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Abstract

We demonstrate the effectiveness of an adaptive explicit Euler method for the

approximate solution of the Cox-Ingersoll-Ross model. This relies on a class of

path-bounded timestepping strategies which work by reducing the stepsize as

solutions approach a neighbourhood of zero. The method is hybrid in the sense

that a convergent backstop method is invoked if the timestep becomes too small,

or to prevent solutions from overshooting zero and becoming negative.

Under parameter constraints that imply Feller’s condition, we prove that such

a scheme is strongly convergent, of order at least 1/2. Control of the strong error

is important for multi-level Monte Carlo techniques. Under Feller’s condition we

also prove that the probability of ever needing the backstop method to prevent

a negative value can be made arbitrarily small. Numerically, we compare this

adaptive method to fixed step implicit and explicit schemes, and a novel semi-

implicit adaptive variant.

We observe that the adaptive approach leads to methods that are competitive

in a domain that extends beyond Feller’s condition, indicating suitability for the

modelling of stochastic volatility in Heston-type asset models.
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Chapter 1

Introduction

1.1 Discussion of the problem

The Cox-Ingersoll-Ross (CIR) process, used for example in the pricing of interest

rate derivatives and as a model of stochastic volatility, is given by the following

Itô-type stochastic differential equation (SDE),

dX(t) = κ (λ−X(t)) dt+ σ
√
X(t)dW (t), t ∈ [0, T ]; X(0) = X0 > 0, (1.1)

where W (t) is a Wiener Process, κ, λ, and σ are positive parameters, and T ∈

[0, T̄ ] for some fixed T̄ < ∞. Solutions of (1.1) are almost surely (a.s.) non-

negative: in general they can achieve a value of zero but will be reflected back into

the positive half of the real line immediately. Moreover, if 2κλ ≥ σ2, referred to as

the Feller condition, solutions will be a.s. positive. No closed form solution of (1.1)

is available, though X(t) has (conditional upon X(s) for 0 ≤ s < t) a non-central

chi-square distribution with limt→∞ E[X(t)] = λ and limt→∞Var[X(t)] = λσ2/2κ;

see [8].

For Monte Carlo estimation, exact sampling from the known conditional dis-

1
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tribution of X(t) is possible but computationally inefficient and potentially re-

strictive if the Wiener process of (1.1) is correlated with that of another process:

see [1, 6, 13, 24]. Consequently a substantial literature has developed on the ef-

ficient numerical approximation of solutions of (1.1); we now highlight the parts

which are relevant to our analysis.

An approach that seeks to directly discretise (1.1) using some variant of the

explicit Euler-Maruyama method leads to schemes of the form

Ṽn+1 = g0

(
Ṽn

)
+ ∆tκ

(
λ− g1

(
Ṽn

))
+ σ

√
g2

(
Ṽn

)
∆Wn;

Vn+1 = g3

(
Ṽn+1

)
; Ṽ0 = V0,

(1.2)

for given functions g0, g1,g2 and g3. These functions are selected to ensure that

the diffusion coefficient remains real-valued (so that (1.2) is well defined), and to

preserve the non-negativity of solutions. This approach seeks to accommodate

the non-Lipschitz (square-root) diffusion, which facilitates overshoot when the

solutions are close to zero, but it introduces additional bias to the approximation.

A survey of choices common in practice may be found in [24], and we present a

similar selection in Table 1.1 using the convention x+ := max{0, x}. We highlight

in particular the fully truncated method proposed in Lord et al [24]. While it

was shown in that article that the method is strongly convergent in L1, the rate

of strong convergence has only been recently proved by Cozma & Reisinger [9],

who demonstrated a strong order of convergence 1/2 in Lp, in the case where

2κλ > 3σ2, for 2 ≤ p < 2κλ/σ2 − 1. This method preserves the positivity of the

underlying solutions of (1.1), and the authors of [9] state that it is arguably the

most widely used in practice.

An alternative approach is to transform (1.1) before discretisation to make
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Method g0(x) g1(x) g2(x) g3(x)
Explicit Euler x x x x

Partially Truncated [10] x x x+ x
Fully Truncated [24] x x+ x+ x+

Higham & Mao [14] x x |x| x

Table 1.1: Explicit Euler-Maruyama variants.

the diffusion coefficient globally Lipschitz. For example, applying the Lamperti

transform Y =
√
X yields an auxiliary SDE in Y with a state independent and

therefore globally Lipschitz diffusion, but a drift coefficient that is unbounded

when solutions are in a neighbourhood of zero. This approach is effective: a fully

implicit Euler discretisation over a uniform mesh that preserves positivity of so-

lutions was proposed in [1] and shown to have uniformly bounded moments. A

continuous time extension interpolating linearly between mesh points was shown

to have strong Lp order of convergence 1/2 (up to a factor of
√
| log(h)|) in [11]

when 2κλ > pσ2, a continuous-time variant based on the same implicit discreti-

sation was shown to have strong Lp convergence of order 1 when 4κλ > 3pσ2 in

[3], and in [7] a variant which discretised the transformed SDE for Y with an

explicit projection method was shown to give strong L2 convergence of order 1

when 2κλ > 5σ2, of order 1/2 when 3σ2 < 2κλ ≤ 5σ2, and with an order on the

interval (1/6, (2κλ− σ2)/(4κλ+ 2σ2)) when 2σ2 < 2κλ ≤ 3σ2.

It is important to emphasise the distinction between weakly and strongly con-

vergent numerical methods. Weakly convergence methods may be sufficient for

the Monte Carlo estimation of some derivatives, and methods which converge

weakly with high order for (1.1) are known, see for example [2]. However strongly

convergent methods are required in order to take advantage of Multi-Level Monte

Carlo variance reduction techniques; see [12].

In this article we show that a strongly convergent numerical scheme can be
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constructed by an application of the Lamperti transform to (1.1) followed by an

explicit Euler-Maruyama discretisation over a procedurally generated adaptive

mesh. The purpose of the adaptivity is to manage the nonlinear drift response of

the discrete transformed system (rather than local error control). A framework

for this was introduced in [18] for SDEs with one-sided Lipschitz drift and globally

Lipschitz diffusion and extended to allow for monotone coefficients and a Milstein-

type discretisation in [17, 20] respectively. This framework imposes maximum

and minimum timesteps hmax and hmin in a fixed ratio ρ and requires the use of a

backstop numerical method in the event that the timestepping strategy attempts

to select a stepsize below hmin. The introduction of [18] provides a comprehensive

review of the adaptive literature for SDEs.

As in [20], we will use here path-bounded strategies, this time designed to

increase the density of timesteps when solutions approach zero, and we addition-

ally require the backstop method to retake a step when the adaptive strategy

overshoots the singularity at zero in the transformed equation. This latter is

carried out without discarding samples from the Brownian path (preserving the

trajectory), and without bridging (preserving efficiency).

We prove, when κλ > 2σ2, that the order of strong convergence in L2 is at

least 1/2. This parameter constraint implies the Feller condition and is technical,

ensuring the finiteness of sufficiently many conditional inverse moments of solu-

tions of (1.1) (as described by [5]). We separately prove that, under exactly the

Feller condition, the probability of invoking the backstop method to avoid nega-

tive values can be made arbitrarily small by choosing hmax sufficiently small, and

provide a practical method for doing so given a user defined tolerance level. The

proof relies upon a finite partitioning of the sample space of trajectories induced

by hmax and hmin, which allows us to handle the randomness of the number of
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timesteps via the Law of Total Probability.

Numerically we compare the convergence and efficiency of our hybrid adaptive

method with a semi-implicit adaptive variant, the fixed-step explicit method due

to [14], and the transformed implicit fixed-step method proposed and analysed in

[1, 11, 3], examining the parameter dependence of the numerical order of conver-

gence in each case. The numerical convergence rates of adaptive methods are seen

to outperform those of fixed-step methods over the entire domain where Feller’s

condition holds. Indeed we observe polynomial orders of convergence beyond this

domain, indicating that these methods are also applicable to modelling stochastic

volatility processes, for example in a Heston model.

Our results extend naturally to variants of (1.1) with time dependent param-

eters (see Glasserman [13]) subject to the existence of inverse moments in that

setting, and to shifted CIR models such as those found in [27] which allow for

negative interest rates.

The structure of the thesis is as follows. In Chapter 1.2 we give the form

of the SDE governing the Lamperti transform of (1.1), specify the constraints

placed upon the parameters for the main strong convergence theorem, and exam-

ine the availability of conditional moment and inverse moment bounds under these

constraints. In Chapter 2 we set up the framework for our random mesh, charac-

terise the class of path-bounded timestepping strategies and define our adaptive

numerical method. In Chapter 3 we present the two main theorems on strong

convergence and positivity, providing illustrative examples in the latter case. Fi-

nally in Chapter 4 we numerically compare convergence and efficiency of several

commonly used methods.
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1.2 Mathematical Preliminaries

Throughout the thesis we let (Ft)t≥0 be the natural filtration of W . By using Itô’s

formula and applying the transformation Y =
√
X we get,

dY (t) =

(
4κ (λ−Xt)− σ2

8
√
Xt

)
dt+

σ

2
dWt, t ∈ [0, T ]; Y (0) =

√
X0 ∈ R+.

By then setting,

α =
4κλ− σ2

8
, β =

−κ
2
, γ =

σ

2
,

we can write,

dY (t) =

(
α

Y (t)
+ βY (t)

)
dt+ γdWt, t ∈ [0, T ]; Y (0) =

√
X0 ∈ R+, (1.3)

where f(y) = α/y + βy is not globally Lipschitz continuous, but when α > 0 it

satisfies a one-sided Lipschitz condition with constant β < 0:

[f(x)− f(y)](x− y) ≤ β(x− y)2, for all x, y ∈ R+,

which can be seen by noting that

f(x)− f(y) = (x− y)

[
β − α

xy

]
.

Meanwhile the diffusion coefficient g(y) = γ is constant and therefore globally

Lipschitz continuous. The SDE (1.3) has integral form

Y (t) = Y (0) +

∫ t

0

(
α

Y (s)
+ βY (s)

)
ds+

∫ t

0

γdWt, t ≥ 0. (1.4)

In order to ensure the a.s. positivity of solutions of (1.3) and the boundedness
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of certain inverse moments of solutions of (1.3), we will also need the following

assumption:

Assumption 1. Suppose that

κλ > 2σ2. (1.5)

Eq. (1.5) implies the Feller Condition (2κλ ≥ σ2; see, for example [25, Chapter

9.9.2, p. 308]), which ensures that solutions of (1.1), and therefore (1.3), remain

positive with probability one:

P[Y (t) > 0, t ≥ 0] = 1.

Assumption 1 provides inverse moment bounds as follows:

Lemma 2. Let (Y (t))t∈[0,T ] be a solution of (1.3), where Assumption 1 holds, and

let 0 ≤ t < s ≤ T . For any Y (0) > 0, and for 1 ≤ p ≤ 6, there exists C(p, T ) > 0

such that

E
[

1

Y (s)p

∣∣∣∣Ft] ≤ C(p, T )

Y (t)p
, a.s. (1.6)

Proof. Let (X(t))t∈[0,T ] be a solution of (1.1) where Assumption 1 holds. By

Lemma A.1 in Bossy & Diop [5],

E
[

1

X(t)

]
≤ eκt

X0

and E
[

1

X(t)p

]
≤ C(p, T )

Xp
0

, (1.7)

for some C(p, T ) and any p such that 1 < p < 2κλ
σ2 −1. Assumption 1 ensures that

2κλ
σ2 − 1 > 3, and since Y (t) =

√
X(t), (1.6) follows by Lemma A.1 in [5] as it

applies to conditional expectations, the former requiring an additional application

of Jensen’s inequality to the first inequality in (1.7).

We also need the following bounds on positive moments of solutions of (1.3),
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which apply under Feller’s condition and in particular under Assumption 1.

Lemma 3. Let (Y (t))t∈[0,T ] be a solution of (1.3), where Assumption 1 holds,

and let 0 ≤ t ≤ T . For any Y (0) > 0 and any p > 0, there exist constants

M1,p,M2,p <∞, such that

E

[
sup
u∈[0,T ]

Y (u)p
∣∣∣∣Ft
]
≤M1,p(1 + Y (t)p), a.s., (1.8)

and

E

[
sup
u∈[0,T ]

Y (u)p

]
≤M2,p. (1.9)

Proof. The proof of (1.8) is an application of [5, Lemma 2.1] to conditional ex-

pectations requiring an invocation of Jensen’s inequality when 0 < p < 4. Eq.

(1.9) is provided by [11, Lemma 3.2].

Finally, we will make frequent use of the following elementary inequalities: for

n ∈ N and a1, . . . , an ∈ R and p ≥ 0,

√
|a1 + a2| ≤

√
|a1|+

√
|a2|; (1.10)

|a1a2| ≤
1

2
(a21 + a22); (1.11)

(a1 + . . .+ an)p ≤ np(|a1|p + · · ·+ |an|p). (1.12)



Chapter 2

An Adaptive Numerical Method

The article [18] provides a framework within which to construct timestepping

strategies for an adaptive explicit Euler-Maruyama numerical scheme applied to

nonlinear Itô-type SDEs of the form

dX(t) = f(X(t))dt+ g(X(t))dB(t), t ∈ [0, T ], (2.1)

over a random mesh {tn}n∈N on the interval [0, T ] given by,

Yn+1 = Yn + hn+1f(Yn) + g(Yn)(W (tn+1)−W (tn)), (2.2)

where {hn}n∈N is a sequence of random timesteps and {tn =
∑n

i=1 hi}Nn=1 with

t0 = 0, so that tn+1 > tn for each n. The choice of indexing ensures consistency of

notation between tn and hn and the random time step hn+1 is determined by Yn.

Our proposed timestepping strategy will reflect dynamical considerations spe-

cific to the transformed CIR model (1.3) corresponding to

f(y) =
α

y
+ βy, g(y) = γ. (2.3)

9
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2.1 Framework for a random mesh

Definition 4 (See [23]). Suppose that each member of the sequence {tn}n∈N is an

Ft-stopping time: i.e. {tn ≤ t} ∈ Ft, for all t ≥ 0, where (Ft)t≥0 is the natural

filtration of W . We may then define a discrete time filtration {Ftn}n∈N by

Ftn = {A ∈ F : A ∩ {tn ≤ t} ∈ Ft}, n ∈ N.

Assumption 5. Each hn is Ftn−1-measurable, and N is a random integer such

that,

N = max{n ∈ N : tn−1 < T} and tN = T,

and the length of maximum and minimum stepsizes satisfy hmax = ρhmin, for some

1 < ρ <∞, and

hmin ≤ hn ≤ hmax ≤ 1. (2.4)

Remark 6. The lower bound hmin ensures that a simulation over the interval

[0, T ] can be completed in a finite number of timesteps, and the upper bound hmax

prevents stepsizes from becoming too large. The latter is used as a convergence

parameter in our examination of the strong convergence of the adaptive method.

The random variable N cannot take values outside the finite set {Nmin, . . . , Nmax},

where Nmin := bT/hmaxc and Nmax := dT/hmine.

4Wn+1 := W (tn+1 −W (tn) is a Wiener increment over a random interval the

length of which depends on Yn, through which it depends on {W (s), s ∈ [0, tn]}.

Therefore 4Wn+1 is not independent of Ftn ; indeed it is not necessarily normally

distributed. Since hn+1 is a bounded Ftn-stopping time and Ft-measurable, then

W (tn+1) − W (tn) is Ftn-conditionally normally distributed, by Doob’s optional

sampling theorem (see for example [28]), and for all p ≥ 2 there exists υp < ∞



2.2. ADAPTIVE TIMESTEPPING STRATEGY 11

such that

E[W (tn+1)−W (tn)|Ftn ] = 0, a.s.;

E[|W (tn+1)−W (tn)|2|Ftn ] = hn+1, a.s.;

E
[∣∣∣∣∫ s

tn

dW (r)

∣∣∣∣p∣∣∣∣Ftn] = υp|s− tn|
p
2 , a.s. (2.5)

2.2 Adaptive timestepping strategy

To ensure strong convergence, our strategy is to reduce the size of each timestep

if discretised solutions attempt to enter a neighbourhood of zero. If we wish to

control the likelihood of invoking the backstop to avoid negative values, we will

also reduce the timestep when solutions grow large.

Definition 7 (A path-bounded time-stepping strategy). Let {Yn}n∈N be a solution

of (2.2). We say that {hn}n∈N is a path-bounded time-stepping strategy for (2.2)

if the conditions of Assumption 5 are satisfied and there exist real non-negative

constants 0 ≤ Q < R (where R may be infinite if Q 6= 0) such that whenever

hmin ≤ hn ≤ hmax,

Q ≤ |Yn| < R, n = 0, . . . , N − 1. (2.6)

We now give two examples of path-bounded strategies that are valid for (2.2),

the first with R infinite (which, in conjunction with a suitable backstop method,

is sufficient to ensure strong convergence), and the second with R finite (which is

useful if we also wish to minimise the use of the backstop to ensure positivity).

Lemma 8. Let {Yn}n∈N be a solution of (2.2), and let {hn}n∈N be a time-stepping
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strategy that satisfies Assumption 5. If {hn}n∈N satisfies, for some r ≥ 1,

hn+1 := max (hmin, hmax ·min{1, |Yn|r}) , n ∈ N, (2.7)

or

hn+1 = max
(
hmin, hmax ·min(|Yn|r, |Yn|−r)

)
, n ∈ N, (2.8)

then it is path-bounding for (2.2) in the sense of Definition 7.

Proof. Suppose that (2.7) holds and so hn+1 ≥ hmin. When |Yn| < 1,

hn+1 ≤ hmax|Yn|r ⇔
1

|Yn|r
≤ hmax

hn+1

≤ hmax

hmin

= ρ, n ∈ N,

and when |Yn| ≥ 1 it is obvious that 1
|Yn| ≤ 1, so we also have 1

|Yn|r ≤ ρ < ∞.

Hence, when using the strategy defined by (2.7),

|Yn| ≥
1

ρ1/r
,

1

|Yn|
≤ ρ1/r, n ∈ N,

so that (2.6) holds with Q = 1/ρ1/r and R =∞.

We can similarly show that (2.8) is path-bounding for (2.2), with Q = 1/ρ1/r

and R = ρ1/r.

Note that for the strategies defined by (2.7) and (2.8), solutions of (2.2) cannot

enter the neigbourhood (±1/ρ1/r), and therefore terms of the sequence (1/|Yn|)n∈N

are uniformly bounded from above. This has the effect of controlling inverse

moments of the solutions of (2.2). Moreover for (2.7), when (2.3) holds,

f(Y 2
n ) =

α

|Yn|2
+ β|Yn|2 ≤ αρ1/r + β|Yn|2,
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and therefore that strategy is admissible in the sense of [18, Definition 2.2] with

R1 = αρ1/r and R2 = β. Similarly, (2.8) is admissible with R1 = αρ1/r + βρ−1/r

and R2 = 0.

2.3 The adaptive numerical method with back-

stop

We consider an adaptive scheme based upon the following explicit Euler-Maruyama

discretisation of (1.3) over a random mesh given by,

Yn+1 = Yn + hn+1

(
α

Yn
+ βYn

)
+ γ∆Wn+1. (2.9)

where the timestep sequence is constructed according to (2.7). For s ∈ [tn, tn+1),

the continuous version is given by

Ỹ (s) = Yn +

∫ s

tn

(
α

Yn
+ βYn

)
dr + γ

∫ s

tn

dW (r), (2.10)

so that Ỹ (tn) = Yn for each n ∈ N.

We combine this scheme with a positivity-preserving backstop scheme that is

to be applied if the timestepping strategy attempts to select a timestep below

hmin (in which case we choose hn+1 = hmin) or if the current selected timestep and

subsequently observed Brownian increment 4Wn+1 would result in the approxi-

mation becoming negative. First, we define a map representing the explicit Euler

scheme:
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Definition 9. Define the map θ : R3 → R such that

θ(y, z, h) := y + h

(
α

y
+ βy

)
+ γz,

so that, if {Yn}n∈N is defined by (2.9), then

Yn+1 = θ(Yn,∆Wn+1, hn+1), n ∈ N.

Next we characterise the map associated with the backstop method:

Definition 10. Define the backstop map ϕ : R3 → R so that, for s ∈ [tn +

hmin, tn + hmax], it satisfies

E

[∣∣∣∣ϕ(Ȳn,∫ s

tn

dW (r),

∫ s

tn

dr

)
− Y (s)

∣∣∣∣2 ∣∣Ftn
]
−
∣∣Ȳn − Y (tn)

∣∣2
≤ C1

∫ s

tn

E
[
|Ȳ (r)− Y (r)|2|Ftn

]
dr + C2|s− tn|3/2, n ∈ N, a.s., (2.11)

for some non-negative constants C1 and C2, independent of N, and

ϕ

(
Ȳn,

∫ s

tn

dW (r),

∫ s

tn

dr

)
> 0 a.s., Ȳn > 0. (2.12)

where where Ȳn := Ȳ (tn), and Ȳ is the continuous form of our hybrid scheme

constructed in next, in Definition 11.
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Definition 11. Define the sequence of functions {(Ȳ (s))s∈[tn,tn+1)}n∈N obeying

Ȳ (s) = θ

(
Ȳn,

∫ s

tn

dW (r),

∫ s

tn

dr

)
I{hmin<hn+1≤hmax}∩{Yn+1>0}

+ ϕ

(
Ȳn,

∫ s

tn

dW (r),

∫ s

tn

dr

)
I{hn+1=hmin}∩{Yn+1>0}

+ ϕ

(
Ȳn,

∫ s

tn

dW (r),

∫ s

tn

dr

)
I{hmin<hn+1≤hmax}∩{Yn+1<0}, (2.13)

for s ∈ [tn, tn+1), n ∈ N, where {hn}n∈N satisfies the conditions of Assumption 5.

In practice, rather than checking (2.11) directly, we use as our backstop a

method that is known to be positivity preserving and strongly convergent of order

at least 1/2. In Chapter 4 we use the transformed fully implicit method proposed

by [1]; one could also choose the fully truncated method [24].

Remark 12. Since the events {Yn+1 < 0} and {Yn+1 > 0} are Ftn+1-measurable

but not Ftn-measurable, if a negative value of Yn+1 is observed following a step of

length hn+1 we must retake the step using the backstop method, which will ensure

positivity over that step by (2.12). This introduces an element of backtracking into

the algorithm, but as long as the originally computed stepsize hn+1 and Brownian

increment are retained we can stay on the same trajectory while avoiding the use

of a Brownian bridge.

Theorem 18 in Chapter 3.2, illustrated by Example 19, demonstrates that it is

always possible to choose hmax to ensure that this particular use of the backstop

can be avoided with probability 1 − ε, for arbitrarily small ε ∈ (0, 1), on each

trajectory.
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Chapter 3

Main Results

In this chapter, we first demonstrate strong convergence of solutions of (2.13) to

those of (1.3) under Assumption 1 and a path-bounded timestepping strategy.

Second, we investigate the likelihood that the adaptive part of the method gener-

ates a negative value (triggering the use of the backstop to ensure positivity) and

show how hmax may be chosen to control the probability of this occurring.

3.1 Strong convergence of the adaptive method

Lemma 13. Let (Y (t))t∈[0,T ] be a solution of (1.3) and let {tn}n∈N be a random

mesh such that each tn is an Ft-stopping time. Fix n ∈ N and suppose that

tn ≤ s ≤ T , where T ∈ [0, T̄ ]. Then, for any 1 ≤ p ≤ 6, we have

E
[
|Y (s)− Y (tn)|p

∣∣Ftn] ≤ 2pγpυp|s− tn|p/2 + L̄n,p|s− tn|p, a.s.,

where

L̄n,p := 22p

(
αp
C(p, T )

Y (tn)p
+ |β|pM1,p(1 + Y (tn)p)

)
17



18 CHAPTER 3. MAIN RESULTS

is an Ftn-measurable random variable with finite expectation, and C(T ), M1,p are

the constants defined by (1.6) and (1.8) in the statements of Lemmas 2 and 3

respectively .

Proof. Solutions of (1.3) satisfy the integral equation

Y (s) = Y (tn) +

∫ s

tn

(
α

Y (u)
+ βY (u)

)
du+

∫ s

tn

γdW (u), tn ≤ s ≤ T,

and therefore

Y (s)− Y (tn) =

∫ s

tn

(
α

Y (u)
+ βY (u)

)
du+ γ (W (s)−W (tn)) , tn ≤ s ≤ T.

Using the triangle and Cauchy-Schwarz inequalities, and the elementary inequality

(1.12) with n = 2,

|Y (s)− Y (tn)|p

≤ 2p
∣∣∣∣∫ s

tn

(
α

Y (u)
+ βY (u)

)
du

∣∣∣∣p + 2pγp|W (s)−W (tn)|p

≤ 2p|s− tn|p−1
∫ s

tn

∣∣∣∣ α

Y (u)
+ βY (u)

∣∣∣∣p du+ 2pγp|W (s)−W (tn)|p

≤ 22p|s− tn|p−1
(∫ s

tn

αp

Y (u)p
du+

∫ s

tn

|β|pY (u)pdu

)
+2pγp|W (s)−W (tn)|p,

for s ∈ [tn, T ]. Now apply conditional expectations on both sides with respect to
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Ftn and (2.5) to get,

E
[
|Y (s)− Y (tn)|p

∣∣Ftn] ≤ 2pγpE
[
|W (s)−W (tn)|p

∣∣Ftn]
+ 22p|s− tn|p−1

(
E
[∫ s

tn

αp

Y (u)p
du

∣∣∣∣Ftn]+ E
[∫ s

tn

|β|pY (u)pdu

∣∣∣∣Ftn])
≤ 2pγpυp|s− tn|p/2 + 22p|s− tn|p−1

(
αp
∫ s

tn

C(p, T )

Y (tn)p
du

+ |β|p
∫ s

tn

M1,p(1 + Y (tn)p)du

)
, a.s,

where we have used (1.6) and (1.8) from the statement of Lemma 2 at the last

step. Therefore

E
[
|Y (s)− Y (tn)|p

∣∣Ftn] ≤ 2pγpυp|s− tn|p/2

+ 22p

(
αp
C(p, T )

Y (tn)p
+ βM1,p(1 + Y (tn)p)

)
|s− tn|p, a.s,

as required.

Lemma 14. Let (Y (t))t∈[0,T ] be a solution of (1.3) and let Assumption 1 hold. Let

{tn}n∈N arise from the adaptive timestepping strategy satisfying (2.6) in Definition

7 for some 0 < Q < R , and formulate the Taylor expansion of f(Y (s)) around

Y (tn), where f is as given in (2.3), as

f(Y (s)) = f(Y (tn)) +Rf (s, tn, Y (tn)), s ∈ [tn, tn+1], (3.1)

where

Rf (s, tn, Y (tn)) =

∫ 1

0

Df (Y (tn) + τ(Y (s)− Y (tn))) (Y (s) − Y (tn))dτ. (3.2)
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For any 1 ≤ p ≤ 3, the pth conditional moment of Rf (s, tn, Y (tn)) satisfies

E
[
|Rf |p

∣∣Ftn] ≤ Kn,ph
p/2
n+1, a.s., (3.3)

where Kn,p is an a.s. finite and Ftn-measurable random variable given by

Kn,p = 2p|β|p
(

2pγpυp + L̄n,ph
p/2
n+1

)
+ 2p

αp
√
C(p, T )

Y (tn)2p

(
2pγpυ

1/2
2p + L̄

1/2
n,2ph

p/2
n+1

)
.

Moreover, there exists Kp independent of n such that

Kp := E[Kn,p] <∞. (3.4)

Proof. By direct substitution of f(y) from (2.3) into (3.2), evaluating the integral

in τ , and taking the pth-moment conditional upon Ftn , we get

E
[
|Rf |p

∣∣Ftn] = E
[∣∣∣∣(Y (s)− Y (tn))

(
β − α

Y (s)Y (tn)

)∣∣∣∣p ∣∣∣∣Ftn] .
Using the triangle inequality and (1.12) we get

E
[
|Rf |p

∣∣Ftn] ≤ 2p|β|pE
[
|Y (s)− Y (tn)|p

∣∣∣∣Ftn]
+

2pαp

Y (tn)p
E
[∣∣∣∣((Y (s)− Y (tn)) · 1

Y (s)

)∣∣∣∣p ∣∣∣∣Ftn] . (3.5)
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Next apply Lemma 13 followed by the Cauchy-Schwarz inequality to get

E[|Rf |p
∣∣Ftn ] ≤ 2p|β|php/2n+1

(
2pγpυp + L̄n,ph

p/2
n+1

)
+2p

αp

Y (tn)p

√
E[|Y (s)− Y (tn)|2p|Ftn ]

√
E
[

1

|Y (s)|2p

∣∣∣∣Ftn]
≤ 2p|β|php/2n+1

(
2pγpυp + L̄n,ph

p/2
n+1

)
+2p

αp
√
C(p, T )

Y (tn)2p

√
E[|Y (s)− Y (tn)|2p|Ftn ].

Again applying Lemma 13 and the elementary inequality (1.10) this becomes

E[|Rf |p
∣∣Ftn ] ≤ 2p|β|php/2n+1

(
2pγpυp + L̄n,ph

p/2
n+1

)
+2ph

p/2
n+1

αp
√
C(p, T )

Y (tn)2p

(
2pγpυ

1/2
2p + L̄

1/2
n,2ph

p/2
n+1

)
,

from which the statement of the Lemma follows when we observe that the a.s.

finiteness of Kn,p is ensured by Assumption 1, and (3.4) is ensured by Lemmas 2

& 3.

Remark 15. It is also possible to estimate the second expectation in (3.5) by an

application of Itô’s formula, rather than the Cauchy-Schwarz inequality. However,

this increases the maximum number of finite inverse moments of Y required from

2p to 3p and does not improve the order of the bound (3.3).

Lemma 16. Let (Y (tn))tn∈[0,T ] be the solution of (1.3) with initial value Y (0) =

Y0 =
√
X0. Let

(
Ỹ (s)

)
s∈[tn,tn+1]

be a solution of (2.10) over the interval [tn, tn+1]

and {hn}n∈N be a sequence of random timesteps defined by (1.3) and {tn =∑n
i=1 hi}Nn=1 with t0 = 0. Then for n, p ∈ N, there exists an Ftn-measurable
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random variable K̄n with finite expectation Kn := E[K̄n] <∞ such that

E
[
E(tn+1)

2
∣∣Ftn]− E(tn)2 ≤

∫ tn+1

tn

E
[
E(r)2|Ftn

]
+ K̄nh

2
n+1, a.s., (3.6)

where the error E(s) := Y (s)− Ỹ (s), s ∈ [tn, tn+1].

Proof. For s ≥ tn, we subtract (2.10) from (1.4) to get

E(s) = Y (s)− Ỹ (s)

=

[
Y (tn) +

∫ s

tn

f(Y (r))dr + γ

∫ s

tn

dW (r)

]
−
[
Yn +

∫ s

tn

f(Yn)dr + γ

∫ s

tn

dW (r)

]
= E(tn) +

∫ s

tn

f̃(Y (r), Yn)dr, (3.7)

where f is defined as in (2.3) and f̃(Y (r), Yn) = f(Y (r)) − f(Yn). Applying the

Itô formula and setting s = tn+1, we can write,

E(tn+1)
2 = E(tn)2 + 2

∫ tn+1

tn

E(r)f̃(Y (r), Yn)dr.

By (3.1) in the statement of Lemma 14,

f̃(Y (r), Yn) = f̃(Y (tn), Yn) +Rf (r, tn, Y (tn),
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where Rf is defined in (3.2). This, and an application of (1.11) gives

E(tn+1)
2 − E(tn)2

= 2

∫ tn+1

tn

E(r)Rf (r, tn, Y (tn))dr + 2

∫ tn+1

tn

E(r)f̃(Y (tn), Yn)dr

≤
∫ tn+1

tn

E(r)2dr +

∫ tn+1

tn

Rf (r, tn, Y (tn))2dr

+2

∫ tn+1

tn

E(r)f̃(Y (tn), Yn)dr. (3.8)

Consider the third term on the RHS of (3.8), and substitute (3.7) into the inte-

grand:

∫ tn+1

tn

E(r)f̃(Y (tn), Yn)dr

= E(tn)f̃(Y (tn), Yn)

∫ tn+1

tn

dr + f̃(Y (tn), Yn)2
∫ tn+1

tn

∫ r

tn

du dr

+f̃(Y (tn), Yn)

∫ tn+1

tn

∫ r

tn

Rf (u, tn, Y (tn))du dr

≤ β

∫ tn+1

tn

E(tn)2dr + f̃(Y (tn), Yn)2h2n+1

+f̃(Y (tn), Yn)

∫ tn+1

tn

∫ r

tn

Rf (u, tn, Y (tn))du dr

≤ f̃(Y (tn), Yn)2h2n+1

+f̃(Y (tn), Yn)

∫ tn+1

tn

∫ r

tn

Rf (u, tn, Y (tn))du dr. (3.9)

Now substitute (3.9) into (3.8), to get

E(tn+1)
2 − E(tn)2 ≤

∫ tn+1

tn

E(r)2dr +

∫ tn+1

tn

Rf (r, tn, Y (tn))2dr

+ 2f̃(Y (tn), Yn)2h2n+1 + 2f̃(Y (tn), Yn)

∫ tn+1

tn

∫ r

tn

Rf (u, tn, Y (tn))du dr. (3.10)
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Apply expectations to both sides of (3.10), conditional upon Ftn , to get

E
[
E(tn+1)

2|Ftn
]
− E(tn)2 ≤

∫ tn+1

tn

E[E(r)2|Ftn ]dr

+

∫ tn+1

tn

E[Rf (r, tn, Y (tn))2|Ftn ]dr + 2f̃(Y (tn), Yn)2h2n+1

+ 2f̃(Y (tn), Yn)

∫ tn+1

tn

∫ r

tn

E[Rf (u, tn, Y (tn))|Ftn ]du dr, a.s.

Apply the bound (3.3) in the statement of Lemma 14 with p = 1, 2 to get

E
[
E(tn+1)

2|Ftn
]
− E(tn)2 ≤

∫ tn+1

tn

E[E(r)2|Ftn ]dr

+ (2f̃(Y (tn), Yn) +Kn,2)h
2
n+1 + 2f̃(Y (tn), Yn)Kn,1h

5/2
n+1, a.s.

Since, by (2.4) in the statement of Assumption 5, hn+1 ≤ hmax ≤ 1, the statement

of the Lemma now follows, with K̄n := 2f̃(Y (tn), Yn) +Kn,2 + 2f̃(Y (tn), Yn)Kn,1.

To see that E[K̄n] < ∞, note that by (2.6) in Definition 7, and since β < 0,

f(Yn) ≤ α/Q. The finiteness of E[Kn,2] and E[Kn,1] is given by (1.6) in the

statement of Lemma 2 with p = 6, 3 respectively, along with (1.8) in the statement

of Lemma 3.

Theorem 17. Let (Y (t))t∈[0,T ] be the solution of (1.3) with initial value Y (0) =

Y0 =
√
X0, and suppose that Assumption 1 holds. Let (Ȳ (t))t∈[0,T ] be a solution

of (2.13) with initial value Ȳ (0) = Y (0) and path-bounded timestepping strategy

{hn}n∈N satisfying the conditions of Definition 7 for some 0 < Q < R, with R
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possibly infinite. There exists C > 0, independent of hmax, such that

E[|Y (T )− Ȳ (T )|2] ≤ Chmax.

Proof. From (3.6) in the statement of Lemma 16, we have that when hn+1 ≥ hmin,

E
[
E(tn+1)

2|Ftn
]
− E(tn)2 ≤

∫ tn+1

tn

E
[
E(r)2|Ftn

]
dr + K̄nh

2
n+1, a.s. (3.11)

Suppose that hn+1 < hmin and Yn+1 is generated from Yn via an application of

the backstop method over a single step of length hmin. This corresponds to single

application of the map ϕ in Definition 11 and therefore the relation (2.11) holds.

We now combine (2.11) and (3.11) to generate a single one-step error estimate

for the hybrid method given by (2.13). Define the positive constant Γ1 = C1 ∨ 1

and Ftn-measurable random variable Γ̄n,2 = C2 ∨ K̄n, for n ∈ N. Noting again

that, by (2.4) in the statement of Assumption 5, hn+1 ≤ hmax ≤ 1, we see that

(2.13) satisfies, on almost all trajectories,

E
[
E(tn+1)

2|Ftn
]
− E(tn)2 ≤ Γ1

∫ tn+1

tn

E
[
E(r)2|Ftn

]
dr + Γ̄n,2h

2
n+1. (3.12)

Sum both sides of (3.12) over n = 0, . . . , N − 1 and take expectations:

E

[
N−1∑
n=0

(
E
[
E(tn+1)

2|Ftn
]
− E(tn)2

)]

≤ Γ1E

[
N−1∑
n=0

∫ tn+1

tn

E
[
E(r)2|Ftn

]
dr

]
+ E

[
N−1∑
n=0

Γ̄n,2h
2
n+1

]
. (3.13)

Consider first the LHS of (3.13). Since N is a Ftn-stopping time, the event
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{N ≤ n} ∈ Ftn . Moreover N ≤ Nmax. So we can write

E

[
N−1∑
n=0

(
E
[
E(tn+1)

2|Ftn
]
− E(tn)2

)]

=
Nmax−1∑
n=0

E
[(
E
[
E(tn+1)

2|Ftn
]
− E(tn)2

)
I{N≥n+1}

]
=

Nmax−1∑
n=0

(
E
[
E(tn+1)

2I{N≥n+1}|Ftn
]
− E(tn)2I{N≥n+1}

)
=

Nmax−1∑
n=0

(
E
[
E(tn+1)

2I{N≥n+1}
]
− E

[
E(tn)2I{N≥n+1}

])
= E

[
E(tN)2

]
= E

[
E(T )2

]
. (3.14)

Similarly, the RHS of (3.13) can be written

Γ1E

[
N−1∑
n=0

∫ tn+1

tn

E
[
E(r)2|Ftn

]
dr +

N−1∑
n=0

Γ̄n,2h
2
n+1

]

= Γ1 E

[
Nmax−1∑
n=0

∫ tn+1

tn

E
[
E(r)2|Ftn

]
I{N≥n+1}dr

]
︸ ︷︷ ︸

(I)

+ E

[
Nmax−1∑
n=0

Γ̄n,2h
2
n+1I{N≥n+1}

]
︸ ︷︷ ︸

(II)

.

Consider first (I). Since tn, tn+1, and I{N≥n+1} are Ftn-measurable we can bring

I{N≥n+1} inside the conditional expectation, and exchange the order of integration
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and conditional expectation as follows

E

[
Nmax−1∑
n=0

∫ tn+1

tn

E
[
E(r)2|Ftn

]
I{N≥n+1}dr

]

=
Nmax−1∑
n=0

E
[∫ tn+1

tn

E
[
E(r)2|Ftn

]
I{N≥n+1}dr

]

=
Nmax−1∑
n=0

E
[∫ tn+1

tn

E
[
E(r)2I{N≥n+1}|Ftn

]
dr

]

=
Nmax−1∑
n=0

E
[
E
[∫ tn+1

tn

E(r)2I{N≥n+1}dr

∣∣∣∣Ftn]]

=
Nmax−1∑
n=0

E
[∫ tn+1

tn

E(r)2I{N≥n+1}dr

]

= E

[
Nmax−1∑
n=0

∫ tn+1

tn

E(r)2I{N≥n+1}dr

]

= E

[
Nmax−1∑
n=0

∫ tn+1

tn

E(r)2I{r≤T}dr

]

= E
[∫ T

0

E(r)2dr

]
=

∫ T

0

E
[
E(r)2

]
dr. (3.15)

Finally consider (II). We have, since E
[
Γ̄n,2I{N≥n+1}

]
≤ E

[
Γ̄n,2

]
≤ C2∨K2 =:

Γ2 for all n = 0, . . . , Nmax− 1, Nmax = dT/hmine, and by Assumption 2.4, ρhmin =

hmax ≤ 1,

E

[
Nmax−1∑
n=0

Γ̄n,2h
2
n+1I{N≥n+1}

]
≤ E

[
h2max

Nmax−1∑
n=0

Γ̄n,2I{N≥n+1}

]

= h2max

Nmax−1∑
n=0

E
[
Γ̄n,2I{N≥n+1}

]
≤ h2maxΓ2Nmax ≤ h2maxΓ2

(
T

hmin

+ 1

)
≤ (ρT + 1)Γ2hmax. (3.16)



28 CHAPTER 3. MAIN RESULTS

Substituting (3.14), (3.15), and (3.16) back into (3.13) we get

E[E(T )2] ≤ Γ1

∫ T

0

E[E(r)2]dr + (ρT + 1)Γ2hmax.

Since this inequality holds if T is varied continuously over [0, T̄ ], for any T̄ < ∞

(see [17] for a demonstration) an application of Gronwall’s inequality gives the

result.

3.2 On the positivity of the adaptive method

Now, we assume Feller’s condition (2κλ ≥ σ2) to ensure that solutions of (1.1)

remain a.s. positive, but we do not require that Assumption 1 holds.

3.2.1 Probability of positivity over a single step

Consider the timestepping strategy defined by (2.7) with r = 1, satisfying Def-

inition 7 with R = ∞. The probability of solutions of (2.9) becoming negative

after a single step with this strategy, and hence triggering a use of the backstop

method, is given by

P [Yk+1 < 0|Yk = y > 0] = Φ (a(y)) , y > hmin,

where Φ(x) = 1√
2π

∫ x
−∞ e

−s2/2ds, and

a(y) =
−y −

(
α
y

+ βy
)
hmax(1 ∧ yr)

γ
√
hmax(1 ∧ yr)

.

Figure 3.1 presents two surface plots of these one-step probabilities against y

and hmax. Feller’s condition is satisfied in both cases. In Figure 3.1 (a), when
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Assumption 1 holds, we see that the probability of invoking the backstop to avoid

a negative value is highest when hmax is large and Yn is close to or above 1,

in which case the timestepping strategy will tend to select hn+1 to be close to

hmax. This probability drops off rapidly as hmax reduces. In Figure 3.1 (b), when

Assumption 1 does not hold, the highest probabilities of invoking the backstop for

preserving positivity when Yn is close to hmin. However the maximum probability

is significantly lower than any seen in Figure 3.1 (a).

3.2.2 Probability of positivity over a full trajectory

If we require path-bounded strategies where R < ∞, it is possible to derive

an upper limit on hmax that is sufficient, over the entire trajectory, to keep the

probability of needing the backstop scheme to prevent a negative value below

some arbitrarily small tolerance. Our analysis reworks and extends the approach

taken in the proof of [21, Theorem 4.3], using adaptive timestepping to handle

unboundedness in the drift term. By allowing the use of the backstop to ensure

a minimum timestep, along with an application of the Law of Total Probability,

we can avoid fixing the random number of steps N .

Theorem 18. Let {Yn}Nn=0 be a solution of (2.13), with initial value Y0 > 0,

evaluated on a random mesh {hn}Nn=1 satisfying the conditions of Definition 7

with R <∞. Suppose also that Y0 ∈ (0, R). Then, for each ε ∈ (0, 1) there exists

h̄max(ε) > 0 such that, for all hmax ∈ (0, h̄max(ε))

P[RN ] > 1− ε,

where RN :=
⋂N
j=0{Yj > 0}.

Proof. Since, by (2.12), the backstop method will ensure positivity over a single
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(a): κλ > 2σ2, where σ = 0.2, λ = 0.05, κ = 2

(b): κλ < 2σ2, where σ = 0.2, λ = 0.05, κ = 1

Figure 3.1: Surface plots of probabilities of solutions of (2.2) with (2.3) and
timestepping strategy (2.7) becoming negative over a single step, for hmax ∈
[0.01, 1] and Y = y ∈ [hmin, 1.5] representing the value of the solution before
taking the step. We take ρ = 26. In (a) Assumption 1 holds. In (b) Assumption
1 does not hold.
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step if hn+1 = hmin, the event {Yn+1 > 0} is equivalent to the following union:

{{
4Wn+1√
hn+1

> −1

γ

(
Yn
hn+1

+
α
√
hn+1

Yn
+ β

√
hn+1Yn

)}
∩ {hn+1 > hmin}

}
∪{hn+1 = hmin} .

Moreover, when Yn > 0 satisfies (2.6) in Definition 7,

{
u ∈ −1

γ

(
Q

hmax

+
α
√
hmin

R
+ β

√
hmaxR

)}
⊆

{
u ∈ −1

γ

(
Yn
hn+1

+
α
√
hn+1

Yn
+ β

√
hn+1Yn

)}
. (3.17)

For each i = Nmin, . . . Nmax, define Ωi := {ω ∈ Ω : N(ω) = i}, so that

{Ω}Nmax
i=Nmin

is a finite partition of the sample space Ω. On each Ωi define the

sequence of sub-events

Rn(i) = {Yn > 0, Yn−1 > 0, . . . , Y1 > 0, Y0 > 0} ∩ Ωi, n = 0, 1, . . . i.

Recall that the random variable 4Wn+1/
√
hn+1 is distributed conditionally

upon Ftn like a standard Normal random variable. Moreover, Rn(i) ∈ Ftn for

n = 0, . . . , i and i = Nmin, . . . , Nmax. Let Φ denote the distribution function of a

standard Normal random variable, and suppose {ξn}n∈N is a sequence of mutually
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independent standard normal random variables. Then

P[Yn+1 > 0|Rn(i)]

=
P[{Yn+1 > 0} ∩ {Rn(i)}]

P[Rn(i)]
=

E
[
E
[
I{Yn+1>0}∩{Rn(i)}|Ftn

]]
P[Rn(i)]

≥ E
[
E
[
I{Yn+1>0}∩{Rn(i)}|Ftn

]]
= E [P[{Yn+1 > 0} ∩ {Rn(i)}|Ftn ]]

≥ E [P[hn+1 = hmin|Ftn ]]

+E

[
P

[
4Wn+1√
hn+1

> −1

γ

(
Q

hmax

+
α
√
hmin

R
+ β

√
hmaxR

) ∣∣∣∣Ftn
]]

≥ E

[
P

[
4Wn+1√
hn+1

> −1

γ

(
Q

hmax

+
α
√
hmin

R
+ β

√
hmaxR

) ∣∣∣∣Ftn
]]

= P
[
ξn+1 > −

1

γ

(
Q

hmax

+
α
√
hmax

R
√
ρ

+ β
√
hmaxR

)]
= 1− Φ

(
−1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))
= Φ

(
1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))
, n = 0, . . . , i− 1.

Since Y0 > 0 we have P[R0(i)|Ωi] = 1 and therefore, since Rn(i) ⊆ Ωi, Φ takes

values on [0, 1], and i ≤ Nmax,

P[Ri(i)|Ωi] ≥ P[Ri(i)] = P

[
i⋂

n=0

Rn(i)

]

=
i∏

n=1

P[Rn(i)|Rn−1(i), . . . ,R0(i)]

=
i−1∏
n=0

P[Yn+1 > 0|Rn(i)]

≥ Φ

(
1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))i
≥ Φ

(
1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))Nmax

,

for i = Nmin, . . . , Nmax. Multiplying through by P[Ωi] and applying the Law of
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Total Probability by summing both sides over i = Nmin, . . . , Nmax gives

P[RN ] =
Nmax∑
i=Nmin

P[Ri(i)|Ωi]P[Ωi]

≥
Nmax∑
i=Nmin

Φ

(
1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))Nmax

P[Ωi]

= Φ

(
1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))Nmax

.

Fix ε ∈ (0, 1), then for all hmax ∈ (0, h̄max(ε)), we have

Φ

(
1

γ

(
Q

hmax

+
√
hmax

(
α

R
√
ρ

+ βR

)))Nmax

≥ 1− ε. (3.18)

To (3.18), apply the following inequality due to [26]

1√
2π

∫ x

−x
e−s

2/2ds >
√

1− e−x2/2, x ∈ R+,

along with the fact that Nmax = ρT/hmax, leading us to seek hmax so that

1

2
+

1

2

√√√√√√1− exp

−
(

Q
hmax

+
√
hmax

(
α

R
√
ρ

+ βR
))2

2γ2




ρT
hmax

≥ 1− ε.

Thus we derive the bound

h̃max(ε) := sup

{
h̄ ∈ (0, 1) :

Q

h
+
√
h

(
α

R
√
ρ

+ βR

)
≥
√

ln
(

1− (2(1− ε)
h
ρT − 1)2

)−2γ2
, h ∈ (0, h̄)

}
.



34 CHAPTER 3. MAIN RESULTS

h̄max(ε) is uniquely defined for each ε ∈ (0, 1) because

g(h) :=
Q

h
+
√
h

(
α

R
√
ρ

+ βR

)
−
√
−2γ2 ln (1− (2(1− ε)h/ρT − 1)2) (3.19)

is continuous on R+ with limh→0+ g(h) = ∞, and therefore there is a neighbour-

hood of zero corresponding to (0, h̄max(ε)) within which g is positive.

Note that if we extend the interval of simulation [0, T ] and keep ε ∈ (0, 1)

fixed, there will be a corresponding increase in Nmax in (3.18). This will lead

to a reduction in the bound h̄max(ε), in a way that is characterised by (3.19).

More generally g(h), as defined by (3.19) in the proof of Theorem 18, provides a

practical guide for choosing hmax in order to control the probability of invoking

the backstop to avoid negative values.

Example 19. Consider two adaptive timestepping strategies based on (2.8) with

r = 1 and ρ = 26, 28, each used to simulate a single trajectory of (1.3) over the

interval [0, 1] using the adaptive method (2.13). In each case, we wish to choose

hmax so that the probability of requiring the backstop in order to avoid negative

values on that trajectory is less than ε, and this will hold for any Y0 ∈ (hmin, R).

Table 3.1 shows the value of h̄(ε) for a range of tolerances ε for parameter sets

where Assumption 1 is satisfied (κλ > 2σ2), and where it is not (κλ < 2σ2). The

resulting bounds on hmax are determined by substituting all parameters into (3.19)

and solving g(h) = 0 for h using the fsolve command in Maple with 20 digits of

precision. We report the first 4 significant digits in each case, which is sufficient

to illustrate the sensitivity of these bounds to the choice of ρ and ε.
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ρ = 26, Q = 0.015625, R = 64

ε h̄max(ε)

σ = 0.2 10−2 3.594× 10−3

λ = 0.05 10−4 3.547× 10−3

κ = 2 10−6 3.506× 10−3

ε h̄max(ε)

σ = 0.2 10−2 5.454× 10−3

λ = 0.05 10−4 5.341× 10−3

κ = 1 10−6 5.246× 10−3

ρ = 28, Q = 0.00390625, R = 256

ε h̄max(ε)

σ = 0.2 10−2 5.800× 10−4

λ = 0.05 10−4 5.755× 10−4

κ = 2 10−6 5.716× 10−4

ε h̄max(ε)

σ = 0.2 10−2 8.912× 10−4

λ = 0.05 10−4 8.804× 10−4

κ = 1 10−6 8.710× 10−4

Table 3.1: Bounds on hmax ensuring positivity (without the use of the backstop)
of trajectories of (2.11) with probability at least 1 − ε where the path-bounded
timestepping strategy satisfies Definition 7. Assumption 1 is satisfied (κλ > 2σ2)
for tables in the left column, and violated (κλ < 2σ2) for tables in the right
column.
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Chapter 4

Numerical simulation

Given (1.1) and its associated transformation (1.3), we compare our hybrid adap-

tive method (2.13), referred to in this chapter as Explicit Adaptive (EA), to a

natural semi-implicit variant constructed by replacing the update equation (2.9)

with

Yn+1 = (1− βhn+1)
−1
[
Yn + hn+1

α

Yn
+ γ4Wn+1

]
, (4.1)

referred to in this chapter as Semi-Implicit Adaptive (SIA). In both cases we

will use the adaptive timestepping strategy given by (2.7) with r = 1 (note that

we see similar results when r = 2). We also compare to three fixed step methods:

the explicit discretisation of (1.1) analysed by [14] given by

Xn+1 = Xn + hκ(λ−Xn) + σ
√
|Xn|4Wn+1,

referred to in this chapter as Explicit Fixed (EF), the fully truncated method

proposed by [24] given by

X̃n+1 = X̃n + hκ(λ− X̃+
n ) + σ

√
X̃+
n4Wn+1; Xn+1 = X̃+

n+1; X̃0 = X0,

37
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referred to in this chapter as Fully Truncated (FT), and the drift implicit square

root discretisation of (1.3) proposed and analysed in [1, 11, 3], given by

Yn+1 =
Yn + γ4Wn+1

2(1− βh)
+

√
(Yn + γ4Wn+1)2

4(1− βh)2
+

αh

1− βh
,

and referred to in this chapter as Implicit Fixed (IF).

In the first part, we will compare the strong convergence of these methods in

the mean stepsize, and the corresponding numerical efficiency. In the second part

we explore the dependence on model parameters.

4.1 Strong convergence and efficiency

Throughout the section, we take ρ = 26. We solve using EA and SIA with values of

hmax = 2−i, i = 4, . . . , 9 andM sample trajectories to estimate
√

E [|X(T )−XN |2],

the root mean square error (RMSE), at a final time T = 1. To compute error

estimates we first generate a reference solution using IF over a mesh with stepsize

h = 2−25, using a Brownian bridge to ensure values for the adaptive approxima-

tions are on the reference trajectory. To ensure that we are comparing adaptive

and fixed step schemes of similar average cost, when solving using IF, EF, and FT

we take as the fixed step hmean the average of all timesteps h
(m)
n taken by EA over

each path and each realisation ωm, m = 1, . . . ,M so that

hmean =
1

M

M∑
m=1

1

N (ωm)

N(ωm)∑
n=1

h(ωm)
n .

In Figure 4.1 we examine strong convergence for these methods by plotting

RMSE against hmean with M = 1000 on a log-log scale, and efficiency by plotting

RMSE against average compute time (cputime) again with M = 1000.
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Figure 4.1: Convergence and efficiency of methods applied to (1.1) with λ = 0.05,
σ = 0.2, Y0 = 0.02. κ = 2 in (a) and (b), and κ = 1 in (c) and (d). Reference
lines of slope 1/2 and 1 are provided.

In Figure 4.1 (a), Assumption 1 holds. The estimated error at each value of

hmean is comparable for all methods except FT, and the numerical order appears

to be close to one. For FT, the estimated error at each value of hmean is higher,

and the numerical order appears closer to 1/2. In Figure 4.1 (b) we also see

comparable efficiencies as measured by CPU time for this example, again with

the exception of FT. In Figure 4.1 (c), Assumption 1 does not hold, and we see

first that the numerical order of EF has reduced, and the estimated error at each

value of hmean is lowest for EA and SIA, which also demonstrate the fastest CPU

times in Figure 4.1 (d) for lower RMSE values.



40 CHAPTER 4. NUMERICAL SIMULATION

4.2 Parameter dependence of the strong conver-

gence rate

Finally, we investigate numerically the dependence of the rate of strong conver-

gence on the value of the parameter a := σ2/(2κλ). Note that Assumption 1

corresponds to a < 0.25, and Feller’s condition corresponds to a ≤ 1. For 40

uniformly spaced values of a in the interval [0.04, 1.6], we numerically estimate

the order of strong convergence in L2 as the slope of the corresponding error over

a range of values of hmean computed by generated strong convergence plots as in

Figure 4.1 and using the polyfit command in MATLAB to estimate the order of

strong convergence for each method. We make the following caveat: for a ∈ (1, 1.6]

all numerical schemes presented here are well-defined stochastic processes, even

though the SDE (1.3) is not well defined in that parameter regime. We present

the numerically estimated error in terms of X outside the Feller regime using the

reference solution generated by IF, though it is not known if IF converges in that

regime with nonzero rate.

In Figure 4.2 we observe that EA maintains the highest numerical order of

convergence: at or close to one while Feller’s condition holds. The reduction in

order outside of this region, which is visible for all methods, occurs more sharply

in Figure 4.2 (b) when κ is small. This is followed by SIA, which maintains a

numerical order of convergence close to EA when Assumption 1 holds, but reduces

more quickly outside this region. The difference is more pronounced in Figure

4.2 (a), and this may be because updates using the SIA method are subject to a

damping factor (1−βhn+1)
−1, as can be seen in (4.1), which has greater effect for

larger values of κ. Finally, we observe for EF and FT an uptick in convergence rate

as a approaches zero, and this is consistent with the notion that it should display
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order one convergence in the absence of noise.

Figure 4.3 demonstrates how frequently the backstop was invoked in the pro-

duction of Figure 4.2, where we separately track usage to ensure positivity and

usage to bound below the stepsize at hmin. We see that when Assumption 1 holds,

we do not require the backstop to avoid negative values, though as we move to the

boundary of that region we do start to use it to bound the stepsize at hmin for a

small proportion of steps. Note also that usage to avoid negative values increases

with a when κ = 2 only, whereas usage to bound the timestep increases with a

for both κ = 2, 0.2, more rapidly in the latter case.
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Figure 4.2: Estimation of strong convergence order for methods applied to (1.1)
with λ = 0.05, Y0 = 0.02, κ = 2 in (a), and κ = 0.2 in (b). Here, a = σ2/(2κλ).
In both cases, Assumption 1 holds to the left of the vertical line at a = 0.25, and
Feller’s condition holds to the left of the vertical line at a = 1.
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Figure 4.3: Percentage of times the backstop was invoked in the production of
Figure 4.2 in order to (a) avoid a negative value or (b) bound the timestep from
below by hmin.
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