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ABSTRACT 

Printed electronics are emerging technologies that can potentially revolutionize 

the manufacturing of electronic devices. One promising technology for printed 

electronics is inkjet printing. Inkjet printing offers both low-cost processing and high 

resolution. Being a subset of additive manufacturing, inkjet printing minimizes waste and 

is compatible with a wide range of inks. However, inkjet printing of electronic devices is 

still in its infancy. One major challenge for inkjet printing is the complexity of the 

process optimization and uncertain high throughput production. To achieve a high-quality 

print, there is a complex parameter space of materials and processing parameters that 

needs to be optimized. To address this challenge, in this thesis work, we develop a 

machine learning algorithm to connect the processing parameters to print morphology for 

inkjet processes. To achieve this goal, we developed more than 200 experimental samples 

and processed the print images automatically with OpenCV-based codes. Finally, we 

correlated the morphology specifications, i.e., print line width, overspray, and roughness 

to the processing parameters, i.e., cartridge height, nozzle voltage, and drop spacing, via a 

neural network model. The order of machine learning model accuracy from high to low is 

for line width, roughness, and overspray, respectively. The model's low predictability of 

overspray can be attributed to our limited dataset, Dimatix unreliable performance, or the 

low dependency of overspray on the processing parameters of this study. 
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CHAPTER ONE: INTRODUCTION  

Printed electronics have recently experienced tremendous growth and attracted 

considerable attention both in industry and academia (Khan et al., 2020). The main cause 

of this interest compared to other traditional electronic device manufacturing techniques 

such as photolithography is that printed electronic technologies are not expensive, do not 

produce excessive waste, and are suitable for rapid prototyping.  

As the name suggests, printed electronics means printing electronic patterns or 

structures on substrates that are very thin and flexible, which finally results in 

inexpensive electronic device fabrication. Being printed on flexible substrates, the 

technology enables us to shape these devices in different forms. For example, printed 

electronic devices can be curved, rolled, stretched, folded, etc., and this capability opened 

a wide range of applications for printed electronics, from aerospace to medicine, see 

Figure 1 (Nanotechnology in Flexible Electronics, 2012). We note that printed electronics 

are not limited to electronic devices. With this digital fabrication, we can print a layer of 

conductive or semiconductor ink directly on substrates. The additive manufacturing 

nature of printed electronics makes the manufacturing simple with minimal waste and 

more environmentally friendly.  
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Figure 1. Flexible electronics device applications (Nanotechnology in Flexible 

Electronics, 2012).  

 

Printing Technologies 

Printing technologies enable us to fabricate flexible electronic devices. There is a 

wide range of printing technologies, and they are primarily divided into two main 

categories: Contact and Non-contact printing. Contact printing technologies include 

Offset printing, Flexographic, Gravure printing, etc. Some examples of non-contact 

printing technologies are Aerosol-jet printing, Organic Vapor-jet printing, and Inkjet 

printing. Figure 2 has listed the commonly available printing technologies (Saengchairat 

et al., 2017). Recently non-contact printing technologies have gained more attention 

because they have lower waste, create high-resolution patterns, and have the potential for 

mass production. Among non-contact printing technologies, Inkjet Printing (IJP) has 

received more attention primarily because it can produce the highest resolution patterns 

and the process is fairly simple. Figure 3 shows the schematic of the traditional, contact, 

and non-contact electronic device fabrication methodologies (Zhang & Moon, 2021).   
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Figure 2. Commonly available printing technologies (Saengchairat et al., 2017).  

 

 
Figure 3. Schematic of (a) Photolithography, (b-e) Contact printing, (f-h) Non-

contact printing technologies (Zhang & Moon, 2021). 
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Inkjet Printing  

There are several reasons why Inkjet Printing (IJP) has become very popular these 

days, but the primary reason is that this process is cheap. IJP can produce complex 

patterns with high resolution. The patterns in IJP are totally digital, which means we 

create the patterns in CAD software and there is no need for a stencil or a template. That 

makes IJP ideal for rapid prototyping, and as mentioned above, IJP has minimal waste. In 

IJP, we can use a wide range of inks from metals to dielectrics to semiconductors, e.g., 

silver, carbon nanotubes, etc. IJP is compatible with flexible substrates that can be bent, 

stretched, and rolled, without having the common complexity that we typically 

experience with silicon.  

For inkjet printing, there are two main jetting mechanisms including continuous 

inkjet (CIJ) and drop-on-demand inkjet (DoD) (Hoath, 2016). In the CIJ method, the ink 

droplets are continuously produced and jetted. In this technique, the droplets are 

electrically charged and get deflected selectively with an electrostatic field. In the DoD 

method, the droplet jetting is controlled by piezoelectric or thermal actuators. Between 

CIJ and DoD, the DoD methods have received more attention due to the complexity of 

ink control in CIJ.  

In DoD techniques, for the piezoelectric case, voltage pulses are applied to the 

piezoelectric material, and in reaction, it produces pressure on the ink and jet it out of the 

nozzle. A broad range of water-based or solvent-based inks, which are either conductive 

or non-conductive, can be deposited using this technique. In the thermal process, the ink 

is heated rapidly to produce a bubble and then the bubble pushes out the ink as a droplet. 

The creation of vapor bubbles can sometimes lead to the formation of a layer of ink over 
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the resistive heater. This could decrease the performance of the printer over time. 

Between the DoD methods, the piezoelectric method is more controllable. The machine 

that we are using in this project used a piezoelectric printhead. Figure 4 shows the 

different inkjet printing technologies (Hu et al., 2018).  

 
Figure 4. Different inkjet printing technologies, (a) Continuous inkjet, (b) 

Piezoelectric DoD, and (c) Thermal DoD (Hu et al., 2018).  

Despite all the benefits of the IJP technology, printing a high-quality structure or 

pattern is a very challenging task. Several properties of inks such as viscosity, surface 

tension, density, and particle sizes determine whether ink is printable or not. Extensive 

studies in classical printing technologies have been conducted and a guide chart to 

determine the printability of the ink has been developed (McKinley & Renardy, 2011). 

Figure 5 shows a good benchmark to determine the ink printing behavior. The y-axis of 

the chart is the Ohnesorge number (Oh) and the x-axis is the Reynolds number (Re).    

𝑂𝑂ℎ =  𝜇𝜇
�𝜌𝜌𝜌𝜌𝜌𝜌

        (1.1) 

𝑅𝑅𝑅𝑅 =  𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

        (1.2) 



6 

 

where 𝜇𝜇 is the dynamic viscosity of the liquid, 𝜌𝜌 is the density of the liquid, 𝜎𝜎 is the 

surface tension, 𝐷𝐷 is nozzle diameter, and 𝑉𝑉 is fluid speed.   

 
Figure 5. Guide chart for ink printability domain determination (Heinzen et al., 

2004; McKinley & Renardy, 2011).  

Beyond printable ink development, the printed patterns must be defect-free to 

make them functional in applications. Several forms of defects have been identified for 

IJP technology including, disconnected prints, rough edges, coffee rings (when the ink 

particles move to the perimeter and leave the middle part non-conductive), and 

shrinkages (when the ink particles shrink into the pattern’s middle part), etc. Figure 6 

shows some common forms of IJP defects (Anyfantakis & Baigl, 2015, and this work).  
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Figure 6. Typical defects that are observed in IJP prints (Anyfantakis & Baigl, 

2015, and this work).  

In addition to the ink, process parameter control is also critical in minimizing 

defect formation, specifically in morphological defects. The main processing parameters 

for IJP are nozzle voltage, drop spacing, cartridge height, platen temperature, etc. Proper 

process parameter selection is crucial for getting smooth patterns. In this project, we 

constructed process-property linkages for IJP with machine learning. Specifically, we 

focused on three processing parameters namely, cartridge height, nozzle voltage, and 

drop spacing, and we studied their effects on print line width, roughness, and overspray. 

Chapter Two describes the experimental database generation. Chapter Three discusses 

the print lines image processing. Chapter Four covers the machine learning model 

development. Finally, in Chapter Five, we provide our conclusions.  
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CHAPTER TWO: EXPERIMENTAL DATABASE GENERATION  

Data gathering/generation is the most critical and time-consuming part of most 

machine learning projects. For this project, because we did not have a prior database, we 

developed a unique database including hundreds of prints. The printer that we used in this 

study was a Dimatix DMP- 2831, shown in Figure 7 (Dimatix, 2022). The printer is 

suited to print fluids (inks) containing proteins, nucleic acids, nanoparticles, conductive 

polymers, etc. Dimatix can print inks with viscosity in the range of 8–12 Cp and surface 

tension in the range of 28–42 mN/m. The printer substrate holder temperature can vary 

between ambient to 60℃ and the recommended drop velocity range for this printer is 7–9 

m/s.  

 
Figure 7. Dimatix (DMP- 2831) IJP printer (Dimatix, 2022).  
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To narrow down the scope of the project, we kept the ink consistent. While within 

our Advanced Nanomaterials and Manufacturing Laboratory (ANML) at Boise State, we 

have the expertise to develop in-house inks, ink development was out of scope for this 

project. Therefore, we used commercial inks in this project. Specifically, we used JS-

A191 Silver inks developed by NovaCentrix. Table 1 shows the characterization data of 

the ink. By transforming these data into Ohnesorge and Reynolds numbers, we can see 

that their combination fit the ink within the printable window.     

Table 1. Physical properties and specifications of the JS-A191 Silver ink 
(NovaCentrix, 2022).   

Rheology properties Values provided by manufacturer 

Viscosity (cP) 7.5 

Nozzle diameter (um) 21 

Surface tension (dyne/cm) 34.2 

Density (g/cm3) 1720 

Fluid velocity (m/s) 11 

Oh 0.211 

Z 4.7 

Re 54.23 
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Figure 8. The physical properties of the silver ink combined in the form of Oh 

and Re numbers show that the ink is printable.     

Database Generation 

There are several processing parameters that we could focus on, but in this 

project, we focused on three crucial processing parameters including cartridge height, 

nozzle voltage, and drop spacing. The cartridge height is defined as the distance from the 

nozzle to the top of the substrate. The nozzle voltage determines what voltage that we 

apply to the piezoelectric head. Piezoelectric materials will deform proportionally with 

voltage. Therefore, higher voltage leads to higher deformation and ultimately higher ink 

drop velocity. Drop spacing is another important parameter that we studied in this 
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project. A large drop spacing could make the print beaded. On the other hand, if the drop 

spacing is too small, the drops would be on top of each other and we might get too much 

ink overlap, also known as bulging. 

For cartridge print height, we studied the range from 650 um to 800 um with a 

grid size of 50 um. For nozzle voltage, we studied the range from 25 Volts to 40 Volts 

with a grid size of 3 Volts. And finally, for the drop spacing, we studied the range from 8 

um to 17 um with a grid size of 1 um.  

In total, with these combinations, we produced more than 200 samples. It is worth 

noting that printing 200 samples is not a trivial task, and it was done over several months. 

For this part of the project, we worked closely with several undergraduate researchers. 

Therefore, consistency was an important factor for us. We tracked every single print 

using a list that showed when and who printed a specific sample, labeling each print with 

a unique ID. We also tracked the print head that had been used in printing. Our 

experience with inkjet printing showed that the printhead is a critical component. We 

occasionally had some print heads fail. Thus, it was very important for us to be able to 

track the printheads and identify them in case of failure. 

In this project, again based on our experience, we did not use multiple nozzles. 

Although it can make the process faster, it would make the problem much more complex 

than needed. So, we decided to just print with a single nozzle, leading to our long time in 

data collection. Printing with multiple nozzles increases the chance of clogging and will 

introduce much more uncertainty to the problem. We also kept the jetting frequency 

constant for all prints. 
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For each set of processing parameters, we produced two sets of lines and 

Cloverleaf patterns for the safety factor in case one fails due to clogging, etc. Figure 9 

shows a set of patterns that we produced for each set of processing parameters. The 

printed lines were used for print morphology analysis and Cloverleaf patterns were used 

for resistivity measurement, which is out of the scope of this work but will be used by 

future students to further improve the model.  

 
Figure 9. The pattern that we generate for each set of processing parameters.  
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CHAPTER THREE: IMAGE PROCESSING OF PRINTED LINES 

In this section, we will show a Python-based image processing code that enables 

automatic morphology analysis of the prints. The code is based on the OpenCV image 

processing package (OpenCV, 2022a). The goal is to read the print lines and 

automatically measure their line width, roughness, and overspray. This code will create 

the tabular database that we need for the machine learning part.  

Image Preparation 

As mentioned in Chapter Two, for each set of processing parameters, we 

produced six lines and two cloverleaf patterns. We studied the printed lines for 

morphology analysis and the cloverleaf patterns will be used for the Van der Pauw 

resistivity measurement in the future. We used a ZEISS Axio Imager microscope to 

image the printed lines. The microscope zoom was not enough to cover the entire length 

of lines, therefore, we had to take four images for each set of lines. Figure 10 shows the 

set of images that we took for each set of prints. 



14 

 

 
Figure 10. Four images were taken for each set of prints (L stands for the left. 

We have similar images for R1, R2, R3, and R4 for the right lines in Figure 9.  

Considering both left and right lines in Figure 9, we had eight images for each 

print, i.e., four images for the left and four images for the right. Figure 11 shows a typical 

microscope image that we produced for the printed lines.     

 

 
Figure 11. Typical microscope image of two print lines.  
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Since in image processing we want to analyze one image at a time, we need to 

crop the images in a way so that just one line remains in each image. In cropping, since 

the middle line is shared between two images, it would be cropped two times. Therefore, 

we need to be careful not to count them twice. For that purpose, we meticulously named 

the images based on their position in the image, i.e., the top left is L1, the next is L2, the 

bottom left is L3, and the next to it is L4, the same naming nomenclature is true for the 

right images. Since we are dealing with hundreds, and in the future thousands, of images, 

it is important to make the cropping process automatic. We wrote a Python code to 

perform the cropping and naming automatically. With proper cropping, we have 12 

images for each processing parameter. Figure 12 shows one sample of the cropped 

images that we fed into the image processing code.  

 

 
Figure 12. Cropped printed line ready for image processing.  

 

Image Processing 

After preparing the printed lines, we performed image processing to extract the 

line width, roughness, and overspray for each print. To perform this task, we used the 

OpenCV (Open Source Computer Vision) library (Opencv/Opencv, 2012/2022). OpenCV 

is a library of programming functions originally developed by Intel that is mainly aimed 
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at real-time computer vision. We describe the image processing steps by using the image 

in Figure 12 as an example. Initially, after reading the image, we need to perform a two-

step image preparation - 1) make the image gray, 2) make the image binary, i.e., black 

(pixel number 0) and white (pixel number 255), see Figure 13. 

 
Figure 13. The binary version of a printed line. 

To make an image binary in OpenCV, we need to define a threshold pixel number 

as the border in which the OpenCV makes the pixels smaller than that zero, i.e., black, 

and makes the pixel numbers larger than that 255, i.e., white. Since the experimental data 

generation has been a long process and the microscope that we are using is shared 

equipment, it happened quite often that the microscope produced images with different 

color tones over time. Figure 14 shows some of the pictures that we have produced in our 

work.  



17 

 

 
Figure 14. Various print colors were produced by the microscope.  

The variation of color tone makes the binary image production very challenging 

as we need to manually set, by trial and error, the threshold pixel number for every single 

image. To overcome this challenge, we made the threshold determination automatic by 

producing the pixel number distribution for each individual image and then finding the 

mean of the existing pixels weighted by their count in the histogram, see Figure 15. Since 

the majority of the pixels in the images are for the background, we increased the 

calculated mean by 10% and consider the new number as the threshold for making the 

black and white pictures. With this technique, we were able to automatically process the 

images without worrying about the pictures’ color tone.  
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Figure 15. Pixel distribution in a sample picture.  

After generating a binary version of the print image, we first focused on the line 

width and roughness. Since overspray introduces some errors in line width and 

roughness, we first need to remove them. To perform this task in the code, we first find 

all contours in the image and extract the small contours, here we defined contours with 

the area between 1 to 5000 pixels as small, and then remove them, by making their color 

black, similar to the background. Figure 16 shows the print image with removed 

overspray.    

 
Figure 16. Print line with removed overspray.  
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Since the print surface is not smooth, some parts of the printed surface are dark in 

the image so it might seem the print has hollows, but indeed those parts are prints and not 

substrate. Therefore, we need to remove the black dots on the print image. One effective 

way to remove the salt-and-pepper noise effects in the images with OpenCV is using the 

cv2.medianBlur() function (OpenCV, 2022b). The cv2.medianBlur() computes the 

median of all the pixels under the kernel window and the central pixel is replaced with 

this median value. Figure 17 shows the printed line with a smooth surface (compare to 

Figure 16).  

 
Figure 17. The printed line with removed Salt&Pepper effects.  

Line Width Calculation  

After preparing the images, we find the print’s top and bottom lines. To do so, we 

first find the columns where the print starts and finishes. With these, we can find the print 

length. Please note that in all OpenCV calculations, we are working with pixels, so when 

talking about the print length, we are looking at the print length in pixels. In the end, 

depending on the scale bar, we can transform the pixels to their physical sizes. After 

finding the print start and end, for each column in between them, we find the vertical 
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location, the y-axis, where we have the pixel number 255 for the first time, this shows the 

top, and for the last time, this shows the bottom, and store all the top and bottom vertical 

locations into specific arrays. Finally, we find the print top and bottom lines by linear 

regression between the top points and bottom points. After having the top and bottom 

lines, we can calculate the print width by averaging the print width, i.e., by averaging the 

difference between the top and bottom lines for all columns in the print area.  

Roughness Calculation  

Roughness is an important morphology parameter for printed electronics. 

Generally, we are interested in printing patterns with minimum roughness. For two-

dimensional objects, we have profile roughness, in contrast to surface roughness for 

three-dimensional objects. The profile roughness parameters are typically calculated 

based on BS EN ISO 4287:2000 British standard (BS EN ISO 4287, 2000) that is 

identical to the ISO 4287:1997 standard (ISO 4287, 1997). There are several parameters 

to quantify the roughness. The most common parameter is Ra, which is the arithmetic 

average of profile height deviations from the mean line. In this project, we used the same 

parameter for the roughness quantification (Malkin & Isayev, 2022).   

𝑅𝑅𝑅𝑅 =  1
𝐿𝐿 ∫ |𝑧𝑧(𝑥𝑥)|𝑑𝑑𝑥𝑥𝐿𝐿

0         (2.1) 

Overspray Calculation  

For overspray calculation, we start with the binary image, i.e., Figure 13. In this 

case, we first find all contours in the image and calculate their centroid coordination by 

using the M00, M10, and M01 image moments. For an image, the moment Mij is defined as 

follows (Hart et al., 2000): 

𝑀𝑀𝑖𝑖𝑖𝑖 =  ∑ ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖𝐼𝐼(𝑥𝑥, 𝑦𝑦) 𝑦𝑦𝑥𝑥       (2.2) 
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where Mij is the moment, x and y are the coordinates, and I(x,y) is the intensity of a pixel 

at the location (x,y). Using this definition, the centroid of an image can be calculated by 

(Hart et al., 2000): 

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑀𝑀10
𝑀𝑀00

        (2.3) 

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑀𝑀01
𝑀𝑀00

        (2.4) 

After finding the centroids of all contours, we find the overspray contours by 

excluding all the contours where the y-coordinate of their centroid is either above the top 

line or below the bottom line.  

 
Figure 18. Red contours are identified as overspray.  

After identifying all overspray contours, we calculate overspray. We need to 

consider two aspects in overspray calculation - 1) since the print length varies in different 

images, we must normalize the overspray with print length, and 2) overspray is not just 

the area of the splash around the print line, but the distance from the print line also 

matters. Specifically, for two identical contours, overspray is higher for the ones that are 

farther from the print line. Therefore, we defined the overspray as follows: 

𝑂𝑂𝑂𝑂𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑦𝑦 =  ∑ 𝐴𝐴 × 𝑦𝑦𝐶𝐶
𝐿𝐿

       (2.5) 
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where C is the list of all identified overspray contours, A is the area of the contour, y is 

the y-distance of the contour centroid from the print line, and L is the print length.  

Finally, after performing all the analyses we can extract the processing print line. 

Figure 19 shows the processed print line with identified print line and overspray.  

 
Figure 19. The processed print line (Print is white, the print line is green, and the 

overspray is red). 

All the calculated parameters in the image processing stage are in pixel size. 

Therefore, we need to transform them into physical length scales, i.e., micrometers. To 

do so, we read the scale bar in the image and find out how many pixels exist in the scale 

bar, then we can calculate the physical length of each pixel. Image analysis of Figure 20 

shows that are 202 pixels in the scale bar. Therefore, the physical size of each pixel is 

approximately 1 micrometer. Since we have imaged all pictures with the same 

microscope and magnification, the physical length of each pixel is consistent for all 

images.  
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Figure 20. Image analysis shows the physical length of each pixel is 1 

micrometer.  

We defined the image processing part, that we described above, in a function 

called ImageProcessing. This function takes a print line image as an input and calculates 

the line width, overspray, and roughness. With that function, we can loop over all the 

cropped images and automatically calculate their morphology parameters. This will 

generate a tabular database that we need for the machine learning section. Figure 21 

shows the ImageProcessing generated database.      

 
Figure 21. The generated database after image processing.  
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CHAPTER FOUR: MACHINE LEARNING  

In this section, we present two machine learning (ML) models to connect the 

processing parameters, i.e., nozzle voltage, cartridge height, and drop spacing, to 

morphological specifications, i.e., line width, roughness, and overspray. A typical 

procedure for all standard ML studies includes data cleaning, data pre-processing, 

algorithm development, model hyperparameters optimization, and model predictability 

assessment.    

Data Cleaning  

We performed data cleaning in two steps - 1) data cleaning on printed images, and 

2) data cleaning after initial data pre-processing. In the first round of data cleaning, we 

closely studied all 2465 images and removed all improper images. Improper images that 

we removed at this stage were those pictures that were greatly different from their set. As 

we mentioned in database generation and image processing for each set of process 

parameters, we have 12 printed lines. If one or a couple of these images were damaged or 

totally different from the rest of the set, we removed them from the dataset. Figure 22 

shows some samples of print images that we removed from the database. We have 

performed another set of data cleaning only for machine learning of overspray based on 

the exploratory data analysis and we will describe it in the exploratory data analysis 

section.    
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Figure 22. Some print images that we removed in data cleaning.  

After removing the outlier images, we performed image analysis and predicted 

line width, roughness, and overspray for all images. As we originally discussed, we have 

12 printed lines for each set of processing parameters, unless some images have been 

removed from the database in the data cleaning process. Therefore, we have several 

outputs for each set of processing parameters which is not recommended in ML. Thus, 

we averaged the target variables for the images that we produced for a single set of 

processing parameters. After this step, we have 205 unique data that are ready for ML. 

Figure 23 shows the machine learning-ready dataset generated in this project.    
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Figure 23. Machine learning-ready dataset.  

Exploratory Data Analysis 

After dataset construction, one important step before performing ML is the 

exploratory data analysis (EDA) (Tukey, 1977). EDA helps us to gain some insights into 

our dataset and understand the key characteristics of each entity in the dataset. EDA is 

helpful in - 1) understanding the dataset and fine-tuned cleaning, 2) giving a clear picture 

of features and their relationships, and 3) identifying the outliers. The first step in EDA is 

the statistical description of the dataset which is shown in Figure 24. Some important 

information from this table, in particular for target variables, are their minimum, 

maximum, mean, and standard deviation. For example, a quick glance shows that the line 

width and roughness are more well-behaved data than overspray. For a more detailed 

analysis, we have plotted the box plot and distribution of the target variables in Figure 25. 

Both plot box and histogram show that overspray has some outlier data points. Detailed 

analysis shows that about 185 data points have overspray less than 500 and 20 data points 
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have overspray more than 500. Since these prints are outliers just for overspray, we 

excluded them in the overspray ML part.  

 
Figure 24. Statistical analysis of the dataset.  

 
Figure 25. Box and histogram plots for line width, roughness, and overspray.  
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Machine Learning  

After initial data cleaning and EDA, we are ready to perform ML modeling. IBM 

has this definition for machine learning “Machine learning is a branch of artificial 

intelligence (AI) and computer science which focuses on the use of data and algorithms 

to imitate the way that humans learn, gradually improving its accuracy.” (IBM, 2021) 

The general workflow in all ML projects has three steps - 1) data gathering, 2) feeding 

the data into the model and model training, and 3) using the trained model for prediction. 

If we assume that the ML models are like functions that have some inputs and outputs, 

the inputs in ML are called features or descriptors, and outputs are called target variables 

or dependent variables. Data in ML can be either categorical or continuous (Ramezani, 

2020). The data type determines the ML tasks. If the data are categorical the ML task is 

classification, and if the data are continuous the ML task would be regression. In this 

project we are dealing with numerical data, i.e., continuous, therefore, our ML task would 

be regression. We have 205 data points. This is a decent dataset size if the problem is not 

very complex or nonlinear. Generally, complex models, such as deep learning, have 

shown to be efficient in learning complex tasks but training those models requires a huge 

amount of data. For a couple of hundred data points, a Multilayer Perceptron Neural 

Network model could be a good choice (Delashmit & Manry, 2005).  

Neural Network 

The neural network (NN) is a machine learning algorithm that originally was 

inspired by mimicking the functionality of the human brain (McCulloch & Pitts, 1943). 

The architecture of NN has evolved over decades, but the key basic components are input 

nodes, hidden layer(s), and output nodes. In this project, the input features are three 
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processing parameters, i.e., cartridge height, nozzle voltage, and drop spacing, and the 

outputs are print morphology specifications, i.e., print line width, roughness, and 

overspray. Each node in the input layer connects to the nodes in the hidden layer. The 

values inside each node in NN, except the input layer that are known, are determined by 

∑(𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖) where the 𝑥𝑥𝑖𝑖 is a vector containing values of the nodes of the previous 

layer, 𝑤𝑤𝑖𝑖𝑖𝑖  are weights, and 𝑏𝑏𝑖𝑖 are biases (Bishop, 1995). To add nonlinearity to the NN, 

the ∑  term in each node goes through a nonlinear function called an activation 

function, otherwise, the NN would be a form of linear regression. There are several forms 

of activation functions, and generally, the activation function is considered a 

hyperparameter and users can choose the one that shows higher accuracy. Figure 26 

shows the schematic of a NN with our input and output with one hidden layer, the same 

concept applies when we increase the number of hidden layers (Aggarwal, 2018).  

One main task in ML is model training. Model training is analogous to teaching, 

which means before models can be used for prediction, we need to teach them. The way 

we teach the ML models is by showing the model some input and output from the ground 

truth dataset, and then, the model tries to fit its parameters in a way to connect the input 

to output with the highest accuracy. For the NN models, training is nothing except 

finding proper weights and biases. The standard NN algorithms do the weights and biases 

optimization by a technique called backpropagation. The mathematics behind 

backpropagation can be found in all standard ML books (Aggarwal, 2018), but in 

nutshell, in NN optimization with backpropagation we start with random weights and 

biases, and with them, we connect the input layer to the output layer. By comparing the 

predicted outputs with the ground truth, we measure the error and from that, we move 
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backward and modify all weights and biases in a way to reduce the error. We loop this 

cycle until we get the accuracy that we desire or a stop condition hits, such as the limit 

we put on the number of iterations.  

 
Figure 26. The architecture of a basic NN with one hidden layer.  

After model training, we test the model predictability by testing its performance 

on testing data. There is no solid ratio for training and testing data selection, but a general 

guideline is to put 70-80% of the data in the training set and 30-20% in the testing set. 

The model performance against training and testing sets is a good indicator of whether 

the model is overfitted or not. Overfitting occurs when a model has “memorized” the 
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training data, i.e., it has not learned the pattern of the data. If the model accuracy for the 

training set is very high but its accuracy for the testing data is poor, it indicates that the 

model is overfitted. Underfit happens when the model accuracy is poor for both training 

and testing datasets and a good fit is when the model has similar (hopefully good) 

accuracy for both training and testing datasets. Figure 27 shows some examples of 

overfit, good fit, and underfit models (Underfitting vs. Overfitting, 2022).  

 
Figure 27. Underfit vs. Good fit vs Overfit in ML (Underfitting vs. Overfitting, 

2022). 

Hyperparameters Optimization 

Hyperparameters are the ML model parameters that can make the model either 

more efficient or accurate. Hyperparameters vary depending on the model of choice. For 

NN models the key hyperparameters are the number of the hidden layers, the number of 

nodes in each layer, the learning rate, the activation function, and the solver. The number 

of hidden layers and their nodes are clear concepts, here we explain the remaining 

hyperparameters briefly.  

Learning rates determines the amount that we change the weight and biases 

during the backpropagation (Werbos, 1994). The learning rate has a small positive value, 

often in the range between 0.0 and 1.0. The learning rate controls how quickly the model 
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is adapted to the problem. Smaller learning rates require more training epochs given the 

smaller changes made to the weights each update, whereas larger learning rates result in 

rapid changes and require fewer training epochs. A learning rate that is too large can 

cause the model to converge too quickly to a suboptimal solution, whereas a learning rate 

that is too small can cause the process to get stuck. 

Activation functions, as we mentioned earlier, are added to the NNs to introduce 

non-linearity to the model. There are several forms of activation functions, but the most 

common ones are identity, logistic (also known as sigmoid), hyperbolic tangent (tanh), 

and Rectified Linear Unit (ReLU) (Aggarwal, 2018). Figure 28 shows the plots and 

functions of the common NN activation functions.  

 
Figure 28. Common activation functions that are used in NN.  

Solvers or optimizers are the mathematical algorithms that are used to find the 

optimized weights and biases. Scikit-learn has three solvers for multilayer NNs including 

‘lbfgs’, ‘sgd’, and ‘adam’. ‘lbfgs’ is an optimizer in the family of quasi-Newton methods, 

‘sgd’ refers to stochastic gradient descent, and ‘adam’ refers to a stochastic gradient-

based optimizer proposed by Kingma, Diederik, and Jimmy Ba (Kingma & Ba, 2017; 

Sklearn.Neural_network.MLPClassifier, 2022). The solver ‘adam’ works pretty well on 
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relatively large datasets (with thousands of training samples or more) in terms of both 

training time and validation score. For small datasets, however, ‘lbfgs’ can converge 

faster and perform better. 

Tunning the hyperparameters for best performance is challenging and the initial 

selection is based on the code developer experience. Scikit-learn has a specific function, 

GridSearchCV (GridSearchCV, 2022), that enables us to grid the hyperparameters space 

to find the best set of hyperparameters. GridSearchCV finds the best combination of 

hyperparameters based on the scoring criteria that we are interested in, such as root mean 

square error or R2-score (Ott & Longnecker, 2015).  

K-fold Cross-validation  

The final concept that is important to cover before model training is the K-fold 

cross-validation (Ozdemir, 2016). K-fold cross-validation is a critical part of model 

training and the way it works is that we divide the training dataset into k-buckets, then 

train the model for (k-1) buckets and test it against the left-out one. We repeat this 

process k times and then average the computed values in the loop. Typical values of k are 

5 or 10. Figure 29 shows a schematic for the process of 5-fold cross-validation (scikit-

learn, 2022).  
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Figure 29. Schematic for 5-fold cross-validation (scikit-learn, 2022).  

 

Results  

When we have a dataset with multiple features, it is important to perform data 

normalization before ML. In particular, when we are dealing with features that are 

different in values, for example in cases when some features are orders of magnitude 

higher than the others. If we do not normalize the data, there is a chance that the higher 

value features show higher impacts on the results. There are several normalization 

techniques. In this project, we normalized the features in a way to have zero mean and 

unit variance through the following formula (Dutka & Hansen, 1991) 

𝑥𝑥𝑖𝑖
(𝑐𝑐) = 𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖

𝜌𝜌𝑖𝑖
        (4.1) 
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where 𝑥𝑥𝑖𝑖 is the feature, 𝑥𝑥𝑖𝑖
(𝑐𝑐) is the normalized feature, 𝜇𝜇𝑖𝑖 is the mean, and 𝜎𝜎𝑖𝑖 is the 

standard deviation. Normalization needs to be performed for both training and testing 

datasets. We note that the normalization must be consistent between training and testing 

datasets. Therefore, the testing data set is normalized by the mean and standard deviation 

of the training data.  

Our investigations showed that ReLU performs the best among the activation 

functions. Also, learning rates of 0.001 and 0.0001 works best for our data. My studies 

showed that the NN architecture plays an important role in model accuracy. We tested 

different forms of NN architecture from one to five hidden layers with different numbers 

of nodes. Very simple architectures did not converge well, and complex architectures 

were overfitted, i.e., they had very high accuracy for training but low accuracy for 

testing. The best NN architecture that provided the lowest root mean square error 

(RMSE) for all three target parameters, i.e., line width, roughness, and overspray, was a 

NN with one hidden layer with 30 nodes.   

Figure 30 shows the parity plot for the line width for both training and testing 

datasets. RMSE for training and testing were 21.9 and 23.7 um, respectively. R2-score 

for training and testing were 0.73 and 0.72, respectively.  
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Figure 30. Parity plot for line width for both training and testing datasets.  

Figure 31 shows the parity plot for roughness for both training and testing 

datasets. RMSE for training and testing datasets were 18.9 and 19.4 um. R2-score for 

training and testing data sets were 0.63 and 0.55 respectively.   

 

 
Figure 31. Parity plot for roughness for both training and testing datasets. 
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Finally, Figure 32 shows the parity plot for overspray for both training and testing 

datasets. RSME for training and testing datasets were 67 and 129 um2, respectively. R2-

scores for training and testing were 0.67 and -0.32, respectively.  

 
Figure 32. Parity plot for overspray for training and testing datasets.  

Analysis of the results shows that the model performance is the best for the line 

width, then roughness, and then overspray. In general, IJP with a Dimatix machine shows 

robust performance in printing lines with consistent line width. However, when it comes 

to overspray it seems that the machine performs randomly and none of the processing 

parameters that we considered in this study can explain the overspray very well. Figure 

33 depicts one example of the strange behavior of overspray in one set of prints. The 

printed lines in Figure 33 have a similar cartridge height, 800 um, and nozzle voltage, 31 

Volt, but drop spacings are 9, 10, and 11 um. Interestingly, we observe that prints with 9 

and 11 um drop spacing have zero oversprays, while the print with drop spacing of 10 um 

shows considerable overspray. These kinds of behaviors are the main reasons why our 

ML model did not perform well in overspray prediction.  
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Figure 33. The irregular behavior of the print overspray by varying the drop 

spacing.   

 

Feature Importance  

Some interesting results that ML models can give us are feature importance. 

Feature importance shows the level of contribution of each input parameter in a specific 

target data. There are several ways to get the feature importance such as principal 

component analysis or random forest ML. In this project, we used the random forest to 

get the feature importance. Figure 34 shows the feature importance of line width. The 

results clearly show that drop spacing has the most important role in line with 

determination and the role of cartridge height and nozzle voltage is minimal.  
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Figure 34. Feature importance scoring for line width. 

Figure 35 shows the feature importance for roughness. The drop spacing is also 

the dominant processing parameter for roughness, but the roles of nozzle voltage and 

cartridge height are also significant. 

 
Figure 35. Feature importance scoring for roughness.  
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Finally, for overspray, Figure 36 shows that the cartridge height is the dominant 

processing parameter, but nozzle voltage and drop spacing have also significant roles.  

 
Figure 36. Feature importance scoring for overspray.  
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CHAPTER FIVE: CONCLUSION 

Printed electronics have recently experienced tremendous growth and attracted 

considerable attention both in industry and academia. Among different forms of printed 

electronics technologies, Inkjet Printing (IJP) is popular because it can produce high-

resolution patterns with minimal waste in a digital process. Despite all advantages of IJP, 

the technology is still in its infancy. The parameter space of ink and processing prevents 

the IJP to become a reliable mass production manufacturing technology for printed 

electronics. To address this challenge, we developed a machine learning model to 

construct the process-property linkages for IJP. Specifically, in this project, we focused 

on cartridge height, nozzle voltage, and drop spacing as processing parameters and print 

line width, roughness, and overspray as print morphology properties.  

For this model, we developed an extensive experimental database for a wide 

range of processing parameters. Then we developed an image processing code that reads 

the experimental images and calculates their linewidth, roughness, and overspray 

automatically. We have developed some Python scripts that automate the workflow and 

after reading all experimental images produce a machine-learning-ready CSV file 

database. Finally, we performed data cleaning by removing bad images. Exploratory data 

analysis showed that line width and roughness are more well-behaved than the overspray. 

For overspray, we noticed some outlier data that we removed during ML modeling of 

overspray.    
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After tabular database generation, we developed a multilayer perceptron neural 

network model to enable print morphology prediction based on processing parameters. 

Our studies showed that a NN with one hidden layer with 30 nodes predicts the target 

parameters the best. The NN model accuracy is reasonable for line width and roughness 

but not very promising for overspray. The main reason for the model’s poor performance 

on overspray could stem from our limited dataset, the Dimatix unreliable printing, or 

external factors that we did not consider in the model. This is an ongoing project, and our 

team plans to print 400 more samples. Therefore, we can produce much more accurate 

models by increasing the training dataset.  
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