i|

because zk = ak + ibk, Im(zk) > 0⇒ Im(−zk) < 0⇒ Im(−i− zk) < 0.(1)

Next, we consider the second part

2Re

{
(−2πi)

{ l−1∑
j=1

(
2l − j − 2

l − 1

)
1

j
(−1)−l−1+j(−i− zk)−j(2i)−2l+1+j

}}

= 2Re

{
(−π)

{ l−1∑
j=1

(
2l − j − 2

l − 1

)
1

j
(−1)−l−1+j(

(−i− zk)
2i

)−j(2i)−2l+2

}}

= 2Re

{
(−π)

{ l−1∑
j=1

(
2l − j − 2

l − 1

)
1

j
(−1)−l−1+j(−1

2
+

1

2
izk)

−j(2)−2l+2(−1)−l+1

}}

= 2Re

{
(−π)

{ l−1∑
j=1

(
2l − j − 2

l − 1

)
1

j
(−1)−2l+j(−1

2
+

1

2
izk)

−j(2)−2l+2]

}}

= π

l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)−2l+j+1(2)−2l+3 1

((1
2 + 1

2bk)
2 + 1

4a
2
k))

j
)Re[(−1

2
−1

2
bk−

1

2
aki)

j ]

]

= π

l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)−2l+2j+1(2)−2l−j+3 1

((1
2 + 1

2bk)
2 + 1

4a
2
k))

j
)Re[(1 + bk + aki)

j ]

]
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= π

l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)−2l+2j+1(2)−2l+j+3 1

((1 + bk)2 + a2
k))

j
)Re[(1 + bk + aki)

j ]

]
.

We have zk = ak + ibk, where bk > 0. We have used

(−1

2
+

1

2
izk)

−j = (−1

2
− 1

2
bk +

1

2
aki)

−j = [
−1

2 −
1
2bk −

1
2aki

(−1
2 −

1
2bk)

2 + 1
4a

2
k)

]j .

We have

(1 + bk + aki)
j =

j∑
m=0

(
j

m

)
(aki)

m(1 + bk)
j−m

= (1 + bk)
j +

j∑
m=1, odd

(
j

m

)
(−1)(m−1)/2(ak)

m(1 + bk)
j−mi

+

j∑
m=2, even

(
j

m

)
(−1)m/2(ak)

m(1 + bk)
j−m.

Hence,

Re[(1 + bk + aki)
j ] = (1 + bk)

j +

j∑
m=2, even

(
j

m

)
(−1)m/2(ak)

m(1 + bk)
j−m.

Hence,

2Re

{
(−2πi)

{ l−1∑
j=1

(
2l − j − 2

l − 1

)
1

j
(−1)−l−1+j(−i− zk)−j(2i)−2l+1+j

}}
=

π
l−1∑
j=1

[(
2l − j − 2

l − 1

)
1

j
(−1)−2l+2j+1(2)−2l+j+3 1

((1 + bk)2 + a2
k))

j
)

[
(1 + bk)

j +

j∑
m=2, even

(
j

m

)
(−1)m/2(ak)

m(1 + bk)
j−m

]]
.(2)

Combining (1) and (2), we are done.

We imply some following results from Theorem 5.2.2.
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Theorem 5.2.3.
�∞
−∞

1
1+x2 log(q(x))dx = π log(|ψ(−i)|2).

Proof.

� ∞
−∞

1

1 + x2
log(q(x))dx =

� ∞
−∞

1

1 + x2
log(|ψ(x)|2)dx = 2Re(

� ∞
−∞

1

1 + x2
log(ψ(x))dx)

= 2Re{(−2πi)Res(
log(ψ(z))

z2 + 1
, z = −i)}

= 2Re{(−2πi) lim
z→−i

log(ψ(z))

z − i
}

= 2Re(π log(ψ(−i))) = 2π log |ψ(−i)| = π log(|ψ(−i)|2).

Remark: Theorem 5.2.3 is still hold if q(x) has real zeros. This follows from a limiting

argument with

q(x) = limε→0q(x) + ε = limε→0|ψ(x) + ε|2.

And

lim
ε→0

π log(|ψ(−i) + ε|2) = π log(|ψ(−i)|2).

The following proposition is an immediate result from Theorem 5.2.3.

Proposition 5.2.4. i. Let b, c be real numbers such that D = b2 − 4c ≤ 0. Then
�∞
−∞

1
1+x2 log(x2 + bx+ c)dx = π log(c+ 1 +

√
|D|).

ii. Let u, v ∈ R such that ∆ = v2 − 4w < 0 and let ψ be the spectral factor of q.
�∞
−∞

1
w+vx+x2 log(q(x))dx = π

1
2

√
|∆|

log(|ψ(−v
2 − i

1
2

√
|∆|)|2).

Proof. i. We apply Theorem 5.2.3 with ψ(z) = (z + b
2)− i

√
|D|
2 .

We have

ψ(−i) = (−1−
√
|D|
2

)i+
b

2
,

|ψ(−i)|2 = (

√
|D|
2

+ 1)2 +
b2

4
= c+ 1 +

√
|D|.
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Hence,

� ∞
−∞

1

1 + x2
log(x2 + bx+ c)dx = π log(|ψ(−i)|2) = π log(c+ 1 +

√
|D|).

ii. We have w + vx+ x2 = (x+ v
2 )2 + |∆|

4 . Let y =
x+ 1

2
v

1
2

√
|∆|

, so x = 1
2

√
|∆|y − 1

2v.

� ∞
−∞

1

w + vx+ x2
log(q(x))dx =

1
1
2

√
|∆|

� ∞
−∞

log(q(1
2

√
|∆|y − 1

2v)

y2 + 1
dy.

We apply Theorem 5.2.3,

� ∞
−∞

log(q(1
2

√
|∆|y − 1

2v)

y2 + 1
dy = π log(|ψ(

−v
2
− i

2

√
|∆|)|2).

Hence, � ∞
−∞

1

w + vx+ x2
log(q(x))dx =

π
1
2

√
|∆|

log(|ψ(−v
2
− i1

2

√
|∆|)|2).

Theorem 5.2.5.
�∞
−∞

1
(1+x2)2 log(q(x))dx = π log |ψ(−i)| − πIm(ψ

′
(−i)

ψ(−i) ).

Proof.

� ∞
−∞

1

(1 + x2)2
log(q(x))dx = 2Re{(−2πi) lim

z→−i

d

dz
[
log(ψ(z))

(z − i)2
]}

= 2Re{(−2πi) lim
z→−i

(
−2

(z − i)3
log(ψ(z)) +

1

(z − i)2

ψ
′
(z)

ψ(z)
)}

= 2Re{(−2πi)(
i

4
log(ψ(−i))− 1

4

ψ
′
(−i)

ψ(−i)
))

= 2Re(
2π

4
log(ψ(−i)) +

πi

2

ψ
′
(−i)

ψ(−i)
}

= π log(|ψ(−i)|) + πRe(
iψ
′
(−i)

ψ(−i)
)

= π log(|ψ(−i)|)− πIm(
ψ
′
(−i)

ψ(−i)
).
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Theorem 5.2.6.

� ∞
−∞

1

(1 + x2)3
log(q(x))dx =

π

4
(3 log(|ψ(−i)|)−3Im(

ψ′(−i)
ψ(−i)

)+Re{[ψ
′(−i)
ψ(−i)

]2− ψ
′′(−i)
ψ(−i)

}).

Proof. � ∞
−∞

1

(1 + x2)3
log(q(x))dx = 2Re{(−πi) lim

z→−i

d2

dz2
[
log(ψ(z))

(z − i)3
]},

using Theorem 5.2.2.

d

dz
[
log(ψ(z)

(z − i)3
] = −3 log(ψ(z)

(z − i)4
+
ψ′(z)

ψ(z)

1

(z − i)3
.

d2

dz2
[
log(ψ(z)

(z − i)3
] =

12 log(ψ(z)

(z − i)5
− 6ψ′(z)

ψ(z)

1

(z − i)4
+

1

(z − i)3
[
ψ′′(z)

ψ(z)
− (

ψ′(z)

ψ(z)
)2].

lim
z→−i

d2

dz2
[
log(ψ(z)

(z − i)3
] =

12 log(ψ(−i)
(−32i

− 6ψ′(−i)
ψ(−i)

1

16
+

1

8i
[
ψ′′(−i)
ψ(−i)

− (
ψ′(−i)
ψ(−i)

)2].

Hence,

� ∞
−∞

1

(1 + x2)3
log(q(x))dx =

π

4
(3 log(|ψ(−i)|)−3Im(

ψ′(−i)
ψ(−i)

)+Re{[ψ
′(−i)
ψ(−i)

]2− ψ
′′(−i)
ψ(−i)

}).

5.3. The Entropy and the Kullback-Leiber (KL) Divergence of Compound

Densities

As in chapter two from MC-Tree method, the compound density r(x) = c p(x)
h(x) , where

h(x) = (x2 + a)k; the rational function r̄(x) = d p̄(x)

h̄(x)
, where h̄(x) = (x2 + b)l, p(x) and p(x)
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are even polynomials with degrees of n and m, respectively. All a, b, c, d are positive,

k ∈ N, and l ∈ N.

Note that the compound density is a non-negative even rational function, so we can use

partial fraction decomposition to obtain

r(x) =
c1

(x2 + a)
+

c2

(x2 + a)2
+

c3

(x2 + a)3
+ ...+

ck
(x2 + a)k

.

Note that c1 = 0 because the codegree has to be greater than two for a rational function

to be a pdf.

The entropy is

Ent(r(x)) = −
� ∞
−∞

r(x) log(r(x))dx

= − log(c)(

� ∞
−∞

r(x)dx)−
� ∞
−∞

r(x) log(p(x))dx+ k

� ∞
−∞

r(x) log(x2 + a)dx.

We have

� ∞
−∞

r(x) log(p(x))dx = c2

� ∞
−∞

log(p(x))

(x2 + a)2
dx+c3

� ∞
−∞

log(p(x))

(x2 + a)3
dx+...+ck

� ∞
−∞

log(p(x))

(x2 + a)k
dx.

Note that p(z) has n
2 zeros, z1, z2, ..., zn

2
in the upper half plane, p(z) has the spectral

factor ψ(z) = (z − z1)(z − z2)...(z − zn
2
) and p(z) = |ψ(z)|2.

The Kullback-Leiber (KL) Divergence of r(x) and r̄(x) is

KL(r(x)|r̄(x)) =

� ∞
−∞

r(x) log{r(x)

r̄(x)
}dx =

� ∞
−∞

r(x) log(r(x))dx−
� ∞
−∞

r(x) log(r̄(x))dx

= −Ent(r(x))−
� ∞
−∞

r(x) log(r̄(x))dx.
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We have

� ∞
−∞

r(x) log(r̄(x))dx = log(d)(

� ∞
−∞

r(x))dx)− l
� ∞
−∞

r(x) log(x2 + b)dx

+

� ∞
−∞

r(x) log(p̄(x))dx.

Note that r(x) is a compound density, so
�∞
−∞ r(x))dx = 1.

Similarly,

� ∞
−∞

r(x) log(p̄(x))dx = c2

� ∞
−∞

log(p̄(x))

(x2 + a)2
dx+c3

� ∞
−∞

log(p̄(x))

(x2 + a)3
dx+...+ck

� ∞
−∞

log(p̄(x))

(x2 + a)k
dx.

p̄(z) has m
2 zeros, z̄1, z̄2, ..., z̄m

2
in the upper half plane, p̄(z) has the spectral factor

ψ̄(z) = (z − z̄1)(z − z̄2)...(z − z̄m
2

) and p̄(z) = |ψ̄(z)|2. Note that the notation ψ̄(z) is not

the complex conjugate.

The entropy and the KL above can be calculated by using Theorem 5.2.1

In general, we can calculate the entropy and the KL for compound densities

r(x) = c pi(x)∏j′
i=1(x2+ai)ki

and r̄(x) = d p̄i(x)∏j′
i=1(x2+bi)li

, pi(x), p̄i(x) are even polynomials, using

the product rule for logarithms. We apply partial fraction decomposition to r(x)

r(x) =
c1

1

(x2 + a1)
+

c1
2

(x2 + a1)2
+ ...+

c1
k1

(x2 + a1)k1

+ .................................................................

+
cj
′

1

(x2 + aj′)
+

cj
′

2

(x2 + aj′)2
+ ...+

cj
′

kj′

(x2 + aj′)
kj′
.

Consider a convex combination of rational probability density functions

r(x) =
∑n

i=1 αiri(x) such that αi ≥ 0 and
∑n

i=1 αi = 1. Note that r(x) is still a pdf and

the entropy of r(x) and the KL Divergence between r(x) and ¯r(x) can be calculated, using

Theorem 5.2.1 Some examples with specific values of the tree depth N when fixing m = 1

are illustrated for analytic computations, as follows:
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Example 1: N = 1

The compound density is q(x) = 2
π

1
(1+x2)2 . We can prove that

� ∞
−∞

q(x)dx =
2

π

� ∞
−∞

1

(1 + x2)2
dx = 1,

by using

� ∞
−∞

1

(1 + x2)2
dx = (−2πi) lim

z→−i

d

dz

1

(z − i)2
= (−2πi) lim

z→−i

−2

(z − i)3
= (−2πi)

−2

8i
=
π

2
.

The entropy of this compound density is

Ent(q(x)) = −
� ∞
−∞

2

π

1

(1 + x2)2
log[

2

π

1

(1 + x2)2
]dx = − log(

2

π
) +

4

π

� ∞
−∞

log(1 + x2)

(1 + x2)2
dx.

Apply the formula, we get

� ∞
−∞

log(1 + x2)

(1 + x2)2
dx = π log(2)− π

2
.

Ent(q(x)) = − log(
2

π
) +

4

π
π(log(2)− 1

2
) = − log(

2

π
) + 4 log(2)− 2 ≈ 1.2242.

Example 2: N = 2

The compound density is q(x) =
√

2(x2+10)
π(x2+2)3 .

First, we can prove that
�∞
−∞ q(x)dx = 1.

We have

x2 + 10

(x2 + 2)3
=

1

(x2 + 2)2
+

8

(x2 + 2)3
.

� ∞
−∞

dx

(x2 + 2)3
= −2iπ

1

2
lim

z→−
√

2i

d2

dz2

1

(z −
√

2i)3
= −2iπ

1

2

12

32i
√

2
=

3π

32
√

2
.

� ∞
−∞

dx

(x2 + 2)2
= −2iπ lim

z→−
√

2i

d

dz

1

(z −
√

2i)2
=

π

4
√

2
.
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Hence, � ∞
−∞

x2 + 10

(x2 + 2)3
dx =

π

4
√

2
+

3π

4
√

2
=

π√
2
,

so � ∞
−∞

q(x)dx = 1.

Next, calculate the entropy

Ent(q(x)) = −
� ∞
−∞

√
2(x2 + 10)

π(x2 + 2)3
log[

√
2(x2 + 10)

π(x2 + 2)3
]dx.

Let u = x√
2
, so dx =

√
2du.

Ent(q(x)) = −
� ∞
−∞

√
2

4π

u2 + 5

(u2 + 1)3
log[

√
2

4π

u2 + 5

(u2 + 1)3
]du

= − log(

√
2

4π
)− 1

2π

� ∞
−∞

u2 + 5

(u2 + 1)3
log[

u2 + 5

(u2 + 1)3
]du.

We have

� ∞
−∞

u2 + 5

(u2 + 1)3
log[

u2 + 5

(u2 + 1)3
]du =

� ∞
−∞

u2 + 5

(u2 + 1)3
log[u2 + 5]du

− 3

� ∞
−∞

u2 + 5

(u2 + 1)3
log[u2 + 1]du.(1)

Observe that

u2 + 5

(u2 + 1)3
=

1

(u2 + 1)2
+ 4

1

(u2 + 1)3
.
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Apply the formula, we have

� ∞
−∞

log(u2 + 5)

(u2 + 1)2
du = 2Re{(−2πi) lim

z→−i

d

dz

log(iz +
√

5)

(z − i)2
}

= 2Re{(−2πi)(− log(1 +
√

5)

4i
+

1

4i(1 +
√

5)
)}

= π(log(1 +
√

5)− 1

1 +
√

5
)

� ∞
−∞

log(u2 + 5)

(u2 + 1)3
du = 2Re{(−2πi)

1

2
lim
z→−i

d2

dz2

log(iz +
√

5)

(z − i)3
}

= 2Re{(−πi)(−3 log(1 +
√

5)

8i
+

1

8i(6 + 2
√

5)
+

3

8(1 +
√

5i)
)}

=
3

4
π log(1 +

√
5)− 3π

4(1 +
√

5)
− π

4(6 + 2
√

5)
.

Hence,

A1 =

� ∞
−∞

u2 + 5

(u2 + 1)3
log[u2 + 5]du = π(4 log(1 +

√
5)− 4

1 +
√

5
− 1

6 + 2
√

5
).

Apply the formula, we have

� ∞
−∞

log(u2 + 1)

(u2 + 1)2
du = 2Re{(−2πi) lim

z→−i

d

dz
[
log(iz + 1)

(z − i)2
]} = π log(2)− π

2
.

� ∞
−∞

log(u2 + 1)

(u2 + 1)3
du = 2Re{(−2πi)

1

2
lim
z→−i

d2

dz2

log(iz + 1)

(z − i)3
}

= 2Re{(−2πi)
1

2
lim
z→−i

[
12 log(1 + iz)

(z − i)5
− 7

(z − i)5
]}

= π(
12 log(2)− 7

16
).
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Hence,

A2 =

� ∞
−∞

u2 + 5

(u2 + 1)3
log[u2 + 1]du = (π log(2)− π

2
) + 4π(

12 log(2)− 7

16
)

= π(4 log(1 +
√

5)− 2

1 +
√

5
− 1

6 + 2
√

5
).

Substituting A1 and A2 into (1), we obtain

� ∞
−∞

u2 + 5

(u2 + 1)3
log[

u2 + 5

(u2 + 1)3
]du = π(4 log(1 +

√
5)− 12 log(2)− 4

1 +
√

5
− 1

6 + 2
√

5
+

27

4
).

Finally,

Ent(q(x)) = − log(

√
2

4π
)− (2 log(1 +

√
5)−6 log(2)− 2

1 +
√

5
− 1

12 + 4
√

5
+

27

8
≈ 1.285396.

Example 3: N = 3

The compound density is

q(x) =
2√
3π

x4 + 18x2 + 117

(x2 + 3)4
.

Observe that

x4 + 18x2 + 117

(x2 + 3)4
=

1

(x2 + 3)2
+

12

(x2 + 3)3
+

72

(x2 + 3)4
.

We have

� ∞
−∞

dx

(x2 + 3)2
= (−2πi) lim

z→−
√

3i

d

dz
[

1

(z −
√

3i)2
] = (−2πi)

−2

24
√

3i
=

π

6
√

3
.

� ∞
−∞

dx

(x2 + 3)3
= (−2πi)

1

2
lim

z→−
√

3i

d2

dz2
[

1

(z −
√

3i)3
] = (−2πi)

1

2

−12

288
√

3i
=

π

24
√

3
.

� ∞
−∞

dx

(x2 + 3)4
= (−2πi)

1

6
lim

z→−
√

3i

d3

dz3
[

1

(z −
√

3i)4
] = (−πi)1

3

−120

3456
√

3i
=

5π

432
√

3
.
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Hence, � ∞
−∞

x4 + 18x2 + 117

(x2 + 3)4
dx =

π

6
√

3
+

π

2
√

3
+

5π

6
√

3
=
π
√

3

2
.

Therefore, � ∞
−∞

q(x)dx = 1.

The entropy is

Ent(q(x)) = − 2√
3π

� ∞
−∞

x4 + 18x2 + 117

(x2 + 3)4
log[

2√
3π

x4 + 18x2 + 117

(x2 + 3)4
]dx

= − log(
2√
3π

)− 2√
3π

� ∞
−∞

x4 + 18x2 + 117

(x2 + 3)4
log[

x4 + 18x2 + 117

(x2 + 3)4
]dx.

Let u = x√
3
, so dx =

√
3du.

B =

� ∞
−∞

x4 + 18x2 + 117

(x2 + 3)4
log[

x4 + 18x2 + 117

(x2 + 3)4
]dx

=

√
3

9

� ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
log[

u4 + 6u2 + 13

9(u2 + 1)4
]du

=

√
3

9

� ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
log[u4 + 6u2 + 13]du

− 4
√

3

9

� ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
log[u2 + 1]du

− 4
√

3

9
log(
√

3)

� ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
du.

We have � ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
du =

9π

2
.

We want to calculate

C =

� ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
log[u2 + 1]du.
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Observe that

u4 + 6u2 + 13

(u2 + 1)4
=

1

(u2 + 1)2
+ 4

1

(u2 + 1)3
+ 8

1

(u2 + 1)4
.

We have

C1 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)2
du = π log(2)− π

2
.

C2 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)3
du = π

12 log(2)− 7

16
.

C3 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)4
du = 2Re{(−2πi)

1

6
lim
z→−i

d3

dz3
[
log(1 + iz)

(z − i)4
]}

= 2Re{(−2πi)
1

6
lim
z→−i

−120 log(1 + iz) + 74

(z − i)7
} = π(

5

8
log(2)− 37

96
).

Hence,

C = C1 + 4C2 + 8C3 = π(9 log(2)− 16

3
).

Next, we want to calculate

D =

� ∞
−∞

u4 + 6u2 + 13

(u2 + 1)4
log[u4 + 6u2 + 13]du.

Firstly, we calculate

D1 =

� ∞
−∞

log(u4 + 6u2 + 13)

(u2 + 1)2
du.

We have

ψ(z) = (z − z1)(z − z2),

where

z1 =

√
2
√

13− 6

2
+ i

√
2
√

13 + 6

2
, z2 = −

√
2
√

13− 6

2
+ i

√
2
√

13 + 6

2
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are its zeros in the UHP.

We have

ψ(−i) = (−i− z1)(−i− z2),

so

|ψ(−i)| = (1 +

√
2
√

13 + 6

2
)2 +

2
√

13− 6

4
=
√

13 + 1 +

√
2
√

13 + 6.

We have

ψ
′
(z)

ψ(z)
=

2z − (z1 + z2)

(z − z1)(z − z2)
,

ψ
′
(−i)

ψ(−i)
=

(2 +
√

2
√

13 + 6)i
√

13 + 1 +
√

2
√

13 + 6
,

Im(
ψ
′
(−i)

ψ(−i)
) =

2 +
√

2
√

13 + 6
√

13 + 1 +
√

2
√

13 + 6
.

Hence,

D1 =

� ∞
−∞

log(u4 + 6u2 + 13)

(u2 + 1)2
du = π{−Im(

ψ
′
(−i)

ψ(−i)
) + log(|ψ(−i)|)}

= π[− (2 +
√

2
√

13 + 6
√

13 + 1 +
√

2
√

13 + 6
+ log(

√
13 + 1 +

√
2
√

13 + 6)].

Secondly, we calculate

D2 =

� ∞
−∞

log(u4 + 6u2 + 13)

(u2 + 1)3
du.

We have

[
ψ
′
(−i)

ψ(−i)
]2 = − (2 +

√
2
√

13 + 6)2

(
√

13 + 1 +
√

2
√

13 + 6)2
.

We have ψ
′′
(z) = 2 ∀z, so

ψ
′′
(−i) = 2,
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and

ψ
′′
(−i)

ψ(−i)
= − 2
√

13 + 1 +
√

2
√

13 + 6
.

Hence,

D2 =

� ∞
−∞

log(u4 + 6u2 + 13)

(u2 + 1)3
du

=
π

4
{−3Im(

ψ
′
(−i)

ψ(−i)
) + 3 log(|ψ(−i)|+Re{[ψ

′
(−i)

ψ(−i)
]2 − ψ

′′
(−i)

ψ(−i)
}}

=
π

4
{3 log(

√
13 + 1 +

√
2
√

13 + 6)− 3(
2 +

√
2
√

13 + 6
√

13 + 1 +
√

2
√

13 + 6
)

− (2 +
√

2
√

13 + 6)2

(
√

13 + 1 +
√

2
√

13 + 6)2
+

2
√

13 + 1 +
√

2
√

13 + 6
.

Thirdly, we calculate

D3 =

� ∞
−∞

log(u4 + 6u2 + 13)

(u2 + 1)4
du.

We have

[
ψ
′
(−i)

ψ(−i)
]3 = − (2 +

√
2
√

13 + 6)3

(
√

13 + 1 +
√

2
√

13 + 6)3
i.

ψ
′′′

(z) = 0∀z.
ψ
′
(−i)

ψ(−i)
ψ
′′
(−i)

ψ(−i)
= − 2(2 +

√
2
√

13 + 6)

(
√

13 + 1 +
√

2
√

13 + 6)2
i.

Im{ψ
′
(−i)

ψ(−i)
ψ
′′
(−i)

ψ(−i)
} = − 2(2 +

√
2
√

13 + 6)

(
√

13 + 1 +
√

2
√

13 + 6)2
.
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Hence,

D3 =

� ∞
−∞

log(u4 + 6u2 + 13)

(u2 + 1)4
du

= π{5

8
log(|ψ(−i)| − 5

8
Im(

ψ
′
(−i)

ψ(−i)
)− 1

4
Re{−[

ψ
′
(−i)

ψ(−i)
]2 +

ψ
′′
(−i)

ψ(−i)
}

− 1

24
Re{2i[ψ

′
(−i)

ψ(−i)
]3 − 3i

ψ
′
(−i)

ψ(−i)
ψ
′′
(−i)

ψ(−i)
+
ψ
′′′

(−i)
ψ(−i)

i}}

= π{5

8
log(
√

13 + 1 +

√
2
√

13 + 6)− 5

8
(

2 +
√

2
√

13 + 6
√

13 + 1 +
√

2
√

13 + 6
)

− 1

4
[

(2 +
√

2
√

13 + 6)2

(
√

13 + 1 +
√

2
√

13 + 6)2
− 2
√

13 + 1 +
√

2
√

13 + 6
]

− 1

12

(2 +
√

2
√

13 + 6)3

(
√

13 + 1 +
√

2
√

13 + 6)3

+
1

8

2(2 +
√

2
√

13 + 6)

(
√

13 + 1 +
√

2
√

13 + 6)2
}.

Hence,

D = D1 + 4D2 + 8D3.

B =

√
3

9
D − 2

√
3 log(

√
3)π − 4

√
3

9
C.

Ent(q(x)) = − log(
2√
3π

)− 2√
3π
B ≈ 1.3125.

Example 4: N = 4

The compound density is q(x) = 1
π
x6+27x4+312x2+1648

(x2+4)5 .

We can prove that
�∞
−∞ q(x)dx = 1.

Let u = x
2 , so dx = 2du.

1

π
[
x6 + 27x4 + 312x2 + 1648

(x2 + 4)5
] =

1

64π
[
4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
].
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The entropy is

Ent(q(x)) = −
� ∞
−∞

q(x) log(q(x))dx

= log(64π) +
5

32π

� ∞
−∞

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
log(1 + u2)du

− 1

32π

� ∞
−∞

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
log(4u6 + 27u4 + 78u2 + 103)du.

Observe that

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
=

4

(1 + u2)2
+

15

(1 + u2)3
+

36

(1 + u2)4
+

48

(1 + u2)5
.

We want to calculate E =
�∞
−∞

4u6+27u4+78u2+103
(u2+1)5 log(1 + u2)du.

We have

E1 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)2
du = π log(2)− π

2
.

E2 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)3
du = 2Re{(−2πi)

1

2
lim
z→−i

d2

dz2
[
log(1 + iz)

(z − i)3
]} = π[

3

4
log(2)− 7

16
].

E3 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)4
du = 2Re{(−2πi)

1

6
lim
z→−i

d3

dz3
[
log(1 + iz)

(z − i)4
]}

= 2Re{(−2πi)
1

6
(
−i
4

+
3

32i
− 15i

32
− 15 log(2)

16i
)} = π(

60 log(2)− 37

96
).

E4 =

� ∞
−∞

log(u2 + 1)

(u2 + 1)5
du = 2Re{(−2πi)

1

24
lim
z→−i

d4

dz4
[
log(1 + iz)

(z − i)5
]}

= π[
35 log(2)

64
− 533

1536
].
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We used

d4

dz4
[
log(1 + iz)

(z − i)5
] = − 6i4

(z − i)5(1 + iz)4
− 40i3

(z − i)6(1 + iz)3
− 180i2

(z − i)7(1 + iz)2

− 840i

(z − i)8(1 + iz)
+

1680 log(1 + iz)

(z − i)9
.

Hence,

E = 4E1 + 15E2 + 36E3 + 48E4 = π[64 log(2)− 12251

32
].

We want to calculate

F =

� ∞
−∞

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
log[4u6 + 27u4 + 78u2 + 103]du

= log(4)(

� ∞
−∞

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
du)

+

� ∞
−∞

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
log[u6 +

27

4
u4 +

78

4
u2 +

103

4
]du

= 32π log(4) +

� ∞
−∞

4u6 + 27u4 + 78u2 + 103

(u2 + 1)5
log[u6 +

27

4
u4 +

78

4
u2 +

103

4
]du.

Observe that u6 + 27
4 u

4 + 78
4 u

2 + 103
4 has the spectral factor

ψ(u) = (u − z1)(u − z2)(u − u3), while ψ(z) = (z − z1)(z − z2)(z − z3) has 3 zeros

z1 = −0.7278 + 1.5252i, z2 = 1.7767i, and z3 = 0.7278 + 1.5252i in the UHP.

Firstly, we calculate

F1 =

� ∞
−∞

log(u6 + 27
4 u

4 + 78
4 u

2 + 103
4 )

(u2 + 1)2
du.

We have

ψ(−i) = (−i− z1)(−i− z2)(−i− z3) = 19.1768i,
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so

|ψ(−i)| = 19.1768.

ψ
′
(z)

ψ(z)
=

1

(z − z1)
+

1

(z − z2)
+

1

(z − z3)
,

ψ
′
(−i)

ψ(−i)
=

20.9404

19.1768
i = 1.0920i,

Im(
ψ
′
(−i)

ψ(−i)
) = 1.0920.

Hence,

F1 = π{log(|ψ(−i)|)− Im(
ψ
′
(−i)

ψ(−i)
)} = π[log(19.1768)− 1.0920].

Secondly, we calculate

F2 =

� ∞
−∞

log(u6 + 27
4 u

4 + 78
4 u

2 + 103
4 )

(u2 + 1)3
du.

We have

ψ
′
(−i)

ψ(−i)
= 1.0920i,

so

Re{[ψ
′
(−i)

ψ(−i)
]2} = −1.1925.

ψ
′′
(z) = 2(3z − (z1 + z2 + z3)),

so ψ
′′
(−i) = −15.6542i, and Re{ψ

′′
(−i)

ψ(−i) } = −0.8163. Hence,

F2 =
π

4
{3 log(|ψ(−i)| − 3Im(

ψ
′
(−i)

ψ(−i)
) +Re{[ψ

′
(−i)

ψ(−i)
]2 − ψ

′′
(−i)

ψ(−i)
}}

=
π

4
{3

4
log(19.1768)− 3(1.0920)− 1.1925 + 0.8163} =

3π

4
log(19.1768)− 0.91305π.
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Thirdly, we calculate

F3 =

� ∞
−∞

log(u6 + 27
4 u

4 + 78
4 u

2 + 103
4 )

(u2 + 1)4
du.

We have

Im{[ψ
′
(−i)

ψ(−i)
]3} = −1.3022.

ψ
′′′

(z) = 6 ∀z, so ψ
′′′

(−i) = 6.

ψ
′′′

(−i)
ψ(−i) = −0.3129i, so Im{ψ

′′′
(−i)

ψ(−i) } = −0.3129.

ψ
′
(−i)

ψ(−i)
ψ
′′

(−i)
ψ(−i) = −0.8914i, so Im{ψ

′
(−i)

ψ(−i)
ψ
′′

(−i)
ψ(−i) } = −0.8914.

Hence,

F3 = π{5

8
log(|ψ(−i)| − 5

8
Im(

ψ
′
(−i)

ψ(−i)
)− 1

4
Re{−[

ψ
′
(−i)

ψ(−i)
]2 +

ψ
′′
(−i)

ψ(−i)
}

− 1

24
Re{2i[ψ

′
(−i)

ψ(−i)
]3 − 3i

ψ
′
(−i)

ψ(−i)
ψ
′′
(−i)

ψ(−i)
+
ψ
′′′

(−i)
ψ(−i)

i}}

= π{5

8
log(19.1768)− 5

8
(1.0920)− 1

4
(−0.8163) +

1

24
(−0.3129)− 1

8
(−0.8914)

+
1

12
(−1.3022) = π[

5

8
log(19.1768)− 0.7867].

Finally, we calculate

F4 =

� ∞
−∞

log(u6 + 27
4 u

4 + 78
4 u

2 + 103
4 )

(u2 + 1)5
du.

We have

ψ
′′′′

(z) = 0 ∀z,

so

ψ
′′′′

(−i) = 0.
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[ψ
′′

(−i)
ψ(−i) ]2 = 0.6664, so Re{[ψ

′′
(−i)

ψ(−i) ]2} = 0.6664.

We have

[
ψ
′′
(−i)

ψ(−i)
]2
ψ
′′
(−i)

ψ(−i)
= (−1.1925)(−0.8163) = 0.9734.

[
ψ
′
(−i)

ψ(−i)
]4 = (1.0920i)4 = 1.4220.

Hence,

F4 = π{35

64
log(|ψ(−i)| − 35

64
Im(

ψ
′
(−i)

ψ(−i)
)− 15

64
Re{−[

ψ
′
(−i)

ψ(−i)
]2 +

ψ
′′
(−i)

ψ(−i)
}

+
5

16
Im{2[

ψ
′
(−i)

ψ(−i)
]3 − 3

ψ
′
(−i)

ψ(−i)
ψ
′′
(−i)

ψ(−i)
+
ψ
′′′

(−i)
ψ(−i)

}+
1

192
Re{−6[

ψ
′
(−i)

ψ(−i)
]4

+ 12[
ψ
′
(−i)

ψ(−i)
]2
ψ
′′
(−i)

ψ(−i)
− 3[

ψ
′′
(−i)

ψ(−i)
]2 − 4

ψ
′
(−i)

ψ(−i)
ψ
′′′

(−i)
ψ(−i)

+
ψ
′′′′

(−i)
ψ(−i)

}

= π{35

64
log(19.1768)− 35

64
(1.0920)− 15

64
(1.1925− 0.8163)

+
5

96
{2(−1.3022)− 3(−0.8914)− 0.3129)

+
1

192
((−6)1.4220 + 12(0.9734)− 3(0.6664)− 4(0.3417) + 0}}

= π[
35

64
log(19.1768)− 0.6992].

Hence,

F = 4F1 + 15F2 + 36F3 + 48F4 = π[32 log(4) + 64 log(19.1768)− 79.9466].

Ent(q(x)) = log(64π)− F

32π
+

5

32π
E ≈ 1.33129.

In summary, entropy values of compound densities are 1.2242 at N = 1, 1.2854 at

N = 2, 1.3125 at N = 3, and 1.33129 at N = 4, respectively, when fixing m = 1.
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5.4. Entropy and the KL Divergence for Cauchy Distributions

Let the variable X follow a Cauchy distribution with the pdf, pl,s, on (−∞,∞):

pl,s(x) = s
π(s2+(x−l)2)

, where l is the location parameter, and s > 0 is the scale parameter.

5.4.1. Entropy

Theorem 5.4.1. The entropy of X is given by Ent(X) = log(4πs).

Proof.

Ent(X) = −
� ∞
−∞

pl,s(x) log[pl,s(x)]dx.

Let u = x−l
s , so dx = sdu.

Ent(X) = −
� ∞
−∞

1

sπ(u2 + 1)
log[

1

sπ(u2 + 1)
]sdu

= log(πs)(

� ∞
−∞

1

π(1 + u2)
du) +

1

π
(

� ∞
−∞

log(1 + u2)

1 + u2
du

= log(πs) +
1

π

� ∞
−∞

log(1 + u2)

1 + u2
du.

We have � ∞
−∞

log(1 + u2)

1 + u2
du = π log(|ψ(−i)|2) = π log(4),

using Theorem 5.2.3 with ψ(z) = 1 + iz. Hence,

Ent(X) = log(πs) + log(4) = log(4πs).
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5.4.2. The KL Divergence

Theorem 5.4.2. The KL divergence of two Cauchy densities pl,s and pl̄,s̄(x) is given by

KL(pl,s|pl̄,s̄(x)) = log{ (s+s̄)2+(l−l̄)2

4ss̄ }, where s, s̄ > 0.

Proof.

KL(pl,s|pl̄,s̄(x)) =

� ∞
−∞

pl,s(x) log{
pl,s(x)

pl̄,s̄(x)
}dx.

We have

pl,s
pl̄,s̄

= log{s
s̄

(
s̄2 + (x− l̄)2

s2 + (x− l)2
)}.

so

KL(pl,s(x)|pl̄,s̄(x)) = log(
s

s̄
)−

� ∞
−∞

s

π(s2 + (x− l)2
log(s2 + (x− l)2)dx

+

� ∞
−∞

s

π(s2 + (x− l)2)
log(s̄2 + (x− l̄)2)dx.

Let u = x−l
s , so dx = sdu.

� ∞
−∞

s

π(s2 + (x− l)2)
log(s̄2 + (x− l̄)2)dx =

1

π

� ∞
−∞

log((su+ l − l̄)2 + s̄2)

1 + u2
du.

And

1

π

� ∞
−∞

log(su+ l − l̄)2 + s̄2)

1 + u2
=

1

π
π log(|ψ(−i)|2) = log(|ψ(−i)|2) = log{(s+ s̄)2 +(l− l̄)2},

using Theorem 5.2.3 with ψ(z) = (sz + l − l̄)− is̄. Hence,

� ∞
−∞

s

π(s2 + (x− l)2)
log(s̄2 + (x− l̄)2)dx = log{(s+ s̄)2 + (l − l̄)2}.
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And

� ∞
−∞

s

π(s2 + (x− l)2)
log(s2 +(x−l)2)dx =

2 log(s)

π

� ∞
−∞

1

1 + u2
du+

1

π

� ∞
−∞

log(1 + u2)

1 + u2
du.

We have

� ∞
−∞

1

1 + u2
du = π,

� ∞
−∞

log(1 + u2)

1 + u2
du = π log(4),

using Theorem 5.2.3 with ψ(z) = 1 + iz. Hence,

� ∞
−∞

s

π(s2 + (x− l)2
log(s2 + (x− l)2)dx = 2 log(s) + log(4).

Therefore, KL(pl,s(x)|pl̄,s̄(x)) = log( ss̄)− (2 log(s) + log(4)) + (log{(s+ s̄)2 + (l − l̄)2}).

= log{ (s+s̄)2+(l−l̄)2

4ss̄ }.

5.5. Entropy and the KL Divergence Between the Rational Student Densities

5.5.1. Introduction

Let Y denote a univariate random variable that follows a Student t-distribution with odd

degree of freedom ν ≥ 3. It has the pdf

fν(y) =
1

√
νB(1

2 ,
ν
2 )

(1 +
y2

ν
)−( ν+1

2
).

Clearly, fν(y) is a rational function (only) when ν is odd (see [15]). We will call such a

function a rational Student density. In that case an explicit formula for the normalization
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factor, B(1
2 ,

ν
2 ), can be derived as follows. First note that

B(
1

2
,
ν

2
) =

� ∞
−∞

1
√
ν(1 + y2

ν )( ν+1
2

)
dy.

Let u = y√
ν
, so dy =

√
νdu, then we obtain

� ∞
−∞

1
√
ν(1 + y2

ν )( ν+1
2

)
dy =

� ∞
−∞

(1 + u2)−( ν+1
2

)du.

The rational function 1

(1+u2)
ν+1

2
has one pole u = −i with multiplicity ν+1

2 in the lower

half plane. Applying our main theorem using q := e, we have

� ∞
−∞

(1 + u2)−( ν+1
2

)du = (−2πi)
1

(ν−1
2 )!

lim
z→−i

d
ν−1

2

dz
ν−1

2

1

(z − i)
ν+1

2

.

As

d
ν−1

2

dz
ν−1

2

[
1

(z − i)
ν+1

2

] = (−1)
ν−1

2 (
ν + 1

2
)(
ν + 3

2
) . . . (

2(ν − 1)

2
)

1

(z − i)ν
,

and

(−1)ν(i)ν(−1)
1−ν

2 = i2ν+1 = (−1)νi = −i,

it follows that

B(
1

2
,
ν

2
) =

π(ν+1
2 )(ν+3

2 ) . . . (2(ν−1)
2 )

2ν−1(ν−1
2 )!

.

5.5.2. Entropy

Theorem 5.5.1. The entropy of Y is given by

Ent(Y ) = log

(√
νB(

1

2
,
ν

2
)

)
+ (ν + 1)

[
log(2)− 2

ν + 1
− 2

ν + 3
− · · · − 2

2(ν − 1)

]
.
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Proof.

Ent(Y ) = −
� ∞
−∞

fν(y) log[fν(y)]dy = log(
√
νB(

1

2
,
ν

2
))+

ν + 1

2B(1
2 ,

ν
2 )

� ∞
−∞

log(1 + y2

ν )
√
ν(1 + y2

ν )
ν+1

2

dy.

Let u = y√
ν
, so dy =

√
νdu. Hence,

� ∞
−∞

log(1 + y2

ν )
√
ν(1 + y2

ν )
ν+1

2

dy =

� ∞
−∞

log(1 + u2)

(1 + u2)
ν+1

2

du.

A spectral factor of 1 + u2 is ψ(u) = 1 + iu, while ψ(z) = 1 + iz, z ∈ C has one zero, z = i,

in the upper half plane, and has no zeros in the lower half plane. We have

� ∞
−∞

log(1 + u2)

(1 + u2)
ν+1

2

du = 2Re{(−2πi)
1

(ν−1
2 )!

lim
z→−i

d
ν−1

2

dz
ν−1

2

[
log(1 + iz)

(z − i)
ν+1

2

]},

using Theorem 5.2.2. We have

d

dz
[
log(1 + iz)

(z − i)
ν+1

2

] = −(
ν + 1

2
)[

log(1 + iz)− 2
ν+1

(z − i)
ν+3

2

].

We have

d2

dz2
[
log(1 + iz)

(z − i)
ν+1

2

] = (−(
ν + 1

2
))(−(

ν + 3

2
))[

log(1 + iz)− 2
ν+1 −

2
ν+3

(z − i)
ν+5

2

].

In general,

d
(ν−1)

2

dz
(ν−1)

2

[
log(1 + iz)

(z − i)
ν+1

2

] = (−1)
ν−1

2 (
ν + 1

2
) . . . (

2(ν − 1)

2
)[

log(1 + iz)− 2
ν+1 − · · · −

2
2(ν−1)

(z − i)ν
].

Taking the limit, we obtain

lim
z→−i

d
(ν−1)

2

dz
(ν−1)

2

[
log(1 + iz)

(z − i)
ν+1

2

] =
(ν+1

2 )(ν+3
2 ) . . . (2(ν−1)

2 )

(−i)2ν
[log(2)− 2

ν + 1
− 2

ν + 3
− . . . 2

2(ν − 1)
].
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The following expressions are used in our simplification.

(−2i)ν = (−1)ν2νiν = (−1)
3ν
2 2ν .

(−1)
3ν
2 (−1)

1−ν
2 = (−1)

2ν+1
2 = (i)2ν+1 = (−1)νi = −i

for ν odd.

� ∞
−∞

log(1 + u2)

(1 + u2)
ν+1

2

du =
π(ν+1

2 )(ν+3
2 ) . . . (ν − 1)

2ν−2(ν−1
2 )!

[log(2)− 2

ν + 1
− 2

ν + 3
− · · · − 2

2(ν − 1)
]

= 2B(
1

2
,
ν

2
)[log(2)− 2

ν + 1
− 2

ν + 3
− · · · − 2

2(ν − 1)
].

Hence,

Ent(Y ) = log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
− 2

ν + 3
− · · · − 2

2(ν − 1)
].

5.5.3. The KL Divergence of Rational Student densities

Theorem 5.5.2. The KL divergence of two rational student densities fν(y) and fν̄(y) is

given by

KL(fν(y)|fν̄(y)) = −
{

log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)

[
log(2)− 2

ν + 1
− 2

ν + 3
− · · · − 2

2(ν − 1)

]}

+ log(
√
ν̄B(

1

2
,
ν̄

2
))− ν̄ + 1

2B(1
2 ,

ν
2 )

 π

(ν−1
2 )2

ν−3
2 (1 +

√
ν̄
ν )

ν−1
2

+ J

+ (ν̄ + 1) log(1 +

√
ν

ν̄
),

where J is given by

J = π
( ν−1

2
)!

∑ ν−3
2

k=1

( ν−1
2
k

) ( ν−1
2
−k)!( ν+1

2
)( ν+3

2
)...( ν+1

2
+k−1)

2
ν−3

2 +k(1+
√

ν̄
ν

)
ν−1

2 −k
.
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Proof.

KL(fν(y)|fν̄(y)) =

� ∞
−∞

fν(y) log(
fν(y)

fν̄(y)
)dy =

−{−
� ∞
−∞

fν(y) log(fν(y))dy}+ log(
√
ν̄B(

1

2
,
ν̄

2
)) +

ν̄ + 1

2B(1
2 ,

ν
2 )

� ∞
−∞

log(1 + y2

ν̄ )
√
ν(1 + y2

ν )
ν+1

2

. (1)

From Theorem 5.5.1, we have

Ent(Y ) = −
� ∞
−∞

fν(y) log(fν(y))dy

= log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
− 2

ν + 3
− · · · − 2

2(ν − 1)
].

We need to calculate

I =

� ∞
−∞

log(1 + y2

ν̄ )
√
ν(1 + y2

ν )
ν+1

2

dy.

Let u = y√
ν
, so dy =

√
νdu.

I =

� ∞
−∞

log(1 + ν
ν̄u

2)

(1 + u2)
ν+1

2

du.

The rational function 1

(1+u2)
ν+1

2
has a pole u = −i in the lower half plane with the

multiplicity ν+1
2 . The spectral of 1 + ν

ν̄u
2 is ψ(u) = 1 +

√
ν
ν̄ iu, while ψ(z) = 1 +

√
ν
ν̄ iz has

the zero in the upper half plane.

Applying Theorem 5.2.2, we have

I = 2Re{(−2πi)
1

(ν−1
2 )!

lim
z→−i

d
ν−1

2

dz
ν−1

2

[
log(1 +

√
ν
ν̄ iz)

(z − i)
ν+1

2

]}

Let f = log(1 +
√

ν
ν̄ iz).
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We have

f (1) =
1

z −
√

ν̄
ν i
,

f (2) =
(−1)2−11

(z −
√

ν̄
ν i)

2
,

f (3) =
(−1)3−11.2

(z −
√

ν̄
ν i)

3
.

In general,

f ( ν−1
2

) =
(−1)

ν−3
2 (ν−3

2 )!

(z −
√

ν̄
ν i)

ν−1
2

.

f ( ν−1
2
−k) =

(−1)
ν−1

2
−k−1(ν−1

2 − k − 1)!

(z −
√

ν̄
ν i)

ν−1
2
−k

.

Let g = 1

(z−i)
ν+1

2
, we have

g(1) = (
−(ν + 1)

2
)

1

(z − i)
ν+3

2

,

g(2) = (
−(ν + 1)

2
)(
−(ν + 3)

2
)

1

(z − i)
ν+5

2

.

In general,

g( ν−1
2

) = (−1)
ν−1

2 (
ν + 1

2
)(
ν + 3

2
) . . . (ν − 1)

1

(z − i)ν
,

g(k) = (−1)k(
ν + 1

2
)(
ν + 3

2
) . . . (

ν + 1

2
+ k − 1)

1

(z − i)( ν+1
2

+k)
.

Apply general Leibniz rule, we obtain

(f.g)
ν−1

2 = f
ν−1

2 g + fg
ν−1

2 +

ν−3
2∑

k=1

(ν−1
2

k

)
f
ν−1

2
−kgk.
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Taking the limit, we have

limz→−i(fg)
ν−1

2 =
(−1)

ν−3
2

)( ν−3
2

)!

(−1)
ν−1

2 (1 +
√

ν̄
ν )

ν−1
2 (i)

ν−1
2 (−2i)

ν+1
2

+
log(1 +

√
ν
ν̄ )(−1)

ν−1
2 (ν+1

2 )(ν+3
2 ) . . . (ν − 1)

(−2i)ν

+

ν−3
2∑

k=1

{
(ν−1

2

k

)
[
(−1)

ν−1
2
−k−1(ν−1

2 − k − 1)!

(−1)
ν−1

2 (1 +
√

ν̄
ν )

ν−1
2 i

ν−1
2

][
(−1)k(ν+1

2 )(ν+3
2 ) . . . (ν+1

2 + k − 1)

(−2i)
ν+1

2
−k

]}.

We have

(i)
ν−1

2 (i)
ν+1

2 = iν = (−1)
ν
2 ,

(−1)
ν−1

2 (−1)
ν+1

2 (−1)
ν
2 (−1)

3−ν
2 = (i)2ν+3 = i,

(−1)ν(−1)
1−ν

2 (−1)
ν
2 = (−1)ν+ 1

2 = (i)2ν+1 = −i,

(i)
ν−1

2
−k(i)

ν+1
2

+k = iν = (−1)
ν
2 ,

(−1)
ν
2 (−1)

ν−1
2
−k(−1)

1−ν
2

+k(−1)1+ 1−ν
2 = (i)2ν+3 = (−1)ν+1i = i.

since ν is odd. Hence,

lim
z→−i

(fg)
ν−1

2 =
(ν−3

2 )!

(1 +
√

ν̄
ν )

ν−1
2 (2)

ν+1
2 i2ν+3

+
log(1 +

√
ν
ν̄ )(ν+1

2 )(ν+3
2 ) . . . (ν − 1)

(2)νi2ν+1

+

ν−3
2∑

k=1

(ν−1
2

k

)
(ν−1

2 − k − 1)!

(1 +
√

ν̄
ν )

ν−1
2
−k

(ν+1
2 )(ν+3

2 ) . . . (ν+1
2 + k − 1)

(2)
ν+1

2
+ki2ν+3

=
(ν−3

2 )!

(1 +
√

ν̄
ν )

ν−1
2 (2)

ν+1
2 i
−

log(1 +
√

ν
ν̄ )(ν+1

2 )(ν+3
2 ) . . . (ν − 1)

2νi

+

ν−3
2∑

k=1

(ν−1
2

k

)
(ν−1

2 − k − 1)!

(1 +
√

ν̄
ν )

ν−1
2
−k

(ν+1
2 )(ν+3

2 ) . . . (ν+1
2 + k − 1)

(2)
ν+1

2
+ki

.



160 Entropy and Kullback-Leibler formulas for rational densities

Hence,

I =
π

(ν−1
2 )!

[−
(ν−3

2 )!

2
ν−3

2 (1 +
√

ν̄
ν )

ν−1
2

+
log(1 +

√
ν
ν̄ )(ν+1

2 ) . . . (ν − 1)

2ν−2

−

ν−3
2∑

k=1

(ν−1
2

k

)
(ν−1

2 − k)!(ν+1
2 )(ν+3

2 ) . . . (ν+1
2 + k − 1)

2
ν−3

2
+k(1 +

√
ν̄
ν )

ν−1
2
−k

].

Substituting the expression of I above and Ent(Y ) into (1), we are done.

5.5.4. Some Specific Cases

1.Case ν = 3

B(
1

2
,

3

2
) =

π

2
.

Ent(Y ) = log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
]

= log(
√

3B(
1

2
,

3

2
)) + 4[log(2)− 2

4
] = log(

√
3
π

2
) + 4[log(2)− 1

2
]

= log(8
√

3π)− 2.

J = 0.

KL(fν(y)|fν̄(y)) = −{log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
}

+ log(
√
ν̄B(

1

2
,
ν̄

2
))− ν̄ + 1

2B(1
2 ,

ν
2 )

 π

(ν−1
2 )2

ν−3
2 (1 +

√
ν̄
ν )

ν−1
2

+ J


+ (ν̄ + 1)[log(1 +

√
ν

ν̄
)]

= −(log(8
√

3π)− 2) + log(
√
ν̄B(

1

2
,
ν̄

2
))− ν̄ + 1

2
[

2

(1 +
√

ν̄
ν )

]

+ (ν̄ + 1)[log(1 +

√
ν

ν̄
)]

= (2− log(8
√

3π) + log(
√
ν̄B(

1

2
,
ν̄

2
)) + (ν̄ + 1)[log(1 +

√
3

ν̄
)− 1

(1 +
√

ν̄
3 )

].
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2. Case ν = 5

B(
1

2
,
5

2
) =

π(3.4)

242!
=

3π

8
.

Ent(Y ) = log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
− 2

ν + 3
]

= log(
√

5B(
1

2
,
5

2
)) + 6[log(2)− 2

4
− 2

8
]

= log(
√

5
3π

8
) + 6[log(2)− 1

2
− 1

3
] = log(24

√
5π)− 5.

J =
π

(ν−1
2 )!

(ν−1
2

1

)
(ν−1

2 − 1)!(ν+1
2 )

2
ν−3

2
+1(1 +

√
ν̄
ν )

ν−1
2
−1

=
π

2

2.3

4(1 +
√

ν̄
5 )

=
3π

4(1 +
√

ν̄
5 )
.

KL(fν(y)|fν̄(y)) = −{log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
− 2

ν + 3
]}

+ log(
√
ν̄B(

1

2
,
ν̄

2
))− ν̄ + 1

2B(1
2 ,

ν
2 )

 π

(ν−1
2 )2

ν−3
2 (1 +

√
ν̄
ν )

ν−1
2

+ J


+ (ν̄ + 1)[log(1 +

√
ν

ν̄
)]

= −(log(24
√

5π)− 5) + log(
√
ν̄B(

1

2
,
ν̄

2
))

− ν̄ + 1

2
[

1!23

(3)(4)(1 +
√

ν̄
5 )2

+
2

1 +
√

ν̄
5

] + (ν̄ + 1)[log(1 +

√
5

ν̄
)]

= (5− log(24
√

5π) + log(
√
ν̄B(

1

2
,
ν̄

2
)) + (ν̄ + 1)[log(1 +

√
5

ν̄
)

− 1

3(1 +
√

ν̄
5 )2
− 1

1 +
√

ν̄
5

].
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3.Case ν = 7

B(
1

2
,
7

2
) =

π(4.5.6)

263!
=

5π

16
.

Ent(Y ) = log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
− 2

ν + 3
− 2

ν + 5
]

= log(
√

7B(
1

2
,
7

2
)) + 8[log(2)− 2

8
− 2

10
− 2

12
]

= log(
√

7
5π

16
) + 8[log(2)− 1

4
− 1

5
− 1

6
] = log(80

√
7π)− 74

15
.

J =
π

(ν−1
2 )!

[

(ν−1
2

1

)
(ν−1

2 − 1)!(ν+1
2 )

2
ν−3

2
+1(1 +

√
ν̄
ν )

ν−1
2
−1

+

(ν−1
2

2

)
(ν−1

2 − 2)!(ν+1
2 )(ν+3

2 )

2
ν−3

2
+2(1 +

√
ν̄
ν )

ν−1
2
−2

]

=
π

6
[3

(2!).4

8(1 +
√

ν̄
ν )2

+ 3
(1!)4.5

16(1 +
√

ν̄
ν )

] =
π

2(1 +
√

ν̄
7 )2

+
5π

8(1 +
√

ν̄
7 )
.

KL(fν(y)|fν̄(y)) = −{log(
√
νB(

1

2
,
ν

2
)) + (ν + 1)[log(2)− 2

ν + 1
− 2

ν + 3
− 2

ν + 5
]}

+ log(
√
ν̄B(

1

2
,
ν̄

2
))− ν̄ + 1

2B(1
2 ,

ν
2 )

 π

(ν−1
2 )2

ν−3
2 (1 +

√
ν̄
ν )

ν−1
2

+ J


+ (ν̄ + 1)[log(1 +

√
ν

ν̄
)]

= −(log(80
√

7π)− 74

15
) + log(

√
ν̄B(

1

2
,
ν̄

2
)) + (ν̄ + 1)[log(1 +

√
7

ν̄
)]

− ν̄ + 1

2
[

(2)!24

4.5.6(1 +
√

ν̄
ν )3

+
16

5π
(

π

2(1 +
√

ν̄
7 )2

+
5π

8(1 +
√

ν̄
7 )

)]

=
74

15
− log(80

√
7π) + log(

√
ν̄B(

1

2
,
ν̄

2
)) + (ν̄ + 1)[log(1 +

√
7

ν̄
)

− 2

15(1 +
√

ν̄
7 )3
− 4

5(1 +
√

ν̄
7 )2
− 1

1 +
√

ν̄
7 )

].
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5.6. Entropy and the KL Divergence of Rational Densities

We use the fact that any rational density r(x) = N1(x)
D1(x) , where two polynomials N1(x) and

D1(x) are co-prime, can be decomposed as a unique linear combination of functions of the

form Ax+B
((x−u)2+a2)k

, where k runs from 1 up to the degree of u+ ia, a > 0 as a pole of the

rational density.

Consider an integrable and positive rational function q(x) = N2(x)
D2(x) , where the two polynomi-

als N2(x) and D2(x) are co-prime. We have that both N2(x) and D2(x) are either positive

or negative on the whole real line because q(x) is positive. Without loss of generality, we

take N2(x) and D2(x) both positive polynomials with degrees of n and m, respectively.

Of course, n and m must be even because we consider positive polynomials on the whole

real line. Then we use the fact that any positive polynomial N2(x) of degree n has the

spectral factors ψ(z) = (z− z1)(z− z2) . . . (z− zn
2
), N2(z) = |ψ(z)|2, and N2(z) has n

2 zeros

z1, z2, . . . , zn
2

in the upper half plane. Similarly, any positive polynomial D2(x) of degree

m has the spectral factors ψ̂(z) = (z − ẑ1)(z − ẑ2) . . . (z − ẑm
2

), D2(z) = |ψ̂(z)|2, and D2(z)

has m
2 zeros ẑ1, ẑ2, . . . , ẑm

2
in the upper half plane. Consider

� ∞
−∞

Ax+B

((x− u)2 + a2)k
log(q(x))dx =

� ∞
−∞

Ax+B

((x− u)2 + a2)k
log(N2(x))dx

+ −
� ∞
−∞

Ax+B

((x− u)2 + a2)k
log(D2(x))dx.

Let v = x−u
a , so x = av + u, and dx = adv.

Let N̂2(v) := N2(av + u), a polynomial in v of degree n. Then

� ∞
−∞

Ax+B

((x− u)2 + a2)k
log(N2(x))dx = a1−2k(Au+B)

� ∞
−∞

log(N̂2(v))

(v2 + 1)k
dv

+ Aa2−2k

� ∞
−∞

v log(N̂2(v))

(v2 + 1)k
dv.
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We can calculate the first term by applying Theorem 5.2.2 directly while we apply the

integration by parts to the second term, as follows.

Observe that �
2v

(v2 + 1)k
dv =

(v2 + 1)(1−k)

1− k
, k 6= 1.

If k > 1, we have

� ∞
−∞

2v log(N̂2(v))

(v2 + 1)k
dv =

(v2 + 1)(1−k)

1− k
log(N̂2(v))|∞−∞ −

� ∞
−∞

N̂
′
2(v)

N̂2(v)

(v2 + 1)(1−k)

1− k
dv

= 0−
� ∞
−∞

N̂
′
2(v)

N̂2(v)

(v2 + 1)(1−k)

1− k
dv = −

� ∞
−∞

N̂
′
2(v)

N̂2(v)

(v2 + 1)(1−k)

1− k
dv.

Similarly, we can handle

� ∞
−∞

Ax+B

((x− u)2 + a2)k
log(D2(x))dx

when k > 1.

If k = 1, the numerator must be a constant, A = 0, as the codegree has to be greater than

two for a rational function to be a pdf as the function will need to be integrable. Consider

� ∞
−∞

B

((x− u)2 + a2)k
log(q(x))dx =

� ∞
−∞

B

((x− u)2 + a2)k
log(N2(x))dx

−
� ∞
−∞

B

((x− u)2 + a2)k
log(D2(x))dx.

We have

� ∞
−∞

B

((x− u)2 + a2)k
log(N2(x))dx = Ba1−2k

� ∞
−∞

log(N̂2(v))

(v2 + 1)k
dv,
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which can be calculated directly by applying theorem 5.2.2. Similarly, we can handle the

second term � ∞
−∞

B

((x− u)2 + a2)k
log(D2(x))dx.

Remark: Any nonnegative function can be viewed as limiting case of positive functions.

Hence, the results found can be extended to non-negative rational densities.

Some examples are illustrated, as follows.

5.6.1. Entropy and the KL Divergence of a Linear Convex Combination of two

Cauchy Densities

In this section, we will consider an example of the linear convex combination of two cauchy

densities with the equal weights, pl,s(x) = 1
2pl1,s1(x) + 1

2pl2,s2(x), where s1 = 1, l1 = 0, l2 =

1, s2 = 2.

pl,s(x) =
1

2

1

π(1 + x2)
+

1

2

2

π(4 + (x− 1)2)
=

3x2 − 2x+ 7

2π(x2 + 1)((x− 1)2 + 4)
.

The entropy is given by

Ent(pl,s(x)) = −
� ∞
−∞

pl,s(x) log(pl,s(x))dx

= −1

2

� ∞
−∞

pl1,s1(x) log(pl,s(x))dx− 1

2

� ∞
−∞

pl2,s2(x) log(pl,s(x))dx.
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� ∞
−∞

pl1,s1(x) log(pl,s(x))dx =

� ∞
−∞

pl1,s1(x) log(3x2 − 2x+ 7)dx

− log(2π)(

� ∞
−∞

pl1,s1(x)dx)

−
� ∞
−∞

pl1,s1(x) log(x2 + 1)dx

−
� ∞
−∞

pl1,s1(x) log((x− 1)2 + 4)dx.

We have
�∞
−∞ pl1,s1(x)dx = 1, so

� ∞
−∞

pl1,s1(x) log(pl,s(x))dx =

� ∞
−∞

pl1,s1(x) log(3x2 − 2x+ 7)dx− log(2π)

−
� ∞
−∞

pl1,s1(x) log(x2 + 1)dx

−
� ∞
−∞

pl1,s1(x) log((x− 1)2 + 4)dx(1)

We have

I1 =

� ∞
−∞

pl1,s1(x) log(3x2 − 2x+ 7)dx = log(3)(

� ∞
−∞

pl1,s1(x)dx)

+
1

π

� ∞
−∞

log(x2 − 2
3x+ 7

3)

x2 + 1
dx = log(3) +

1

π

� ∞
−∞

log(x2 − 2
3x+ 7

3)

x2 + 1
dx,

and � ∞
−∞

log(x2 − 2
3x+ 7

3)

x2 + 1
dx = π log(

7

3
+ 1 +

√
|−80

9
|) = π log(

10 +
√

80

3
),

using Proposition 3.2.4 (i). Therefore,

I1 = log(3) + log(
10 +

√
80

3
) = log(10 +

√
80).

Next, we calculate

I2 =

� ∞
−∞

pl1,s1(x) log(x2 + 1)dx =
1

π

� ∞
−∞

log(x2 + 1)

x2 + 1
dx = (

1

π
)(π log(4)) = log(4).
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Finally, we calculate

I3 =

� ∞
−∞

pl1,s1(x) log((x− 1)2 + 4)dx =
1

π

� ∞
−∞

log(x2 − 2x+ 5)

x2 + 1
dx

= (
1

π
)(π log(5 + 1 +

√
| − 16|)) = (

1

π
)(π log(10)) = log(10),

using Proposition 3.2.4 (i).

Substituting I1, I2, and I3 into (1), we have

� ∞
−∞

pl1,s1(x) log(pl,s(x))dx = log(10 +
√

80)− log(2π)− log(4)− log(10) = log(
10 +

√
80

80π
).

Similarly, we can calculate

� ∞
−∞

pl2,s2(x) log(pl,s(x))dx =

� ∞
−∞

pl2,s2(x) log(3x2 − 2x+ 7)dx

− log(2π)(

� ∞
−∞

pl2,s2(x)dx)

−
� ∞
−∞

pl2,s2(x) log(x2 + 1)dx

−
� ∞
−∞

pl2,s2(x) log((x− 1)2 + 4)dx.

We have
�∞
−∞ pl2,s2(x)dx = 1, so

� ∞
−∞

pl2,s2(x) log(pl,s(x))dx =

� ∞
−∞

pl2,s2(x) log(3x2 − 2x+ 7)dx− log(2π)

−
� ∞
−∞

pl2,s2(x) log(x2 + 1)dx

−
� ∞
−∞

pl2,s2(x) log((x− 1)2 + 4)dx.(2)

We have

J1 =

� ∞
−∞

pl2,s2(x) log(3x2 − 2x+ 7)dx =
2

π

� ∞
−∞

log(3x2 − 2x+ 7)

(x− 1)2 + 4
dx.
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Let u = x−1
4 , so dx = 4du and

J1 =
2

π

� ∞
−∞

log(48u2 + 16u+ 8)

1 + u2
du =

2 log(48)

π

� ∞
−∞

du

1 + u2
+

2

π

� ∞
−∞

log(u2 + 1
3u+ 1

6)

1 + u2
du

= 2 log(48) +
2

π

� ∞
−∞

log(u2 + 1
3u+ 1

6)

1 + u2
du = 2 log(48) +

2

π
π log(

7 + 2
√

5

6
)

= 2 log(56 + 16
√

5).

Next, we calculate

J2 =

� ∞
−∞

pl2,s2(x) log(x2 + 1)dx =
2

π

� ∞
−∞

log(x2 + 1)

(x− 1)2 + 4
dx

=
2

π

� ∞
−∞

log(x2 + 1)

x2 − 2x+ 5
dx =

2

π

π

2
log(|ψ(1− 2i)|2) = log(10),

using Proposition 3.2.4 (ii) with ψ(z) = 1 + iz.

Finally, we calculate

J3 =

� ∞
−∞

pl2,s2(x) log((x− 1)2 + 4)dx =
2

π

� ∞
−∞

log((x− 1)2 + 4)

(x− 1)2 + 4
dx

=
2 log(4)

π

� ∞
−∞

du

u2 + 1
+

2

π

� ∞
−∞

log(u2 + 1)

u2 + 1
du =

2 log(4)

π
π +

2

π
π log(4) = 2 log(16).

Substituting J1, J2, and J3 into (2), we have

� ∞
−∞

pl2,s2(x) log(pl,s(x))dx = 2 log(56 + 16
√

5)− log(2π)+

− log(10)− 2 log(16) = log(
(56 + 16

√
5)2

2π10(16)2
) = log(

(14 + 4
√

5)2

320π
).

Therefore,

Ent(pl,s(x)) = −1

2
log(

10 +
√

80

80π
)− 1

2
log(

(14 + 4
√

5)2

320π
) = log(

160π√
10 +

√
80(14 + 4

√
5)

).
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Now we consider pl̄,s̄ = 1
2pl̄1,s̄1 + 1

2pl̄2,s̄2 , where l̄1 = 2, s̄1 = 3, l̄2 = 3, s̄2 = 4.

pl̄, s̄ =
1

2

3

π(9 + (x− 2)2)
+

1

2

4

π(16 + (x− 3)2)
=

7x2 − 34x+ 127

2π(9 + (x− 2)2)(16 + (x− 3)2)
.

The KL divergence of pl,s and pl̄,s̄ is given by

KL(pl,s(x)|pl̄,s̄(x)) =

� ∞
−∞

pl,s(x) log[
pl,s(x)

pl̄,s̄(x)
]dx

=

� ∞
−∞

pl,s(x) log(pl,s(x)dx−
� ∞
−∞

pl,s(x) log(pl̄,s̄(x))dx

= −Ent(pl,s(x))−
� ∞
−∞

pl,s(x) log(pl̄,s̄(x))dx.

We have

� ∞
−∞

pl,s(x) log(pl̄,s̄(x))dx =
1

2

� ∞
−∞

pl1,s1(x) log(pl̄,s̄(x))dx+
1

2

� ∞
−∞

pl2,s2(x) log(pl̄,s̄(x))dx.(3)

First, we calculate

K1 =

� ∞
−∞

pl1,s1(x) log(pl̄,s̄(x))dx =

� ∞
−∞

pl1,s1(x) log(7x2 − 34x+ 127)dx

− log(2π)(

� ∞
−∞

pl1,s1(x)dx)−
� ∞
−∞

pl1,s1(x) log(9 + (x− 2)2)dx

−
� ∞
−∞

pl1,s1(x) log(16 + (x− 3)2)dx.

We have � ∞
−∞

pl1,s1(x)dx = 1.



170 Entropy and Kullback-Leibler formulas for rational densities

We calculate

� ∞
−∞

pl1,s1(x) log(7x2 − 34x+ 127)dx =
1

π

� ∞
−∞

log(7x2 − 34x+ 127)

x2 + 1
dx

=
1

π
log(7)(

� ∞
−∞

dx

x2 + 1
)

+
1

π

� ∞
−∞

log(x2 − 34
7 x+ 127

7 )

x2 + 1
dx

= log(7) + log(
134 + 20

√
6

7
)

= log(134 + 20
√

6).

� ∞
−∞

pl1,s1(x) log((x− 2)2 + 9)dx =
1

π

� ∞
−∞

log(x2 − 4x+ 13)

x2 + 1
dx

=
1

π
(π log(13 + 1 +

√
| − 36|)) = log(20),

using Proposition 3.2.4 (i). Furthermore, we have

� ∞
−∞

pl1,s1(x) log((x− 3)2 + 16)dx =
1

π

� ∞
−∞

log(x2 − 6x+ 25)

x2 + 1
dx

=
1

π
(π log(25 + 1 +

√
| − 64|)) = log(34),

using Proposition 3.2.4 (i). Hence,

K1 = log(134 + 20
√

6)− log(2π)− log(20)− log(34) = log(
67 + 10

√
6

680π
).

Similarly, we calculate

K2 =

� ∞
−∞

pl2,s2(x) log(pl̄,s̄(x))dx =

� ∞
−∞

pl2,s2(x) log(7x2 − 34x+ 127)dx

− log(2π)(

� ∞
−∞

pl2,s2(x)dx)−
� ∞
−∞

pl2,s2(x) log(9 + (x− 2)2)dx

−
� ∞
−∞

pl2,s2(x) log(16 + (x− 3)2)dx.
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We have � ∞
−∞

pl2,s2(x)dx = 1.

We calculate

� ∞
−∞

pl2,s2(x) log(7x2 − 34x+ 127)dx =
2

π

� ∞
−∞

log(7x2 − 34x+ 127)

(x− 1)2 + 4
dx

=
2 log(112)

π
(

� ∞
−∞

du

1 + u2
)

+
2

π

� ∞
−∞

log(u2 − 5
7u+ 25

28)

u2 + 1
du

= 2 log(112) +
2

π
(π log(

25

28
+ 1 +

√
|−150

49
|

= 2 log(112) + 2 log(
53 + 4

√
150

28
)

= 2 log(212 + 16
√

150).

And we have

� ∞
−∞

pl2,s2(x) log((x− 2)2 + 9)dx =
2

π

� ∞
−∞

log(x2 − 4x+ 13)

(x− 1)2 + 4
dx

=

� ∞
−∞

log(16u2 − 8u+ 10)

u2 + 1
du

=
2 log(16)

π
(

� ∞
−∞

du

u2 + 1
)

+
2

π

� ∞
−∞

log(u2 − 1
2u+ 5

8)

u2 + 1

= 2 log(16) + 2 log(
5

8
+ 1 +

√
|−9

4
|)

= 2 log(16) + 2 log(
25

8
) = 2 log(50).
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We have

� ∞
−∞

pl2,s2(x) log((x− 3)2 + 16)dx =
2

π

� ∞
−∞

log((x− 3)2 + 16)

(x− 1)2 + 4
dx

=

� ∞
−∞

log(16u2 − 16u+ 20)

u2 + 1

=
2 log(16)

π
(

� ∞
−∞

du

u2 + 1
) +

2

π

� ∞
−∞

log(u2 − u+ 5
4)

u2 + 1

= 2 log(16) + 2 log(
5

4
+ 1 +

√
| − 4|)

= 2 log(16) + 2 log(
17

4
) = 2 log(68).

Hence,

K2 = 2 log(212 + 16
√

150)− log(2π)− 2 log(50)− 2 log(68) = 2 log(
53 + 4

√
150√

2π850
).

Substituting K1, K2 into (3), we obtain

� ∞
−∞

pl,s(x) log(pl̄,s̄(x))dx =
1

2
(log(

67 + 10
√

6

680π
) +

1

2
(2 log(

53 + 4
√

150√
2π850

)

=
1

2
log(

67 + 10
√

6

680π
) + log(

53 + 4
√

150√
2π850

).

Therefore,

KL(pl,s(x)|pl̄,s̄(x)) = − log(
160π√

10 +
√

80(14 + 4
√

5)
)− (

1

2
log(

67 + 10
√

6

680π
)

+ log(
53 + 4

√
150√

2π850
)) =

√
85(67 + 10

√
6)(10 +

√
80)(14 + 4

√
5)

32π(53 + 4
√

150)
.
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5.6.2. Entropy and the KL Divergence of a Linear Convex Combination of two

Rational Student Densities

We will consider an example of the linear convex combination of two Rational Student

t-Densities with the equal weights, fν(y) = 1
2fν1(y) + 1

2fν2(y), where ν1 = 3 and ν2 = 5.

We have

B(
1

2
,
ν1

2
) = B(

1

2
,

3

2
) =

π

2
.

B(
1

2
,
ν2

2
) = B(

1

2
,

5

2
) =

3π

8
.

fν(y) =
1

√
3π(1 + y2

3 )2
+

4

3
√

5π(1 + y2

5 )3
=

√
15(1 + y2

5 )3 + 4(1 + y2

3 )2

3
√

5(1 + y2

3 )2(1 + y2

5 )3
.

The entropy is given by

Ent(fν(y)) = −
� ∞
−∞

fν(y) log(fν(y))dy

= −1

2

� ∞
−∞

fν1(y) log(fν(y))dy − 1

2

� ∞
−∞

fν2(y) log(fν(y))dy.

First,

� ∞
−∞

fν1(y) log(fν(y))dy =

� ∞
−∞

fν1(y) log(
√

15(1 +
y2

5
)3 + 4(1 +

y2

3
)2)dy

− log(3
√

5π)(

� ∞
−∞

fν1(y)dy)− 2

� ∞
−∞

fν1(y) log(1 +
y2

3
)dy

− 3

� ∞
−∞

fν1(y) log(1 +
y2

5
)dy.(4)

We have � ∞
−∞

fν1(y)dy = 1.



174 Entropy and Kullback-Leibler formulas for rational densities

Let u = y√
3
, so dy =

√
3du, and

√
15(1 +

y2

5
)3 + 4(1 +

y2

3
)2 =

√
15(1 +

3u2

5
)3 + 4(1 + u2)2 =

27
√

15

125
[u6 +

135
√

15 + 500

27
√

15
u4 +

225
√

15 + 1000

27
√

15
u2 +

125
√

15 + 500

27
√

15
].

Let

L1 =

� ∞
−∞

fν1(y) log(
√

15(1 +
y2

5
)3 + 4(1 +

y2

3
)2)dy =

log(
27
√

15

125
) +

2

π

� ∞
−∞

log(u6 + 135
√

15+500
27
√

15
u4 + 225

√
15+1000

27
√

15
u2 + 125

√
15+500

27
√

15
)

(u2 + 1)2
du.

We apply Theorem 5.2.5 with ψ(z) = (z − z1)(z − z2)(z − z3), which has three zeros

z1 = 2.75424i, z2 = −0.0894889 + 1.05158i, z3 = 0.0894889 + 1.05158i in the upper half

plane. We have ψ(−i) = (−i− z1)(−i− z2)(−i− z3) = 15.8316i, and |ψ(−i)| = 15.8316.

We have

ψ′(z) = (z−z2)(z−z3)+(z−z1)(z−z3)+(z−z1)(z−z2), so ψ′(−i) = (−i−z2)(−i−z3)+

(−i−z1)(−i−z3)+(−i−z1)(−i−z2) = −19.6212, ψ
′(−i)
ψ(−i) = 1.2394i and Im(ψ

′(−i)
ψ(−i) ) = 1.2394.

Hence, � ∞
−∞

log(u6 + 135
√

15+500
27
√

15
u4 + 225

√
15+1000

27
√

15
u2 + 125

√
15+500

27
√

15
)

(u2 + 1)2
du

= π log(|ψ(−i)|)− πIm(
ψ′(−i)
ψ(−i)

) = π log(15.8316)− π(1.2394).

L1 = log(
27
√

15

125
) + 2(log(15.8316)− 1.2394).

Next, we calculate

L2 =

� ∞
−∞

fν1(y) log(1 +
y2

3
)dy =

2

π

� ∞
−∞

log(1 + u2)

1 + u2
du =

2

π
(π log(4)) = log(16).
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L3 =

� ∞
−∞

fν1(y) log(1 +
y2

5
)dy =

� ∞
−∞

log(1 + 3
5u

2

(1 + u2)2
du

= log(
3

5
) +

2

π
[π log(|ψ(−i)|)− πIm(

ψ′(−i)
ψ(−i)

)],

using Theorem 5.2.5 with ψ(z) =
√

5
3 + iz. We have

|ψ(−i)| =
√

5

3
+ 1

and

Im(
ψ′(−i)
ψ(−i)

) =
1

1 +
√

5
3

,

so

L3 = log(
3

5
) + 2(log(

√
5

3
+ 1)− 1

1 +
√

5
3

.

Substituting L1, L2, and L3 into (4), we obtain

� ∞
−∞

fν1(y) log(fν(y))dy = log(
27
√

15

125
) + 2(log(15.8316)− 1.2394)+

− log(3
√

5π)− 2 log(16)− 3[log(
3

5
) + 2(log(

√
5

3
+ 1)− 1

1 +
√

5
3

]

= log(
(15.8316)2

√
3π162(

√
5
3 + 1)6

)− 2.4788 +
3

1 +
√

5
3

.

Similarly, � ∞
−∞

fν2(y) log(fν(y))dy =

� ∞
−∞

fν2(y) log(
√

15(1 +
y2

5
)3+

4(1 +
y2

3
)2)dy − log(3

√
5π)(

� ∞
−∞

fν2(y)dy)−

2

� ∞
−∞

fν2(y) log(1 +
y2

3
)dy − 3

� ∞
−∞

fν2(y) log(1 +
y2

5
)dy.(5)
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We have � ∞
−∞

fν2(y)dy = 1.

Let v = y√
5
, so dy =

√
5dv, and

√
15(1 +

y2

5
)3 + 4(1 +

y2

3
)2 =

√
15(1 + u2)3 + 4(1 +

5

3
u2)2

=
√

15[u6 +
27
√

15 + 100

9
√

15
u4 +

9
√

15 + 40

3
√

15
u2 +

√
15 + 4√

15
].

H1 =

� ∞
−∞

fν2(y) log(
√

15(1 +
y2

5
)3 + 4(1 +

y2

3
)2)dy

= log(
√

15) +
8

3π

� ∞
−∞

log(u6 + 27
√

15+100
9
√

15
u4 + 9

√
15+40

3
√

15
u2 +

√
15+4√

15
)

(u2 + 1)3
du.

We apply Theorem 5.2.6 with ψ̄(z) = (z − z̄1)(z − z̄2)(z − z̄3), which has three zeros

z̄1 = 2.13343i, z̄2 = −0.0693178 + 0.81455i, z̄3 = 0.0693178 + 0.81455i in the upper half

plane. We have

ψ̄(−i) = (−i− z̄1)(−i− z̄2)(−i− z̄3) = 10.3322i,

and

|ψ(−i)| = 10.3322.

ψ′(z) = (z − z̄2)(z − z̄3) + (z − z̄1)(z − z̄3) + (z − z̄1)(z − z̄2),

so

ψ̄′(−i) = (−i− z̄2)(−i− z̄3) + (−i− z̄1)(−i− z̄3) + (−i− z̄1)(−i− z̄2) = −14.669,

ψ̄′(−i)
ψ̄(−i)

= 1.4197i
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and

Im(
ψ̄′(−i)
ψ̄(−i)

) = 1.4197.

We have ψ̄′(−i)
ψ̄(−i) ]2 = −2.0156, so Re([ ψ̄

′(−i)
ψ̄(−i) ]2) = −2.0156.. We have

ψ̄
′′
(z) = 6z − 2(z̄1 + z̄2 + z̄3),

so

ψ̄
′′
(−i) = −13.5251i

and

Re(
ψ̄
′′
(−i)

ψ̄(−i)
) = −1.3090.

Hence, � ∞
−∞

log(u6 + 27
√

15+100
9
√

15
u4 + 9

√
15+40

3
√

15
u2 +

√
15+4√

15
)

(u2 + 1)3
du

=
π

4
{3 log(|ψ(−i)|)− 3Im(

ψ̄′(−i)
ψ̄(−i)

) +Re([
ψ̄′(−i)
ψ̄(−i)

]2)−Re( ψ̄
′′
(−i)

ψ̄(−i)
)}

=
π

4
{3 log(10.3322)− 3(1.4197)− 2.0156 + 1.3090} = π(

3

4
log(10.3322)− 1.241425).

H1 = log(
√

15) +
8

3π
(π(

3

4
log(10.3322)− 1.241425)) = log(

√
15) + 2 log(10.3322)− 3.3105.

Next, we calculate

H2 =

� ∞
−∞

fν2(y) log(1 +
y2

3
)dy =

8

3π

� ∞
−∞

log(1 + 5
3v

2)

(1 + v2)3
dv.

We apply Theorem 5.2.6 again with ψ̄(z) = 1 +
√

5
3 iz, so |ψ̄(−i)| = 1 +

√
5
3 . We have

ψ̄
′
(z)

ψ̄(z)
=

1

z −
√

3
5 i
,
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so

ψ̄
′
(−i)

ψ̄(−i)
=

1

1 +
√

3
5

i

and

Im(
ψ̄′(−i)
ψ̄(−i)

) =
1

1 +
√

3
5

.

In addition,

(
ψ̄′(−i)
ψ̄(−i)

)2 = − 1

(1 +
√

3
5)2

,

so

Re([
ψ̄′(−i)
ψ̄(−i)

]2) = − 1

(1 +
√

3
5)2

.

We have ψ̄
′′
(−i) = 0 because ψ̄

′′
(z) = 0 for all z. Hence,

� ∞
−∞

log(1 + 5
3v

2)

(1 + v2)3
dv =

π

4
(3 log(1 +

√
5

3
)− 3

1 +
√

3
5

− 1

(1 +
√

3
5)2

.

Therefore,

H2 = 2 log(1 +

√
5

3
)− 2

1 +
√

3
5

− 2

3(1 +
√

3
5)2

.

Finally, we calculate

H3 =

� ∞
−∞

fν2(y) log(1 +
y2

5
)dy =

8

3π

� ∞
−∞

log(1 + v2)

(1 + v2)3
dv

Applying Theorem 5.2.6 with ψ̄(z) = 1 + iz, we obtain

� ∞
−∞

log(1 + v2)

(1 + v2)3
dv = π(

3

4
log(2)− 7

16
).

Hence,

H3 =
8

3π
(π(

3

4
log(2)− 7

16
)) = log(4)− 7

2
.
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Substituting H1, H2, and H3 into (5), we have

� ∞
−∞

fν2(y) log(fν(y))dy = [log(
√

15) + 2 log(10.3322)− 3.3105]+

− log(3
√

5π)− 2[2 log(1 +

√
5

3
)− 2

1 +
√

3
5

− 2

3(1 +
√

3
5)2

]− 3[log(4)− 7

2
]

= log(
(10.3322)2

√
3π64(1 +

√
5
3)4

) +
4

1 +
√

3
5

+
4

3(1 +
√

3
5)2

+ 7.1895.

Therefore,

Ent(fν(y)) = − log(
163.575

128
√

3π(1 +
√

5
3)5

)− 3

2(1 +
√

5
3)
− 2

1 +
√

3
5

− 2

3(1 +
√

3
5)2
− 2.35535.

Consider fν̄(y) = 1
2fν̄1(y) + 1

2fν̄2(y), where ν̄1 = 7 and ν̄2 = 3. Hence

fν̄(y) =
8

5
√

7π(1 + y2

7 )4
+

1
√

3π(1 + y2

3 )2
=

8
√

3(1 + y2

3 )2 + 5
√

7(1 + y2

7 )4

5
√

21π(1 + y2

7 )4(1 + y2

3 )2
.

The KL divergence of fν(y) and fν̄(y) is given by

KL(fν(y)|fν̄(y)) =

� ∞
−∞

fν(y) log[
fν(y)

fν̄(y)
]dy =

� ∞
−∞

fν(y) log(fν(y))dy−
� ∞
−∞

fν(y) log(fν̄(y))dy = −Ent(fν(y))−
� ∞
−∞

fν(y) log(fν̄(y))dy.

We have

� ∞
−∞

fν(y) log(fν̄(y))dy =
1

2

� ∞
−∞

fν1(y) log(fν̄(y))dy +
1

2

� ∞
−∞

fν2(y) log(fν̄(y))dy.(6)



180 Entropy and Kullback-Leibler formulas for rational densities

First, we calculate

N1 =

� ∞
−∞

fν1(y) log(fν̄(y))dy =

� ∞
−∞

fν1(y) log(8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

7
)4)dy−

log(5
√

21π)(

� ∞
−∞

fν1(y)dy)− 4

� ∞
−∞

fν1(y) log(1 +
y2

7
)dy − 2

� ∞
−∞

fν1(y) log(1 +
y2

3
)dy.

Let u = y√
3
, so dy =

√
3du and

8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

7
)4 = 8

√
3(1 + u2)2 + 5

√
7(1 +

3u2

7
)4

=
405
√

7

2401
[u8+

28

3
u6+

49(270
√

7 + 392
√

3)

405
√

7
u4+

343(60
√

7 + 112
√

3)

405
√

7
u2+

2401(5
√

7 + 8
√

3)

405
√

7
].

� ∞
−∞

fν1(y) log(8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

7
)4)dy = log(

405
√

7

2401
)+

2

π
(π[log(|ψ(−i)|)− Im{ψ

′
(−i)

ψ(−i)
}]),

using Theorem 5.2.5 with ψ(z) = (z − z1)(z − z2)(z − z3)(z − z4), where

z1 = −1.2790 + 2.2783i, z2 = 1.2790 + 2.2783i, z3 = −0.1205 + 1.0615i and z4 = 0.1205 +

1.0615i.

We have ψ(−i) = (12.3831)(4.2643) = 52.8053, so |ψ(−i)| = 52.8053; ψ
′
(z)

ψ(z) = 1
z−z1 + 1

z−z2 +

1
z−z3 + 1

z−z4 so ψ
′
(−i)

ψ(−i) = 1.4963i, and Im{ψ
′
(−i)

ψ(−i) } = 1.4963. Hence,

� ∞
−∞

fν1(y) log(8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

7
)4)dy = log(

405
√

7

2401
) + 2(log(52.8053)−1.4963).

Next, we calculate

� ∞
−∞

fν1(y) log(1 +
y2

7
)dy =

2

π

� ∞
−∞

log(1 + 3
7u

2)

(1 + u2)2
du

= 2 log(1 +

√
3

7
)− 2

1 +
√

7
3

,
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using Theorem 5.2.5 with ψ(z) = 1 +
√

3
7 iz. Finally,

� ∞
−∞

fν1(y) log(1 +
y2

3
)dy =

2

π

� ∞
−∞

log(1 + u2)

1 + u2
du =

2

π
π log(4) = log(16).

Hence

N1 = log(
405
√

7

2401
) + 2(log(52.8053)− 1.4963)− log(5

√
21π)

− 8 log(1 +

√
3

7
) +

8

1 +
√

7
3

− log(256) = log(
0.3675

√
3π(1 +

√
3
7)8

) +
8

1 +
√

7
3

− 2.9926.

Similarly, we calculate

N2 =

� ∞
−∞

fν2(y) log(fν̄(y))dy =

� ∞
−∞

fν2(y) log(8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

7
)4)dy

− log(5
√

21π)(

� ∞
−∞

fν2(y)dy)− 4

� ∞
−∞

fν2(y) log(1 +
y2

7
)dy − 2

� ∞
−∞

fν2(y) log(1 +
y2

3
)dy.

Let v = y√
5
, so dy =

√
5du and

8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

7
)4 = 5

√
7(1 +

5

7
v2)4 + 8

√
3(1 +

5v2

3
)2 =

3125
√

7

2401
[v8 +

28

5
v6 +

(13230
√

7 + 19208
√

3)

1125
√

7
v4 +

102900
√

7 + 192080
√

3)

9375
√

7
v2+

2401(5
√

7 + 8
√

3)

3125
√

7
].

� ∞
−∞

fν2(y) log(8
√

3(1 +
y2

3
)2 + 5

√
7(1 +

y2

4
)4)dy = log(

3125
√

7

2401
)+

8

3π
(
π

4
[3 log(|ψ(−i)|)− 3Im{ψ

′
(−i)

ψ(−i)
}+Re{(ψ

′
(−i)

ψ(−i)
)2} −Re{ψ

′
(−i)

ψ(−i)
}]),

using Theorem 5.2.6 with ψ(z) = (z−z1)(z−z2)(z−z3)(z−z4), where z1 = −0.9907+1.7647i,

z2 = 0.9907 + 1.7647i, z3 = −0.0934 + 0.8222i and z4 = 0.0934 + 0.8222i. We have
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ψ(−i) = (8.6251)(3.3291) = 28.7141, so |ψ(−i)| = 28.7141;

ψ
′
(z)

ψ(z)
=

1

z − z1
+

1

z − z2
+

1

z − z3
+

1

z − z4

so

ψ
′
(−i)

ψ(−i)
= 1.7358i,

Im{ψ
′
(−i)

ψ(−i)
} = 1.7358

and

Re{(ψ
′
(−i)

ψ(−i)
)2} = −3.0130.

We have ψ
′′
(z) = 2(6z2 + z2z3 + z2z4 + z3z4 + z1(z2 + z3 + z4)− 3z(z1 + z2 + z3 + z4)), so

ψ
′′
(−i) = −64.211 and Re{ψ

′
(−i)

ψ(−i) } = −2.2362.

Hence,

� ∞
−∞

fν2(y) log(8
√

3(1+
y2

3
)2 +5

√
7(1+

y2

4
)4)dy = log(

3125
√

7

2401
)+2(log(28.7141)−3.9895)

= log(1073.12
√

7)− 3.9895.

Next, we calculate

� ∞
−∞

fν2(y) log(1 +
y2

7
)dy =

8

3π

� ∞
−∞

log(1 + 5
7v

2)

(1 + v2)3
du

= 2 log(1 +

√
5

7
)− 2

1 +
√

7
5

− 2

3(1 +
√

7
5)2

,

using Theorem 5.2.6 with ψ(z) = 1 +
√

5
7 iz. Finally,

� ∞
−∞

fν2(y) log(1 +
y2

3
)dy =

8

3π

� ∞
−∞

log(1 + 5
3v

2)

(1 + v2)3
dv
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= 2 log(1 +

√
5

3
)− 2

1 +
√

3
5

− 2

3(1 +
√

3
5)2

,

using Theorem 5.2.6 with ψ(z) = 1 +
√

5
3 iz. Hence

N2 = log(
1073.12

5
√

3π(1 +
√

5
7)8(1 +

√
5
3)4

)− 3.9895

+
8

1 +
√

7
5

+
8

3(1 +
√

7
5)2

+
4

1 +
√

3
5

) +
4

3(1 +
√

3
5)2

.

Combining N1 and N2, we obtain

fν(y) log(fν̄(y)) =
1

2
N1 +

1

2
N2 = log(

19.8588
√

15π(1 +
√

3
7)4(1 +

√
5
7)4(1 +

√
5
3)2

)− 3.49105

+
4

1 +
√

7
3

+
4

1 +
√

7
5

+
4

3(1 +
√

7
5)2

+
2

1 +
√

3
5

+
2

3(1 +
√

3
5)2

.

Therefore,

KL(fν(y)|fν̄(y)) = log(
0.0644

√
5(1 +

√
3
7)4(1 +

√
5
7)4

1 +
√

5
3

) + 5.8464

+
3

2(1 +
√

5
3)
− 4

1 +
√

7
3

− 4

1 +
√

7
5

− 2

3(6
5 +

√
7
5)
.

5.7. On Approximate Entropy Calculation for Finite Gaussian Mixtures

We consider the linear convex combination fν(t) =
∑n

i=1 αifνi(t), where fνi(t) converges

to fi(t) when νi →∞, where fi(t) denotes the PDF of N (µi,
1
σi

). Applying Theorem 5.2.2,

we can obtain entropy of fν(t), which converges to entropy of the finite Gaussian mixture.
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It is illustrated by the following example. We consider

fν1(t) =
Γ(ν1+1

2 )

Γ(ν1
2 )

(
σ1

ν1π
)(1/2)(1 +

σ1

ν1
(t− µ1)2)−

ν1+1
2 .

fν2(t) =
Γ(ν2+1

2 )

Γ(ν2
2 )

(
σ2

ν2π
)(1/2)(1 +

σ2

ν2
(t− µ2)2)−

ν2+1
2 .

We have fν1(t) → f1(t) when ν1 → ∞, where f1(t) is the PDF of N (µ1,
1
σ1

). And

fν2(t)→ f2(t) when ν2 →∞, where f2(t) is the PDF of N (µ2,
1
σ2

). When ν1 →∞, ν2 →∞,

entropy of the combination α1fν1(t)+α2fν2(t), α1+α2 = 1, converges to entropy of the finite

Gaussian mixture α1f1(t)+α2f2(t). If we take ν1 = ν2 = ν, µ1 = 0, σ1 = 2, µ2 = 1, σ2 = 1,

entropy of the finite Gaussian mixture is 1.4048. The following table shows the convergence

when increasing the degree of freedom (Df).

Table 5.1: Convergence of entropy of linear combination of student
distributions to entropy of finite Gaussian mixture when increasing the

degree of freedom.

Df Entropy
31 1.4310
33 1.4294
99 1.4129
119 1.4115
399 1.4068
999 1.4056
1399 1.4048



Chapter 6

Conclusion

6.1. Concluding Remarks

This research introduces a new method, the MC-Tree method, for pricing options with the

requirement of high accuracy and efficiency, both of which are important in applications.

It employs a mixing distribution on the tree parameters to give the prescribed mean and

variance. Given the family of mixing densities, we obtain the corresponding compound

densities of the tree outcomes at the final time step. We look for mixing densities for which

the corresponding compound density has high entropy level. The compound density (after

a logarithmic transformation of the asset prices) is not the ideal Gaussian distribution but

has entropy values close to the maximum possible Gaussian entropy. This thesis introduces

two techniques to correct for the deviation from the ideal Gaussian pricing measure. The

distribution correction technique ensures that expectations calculated with the method are

taken with respect to the desired Gaussian measure. The bias-correction technique ensures

that the probability distributions used are risk-neutral in each of the trees.

We write codes to implement all algorithms and the theory of the MC-Tree method in
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this thesis. We illustrate that the MC-Tree method is straightforward to implement in

practice, demonstrated by numerical results in this thesis. Besides option pricing, we

apply correction techniques to develop an algorithm for calculations of the credit valuation

adjustment (CVA) on an American option. Numerical examples of the workings of the

MC-Tree approach are provided, which show good performance in terms of accuracy and

computational speed.

The theory of MC-Tree method in the thesis can be an efficient method to price options on

single or multiple assets. The model can be applied to practical development in financial

industry due to its high accuracy.

The method shows how close our results are to the ”true” prices and shows the tiny

confidence interval containing the ”true” one with a given (high) probability at 95% when

limiting the tree depth.

The recombining multinomial tree serves as the generalization, so keep most aspects and

properties of recombining binomial tree, except the difference in the number of underlying

assets. The benefit of the recombining binomial/multinomial tree is the reduction of the

number of nodes in the tree, so leads to reduce computation time. The completeness of

the model allows to provide hedging strategies.

6.2. Further Research

Pricing options and CVA calculations using MC-Tree are still in their infancy, and there is

potential research in the future, based on work completed to date.

Apart from the high accuracy requirement, a fast computation speed is crucial in practical

applications at the trading desk. Hence, it is necessary to improve the efficiency of the

pricing method. We plan to experiment with using a special chip (a field-programmable

gate array (FPGA)) to do fast tree computations. The FPGA implementation will likely be
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much faster than a CPU implementation. The computation time of the MC-Tree method

might be faster in higher-dimensional cases with the FPGA implementation. Mahony et

al. [36] developed the novel FPGA architecture on recombining multinomial trees based on

Pascal’s simplex and showed the fast computation speed. The novelty in option pricing

acceleration of the paper is based on Pascal’s simplex. Except for recomputing the input

parameters to the FPGA, we will use this exact FPGA architecture on the MC-Tree

method. Applying FPGA hardware to the MC-Tree methods should allow to show that the

MC-Tree methods are not only of theoretical interest but can be made sufficiently fast to

become interesting for practitioners in the financial industry. This could lead to interesting

new computational approaches to option pricing, but also, as yet unexplored, speed-ups in

expectation calculations for higher dimensional Gaussians and Gaussian mixtures. Here

contact could be made with developments in Machine Learning or data science in which

Gaussian mixtures play an important role. But the same can be said for applications in

Econometrics and other applications of mathematical statistics.

Our contribution is to introduce a new a computational approach for fast and accurate

pricing, but we still use constant model parameters. The future research direction is to

generalize the model to a real market with stochastic parameters.

Another promising research direction is to develop MC-Tree in the financial industry,

especially pricing and risk management industry. We can produce a software with the

Graphical user interface (GUI) or an App from our codes, which allow any users to change

the model inputs to obtain the price.

Besides, the usage of the correction factor brings very high accuracy in European option

pricing using MC-Tree method. We would exploit how to use the correction factor in

pricing the American option.

The analytic compound density is used in option pricing with the distribution correction

technique. A natural question is how to apply the distribution correction factor to pricing
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multi-asset options.

Further research is required to get an analytical expression for the compound density in

case of three or more assets. The conditioning method applied to the two-asset case can

be generalized to higher dimensions but it remains to be seen whether again, using Euler

substitutions or otherwise, rational density contributions are obtained for which we have

analytical technique, to compute the necessary integrals.

Alternatively, the compound density on the radius can be approximately computed using a

MC technique. It remains to be seen how this can be implemented to obtain a workable

distribution correction factor.
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A.1. Choice of Mixing Density in One Asset Case

We claim that cf(p1, p2)dp1 will describe the same density as cf(p1, p2)dp2.

Proof.

Given p1 = cos2(θ), we have dp1 = −2cos(θ)sin(θ)dθ.

Given p2 = sin2(θ), we have dp2 = 2cos(θ)sin(θ)dθ.

Hence, |dp1| = |dp2|. By the construction of our tree, we have the symmetry w.r.t permuta-

tions of p1 and p2. Hence, f(p1, p2)dp1 will describe the same density as f(p1, p2)dp2.

A.2. Choice of Mixing Density in Two Asset Case

We claim that the choice of mixing density cf(p1, p2, p3)dp1dp2, cf(p1, p2, p3)dp1dp3, and

cf(p1, p2, p3)dp2dp3 produces the same density.

Proof.

We define a density on the triangle formed by all convex combinations of e1, e2, e3 ∈ R3.

The set is also described by

{(p1, p2, p3) : p1 + p2 + p3 = 1, p1 ≥ 0, p2 ≥ 0, p3 ≥ 0.}

We can describe each point by two of the three coordinates as the third is one minus the

sum of others. We will find the size of the volume element when taking p1 and p2 as

variables. The area of the triangle itself is obtained as follows:

The sides of triangle has equal length

||e1 − e2|| = ||e2 − e3|| = ||e1 − e3|| =
√

2.
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If we start from a point (p1, p2, p3) and change p1 to p
′
1, p2 to p

′
2, and p3 to p

′
3 =

p3 − ∆p1 − ∆p2, where ∆p1 = p
′
1 − p1, ∆p2 = p

′
2 − p2. So a change of ∆p1 from p1

to p1 + ∆p1 in this case corresponds to ∆p1




1

0

−1


 and a change of ∆p2 from p2 to

p2 + ∆p2 corresponds to ∆p2




0

1

−1


 . Hence, we consider the triangle with vertices

p = (p1, p2, p3), p+ ∆p1(e1 − e3) = (p1 + ∆p1, p2, p3 −∆p1), p+ ∆p2(e2 − e3) = (p1, p2 +

∆p2, p3 −∆p2). The area element is twice the area of triangle with these vertices. We can

translate to the origin (0,0,0) without changing the area of triangle.

The angle θ between e1 − e3 and e2 − e3 is π
3 because

cos(θ) =
< e1 − e3, e2 − e3 >

||e1 − e3||||e2 − e3||
=

1

2
.

The area of the triangle is

1

2

√
2
√

2sin(
π

3
) =

1

2

√
3.

We get the area of an equilateral parallelogram is
√

3. The density on the triangle formed

by all convex combinations of ei, i = 1, 2, 3 is cf(p1, p2, p3)
√

3dp1dp2. Taking f = 1, solve

for c � 1

0

� 1−p2

0
c
√

3dp1dp2 = c
√

3

� 1

0
(1− p2)dp2 = c

1

2

√
3.

We have � 1

0

� 1−p2

0
c
√

3dp1dp2 = 1⇔ c =
2

3

√
3.

Hence, c
√

3 = 2 because the area of the triangle is half the area of the equilateral

parallelogram which is used in computation of the area element of dp1dp2.

If we use cf(p1, p2, p3)
√

3dp2dp3, this will describe the same density on the triangle by the
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symmetry w.r.t permutation of p1, p2, and p3.

This is similar to the choice of the mixing density cf(p1, p2, p3)
√

3dp1dp3.
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