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ABSTRACT 

Neurodegenerative and neurodevelopmental disorders are a group of conditions 

that stem from irregularities in the nervous system that lead to complications in function 

and movement. The goal of this work is to develop computational tools that: (1) measure 

the accuracy of surgical interventions in neurodegenerative and neurodevelopmental 

conditions, and (2) integrate neural and musculoskeletal frameworks to provide a 

platform to better investigate neurodegenerative and neurodevelopmental disorders. 

Parkinson’s disease (PD) is a neurodegenerative condition projected to affect over 1.2 

million people by 2030 in the US. It is caused by atypical firing patterns in the basal 

ganglia region of the brain that leads to primary motor symptoms of tremor, slowness of 

movement, and rigidity. A potential treatment for PD is deep brain stimulation (DBS). 

DBS involves implanting electrodes into central brain structures to regulate the 

pathological signaling. Electrode placement accuracy is a key metric that helps to 

determine patient outcomes postoperatively. An automated measurement system was 

developed to quantify electrode placement accuracy in robot-assisted asleep DBS 

procedures (Chapter 2). This measurement system allows for precise metrics without 

human bias in large cohorts of patients. This measurement system was later modified to 

measure screw placement accuracy in spinal fusion procedures for the treatment of 

degenerative musculoskeletal conditions (Chapter 3). 

DBS is an effective treatment for PD, but it is not a cure for the cause of the 

disease itself. To cure neurodegenerative and neurodevelopmental diseases, the 
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underlying disease mechanisms must be better understood. A major limitation in studying 

neural conditions is the infeasibility of performing in vivo experiments, particularly in 

humans due to ethical considerations. Computational modeling, specifically fully 

predictive neuromusculoskeletal (NMS) models, can help to accumulate additional 

knowledge about neural pathways that cannot be determined experimentally. NMS 

models typically include complexity in either the neuromuscular or musculoskeletal 

system, but not both, making it difficult or infeasible to investigate the relationship 

between neural signaling and musculoskeletal function. To overcome this, a fully 

predictive NMS model was developed by integrating NEURON software within Abaqus, 

a finite element (FE) environment (Chapter 4). The neural model consisted of a pool of 

motor neurons innervating the soleus muscle in a FE human ankle model. Software 

integration was verified against previously published data, and the neuronal network was 

verified for motor unit recruitment and rate coding, which are the two principles required 

for in vivo muscle generation. To demonstrate the applicability of the model to study 

neurodegenerative and neurodevelopmental diseases, a fully predictive mouse hindlimb 

NMS model was developed using the integrated framework to investigate Rett syndrome 

(RS) (Chapter 5). RS is a neurodevelopmental disorder caused by a mutation of the 

Mecp2 gene with hallmark motor symptoms of a loss of purposeful hand movement, 

changes in muscle tone, and a loss of speech. Recent experimental analysis has found that 

the axon initial segment (AIS) in mice that model RS has torsional morphology compared 

to wildtype littermate controls. The effects these neural morphological changes have on 

joint motion will be studied using the mouse NMS model. This work encompasses a 

range of research that uses computational models to study the underlying mechanisms 
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and design targeted treatment options for neurodegenerative and neurodevelopmental 

disorders. The outcomes of this work have quantified the accuracy at which surgical 

interventions for these conditions can be performed and have resulted in a 

neuromusculoskeletal model that can be applied to understand how neural morphology, 

and associated changes due to these disorders, affects musculoskeletal function.  
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Neurodegenerative and neurodevelopmental disorders are a group of conditions 

that stem from irregularities in the nervous system that lead to complications in function 

and movement. Neurodegenerative conditions are associated with aging, and become 

progressively worse as the person ages. Approximately 50 million people in the United 

States are living with a neurological condition according to the National Institute of 

Neurological Disorders and Stroke, and as the median age demographic rises, this 

number will continue to increase.1 Three major neurodegenerative conditions are 

Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.2 These 

previous conditions currently have no cure, but there are treatment options that can help 

alleviate some symptoms.2 Neurodevelopmental disorders occur during early brain 

development and most are diagnosed during childhood. As of 2008, approximately 1 in 6 

children in the United States has a developmental disability with prevalence increasing 

from 12.84% to 15.04% over a 12-year period.3 Examples of these conditions include 

autism spectrum disorders, attention deficit/hyperactivity disorder, intellectual disability, 

and Rett syndrome.4, 5 Neurodegenerative and neurodevelopmental disorders are caused 

by both genetic and environmental factors, and significant research is being done to better 

understand the modalities by which these conditions occur to develop treatment options 

and find cures. 
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Parkinson’s Disease (PD) is a neurodegenerative condition that affected 1.04 

million people in 2017 in the United States alone.6 This number is projected to be over 

1.2 million people by 2030.7 The cause of PD is not entirely known but both genetic and 

environmental factors are thought to contribute to PD etiology.2 Patients with PD 

experience a progress loss of movement due to impairments in the basal ganglia region of 

their brain. The primary motor symptoms are tremor, dystonia, rigidity, and postural 

instability.8-11 Tremor is shakiness that commonly occurs in the hands, and sometimes the 

legs or lower part of the face.10 Akinesia, or bradykinesia, is when movement becomes 

slow and is especially pronounced during activities of daily living when fine motor skills 

are needed.10 Rigidity involves stiffening of the limbs and can sometimes be painful for 

the patient.10 Postural instability presents itself in a variety of abnormal deformities of 

posture, with a common one involving a more forward angled trunk and bent legs.10 

There is no known cure for PD, but there are treatment options that can help to 

alleviate symptoms. Medications have been developed that target dopamine receptors in 

the brain. There is also a surgical procedure called deep brain stimulation (DBS) that has 

been shown to alleviate the primary motor symptoms of PD (Figure 1.1). DBS involves 

implantation of electrodes into central brain structures to send pulsed, high frequency 

electrical currents to that region to normalize atypical neuron firing patterns. There are 

three different regions in the brain that are targeted as part of DBS: subthalamic nucleus 

(STN), globus pallidus interna (GPi) and ventralis intermedius (Vim) (Figure 1.2). While 

the STN treats most symptoms of PD, the GPi and Vim are targeted to reduce the effects 

of dystonia and essential tremor, respectively.12 
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Figure 1.1 Implanted components during DBS procedure. Reproduced from 

Levine.13 

 

 
Figure 1.2 Axial T1 MRI slice showing segmented STN (green), GPi (orange), 

and Vim (pink). Reproduced from Kruger et al.14 
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Precise electrode placement is a key factor in the effectiveness of DBS in treating 

the symptoms of PD. Electrode placement accuracy is measured in the operating room 

before clinical outcomes can be measured postoperatively. There is debate as to what 

constitutes sufficient electrode placement accuracy, with some studies re-implanting an 

electrode if it is farther than 2 to 3 mm away from the target15, while others state 3 mm as 

the standard for re-implantation.16 This deviation is measured as a radial error, or the 

distance from the center of the implanted electrode to the center of the target electrode 

trajectory (Figure 1.3). 

 
Figure 1.3 Radial error between implanted electrode (red) compared to the 

target location (blue) within the clinically acceptable metric of less than 2 to 3 mm of 
deviation. Shown is an axial MRI slice zooming in on the electrode from left to right. 

An automated measurement algorithm was developed in MATLAB to accurately 

measure electrode placement accuracy in DBS (Chapter 2). The automated measurement 

system allows for the removal of human bias in measurements and enables large cohorts 

of patients to be studied in less time. An asleep, robot-assisted DBS procedure was 

verified using this measurement system compared to traditional DBS surgical techniques. 

The confirmation of precise electrode placement accuracy ensures that DBS will have 

proper treatment for the motor symptoms of PD. This measurement system was later 

modified to measure screw placement accuracy in spinal fusion procedures for the 
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treatment of degenerative musculoskeletal conditions (Introduction Section 1.2, Chapter 

3).  

DBS is an effective treatment for the motor symptoms of PD by regulating the 

atypical neuron firing patterns in the basal ganglia region of the brain, but it is not a cure 

for the cause of the disease itself. To develop treatments to alleviate symptoms or inhibit 

development of neurodegenerative and neurodevelopmental diseases, the underlying 

disease mechanisms must be better understood. This first begins with needing to 

understand the entire process of motion generation in the body from the electrical signal 

being generated in the brain, the neural drive to muscles, how muscles react to the given 

stimuli to generate joint movement, and the response back to the brain from the muscles. 

When healthy neural pathways to muscle are better understood, that knowledge can be 

applied to musculoskeletal changes occurring due to neurodegenerative and 

neurodevelopmental conditions. Conversely, musculoskeletal function and movement 

may be early indicators of neurological changes that could cause neurodegenerative and 

neurodevelopmental conditions. Therefore, understanding changes in the musculoskeletal 

components may be used as a prodromal marker for early diagnosis of degenerative 

neural conditions. 

A major limitation in studying neuromusculoskeletal conditions is the challenge 

of performing in vivo experiments. It is not possible to experimentally measure all 

important factors, such as tissue stresses and single neuron firing patterns, and 

experimental studies are not always feasible in humans due to ethical considerations. One 

way to overcome this limitation is through the development and utilization of 

neuromusculoskeletal (NMS) models. Due to the complexity of the involved systems, 
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there are varying levels of neuromuscular and musculoskeletal models within the 

encompassing NMS modeling frameworks. 

Complex NMS models fit into one of two categories: neural data-driven or fully 

predictive. Neural data-driven models are almost wholly driven using electromyography 

(EMG) signals as the input into the musculoskeletal model (Figure 1.4).17-22 EMG is 

collected within the laboratory setting during the movements that will be simulated in the 

NMS model. The signal is then filtered and processed to extract EMG-linear envelopes, 

muscle synergies, motor neuron spike trains, or a combination of the above. 23 Neural 

data-driven models are beneficial for in-depth studies to quantify musculoskeletal 

function and control21 via neural drive, or common synaptic input, to the spinal cord and 

muscles.17 However, these EMG driven models inform force production based only on 

decomposition of discharge times and no other neural anatomy. Also, they only operate 

in a feed-forward method that does not have feedback from the musculoskeletal system to 

the nervous system required for the nervous system to adapt during movement.  
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Figure 1.4 EMG data-driven model using a rigid-body musculoskeletal 

simulation. Reproduced from Sartori et al.21 

Alternatively, fully predictive NMS models, the second category of complex 

NMS model types, utilize a pool of motor neurons24-26 or neural networks with motor 

neurons, Renshaw cells, and interneurons27-31 to simulate a neural command that 

generates a simulated muscle force used in a musculoskeletal model. This means that the 

signal being converted into muscle force is based upon a variety of neural factors such as 

anatomy, types of ion channels, and connectivity between different neurons, which can 

all be modified to study their effects. Neural factors can be varied throughout the 

simulation that make the overall outputs representative of the adaptation that occurs in 

the body. This is a key benefit of fully predictive models, rather than studying 

musculoskeletal function from a specific neural drive.23 
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The two key types of musculoskeletal models that are incorporated within NMS 

models are rigid body and finite element (FE) models. Rigid body simulations are useful 

for simulating musculoskeletal dynamics and calculating joint kinematics from 

experimental data (Figure 1.4).32 For more complex problems such as detailed 

representations of the joints that include soft tissue geometries and material properties, 

FE analyses are more useful (Figure 1.5). FE is advantageous over other numerical 

analyses due to its versatility and flexibility regarding geometry, boundary and loading 

conditions, and material properties.33 FE simulation environments (e.g. FEBio, febio.org; 

Abaqus, Simulia) can be used for both rigid body simulations and more complex FE 

simulations. 

 
Figure 1.5 Finite element musculoskeletal model of the lower limb from the 

lumbar spine to the toes shown in the coronal (left) and sagittal (right) views. Soft 
tissue inclusions can be seen at the knee and lumbar spine. 



9 

 

A primary concern for NMS models, and computational models in general, is the 

validation process. Both neural and musculoskeletal components can be validated 

independently against experimental data, but then also must be validated in a fully 

combined model. Commonly, for neural output validation, the membrane potential 

(voltage differential) is compared to EMG data, either intramuscular or intrafasicular in 

animal studies, or surface-mounted EMG in human studies.17, 21, 30, 34-36 When surface 

EMG is recorded, it must be filtered and processed to extract the necessary information 

for comparing to membrane potentials from the simulation. Musculoskeletal models can 

be validated against motion capture data, 17, 21, 30, 35 and ground reaction force data.21, 30, 35, 

36   

No existing models have incorporated a fully predictive NMS model within a FE 

framework. A model with varying levels of complexity in both the neuromuscular and 

musculoskeletal components is necessary to better understand motion generation in the 

body and to study the mechanisms of neurodegenerative conditions such as PD. This was 

accomplished in the work presented here through the development of a fully predictive 

NMS within the Abaqus FE environment (Chapter 4) (Figure 1.6). The neuromuscular 

component of the model was developed in NEURON, an open-sourced, python-based 

simulation environment used for the creation of models ranging from single neurons to 

networks of neurons.37 The Abaqus FE model was a three-dimensional human ankle joint 

with soleus and tibialis anterior muscles. 
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Figure 1.6 Fully predictive NMS model of a pool of motor neurons (one shown 
here for simplicity) innervating the soleus muscle of a three-dimensional FE model 

of the ankle. 

The integration of the two software platforms was validated against previously 

published work38 and verified for in vivo muscle generation via the principles of motor 

unit recruitment and rate coding.39 Motor unit recruitment is the concept that not all 

motor units (a motor neuron and all the muscle fibers it innervates) are active at a given 

time, but instead are recruited in an orderly manner.39 Motor units are recruited in size 

order from smallest to largest, following Henneman’s size principle,40 where units that 

generate smaller forces are recruited first followed by larger force producing motor units. 

Rate coding involves a proportional relationship between stimulation intensity and 

discharge rate, such that as the intensity of a stimulus increases, so does the rate of 

discharging action potentials.39 All motor neurons have a recruitment threshold, below 
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which no action potential will be generated. For stimuli that are above the recruitment 

threshold, there exists a linear relationship between the level of injected current and the 

resulting discharge rate. The discharge rate will continue to increase with increased 

current intensity until the peak rate is achieved. After this point, there is little variation in 

discharge rate, even with a continued increase in excitatory drive. If a neuromuscular 

model does not exhibit these two functions, then it cannot replicate muscle force or 

movement generation in an in vivo manner. 

After the development of a fully predictive NMS model within a single software 

framework, the applicability of the model to study neurodevelopmental and 

neurodegenerative conditions was tested. To accomplish this, a mouse NMS model was 

developed to study Rett syndrome (RS) (Chapter 5). RS is a neurodevelopmental disorder 

cause by a range of genetic mutations on the methyl-CpG-binding protein 2 (Mecp2).41 

RS affects 1 out of every 10,000 female births42 with the disorder primarily affecting 

females due to Mecp2 being located on the X chromosome.43 The primary motor 

symptoms of RS include a loss of purposeful hand movement, progressive changes in 

muscle tone, loss of speech, and, in severe cases, difficulty breathing and gait 

abnormalities.44 Recent experimental analysis has found that the axon initial segment 

(AIS) in mice that model RS has torsional morphology compared to wildtype littermate 

controls (Figure 1.7).45 This change in shape affects the signal travelling from the brain to 

spinal cord and results in the movement symptoms associated with RS. The NMS model 

developed within the Abaqus FE environment (Chapter 4) was modified to include three-

dimensional geometry of a full mouse hindlimb (Figure 1.8). The neural pathway was 

expanded to include pyramidal cells representative of the signal generated in the brain 
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sent to the motor neuron pool in the spinal cord (Figure 1.8). A healthy baseline NMS 

mouse model was developed for the application of anatomical AIS changes with the 

intent to study the mechanism and potential treatments of RS. 

 
Figure 1.7 Axon initial segment of golgi impregnated pyramidal neurons to show 

increased tortuosity in mice with Mecp2 mutations representative of RS (left) 
compared to wildtype littermate controls (right).45 

 
Figure 1.8 Components included in the integrated NMS mouse hindlimb model. 

NEURON simulations include pyramidal cells and motor neurons. Abaqus FE 
model geometry is of a mouse hindlimb from the pelvis to foot. 

This work encompasses a range of research that uses computational models and 

algorithms to study the underlying mechanisms and design better treatment options for 
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neurodegenerative and neurodevelopmental disorders. The analysis of electrode 

placement accuracy in deep brain stimulation for the treatment of Parkinson’s Disease 

using an automated measurement system (Chapter 2) can help improve patient outcomes 

with increased electrode placement accuracy based upon the findings. Improved 

neuromusculoskeletal modeling through the development of a fully predictive 

neuromusculoskeletal model within a single finite element framework (Chapter 4) can 

help to better understand healthy muscle control pathways and study disease mechanisms, 

such as in the neurodevelopmental disorder Rett syndrome (Chapter 5). 

1.2 Application of Automated Measurement System 

Spinal fusion procedures are used to treat a variety of degenerative 

musculoskeletal conditions including spondylolisthesis, lumbar stenosis, degenerative 

disc disease, and scoliosis.46-48 A spinal fusion procedure involves the implantation of 

pedicle screws into vertebral pedicles to act as anchor points for rods to restrict 

movement between those vertebrae (Figure 1.9).49, 50 Degeneration often occurs in the 

lumbar region of the spine, but fusions can occur at any spinal level depending on the 

condition. The prevalence of lumbar spinal fusions (LSF) was estimated to be 79.8 per 

100,000 individuals with over two million people having undergone a LSF between 2004 

and 2015.48 
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Figure 1.9 Lumbar spinal fusion performed using pedicle screws to hold an 

interbody graft in place. Reproduced from Chen et al.51 

Similar to DBS procedures used for the treatment of PD, screw placement 

accuracy can be measured in the operating room to determine proper implementation 

before clinical outcomes can be measured postoperatively. Screw placement accuracy is 

conventionally measured using grading scales. This involves assigning a letter grade to 

the placement based on how much deviation occurs outside of the pedicle region. 

Clinically acceptable placements have 2 mm or less deviation outside the pedicle, which 

on most grading scales constitutes a grade A or B (Figure 1.10).52, 53 Deviations outside 

of the pedicle in the medial direction lead to breaches into the spinal canal which can 

cause potential damage to the spinal cord. There are numerous grading scales including 

Gertzbein and Robbins,52 Youkilis,54 and Rampersaud.55  
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Figure 1.10 CT scans detailing the Gertzbein and Robbins classification used to 

grade pedicle screw accuracy. Reproduced from Schlato et al.53 

Traditional spinal fusion procedures can be performed open or as a percutaneous, 

minimally invasive procedure. The conventional method for pedicle screw insertion is the 

freehand method, oftentimes with intraoperative fluoroscopy guidance.56 In an effort to 

improve placement accuracy and clinical outcomes, including operating room time, 

radiation exposure, and longevity of hospital stay, surgical robots were created to assist in 
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spinal fusion surgery. There are a variety of robots currently on the market including 

Renaissance,57, 58 Mazor X,57, 58 ROSA,57, 59, TINAVI,60 and ExcelsiusGPS.56 There is a 

compilation of literature comparing robot-assisted screw placement to the freehand 

method, with debate as to whether robotic assistance actually leads to an increased 

accuracy.47, 60-63 A review by Ghasem et al. included 12 studies that compared robot-

guided surgery to the freehand method and showed that 10 studies did have an increase in 

placement accuracy when robot-assistance was used.57 In one case, there was found to be 

no difference and one case showed worse accuracy with robotic guidance.57 However, it 

has been shown that procedures utilizing robot-assistance, compared to those without, 

have a decrease in length of hospital stay64, 65 and radiation exposure.60, 65-67 These factors 

are beneficial to patients undergoing a procedure and hospital staff, as well as an 

associated cost reduction. 

The Mazor X Stealth Edition robotic guidance system (Medtronic, Dublin, 

Ireland) is an FDA approved system for use in spinal surgery. It utilizes a six degree of 

freedom robotic arm and has an overall accuracy of 1.5 mm.68 When using the Mazor X 

Stealth system, a standard workflow begins with planning screw insertion in the 

navigation software using a preoperative computed tomography (CT) scan. After having 

general anesthesia administered, an O-Arm scan is taken that captures the patient’s 

current position and the location of the robotic arm with the attached registration device. 

This scan is compared with the preoperative scan to align the patient’s current location in 

space to the preoperative plan. The procedure can either be percutaneous or open, but the 

next step involves the surgeon implanting the pedicle screws through the robotic arm end 
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effector as a guide. Upon placement of screws, another O-Arm is taken to verify accurate 

screw placement. 

To better evaluate screw placement accuracy, the automated measurement 

algorithm that was developed to measure the electrode placement accuracy during DBS 

procedures (Chapter 2) was modified for its use with pedicle screws (Chapter 3). The 

algorithm was developed in MATLAB and measures pedicle screw accuracy in all three 

anatomical planes (Figure 1.11). This is done using six metrics: medial-lateral and 

superior-inferior deviation within the pedicle region, perpendicular deviation and angular 

deviation in the axial plane, and perpendicular deviation and angular deviation in the 

sagittal plane. These metrics are all measured as the values between the planned screw 

location from the preoperative plan to the implanted screw location. This measurement 

system is an objective measure that directly relates the screw to where it should have 

been placed in vivo compared to traditional grading scales that only analyze deviation 

outside the pedicle region. Using an automated system like this can better inform changes 

to spinal fusion surgical protocols and robotic technologies that can lead to improved 

patient outcomes for the treatment of degenerative musculoskeletal conditions. 



18 

 

 
Figure 1.11 O-Arm scan showing implanted pedicle screws (left). Left (yellow) and 
right (blue) screw preoperative plans overlain on O-Arm scan (right). Shown in all 

three anatomical views: axial (a), sagittal (b), and coronal (c). Accuracy is measured 
between the implanted screw and the target location for each implant. 

1.3 Summary of Scientific Contributions  

This compilation of work includes the following scientific contributions: (1) An 

automated measurement algorithm for measuring the accuracy of surgically implanted 

devices during procedures used to treat neurodegenerative and degenerative 

musculoskeletal conditions. The uncertainty associated with image fusion during said 

procedures was quantified to better inform improvements in surgical procedures and 

robotic technological advances. (2) Integrated neuromusculoskeletal modeling framework 
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built by incorporating NEURON simulations within a FE environment. This simulation 

framework allows for complexity in both neural and musculoskeletal components, which 

is needed to study motion generation in the body and underlying disease mechanisms in 

neurodegenerative and neurodevelopmental diseases. (3) A fully predictive NMS mouse 

hindlimb model developed in the integrated FE framework. This model will be applied to 

study the effect changes in neural morphology will have on resulting joint movement due 

to neurodevelopmental and neurodegenerative diseases, and how movement changes may 

be used as a marker for early diagnosis. 
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CHAPTER TWO: ELECTRODE PLACEMENT ACCURACY IN ROBOT-ASSISTED 

ASLEEP DEEP BRAIN STIMULATION* 
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Abstract 

Deep brain stimulation (DBS) involves the implantation of electrodes into specific 

central brain structures for the treatment of Parkinson’s disease. Image guidance and 

robot-assisted techniques have been developed to assist in the accuracy of electrode 

placement. Traditional DBS is performed with the patient awake and utilizes 

microelectrode recording for feedback, which yields lengthy operating room times. 

Asleep DBS procedures use imaging techniques to verify electrode placement. The 

objective of this study is to demonstrate the validity of an asleep robot-assisted DBS 

procedure that utilizes intraoperative imaging techniques for precise electrode placement 

in a large, inclusive cohort. Preoperative magnetic resonance imaging (MRI) was used to 

plan the surgical procedure for the 128 patients that underwent asleep DBS. During the 

surgery, robot assistance was used during the implantation of the electrodes. To verify 

electrode placement, intraoperative CT scans were fused with the preoperative MRIs. The 

mean radial error of all final electrode placements is 0.85 ± 0.38 mm. MRI-CT fusion 

error is 0.64 ± 0.40 mm. The average operating room time for bilateral and unilateral 

implantations are 139.3 ± 34.7 and 115.4 ± 42.1 min, respectively. This study shows the 

validity of the presented asleep DBS procedure using robot assistance and intraoperative 

CT verification for accurate electrode placement with shorter operating room times. 

2.1 Introduction 

Deep brain stimulation (DBS) is a common treatment option for symptoms 

associated with Parkinson’s Disease (PD) including essential tremor, rigidity, and 

dystonia.8-11
 DBS involves the implantation of electrodes into specific central brain 

structures. The electrodes deliver pulsed, high frequency electrical currents that help 
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regulate pathological local synchronous firing patterns of local stimulatory activity. The 

primary target structures in the treatment of PD are the subthalamic nucleus (STN), 

globus pallidus interna (GPi), and ventralis intermedius (Vim). While the STN treats 

most symptoms of PD, the GPI and Vim are targeted to reduce the effects of dystonia and 

essential tremor, respectively.12
  

A DBS procedure begins with preoperative planning to determine the target 

location within the brain and trajectory required to reach that location. Magnetic 

resonance images (MRI) of the patient are acquired and used to identify the target 

location. Traditional DBS procedures can be referred to as awake DBS because they 

involve the patient being under local anesthesia, aware of what is happening in the 

operating room. DBS was performed awake so that feedback could be obtained in the 

operating room on the effects of the implanted electrodes from the patients themselves, 

from microelectrode recordings (MER), or sometimes a combination of both. MER 

involves incrementally inserting electrodes smaller than the permanent one along the 

planned trajectory to measure the electrical signals coming from neurons. The electrode 

is advanced until reaching the target structure, and based upon both individual and local 

area neuronal firings, the sensorimotor regions along the trajectory can be mapped, which 

are used to verify that the target location is the optimal placement within the target 

structure. The use of MER can be associated with longer operating room times that may 

lead to additional surgical complications and infections,8, 16, 69
 including an increased risk 

for hemorrhage.70
 The average operating room time for an awake DBS procedure ranges 

from 4 to 6 h.71, 72
 There are a number of limitations associated with awake DBS. Lengthy 

procedures are taxing for the patient and operating room staff. The patient can undergo 
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fatigue, and although they can provide feedback, it cannot include full motor function 

assessment such as standing or walking. There is a proportionally higher economic 

burden associated with the surgeon, OR staff, and facilities time required for these 

lengthy procedures.73
 Typically, the longer the operating room time, the longer the 

recovery time, which is challenging for the patient and can create additional costs. 

To address some of the concerns surrounding awake DBS, a procedure utilizing 

general anesthesia, known as asleep DBS has been developed.16
 Asleep DBS still 

involves the preoperative MRI planning, but relies on high-resolution imaging, image 

guidance, and sometimes robotic-assistance to validate the placement of the electrode 

within the target location. Imaging and robotic assistance provides the accuracy and 

precision required to remove the dependency on physiological feedback relied on during 

awake DBS to determine electrode placement. MER can still be used in asleep DBS 

procedures to provide electrical-signal feedback, but due to the additional risk and the 

controversy regarding the efficacy of MER,8, 16, 70, 74
 intra-operative imaging techniques 

are used instead. These techniques involve computed tomography (CT) or MR images 

being taken during the procedure to verify electrode placement within the anatomical 

target. If CT is used intraoperatively, it is fused to preoperative MRI because only the 

MRI can accurately show the grey matter within the brain to view the target structure. 

The merged MRI-CT scans can then be used to assess the placement of the electrode 

(captured from the CT) compared to the target location (identified on the MRI). This does 

introduce a source of error to the procedure, as MRI and CT both have individual errors, 

along with error involved when merging the two types of scans. MRI has a nonuniform 

magnetic field generated from the main magnet in the equipment that leads to non-
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linearities in the gradients generated, which makes straight lines appear curved or 

distorted at the edge of MRI scans.75
 CT scans have a low soft tissue contrast which 

makes it hard to visualize target structures and any metal in the image can lead to 

streaking distortion.76
 By combining the two imaging modalities, the electrode placement 

can be properly planned and verified after insertion. The operating room time is 

drastically shorter for asleep procedures, and is reported to range from 2 to 3.17 h.16, 77, 78
  

The primary measure of success for a DBS procedure within the operating room 

before clinical outcomes can be determined is electrode placement accuracy. This is 

measured as the radial error between the center of the target location determined 

preoperatively and the center of the implanted electrode. If the surgeon is concerned 

about the accuracy of initial placement, the electrode may be re-implanted; however, 

there is debate as to what constitutes sufficient accuracy. Some studies use the standard 

of re-implanting the electrode if it is farther than 2 to 3 mm away from the target15
 while 

others state simply 3 mm as the standard for re-implantation.16
 Asleep DBS procedures 

have reported placement accuracies comparable to those of awake DBS,16, 79
 with the 

lowest report radial error for asleep DBS being 0.6 ± 0.3 mm.80
 

To improve the precision of asleep DBS, robots, such as SurgiScope, NeuroMate, 

Renaissance, and ROSA, are being utilized within the operating room.81
 The safety and 

effectiveness of using a robot for stereotactic neurosurgery has been shown previously.81-

86
 A study of a frame-based DBS procedure using the NeuroMate robot for the 

implantation of 30 leads reported a Euclidean error of 0.86 ± 0.32 mm measured using 

orthogonal radiographs in Stereoplan.87
 Neudorfer and colleagues found that there were 

statistically significant improvements for a cohort of 80 patients (40 implanted using each  
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method) in lateral deviation and operating room time when performing robot-assisted 

DBS compared to conventional frame-based implantation methods.88
 The addition of 

robot-assistance within a DBS asleep procedure has been shown to have the same clinical 

improvement as awake surgeries when Unified Parkinson’s Disease Rating Scale 

(UPDRS) motor scores were compared.69
 The Mazor Renaissance robot is used in this 

study, which is an FDA approved system for electrode/implant placement and brain 

biopsies. It is a small, frameless platform with 360° working volume for highly accurate 

access to planned trajectories. 

The objective of this study is to demonstrate the validity of an asleep robot-

assisted DBS procedure that utilizes intraoperative imaging techniques for precise 

electrode placement in a large, inclusive cohort. Electrode placement accuracy, fusion 

error associated with intraoperative CT to preoperative MRI, operating room times, and 

adverse effects are quantified for a cohort of 128 patients with 241 lead placements. 

2.2 Materials and Methods 

2.2.1 Patient Inclusion and Demographics 

A total of 128 consecutive patients were included in this study, of which 113 

underwent bilateral implantation and 15 unilateral implantation (total 241 lead 

placements). The target location was the STN in 162 cases, Vim in 42 cases, and GPi in 

37 cases. Of the 128 patients, 68 were female, 48 were male, and 12 did not have 

information recorded. The mean age of the patients was 64.6 ± 13.2 years. All surgeries 

were performed by the same surgeon (DVS) at Littleton Adventist Hospital in Littleton, 

CO between August 2014 and October 2017. This study was approved by the Porter 

Adventist Hospital Institutional Review Board. 
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2.2.2 Surgical Procedure 

All patients received a preoperative T1 MRI with gadolinium and a T2 MRI using 

a GE LX, 60-cm bore, 1.5 Tesla MRI under general anesthesia (Figure 2.1a) (1 mm slice, 

matrix 512 9 512, 0.487 9 0.487 mm in-plane resolution). The MRI was calibrated using 

the American College of Radiology standard phantom tests.89
 For the first twelve patients, 

the MRI and the electrode placement procedure were performed on the same day and 

under the same anesthetic; however, following a practice change, the MRI and trajectory 

planning were performed under general anesthesia the day prior to surgery for the 

remaining patients. On the day of surgery, the patient is positioned using a head clamp 

(Doro 4002-20, Pro Med Instruments, Freiburg, Germany) customized for use with 

intraoperative CT, which would not be necessary for an awake DBS procedure. The 

surgical plan is verified and measurements are taken for the placement of the Renaissance 

robot (Mazor Robotics, Caesarea, Israel) attachment base. High precision of the robot 

base in not required as long as the robot is attached on the skull in a location where the 

robot can reach the target trajectories. The robotic software calculates a series of possible 

mounting locations. Calipers are used to triangulate from known anatomic landmarks or 

fiducial markers to the selected base location. A sterile field is then created and a fiducial 

frame, known as the Star Marker, is attached to the base that allows the planning software 

to orient the Renaissance system to the patient and intraoperative CT scan (Figure 2.2a). 

The intraoperative CT (2 s. rotation, 120kv, 7 mA, 1.25 mm slice thickness, 0.494 9 

0.494 mm in-plane resolution; CereTomTM, Neurologica Corp., Danvers, MA.) is 

obtained in a sterile fashion (Figure 2.1b) and then fused with the preoperative MRI 

(Figure 2.1). When the CT is fused to the MRI, the robot base location is known relative 
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to the target trajectories. This intraoperative CT is referred to in this study as the fiducial 

CT. The MRI-CT fusion process is completed in the Mazor Renaissance software. It 

involves an initial manual alignment performed by the surgeon, followed by the software 

registration algorithm completing the six-degree-of-freedom fusion. Once completed, the 

fusion is visually inspected by the surgeon for success. 

 
Figure 2.1 (a) Preoperative T2 MRI acquired with a 1.5 Tesla machine under 
general anesthesia (top), with preoperative cannula trajectory plan for the right 
STN shown in blue (bottom). (b) Intraoperative CT (including fiducial frame for 

orientation of the renaissance system). (c) Fusion of MR and CT scans; transparent 
overlay of T2 MRI and intraoperative CT (top), intraoperative CT with T2 MRI 

shown within window (bottom). (d) Intraoperative CT with preoperative plan 
mapped from the fused MRI shown in blue. Sagittal and axial images that pass 

through the right STN are shown in each instance.  
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Figure 2.2 (a) Fiducial frame attached to the robotic base that allows the 

software to orient the Renaissance system. (b) Robot positioned on the base with 
arm attached. The arm is oriented over the target insertion point so that the precise 

location can be marked on the scalp. 

The robotic arm is attached to the base and the arm of the robot commanded to 

move to the target insertion point (Figure 2.2b), where the location is marked and the 

robot is removed in order to create a sterile incision. After the incision is made, the robot 

is reattached to locate the site of the planned burr-hole. The robot is removed once again 

for the actual burring procedure and attached a third time for placement of the to-target 

cannula. The dura is not opened at this stage of the procedure. An FHC (Bowdoin, ME) 

ST-DS-MA drive system is attached to the robotic arm for to-target cannula depth 

measurement. The dura is perforated using monopolar electrocautery. The size of the 

penetration matches the size of the cannula to prevent cerebral spinal fluid loss and 

subsequent brain shift. A secondary intraoperative CT is performed with the robot 

attached and cannula in place; this intraoperative CT is referred to in this study as the 

verification CT (Figure 2.3). In order to verify accurate placement of the cannula, the 

verification CT is fused with the fiducial CT and the deviation between cannula 

placement and the preoperative trajectory plan is assessed. Acceptance of the cannula 
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position is based upon the accuracy of the placement, a radial error of less than 2 mm, 

and a verification that the 1.8 mm diameter cannula is wholly within the target structure, 

so unwanted stimulation to surrounding structures does not occur, both of which are at 

the surgeon’s discretion. Any adjustment is made by use of an X–Y stage (Alpha Omega, 

Nazareth, Israel). For any surgery that requires adjustment of the cannula position, an 

additional verification CT is performed with the cannula in its final position. If an 

adjustment needed to be made only to the depth of the cannula for the final electrode 

placement, it was adjusted accordingly and no additional verification CT was taken. For 

bilateral surgeries, this process is repeated (Figure 2.4). 

 
Figure 2.3 A secondary intraoperative CT is obtained after placement of the 

cannula; the right cannula is shown here in sagittal (top, left), axial (top, right), and 
coronal (bottom, left) views. 



31 

 

 
Figure 2.4 Series of intraoperative CT scans performed during bilateral surgery. 

(a) Fiducial CT for registration of the Renaissance robotic system with the 
preoperative MRI. (b) Verification CT after placement of the left cannula. (c) 

Verification CT after placement of the right cannula. 

2.2.3 Electrode Accuracy 

Deviation from the intended target is measured when looking down the view of 

the planned trajectory on the verification CT for a given side (Figure 2.5). The electrode 

placement accuracy is the radial distance between the center of the implanted electrode 

and the center of the target location (Figure 2.6). Errors in depth of the cannula after 

implantation were also calculated and reported, however, this study focuses primarily on 

radial errors as errors related to the depth of the cannula measured by the verification CT 

were subsequently corrected by using the micro-drive system to adjust the depth 

placement to eliminate this depth error. Unless otherwise stated, the errors reported in 

this study refer to radial errors. An algorithm was developed in MATLAB 2017b (The 

Mathworks, Inc., Natick, MA) to automate the electrode placement accuracy 

measurement process. It utilizes image processing tools to locate the center of the 

electrode and target. It then quantifies and converts the accuracy to standard units of mm. 

The development of the automated measurement process eliminates human variance in 

measurement and bias. A comparison of 27 patients with 53 electrodes implanted 
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measured both manually and using the algorithm shows a statistically significant 

difference (p = 0.008) between the final placement accuracies of 0.79 ± 0.36 and 0.85 ± 

0.35 mm for the manual and automatic measurement systems, respectively. The 

automated process also saves computational time, which is beneficial when analyzing 

large cohorts. 

 
Figure 2.5 Verification CT viewed along the length of (left) and perpendicular to 

(right) the planned trajectory of the right cannula. Placement accuracy 
measurements are made from the view along the length of the planned trajectory. 
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Figure 2.6 Overlay of the preoperative MRI with target trajectory (blue) and 

verification CT cannula placement (red). Close-up with 5.0 mm reference scale bar 
shown on the right – this image was used to measure the difference between center 

of the target site and the center of the implanted cannula. Images are shown looking 
along the target cannula trajectory. 

A source of potential error that adds uncertainty to the accuracy of the electrode 

placement is the MRI-CT fusion process. To our knowledge, the error involved in fusing 

the two scans has not previously been quantified. In the operating room, the verification 

CT scans are fused with the original fiducial CT; the fiducial CT is the only CT which is 

fused directly with the preoperative MRI. In order to quantify the error associated with 

the MRI-CT fusion process, in post-operative analysis each verification CT was 

independently fused with the preoperative T1 MRI. The target location from the MRI was 

mapped to each CT scan (fiducial plus verification CTs). When the CT scans are 

compared, the target location appear in slightly different locations in each scan. While it 

is not possible to determine the exact location of the target with respect to the CT images, 

the difference between the electrode centers in each CT is the deviation that results from 

fusing the CT and MRI scans (Figure 2.7). The deviation analysis includes all first, 
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second, and third passes for unilateral and bilateral implantations since fusion order does 

not play a role in calculating the fusion error. 

 
Figure 2.7 (a) Measurement of MRI-CT fusion error. Preoperative MRI with 

target cannula trajectory (blue dashed line).  (b) Close-up showing apparent 
location of the center of the cannula from verification CT fused with fiducial CT 

(red) and apparent location of the center of the cannula from verification CT fused 
directly with MRI (green).  Fusion error is defined as the distance between these 

locations. 

Statistical comparisons between the first and second side implanted and initial and 

final placement accuracies were quantified using a student’s paired t test. The effect of 

target location (STN, GPi, Vim) was evaluated used a one-way ANOVA. A p-value 

below 0.05 was considered statistically significant. 

2.3 Results 

A total of 241 electrodes were implanted, of which 226 were for bilateral 

implantations, 7 for unilateral right, and 8 for unilateral left. The placement accuracy for 

all initial passes of the 241 implants is 1.06 ± 0.60 mm. The mean initial pass placement 
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accuracies of the first and second sides implanted are 0.91 ± 0.46 and 1.20 ± 0.65 mm, 

respectively. There is a significant difference (p < 0.001) between the initial pass 

placement accuracy of side one and side two. Of the 241 electrodes implanted, 51 were 

re-implanted a second time (21%) and 3 were re-implanted a third time (1%). Re-

implantation was determined based on a variety of factors including a radial error greater 

than 2 mm, the electrode not being positioned optimally in the target structure either 

because the cannula is not wholly within the structure or there is a better location possible 

that could only be observed once the electrode was implanted, or a combination of the 

aforementioned reasons. A total of 14 electrodes (6%) were re-implanted a second time 

based upon a radial error greater than 2 mm. 

The placement accuracy for all final placements for the 241 implants is 0.85 ± 

0.38 mm. There is a statistical significance (p < 0.001) between the total initial and final 

placement accuracy values. The final placement accuracy for the first and second 

implanted sides are 0.82 ± 0.36 and 0.87 ± 0.38 mm, respectively, which have no 

statistical difference. The initial and final placement accuracies based on target location 

are shown in Table 2.1. There is no statistical difference between the placement 

accuracies of the three locations. There is a statistical difference between the initial and 

final placement accuracies in each location independently: STN (p < 0.001), VIM (p = 

0.027), and GPi (p = 0.020). 

 

 

 

 



36 

 

Table 2.1 Electrode Placement Accuracy Values (mean ± SD). 
 

STN Vim GPi Total 

Number of Implants 162 42 37 241 

First Pass Accuracy [mm] 1.08 ± 0.62 0.92 ± 0.44 1.15 ± 0.63 1.06 ± 0.60 

Final Pass Accuracy [mm] 0.84 ± 0.38 0.81 ± 0.36 0.88 ± 0.38 0.85 ± 0.38 

 

When the errors in cannula depth along the planned trajectory were calculated, the 

initial and final placement absolute depth errors were 0.57 ± 0.62 and 0.64 ± 0.62 mm, 

respectively. In the initial placement, 41% of implants were located at the target depth, 

38% were located shallower than the target by 0.98 ± 0.50 mm, and 21% were located 

deeper than the target by 0.92 ± 0.54 mm. Similar results in depth error were measured 

from the verification CT after final placement; 34% of implants were located at the target 

depth, 39% were located shallower than the target by 0.99 ± 0.48 mm, and 27% were 

located deeper than the target by 0.95 ± 0.54 mm. However, the micro-drive system was 

subsequently used to adjust the depth placement to eliminate this depth error. 

By using all of the implanted electrode fusions, including re-implants, the MRI-

CT fusion error was calculated for 292 fusions. The mean deviation is 0.64 ± 0.40 mm. 

There was no statistical difference in fusion deviation between first and second side 

implants. 

The operating room time, defined as skin-to-skin contact time, for 97 bilateral 

implantation procedures is 139.3 ± 34.7 min. For 11 unilateral implantations, the 
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operating room time is 115.4 ± 42.1 min. Operating time was not available for the 

remaining 20 procedures. 

Adverse events that were complications of robotic surgery occurred in four 

(3.1%) patients. One patient had a lead repositioning due to movement in contact position 

while another had an erosion of a DBS lead extension on a single side. In the operating 

room, one patient experienced an intraparenchymal hemorrhage that led to symptoms of a 

stroke which resolved, and a deep vein thrombosis in the left arm. Two weeks 

postoperatively, one patient had a pulmonary embolism. In all cases, a diagnostic post-

operative CT was performed. No significant intraprechymal hemorrhage was present. 

Complications unrelated to the robotic surgery occurred in two patients who had a DBS 

pulse generator repositioned within the pocket due to migration, which was causing 

discomfort. There were no battery infections outside the 2 week period. 

2.4 Discussion 

The application of intraoperative imaging techniques to DBS have been 

revolutionary in modifying the procedure to where it is today with near real-time 

electrode placement verification within the operating room. For a traditional awake 

procedure, the reported average placement accuracy of McClelland and colleagues for a 

cohort of 26 patients (52 leads) is 1.4 mm in the lateral/medial direction and 1.2 mm in 

the anterior/posterior direction.15
 A recent study utilized the Renaissance Mazor robot and 

MER for electrode implantation in 20 patients (40 leads), which included both awake and 

asleep DBS procedures, and measured a radial error of 1.40 ± 0.11 mm.86
 The final 

electrode placement accuracy of the current study is comparable to other reports of asleep 

DBS procedures; radial errors reported in the literature include 1.24 ± 0.87 mm on a 
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cohort of 60 patients (119 leads),16
 0.9 ± 0.5 mm on 48 patients (94 leads) using the 

NexFrame and intraoperative CT verification,79
 and 0.6 ± 0.3 mm on twenty patients (40 

leads).80
 In the procedure described by Ostrem et al.,80

 the surgery is performed entirely 

within a MRI suite which can be costly and not feasible at all hospitals. The presented 

surgical procedure has the advantage of using the CereTom portable CT scanner which is 

available in a standard operating room with lower costs.73
 

The accuracy of the system being reported is a culmination of numerous factors 

including the to-target cannula that prevents deviation of the electrode, immobilization of 

the head during surgery, and the robot being affixed to the skull. It should be also noted 

that there are numerous other factors that may contribute to the accuracy of electrode 

placement, apart from the use of a robot-assisted technique. These factors include, 

amongst others, the experience of the surgeon and surgical team, learning curve 

associated with the surgical procedure, or different surgical priorities in awake as 

compared to asleep DBS procedures. The patient being under general anesthesia for the 

preoperative MRI is also critical to the placement accuracy as even a 1–2 mm shift during 

image acquisition would become the dominant source of error for the procedure. 

The automated measurement algorithm eliminates human bias when determining 

the electrode primary contact center that may subsequently affect radial error values. 

Previous studies have measured placement error on the Stealth Station15, 16
 or using 

FrameLink software.79, 80
 One study using the Stealth Station analyzed the interobserver 

reliability of determining the coordinates of the principal contact on post-operative MRI 

images and found that there were statistically significant differences in three of eight 

measured coordinates.15
 Alternatively, Mirzadeh et al. found no significant difference in 
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measurements following independent principal contact coordinate selections from two 

surgeons on post-operative MRIs.79
 Although both of these studies analyzed manual 

coordinate determination on MRIs, CT images also have artifact around the implanted 

cannula that can make determining the precise center of the cannula difficult. The 

automated measurement process accounts for the electrode not being perfectly circle and 

removes human variability that may impact the determination of the circle center for 

more precise radial error measurements. 

The significant difference between the initial placement accuracies of the first and 

second sides implanted could be caused by CT artifact distortion from the electrode 

previously implanted on the verification CT check for the second side. This indicates the 

need to further understand and quantify CT artifact caused by the electrodes. 

Previous studies have looked at MRI-CT fusion as it applies to DBS surgery. 

Mirzadeh et al. fused intraoperative CT with preoperative MRI and target location from 

the MRI was mapped to the CT.79
 Then, postoperative MRI was used to independently 

identify the target location. The error differences between the target location identified on 

intraoperative CT and postoperative MRI were quantified, thereby calculating a 

combination of plan-to-CT fusion error plus MRI measurement variance. Geevarghese et 

al. measured stereotactic fusion error in a different way.90
 They identified the stereotactic 

coordinate system through fiducial markers on the MRI, and then fused the intraoperative 

CT with the MRI. Using an unfused version of the same CT scan, they identified the 

stereotactic coordinate system through fiducial markers on the CT. The error measured in 

their study is the difference in location of the electrode tip between these two coordinate 

systems. In the study presented here, two, or more in the case of reimplantation, CT scans 
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were independently fused with preoperative MRI and the target location superimposed on 

each CT. CT scans were subsequently merged and difference in target location of the 

target between CT scans was used to quantify a MRI-CT error. 

The key aspect of asleep DBS is the use of intraoperative imaging to verify 

electrode placement location without MER or patient feedback. This can be accomplished 

using either intraoperative MRI or CT, but regardless of which is used, the fusing of two 

images together has inherent error. This error is an additional source of variability to the 

placement accuracy values stated above. The precise location is unknown due to the 

MRI-CT fusion error, but the deviation analysis allows quantification of this uncertainty 

across the patient population. This uncertainty metric can be utilized in the operating 

room to help surgeons determine how close the electrode must be to the target location to 

be confident that it is actually within the boundary of the target structure (Figure 2.8). 

 
Figure 2.8 Implication of MRI-CT fusion error. To ensure accurate placement, 
the target (blue) must be wholly within the cannula region (red). When the average 

MRI-CT fusion deviation (blue dashed) is accounted for, the probability that the 
placement is not fully with the target region can be calculated (green striped region). 
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The mean operating room time of this study (2.3 h) is on the lower side of the 

range of previous asleep DBS studies, which is significantly lower than that of awake 

DBS procedures. The shorter surgery time is more comfortable for the patient, surgeon, 

and operating room staff. There is no significant change in OR time from the first cases 

to the last, which seems to indicate a shorter learning curve for this technique. The low 

rate of infection of 3.1% compares favorably to 5.6% reported in prior studies,91
 and 

adverse effects postoperatively can in part be attributed to the shorter amount of time 

spent within the operating room. With the shorter operating room time, a surgeon can 

more easily fit multiple surgeries in a day. While the necessity of robotic-assistance in 

asleep DBS requires capital investment in equipment and maintenance costs that add to 

the overall economic impact of the procedure, these costs are offset by the reduced OR 

time per surgery—reduced OR time may facilitate increased volume of procedures which 

reduced the ‘‘per surgery’’ capital costs, which are typically in the range of $60–$100 per 

minute of OR time. Additionally, a corresponding reduction in infection and adverse 

effects rates may reduce the hospital stay length for these patients further reducing the 

overall cost of the procedure. 

An advantage to using the Mazor robotic system over other commercially 

available options is the autoregistration that the system utilizes. Most other frameless 

systems require the manual registration of fiducial markers, whereby a probe attached to 

the robot or followed by a 3D camera system is sequentially placed by hand into bone 

mounted fiducials. The Mazor system embeds the fiducials directly into the Star Marker 

at fixed positions relative to the robotic attachment base, making the manual registration 

step unnecessary. This saves OR time and leads to more accuracy in electrode placement. 
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Although the placement accuracy with this procedure using the Renaissance robot 

with intraoperative CT verification is comparable to that of awake procedures and other 

asleep procedures, the relationship between placement accuracy and patient functional 

outcomes is beyond the scope of the current study. Error in placement accuracy may be 

compensated for during calibration of electrode voltage and the introduction of 

directional electrodes; however, optimizing placement accuracy may facilitate 

minimizing voltage magnitude and localizing the effects of electrical stimulation. An 

analysis must be performed to evaluate the effect placement accuracy has on the clinical 

outcomes of the patient, such as UPDRS scores and mobility tests. Additionally, future 

work should involve determining if there is a correlation between placement accuracy 

and the stimulation parameters set up postoperatively for the patient. 

This study analyzing a cohort of such a large magnitude shows the validity of this 

asleep DBS procedure that uses the Renaissance robot for precise electrode implantation 

with the convenience of intraoperative verification CTs using the portable CereTom CT 

scanner. The workflow of this procedure allows a shorter operating room time that 

benefits the patient while obtaining the necessary electrode accuracy within the target 

structure, which can be pinpointed more accurately within the operating room using the 

now quantified MRI-CT fusion error. Future work will provide the link between 

electrode placement and clinical efficacy. 

2.5 Author Justification 

D.V.: study concept, lead surgeon for implantation of electrodes, design of the 

study, interpretation of results, prepared figures. V.V.: developed automated 

measurement algorithm, performed all analyses, prepared figures, primary writer. P.F.: 
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assisted in surgical implantation of electrodes. J.H.: assisted in surgical implantation of 

electrodes. M.B.: assisted in surgical implantation of electrodes. C.K.F.: design of the 

study, interpretation of results. All authors contributed to editing and revision of the 

manuscript for intellectual content. 
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Abstract 

Objective: Pedicle screw fixation is a spinal fusion technique that involves the 

implantation of screws into vertebral pedicles to restrict movement between those 

vertebrae. Robotic guidance systems have been designed to assist in the implantation of 

pedicle screws. The accuracy of robotic-assisted implantations has been compared to 

conventional methods using traditional grading scales. The objective of this research is to 

measure pedicle screw placement accuracy using a novel automated measurement system 

that directly compares the implanted screw location to the planned target location in all 

three anatomical views in robotic guided procedures. 

Methods: Preoperative CT scans were used to plan the screw trajectories in 122 

patients across four surgical centers. Postoperative scans were fused to the preoperative 

plan to quantify placement accuracy using an automated measurement algorithm. 

Results: The placement accuracy of 500 screws was measured. The mean medial-

lateral and superior-inferior deviations in the pedicle region are 1.75 ± 1.36 mm and 1.52 

± 1.26 mm, respectively. In the axial plane, the mean perpendicular deviation is 2.00 ± 

1.54 mm and the angular deviation is 2.40° ± 2.07°. In the sagittal plane, the mean 

perpendicular deviation is 2.16 ± 1.74 mm and the angular deviation is 4.21° ± 8.31°. 

Using a traditional grading scale, 97.2% of the screw placements were classified with a 

grade of A or B, indicating less than 2 mm of deviation outside of the pedicle. 

Conclusions: This study uses a novel measurement system to quantify screw 

placement accuracy to show the validity of using of a robotic guidance system for 

accurate pedicle screw placement. This system measures screw placement accuracy as it 



47 

 

relates directly to the planned target location instead of analyzing the placement for 

breaches of the pedicle. 

3.1 Introduction 

Pedicle screw fixation is a spinal fusion technique that involves the implantation 

of screws into vertebral pedicles to act as anchor points for rods to restrict movement 

between those vertebrae.49, 50 Fusions are a common treatment for a variety of spinal 

conditions including lumbar stenosis, spondylolisthesis, degenerative disc disease, and 

disc herniation.46-48 Although fusion can occur at any spinal level, the majority of cases in 

this study are in the lumbar region. The number of lumbar spinal fusion (LSF) cases is 

increasing annually, with over two million people having undergone a LSF between 2004 

and 2015.48 The prevalence of LSF was estimated to be 79.8 per 100,000 individuals.48 

The conventional method for pedicle screw insertion is the freehand method, 

oftentimes with intraoperative fluoroscopy guidance.56 The primary outcome measure for 

pedicle screw insertion is placement accuracy. A grading scale is used to rate the 

implantations based on the amount of screw deviation outside of the pedicle. There are 

numerous grading scales, including Gertzbein and Robbins,52 Rampersaud,55 and 

Youkilis.54 A standard metric for acceptance of screw placement is less than 2 mm 

outside of the pedicle, as measured in the medial-lateral direction.52, 53 

In efforts to improve placement accuracy and clinical outcomes, including 

operating room time, radiation exposure, and longevity of hospital stay, surgical robots 

were created to assist in spinal fusion surgery. There are a variety of surgical robots 

currently on the market including Renaissance,57, 58 Mazor X,57, 58 ROSA,57, 59 TINAVI,60 

and ExcelsiusGPS.56 There is a compilation of literature comparing robot-assisted screw 
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placement to the freehand method, with debate as to whether or not robotic assistance 

actually leads to increased accuracy.47, 60-63 A review by Ghasem et al. included 12 

studies that compared robot-guided surgery to the freehand method and showed that 10 

studies demonstrated an increase in placement accuracy when robot-assistance was used, 

compared to one study that showed no difference between the methods and another study 

that showed worse accuracy with robotic guidance.57 However, it has been shown that 

procedures that utilize robot-assistance compared to those without have decreases in 

length of hospital stay64, 65 and radiation exposure.60, 65-67 These factors are beneficial to 

both patients undergoing the procedure and hospital staff, as well as an associated cost 

reduction.  

Previous studies have compared robot-assisted procedures to conventional 

methods by analyzing screw placement accuracy using the aforementioned 

classifications.53, 92-97 The largest of these studies evaluated robotic guidance of 3,131 

pedicle screws in 593 patients over a 4 year period.92 Although this was a large 

multicenter study across 14 locations, there was variability in the criteria used for clinical 

acceptance of placement across locations and surgeons, so implants could not be directly 

compared. Three studies have quantified robotic accuracy by comparing implanted 

screws directly to the target locations, but they only analyzed entry and exit point 

deviation or angular deviation in axial and sagittal views, and not the deviation in the 

pedicle region where clinical grading scales measure accuracy.92, 93, 97 To the authors 

knowledge, no studies at this time have used automated measurements to remove human 

input and bias from the measurement process. The process of fusing preoperative with 

intra- or postoperative images, which is a necessary step to compare implanted screws to 



49 

 

the planned locations, involves manual alignment which has not been previously 

quantified. 

The objective of this research is to measure pedicle screw placement accuracy 

using a novel automated measurement system that directly compares the final implanted 

screw location to the planned target location in all three anatomical views. A second 

objective is to quantify the uncertainty associated with the fusion process of aligning 

preoperative and intra- or postoperative scans. This system was used to quantify accuracy 

of a robot-assisted pedicle screw insertion procedure using the Mazor X Stealth Edition 

robotic guidance system in a large cohort of 122 patients with a total of 500 screws 

implanted across four surgical centers. 

3.2 Materials and Methods 

3.2.1 Patient Inclusion and Demographics 

A total of 122 patients were included in this study with 529 pedicle screws 

implanted. Of the 529 total screws implanted, 500 screw placements were included in the 

analysis with 29 excluded due to visibility of the implanted screws in the postoperative 

scans. Of the total screws analyzed, 420 were in the lumbar spine region, 70 in the sacral, 

and 10 in the thoracic. 115 of the patients had 3 or less vertebrae fused together and the 

remaining 7 patients had 4 or more vertebrae included in their fusions. Of the 122 

patients, 72 were female and 50 were male. The mean age of the patients was 62 ± 12 

years. The mean body mass index (BMI) of the patients is 30.0 ± 5.6 and 13 patients were 

current smokers. Patient clinical diagnoses included 44 patients with spondylolisthesis, 

37 with spinal stenosis, 7 with flat back deformity, 7 with lumbar instability, 5 with 

spondylolysis, 2 with retrolisthesis, 1 with each of the following - scoliosis, recurrent disc 
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herniation, recurrent synovial facet cyst, pseudoarthritis, and 16 with a combination of 

the above conditions. These patients underwent surgery at four surgical centers, with a 

single surgeon operating at each center. The minimum number of screws implanted at 

any given center was 84. Of the total cases, 108 were minimally invasive and the other 14 

were open procedures. As this was a retrospective study where all data were collected as 

part of standard patient care and these data were anonymized at their respective centers 

before inclusion in this work, this study was granted exempt status by the Boise State 

University Institutional Review Board. 

3.2.2 Surgical Procedure 

All patients received a preoperative computed tomography (CT) scan. This scan is 

used by the surgeon to plan pedicle screw placement in the navigation software (Mazor, 

version 4.0 and 4.2; Medtronic, Dublin, Ireland). On the day of surgery, the patient is 

held in a prone position. An O-Arm is used to take a fluoroscopy scan of the patient to 

register their position and the position of the robotic arm in relation to their anatomy 

(Figure 3.1a). This scan is used to register the patient’s current position with the scan 

used for the preoperative plan. The robotic arm is then moved to the necessary position 

for the pre-planned screw trajectory. The robotic end effector is used as a guide while the 

surgeon inserts the screw (Figure 3.1b). The screw placements are verified either 

intraoperatively using an O-Arm scan or postoperatively using a CT scan. The scans 

included in this study to measure placement accuracy include 90 patients (375 screws) 

that had intraoperative O-Arm images and 32 patients (125 screws) that had postoperative 

CT images taken between 10 and 17 months after surgery. 
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Figure 3.1 (a) Registration of the robotic platform in the operating room. AP and 

Oblique intraoperative x-ray images are taken of the patient’s bony anatomy and 
the amber-colored frame attached to the robot arm positioned over the patient’s 

body. These images establish the patient’s anatomy and relate it back to the 
preoperative scan used to plan the screw placements. (b) Placement of percutaneous 

screws through the robotic end effector with real-time navigation on the guidance 
system screen. 

3.2.3 Screw Placement Accuracy 

Deviation from the intended screw location was determined in all three 

anatomical planes. The metrics measured to determine placement accuracy are medial-

lateral (ML) and superior-inferior (SI) deviation in the pedicle region, perpendicular 

deviation and angular deviation in the axial plane, and perpendicular deviation and 

angular deviation in the sagittal plane (Figure 3.2). These metrics are measured between 

the target screw location from the preoperative plan and the actual location of the 

implanted screw as seen on post-implantation scans. 



52 

 

 
Figure 3.2 Metrics used to determine pedicle screw placement accuracy. All 

measures are determined as the deviation between the planned target screw location 
(red lines and dots) and implanted screw location (blue lines and dots). (a) Superior-
inferior (SI) and medial-lateral (ML) deviation in the pedicle region measured in the 
coronal plane. Perpendicular deviation in the (b) axial and (d) sagittal planes from 
the base of the screw tulip to the implanted screw trajectory. Angular deviation in 

the (c) axial and (e) sagittal planes measured as the angle between the trajectories of 
the planned and implanted screw locations. 

An algorithm was developed in MATLAB 2020b (The Mathworks, Inc., Natick, 

MA) to automate the measurement of screw placement accuracy. This algorithm was 

adapted from a previously published approach to automatically quantify electrode 
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placement accuracy after deep brain stimulation surgery in patients with Parkinson’s 

Disease.98 It utilizes image processing tools to locate the target screw location and the 

implanted screw, and then quantifies placement accuracy. Color filtering is used to locate 

the planned screw locations in the images. The implanted screws are found using a 

contour map based upon the grayscale values of the intra- or postoperative image. Due to 

all measurements being taken in the pixel space of the image, all distance measurements 

must be converted from pixels to a standard unit of mm. The ML and SI deviations in the 

pedicle region are measured as the horizontal and vertical distances, respectively, 

between the center of the target screw location and the center of the implanted screw 

(Figure 3.2a). The center locations are determined when looking at the screws from the 

coronal plane at the smallest diameter of the pedicle. The perpendicular deviations in the 

axial and sagittal planes are measured as the perpendicular distance from the posterior of 

the planned screw shank at the base of the tulip to the trajectory along the shank of the 

implanted screw (Figure 3.2b,d). The angular deviations in the axial and sagittal planes 

are the angle between the trajectory of the target screw location and the trajectory along 

the shank of the implanted screw (Figure 3.2c,e). 

3.2.4 Measurement Uncertainty 

To compare the location of the implanted screws to the target screw locations, the 

post- or intraoperative scan, showing the implanted screws, must be fused to the 

preoperative CT scan containing the target location. This involves aligning pre- and intra- 

or postoperative scans in all three anatomical planes (Figure 3.3). The fusion process is 

completed in the Mazor robotic software (RND version 4.2) and begins with an initial 

alignment by the software registration algorithm. Then manual adjustment, specifically 
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rotation and translation in six degrees of freedom, occurred until the spinous processes, 

transverse processes, base of vertebral body, and spinal canal were properly aligned. 

Fusions were performed by two evaluators with each evaluator completing all fusions 

within a single center. 

 
Figure 3.3 Fusion of intra- or postoperative images to preoperative CT scans in 
the (a) axial and (c) sagittal views. The postoperative image showing the implanted 
screw locations is displayed inside of the red circle. The planned locations for the 
screws, with the left implant shown in yellow and the right implant shown in blue, 

are overlain on the postoperative image in the (b) axial and (d) sagittal views. 

The fusion of the preoperative and intra- or postoperative scans is the only part of 

the measurement process that requires human input that could cause potential variance to 

the calculated screw placement accuracies. To quantify this uncertainty associated with 

the fusion process, a subset of 40 implants (10 from each center) were fused by both 

evaluators. The fusion process maps the planned screw location from the preoperative 



55 

 

image onto the scans showing the implanted screws. When this is performed 

independently by both evaluators, the target location shows up in a slightly different 

location on the intra- or postoperative scan. The difference between the two mapped 

targets is the uncertainty associated with the fusion process. This uncertainty was 

calculated for the ML and SI deviations in the pedicle region and angular deviations in 

the axial and sagittal planes. 

To measure the effect this fusion uncertainty had on the overall screw placement 

accuracy values, the interobserver variability of the final placement accuracy values was 

calculated. The same subset of 40 implants as those used to calculate the uncertainty in 

the measurement system were utilized. Each implant was evaluated using the automated 

measurement system for all six screw placement accuracy metrics. The resulting 

placement values for each evaluator were compared to see if there were statistical 

differences. 

3.2.5 Grading Scale Placement Accuracy 

The Gertzbein and Robbins criteria was used to grade screw placement accuracy 

using conventional methods.52 All measurements and classifications were performed by 

an independent radiologist. Placements were given a grade of A through E with the 

following criteria: (A) screw is fully within the pedicle, (B) 2 mm or less deviation 

outside of the pedicle, (C) greater than 2 and up to 4 mm deviation outside of the pedicle, 

(D) greater than 4 and up to 6 mm deviation outside of the pedicle, and (E) greater than 6 

mm deviation outside of the pedicle.  
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3.2.6 Manual Measurement Comparison 

The development of the automated measurement process eliminates human 

variance in measurement and bias. To assess the benefit of an automated approach, the 

same six screw placement accuracy measures described previously were manually and 

independently measured by two evaluators. The manual measurements were performed 

on a subset of 40 implants (10 from each center). Each evaluator followed the same set of 

step-by-step instructions for each metric. The measurements were taken after the 

evaluators completed tutorials on the software and were confident using the necessary 

tools. The manual measurements were compared to each other as well as the automated 

placement values. 

3.2.7 Statistical Metrics 

Statistical comparisons between manual measurements, interobserver reliability, 

and left and right sides were quantified using a paired t-test. The effects of center and 

spinal region were evaluated using a one-way ANOVA. A p-value below 0.05 was 

considered statistically significant. All accuracy values given are mean ± one standard 

deviation. 

3.3 Results 

A total of 500 pedicle screws were analyzed, of which 420 were in the lumbar 

spine region, 10 in the thoracic, and 70 in the sacral. The screw placement accuracies 

based on spinal region are shown in Table 3.1. The mean ML deviation in the pedicle 

region is 1.75 ± 1.36 mm and 333 screws (66.6%) had a deviation less than or equal to 2 

mm. Of the total screws, 123 and 377 were implanted with a deviation in the medial and 

lateral directions, respectively. The mean SI deviation in the pedicle region is 1.52 ± 1.26 



57 

 

mm and 370 screws (74.0%) had a deviation less than or equal to 2 mm. The deviation 

occurred in the superior direction in 141 screws and in the inferior direction in 359 

screws. In the axial plane, the mean perpendicular deviation is 2.00 ± 1.54 mm and the 

angular deviation is 2.40° ± 2.07°. In the sagittal plane, the mean perpendicular deviation 

is 2.16 ± 1.74 mm and the angular deviation is 3.88° ± 3.43°. 

Table 3.1 Screw Placement Accuracy Values Based on Spinal Region (mean ± 
SD). Statistical significance (p < 0.05) indicated by *. 
 

Lumbar Sacral Thoracic 

Number of Implants 420 70 10 

ML Deviation in Pedicle [mm] 1.79 ± 
1.38 

1.63 ± 
1.25 

1.25 ± 
1.43 

SI Deviation in Pedicle [mm]* 1.42 ± 
1.16 

2.21 ± 
1.63 

1.16 ± 
0.83 

Perpendicular Deviation in Axial Plane [mm] 2.05 ± 
1.56 

1.78 ± 
1.39 

1.64 ± 
1.49 

Angular Deviation in Axial Plane [°] 2.45 ± 
2.12 

2.18 ± 
1.87 

1.81 ± 
1.03 

Perpendicular Deviation in Sagittal Plane 
[mm]* 

2.05 ± 
1.68 

2.83 ± 
1.96 

2.15 ± 
1.79 

Angular Deviation in Sagittal Plane [°] 3.81 ± 
3.32 

4.33 ± 
4.12 

3.49 ± 
2.81 

 

The uncertainty of the measurement process associated with the fusion step was 

calculated on a subset of screws that included 10 from each of the four centers. The 

resulting uncertainty in the ML and SI deviations in the pedicle region are 0.67 ± 0.81 
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mm and 1.45 ± 2.00 mm, respectively. The uncertainty associated with angular deviation 

in the axial plane is 1.69° ± 1.22° and sagittal plane is 1.85° ± 1.66°. The potential effects 

of the uncertainty in the measurement process can be seen in Figure 3.4. 

 
Figure 3.4 (a) Target screw location (red) in relation to the implanted screw 

(outlined in blue) when looking from the coronal plane into the pedicle region with 
the average ML and SI deviation for the entire cohort shown. (b) Fusion uncertainty 

(dashed red) associated with the portion of the measurement process that involves 
fusing the preoperative CT to the intra- or postoperative scan. (c) One standard 
deviation (green) of the ML and SI measurements of the entire dataset. The area 
inside of the green dashed oval accounts for all variability in the measurement 

process. 

From this same subset of patients, the screw placement accuracies were calculated 

for each evaluator using the automated measurement system to quantify any interobserver 

variability occurring during the fusion process. The results show no statistical differences 

between any of the six metrics. The angular deviation in the sagittal plane was trending 

towards significance (p = 0.053). This shows that different evaluators performing the 

fusions does not significantly change the overall screw placement accuracy results but the 

additional uncertainty the fusion process adds to the measurements should be considered.  

The screw placement accuracies were compared for differences between left and 

right-side implants, center, and spinal region. There was a significant difference between 

left and right screw implants in the SI deviation in the pedicle region and perpendicular 

deviation in the sagittal plane. There was a significant difference between the four centers 
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in all metrics except the perpendicular deviation in the axial plane. The SI deviation in 

the pedicle region and perpendicular deviation in the sagittal plane are the two metrics 

that had significant differences between the spinal regions implanted. 

The grading classifications for the 500 implanted screws are 356 A, 130 B, 8 C, 3 

D, and 3 E. 486 screws (97.2%) were within the clinically acceptable range with a 

deviation less than or equal to 2 mm outside of the pedicle region. The primary direction 

a breach occurred in, reported for the 144 screws not graded as an A, was medial in 

22.2% of cases, 37.5% lateral, 22.2% superior, and 18.1% inferior. 

The accuracy values for the manual measurements and their comparison 

automated values for the subset of 40 implants are in Table 3.2. There was a statistical 

difference between evaluator 1 and both evaluator 2 and the automated measurements in 

the ML deviation in the pedicle region. There was a statistical difference between 

evaluator 2 and the automated measurements in the SI deviation in the pedicle region. 
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Table 3.2 Manual Measurement Screw Placement Accuracy Values (mean ± 
SD). Statistical significance (p< 0.05) indicated by * (between manual 1 and manual 
2), x (between manual 1 and automated), and ỻ (between manual 2 and automated). 
 

Manual Set 1 Manual Set 2 Automated 
Measurement 

ML Deviation in Pedicle [mm] * x 2.00 ± 1.38 1.70 ± 1.48 1.72 ± 1.42 

SI Deviation in Pedicle [mm] ỻ 1.35 ± 1.06 1.32 ± 1.25 1.46 ± 1.28 

Perpendicular Deviation in Axial Plane 
[mm] 

2.02 ± 1.37 2.09 ± 1.63 1.79 ± 1.36 

Angular Deviation in Axial Plane [°] 2.04 ± 1.49 2.32 ± 2.00 2.12 ± 1.81 

Perpendicular Deviation in Sagittal 
Plane [mm] 

2.08 ± 1.46 2.12 ± 2.16 2.09 ± 1.77 

Angular Deviation in Sagittal Plane [°] 3.41 ± 2.69 3.04 ± 2.27 3.16 ± 2.21 

 

3.4 Discussion 

The screw placement accuracies detailed in this study were calculated using an 

automated measurement system that can analyze screw accuracy as it relates to planned 

target location for multiple metrics in all anatomical views. The average accuracy values 

reported here in both the ML and SI directions within the pedicle region are below the 

traditional clinically accepted metric of 2 mm. The majority of those deviations occurred 

in the lateral and inferior directions. Of the total implants, 66.6% had an accuracy to plan 

value less than or equal to 2 mm. This is a much smaller percentage than the 97.2% of 

acceptable placements according to the Gertzbein and Robbins classification.52 The key 

difference between the new measurement system presented here and conventional 
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grading scales is that grading scales measure the amount of screw outside of the pedicle, 

but presented here is the amount the screw deviated from the planned location. The two 

measures are not directly comparable, and a deviation over 2 mm using the automated 

measurement system does not directly equate to a C or worse rating according to the 

grading scale (Figure 3.5).  

 
Figure 3.5 Measurement differences between accuracy of the implanted screw 
(blue) in relation to the planned location (red) versus conventional grading scale 

metrics. The pedicle edge (green dashed line) is shown that was used to judge 
placement outside of the pedicle region. (a) Categorized as A using grading scale but 
has a ML deviation of 3.21 mm away from the planned target location. (b) Grading 

scale category B with a ML deviation of 7.38 mm from the planned location. (c) 
Grading scale category C and a ML deviation from the target trajectory of 5.14 mm. 

The accuracy values in the ML and SI directions within the pedicle region are 

greater than the robotic system trajectory accuracy of 1.5 mm.68 The navigation camera 

used with the guidance system has a spatial accuracy of 2 mm,68 which adds variance to 

the accuracy quantified in this study because the camera was assumed to be in the correct 

orientation. Another source of variance to the measurements is deviation that can occur 

during the fusion process of the preoperative plan to the intra- or postoperative scan. 

Fusion is the only manual part of the measurement process but the uncertainty and its 

significance were quantified to better verify screw placement accuracies (Figure 3.4). 

Previous studies have compared the accuracy of implanted screws to the robotic 

preoperative plan.92, 93, 97 One study measured entry point deviation and axial and lateral 
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angular deviation on 178 screws in 63 patients.93 The average angles measured in this 

study for the angular deviations in the axial and sagittal planes were higher than those 

reported previously93 (2.40° compared to 2.2° and 4.21° compared to 2.9°). A second 

study performed the analysis on 646 screws in 139 patients but only measured deviation 

in the axial and sagittal planes based upon entry and exit point deviation.92 The study 

presented here also includes the ML and SI deviation in the pedicle region, which is a key 

clinical metric.  

Previous studies looking at screw accuracy, both using a grading scale or 

comparing directly to the planned screw location, have utilized manual measurements, 

whereas this study used an automated measurement algorithm. The automated 

measurement algorithm removes human variance after the fusion step, which is a 

required step for all comparisons of implanted locations to robotic preoperative plans. 

The benefit to eliminating human input was illustrated by the significant difference 

between the ML and SI deviation values in the pedicle region between the manual 

measurements and the automated measurement values, (Table 3.2) particularly since 

those are the most clinically relevant metrics. The automated measurement system can 

also more easily and consistently quantify large cohorts. 

There were statistical differences in multiple metrics between the left and right 

side implants on a single vertebrae, spine region, and center. The difference in accuracy 

between implants on the same vertebrae could be caused by artifact from the first screw 

when looking at intraoperative images. Differences between spinal regions could be due 

to the ease of access to specific vertebrae and the angles necessary to accurately implant 

the screws. Previously there was no significant difference found between deviations in 



63 

 

the thoracic, lumbar, and sacral regions,93 which is not the case in this study, but there 

were significantly more implants in the lumbar region than the other two spine regions. 

Accuracy differences between centers can be attributed to a variety of factors 

including length of time using the robot because a long training curve has been 

established for robot-guided procedures99, 100 and variability in the cases performed 

between centers including spinal region implanted. The difference between centers can 

also be attributed to the difference in imaging used for the accuracy measurements. One 

of the four centers used postoperative CT imaging that was taken approximately one year 

after surgery while the other three used intraoperative O-Arm images from the day of 

surgery. It has been shown that screw loosening is a common complication after spinal 

surgery that can occur in anywhere from 1 to 60% of cases depending on the bone density 

of the patient.101 Loosening was quantified for the 32 patients (125 screws) with 

postoperative CT images based upon the presence of a radiolucent zone around the 

implanted screws.102 It was found that 4.8% had a radiolucent zone of less than 1 mm, 

1.6% had a radiolucent zone of greater than 1 mm, and 93.6% had no sign of loosening. 

The average placement accuracy of the 375 implants with intraoperative image, 

excluding the postoperative CT scans, was 1.63 ± 1.19 mm in the ML direction and 1.39 

± 1.18 mm in the SI direction. An additional difference between the centers is that one 

used both divergent (medial-to-lateral) and convergent (lateral-to-medial) approaches 

while the other three used only convergent approaches. Regardless of the approach used 

though, both divergent and convergent approaches had the same percentage of implants 

that breached the pedicle. 
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This study was limited by minor manual input during the fusion process of 

overlaying the preoperative plan onto the intra- or postoperative scan, which trended 

toward having interobserver variability in the sagittal plane. This could be due in part to 

the variability of the intra- or postoperative images since some centers took intraoperative 

O-Arm images and others used postoperative CT scans. Additionally, the sample sizes in 

the thoracic and sacral spinal regions were limited and future work should include larger 

cohorts to verify the differences observed here between regions. The accuracy values 

were also not related to any complications in the operating room or clinical outcomes of 

the patient postoperatively, as this data was not available, but could be included in future 

analyses of screw-to-plan accuracy. 

3.5 Conclusions 

This study used a novel measurement system to analyze the robotic accuracy of 

the Mazor X Stealth Edition robotic guidance system using six metrics that analyze the 

screw placements from all three anatomical views. Implementing an automated 

measurement algorithm ensured measurement consistency across centers and regions. 

This was demonstrated across four surgical centers in 500 implanted screws. 
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Abstract 

Neuromusculoskeletal (NMS) models can aid in studying the impacts of the 

nervous and musculoskeletal systems on one another. These computational models 

facilitate studies investigating mechanisms and treatment of musculoskeletal and 

neurodegenerative conditions. In this study, we present a predictive NMS model that uses 

an embedded neural architecture within a finite element (FE) framework to simulate 

muscle activation. A previously developed neuromuscular model of a motor neuron was 

embedded into a simple FE musculoskeletal model. Input stimulation profiles from 

literature were simulated in the FE NMS model to verify effective integration of the 

software platforms. Motor unit recruitment and rate coding capabilities of the model were 

evaluated. The integrated model reproduced previously published output muscle forces 

with an average error of 0.0435 N. The integrated model effectively demonstrated motor 

unit recruitment and rate coding in the physiological range based upon motor unit 

discharge rates and muscle force output. The combined capability of a predictive NMS 

model within a FE framework can aid in improving our understanding of how the 

nervous and musculoskeletal systems work together. While this study focused on a 

simple FE application, the framework presented here easily accommodates increased 

complexity in the neuromuscular model, the FE simulation, or both. 

4.1 Introduction 

Human movement requires complex interactions between the nervous system and 

musculoskeletal system. The nervous system generates electrical signals in the brain that 

are transmitted through the spinal cord to the neuromuscular junction. At the junction, the 

electrical signal is converted to a muscle activation that generates a muscle force causing 
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motion at the joints. A major limitation in studying human systems, particularly the 

nervous system and the neuromuscular junction, is the challenge of performing in vivo 

experiments. In humans, studies investigating the neuromuscular junction are oftentimes 

difficult or infeasible to perform, particularly due to ethical concerns.23 Recording 

electrical activity at the cellular level can be dangerous to perform in humans and 

although there are types of external recordings, such as electroencephalography (EEG) 

and electromyography (EMG), these recordings occur at the brain and muscle level and 

do not provide cellular level data about what is occurring at the neuromuscular junction. 

This is where computational models, specifically fully predictive neuromusculoskeletal 

(NMS) models, can play a significant role. NMS models include components of both the 

nervous and musculoskeletal systems necessary to fully study the neuromuscular junction 

and resulting movement in a manner that is not possible in vivo. 

In the field of biomechanics, musculoskeletal simulations are used to perform 

analyses capable of assessing geometry, loading and boundary conditions, and material 

properties in situations that cannot be measured within a living organism.103 Two key 

types of musculoskeletal models are rigid body and finite element (FE) models. Rigid 

body simulations are useful for simulating musculoskeletal dynamics and calculating 

joint kinematics from experimental data.32 For more complex problems, such as detailed 

representation of the joints that include soft tissue geometries and material properties, FE 

analyses are often more useful. FE simulation environments (e.g. FEBio, febio.org; 

Abaqus, Simulia) can be used for both rigid-body simulations and more complex FE 

simulations. However, neither of these approaches involve neural control to drive the 

musculoskeletal models. 
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Neural data-driven models that use EMG as the input are an exception to this lack 

of neural control in driving musculoskeletal models.17-22 They are beneficial for in-depth 

studies to quantify musculoskeletal function and control21 via neural drive, or common 

synaptic input, to the spinal cord and muscles.17 However, these EMG driven models 

inform force production based only on decomposition of discharge times and no other 

neural anatomy. They also only operate in a feed-forward method that does not have 

the feedback from the musculoskeletal system to the nervous system required for the 

nervous system to adapt during movement. 

Alternatively, fully predictive NMS models utilize a pool of motor neurons 24-26 or 

neural networks with motor neurons, Renshaw cells, and interneurons27-31 to simulate a 

neural command that generates a simulated muscle force used in a musculoskeletal 

model. This means that the signal being converted into muscle force is based upon a 

variety of neural factors such as anatomy, types of ion channels, and connectivity 

between different neurons, which can all be modified to study their effects. Neural factors 

can be varied throughout the simulation that make the overall outputs representative of 

the adaptation that occurs in the body. This is a key benefit of fully predictive models, 

rather than studying musculoskeletal function from a specific neural drive.23 

NEURON is an open-source, Python-based simulation environment that is used to 

create models ranging from individual neurons to networks of neurons.37 Previously 

developed models in NEURON have been able to accurately simulate the neural drive to 

muscles,38 but do so in a single motor unit that would not represent in vivo muscle 

contraction. Motor unit recruitment and rate coding are the two ways in which muscle 

forces in skeletal muscle are varied and controlled.39 If a neuromuscular model does not 
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exhibit these two functions, then it cannot replicate muscle force or movement generation 

in an in vivo manner. Recruitment is the concept that not all motor units (a motor neuron 

and all the muscle fibers it innervates) are active at a given time, but instead are recruited 

in an orderly manner.39 Motor units are recruited in size order from smallest to largest, 

following Henneman’s size principle,40 where ones that generate smaller forces are 

recruited first followed by larger force producing motor units. Rate coding involves a 

proportional relationship between stimulation intensity and discharge rate, such that as 

the intensity of a stimulus increases, so does the rate of discharging action potentials.39 

All motor neurons have a recruitment threshold, below which no action potential will be 

generated. For stimuli that are above the recruitment threshold there exists a linear 

relationship between the level of injected current and the resulting discharge rate. The 

discharge rate will continue to increase with increased current intensity until the peak rate 

is achieved. After this point, there is little variation in discharge rate, even with a 

continued increase in excitatory drive. NEURON by itself simulates the electrical 

impulses representative of movement, but does not simulate the actual movement. By 

integrating NEURON with a FE environment, we can create a comprehensive multiscale 

simulation framework with the ability to model movement from initial neural command 

generated in the brain at the cellular level through to the resulting muscle contraction 

necessary for joint movement at the human systems level. 

In this study, we develop a fully predictive NMS model that uses an embedded 

neural architecture within a FE environment to simulate muscle activation and force. We 

demonstrate the ability of this integrated framework to implement motor unit recruitment 

and rate coding capabilities in the human physiological range. This is accomplished by 
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integrating finite element (Abaqus, Simulia, Providence, RI) and NEURON simulation 

environments and is demonstrated here using a motor neuron pool innervating a soleus 

muscle in a simple musculoskeletal model. A combination of complex neuronal networks 

with musculoskeletal modeling is needed for multifaceted analyses and simulation of the 

interaction between the nervous and musculoskeletal systems. The novel framework 

developed in this study has been implemented here in a simple FE model. However, this 

framework can accommodate increased complexity in the neuromuscular model, the FE 

simulation, or both, facilitating the development of multi-system models that may be used 

in future work for investigation of neurodegenerative or neurodevelopmental conditions. 

4.2 Methods 

The design approach for the NMS model was to develop an accurate 

representation of nerve-muscle interaction that would mimic in vivo muscle activation. 

To do this, the slow motor unit model developed by Kim38 in the NEURON simulation 

environment (version 7.7.2) was modified to generate a motor neuron pool consisting of 

310 motor units and incorporated into a FE musculoskeletal model based upon a 

previously developed model.104 

The neuromuscular model developed by Kim consists of a single motor neuron 

innervating a cat soleus muscle38 and is publicly available on ModelDB.105 The alpha 

motor neuron has 311 dendrites connected to the soma, which is then connected to the 

axon hillock and initial segment (Figure 4.1). The three-dimensional neuron geometry 

was reconstructed from scans of a cat spinal motor neuron.38 All cellular components 

exhibit passive properties, and the soma, dendrites, axon hillock, and initial segment also 

include various ion channels for active property definitions. The potassium (delayed 
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rectifier, calcium-activated) and sodium (fast, persistent) channels elicit spiking in all 

active cells, and the calcium channels (N-type, L-type) play a vital role in bursting 

activity that elicits force generation in muscles required for movement. The model of the 

neuromuscular junction includes components for calcium dynamics, activation dynamics, 

and force production. The force production is based on a Hill-type muscle model with 

active and passive force generating elements.38 

 
Figure 4.1 (a) 2D and (b) 3D representations of alpha motor neuron. 

The musculoskeletal model is a simplified representation of a human ankle joint 

(Figure 4.2). All geometry in the model was segmented from the Visible Human Male 

dataset.106 The model includes the soleus and tibialis anterior muscles represented as 

axial connectors positioned to run through the centroid of the muscle cross-sectional 

geometry. The model also includes the foot bones, tibia, and three-dimensional articular 

cartilage104 at the tibia-talus joint. Muscle contraction is controlled by applying the forces 

from the NEURON simulation calculations to the soleus axial connector. Neural 

parameters determined for felines have been shown to share many of the same features as 

those seen in humans,107 therefore many NMS models of humans utilize feline neural 

parameters,27, 28, 30 as was done in this study. 
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Figure 4.2 Abaqus musculoskeletal model of the ankle joint including geometries 

of the bones, muscles, and cartilage. 

All simulations were performed in Abaqus/Explicit, which included a Fortran 

user-subroutine (vuamp) as an interface between NEURON and Abaqus (Figure 4.3). 

NEURON is called every 100 ms of the simulation by running a Python script from 

inside the Abaqus-specific Fortran subroutine. During the NEURON simulation, the 

activation calculated in the calcium dynamics and activation dynamics modules is input 

into the force calculation. The resulting forces are input back into the Fortran user-

subroutine to apply to the soleus muscle connector in Abaqus. 
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Figure 4.3 Flow of information in the integrated FE NMS model. A NEURON 
simulation is ran using a call from the Abaqus-specific Fortran user-subroutine 
every 100 ms. From that simulation, the activation is input into the muscle force 

calculation. The force is then applied to the soleus muscle in the Abaqus 
musculoskeletal model. 

4.2.1 Verification of Software Integration 

An integrated NMS model containing a single motor neuron in the motor neuron 

pool was used for verification of the two software environments. The same input 

stimulation profiles as the Kim motor unit model were used as input into the simulation.38 

The simulated forces from the single motor neuron FE NMS model were then compared 

to published results (Figure 4.4) and the RMSE between the output profiles was 

calculated. 
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Figure 4.4 (a, b) Input activation profiles from Kim108 implemented in the single 

neuron NMS model to show software integration. (c, d) Neuromuscular muscle force 
results from Kim108 (Figures 3B and 4B), reproduced here using publicly available 

data from ModelDB105. (e, f) Muscle force outputs from FE NMS simulations at 
lengthened, optimal, and shortened muscle lengths. 

4.2.2 Verification of in vivo Neural Behavior 

Motor unit recruitment and rate coding capabilities of the model were 

demonstrated to show the efficacy of the model to produce muscle forces from neural 

commands generated from a neuronal network. A neuronal network, or motor neuron 
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pool, was generated using NetPyNE (Networks using Python and NEURON).109 

NetPyNE was chosen to scale a single neuron into a network of 310 motor units because 

the program was designed specifically to facilitate the development of large-scale, 

complex neuronal networks written in NEURON. The diameters of the neurons were 

varied for motor unit recruitment to occur following an exponential distribution39 with a 

range from 48.8 to 99.7 μm, which is within the diameter range estimated for human 

motor neurons.30 The peak twitch force for each motor neuron was calculated using an 

exponential distribution with a 100-fold range.39 In the network model, the total muscle 

force which was applied to the soleus muscle in the FE environment was calculated as the 

summation of twitch forces from all motor units.39 A neuronal network of 310 motor 

units was created to innervate the soleus muscle based on estimates of the total number of 

motor units per specific muscle in humans and felines.110-113 

For motor unit recruitment verification, two activation profiles were applied to all 

motor units uniformly with randomly distributed noise applied independently for each 

motor unit. Noise was an offset to the stimulation amplitude at each time point in the 

simulation and was calculated as a random number from a normal distribution with a 

mean of 0 nA and standard deviation of 0.2 nA. The modeled motor neuron pool was 

activated to simulate three amplitudes corresponding to 10%, 40%, and 75% of MVC, or 

approximately 3 N, 12 N, and 23 N, respectively. These values correspond to feline 

muscle forces, as the original neuromuscular model parameters38 were tuned to match 

those experimental values. The first stimulation profile consisted of a 4 s simulated ramp 

and hold contraction that increased linearly from baseline amplitude to the target force 

over a 2 s period and was then held constant for an additional 2 s. The second profile 
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linearly ramped up to the target force and then downward to baseline amplitude, both 

over a 2 s period. The resulting muscle forces were plotted to ensure they followed 

accurate muscle behavior.39 The interspike interval, or the time between each subsequent 

discharge, for each motor unit was calculated at each force level. Additionally, the 

recruitment threshold, or force at which each motor unit is recruited, was calculated as a 

%MVC to verify the motor neuron diameter distribution and orderly recruitment. 

To demonstrate rate coding in the integrated FE NMS model, a simulation was 

performed with a ramp and hold force profile which ramped up to 10% MVC over 1 s, 

followed by 2 s of constant stimulation intensity. The muscle force level of 10% MVC 

was chosen for comparison to previously published data.114 The discharge rate for each 

motor unit was calculated as the instantaneous frequency115 and plotted to ensure an 

accurate relationship between stimulation intensity and discharge rate. 

4.2.3 Incorporation of Tissue Mechanics Predictions 

The integrated NMS model with a network of 310 motor units was used to verify 

that the integrated model could be used to study human joint biomechanics. The Hill-type 

muscle model parameters were modified to match human levels with 300 N of force 

applied to the soleus muscle for ankle plantarflexion to occur. The contact pressure 

between articular cartilage at the tibia-talus joint was measured throughout the 

simulation. 

4.3 Results 

The muscle force outputs from the single motor neuron FE NMS simulation at 

three muscle lengths—0 mm, − 8 mm, and − 16 mm—or lengthened, optimal, and 

shortened muscle states, respectively, reproduced the results reported by Kim38 (Figure 
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4.4). The root mean square error (RMSE) between the NEURON force predictions of the 

neural model by itself and the integrated FE NMS model at the optimal muscle length are 

0.0513 N and 0.0492 N for the reproduction of Kim Figs. 3b and 4b,38 respectively. The 

RMSE at the lengthened and shortened muscle states are 0.0467 N and 0.0407 N for 

Fig. 3b and 0.0424 N and 0.0307 N for Fig. 4b, respectively.38 These RMSE values verify 

the effective integration of the NEURON and FE software environments. 

The total time for a 10.0 s simulation in the FE NMS model framework was 

approximately 12 min for a single motor neuron. Of that, 8 min was the time taken for the 

NEURON component of the simulation and 4 min for the Abaqus FE component. 

4.3.1 Verification of in vivo Neural Behavior 

The integrated FE NMS model scaled to a neuronal network of 310 motor units 

effectively demonstrated motor unit recruitment for two stimulation profiles at three 

muscle force levels (Figures 4.5 and 4.6). Motor unit recruitment follows an exponential 

distribution where smaller motor units are recruited before larger motor units. The 

resulting muscle forces increased linearly until the last motor unit of that simulation was 

recruited, which is representative of physiologically accurate muscle behavior at greater 

force levels.39 The interspike interval plots (Figures 4.5d–f, 4.6d–f) show a decrease in 

time between successive action potential discharges, or increased discharge rate, with an 

increase in stimulation intensity and correspond to an increase in percent maximum 

voluntary contraction (%MVC). 
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Figure 4.5 (a-c) Discharge times for every 20th motor unit (dashes) with resulting 

output muscle force (solid line). Motor unit 1 is the smallest and motor unit 310 is 
the largest, with an exponential size distribution. The stimulation profile increased 
linearly for two seconds until reaching the peak amplitude corresponding to that 
%MVC, after which point it was held constant for two seconds. (d-f) Interspike 
interval measurements between each subsequent discharge for every motor unit 

through the length of the simulation. Intervals with less than five occurrences were 
not included in the figure for visualization. 
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Figure 4.6 (a-c) Discharge times for every 20th motor unit (dashes) with resulting 

output muscle force (solid line). The stimulation profile increased linearly for two 
seconds until reaching the peak amplitude corresponding to that %MVC, after 

which point it decreased linearly back to baseline over two seconds. (d-f) Interspike 
interval measurements between each subsequent discharge for every motor unit 

through the length of the simulation. Intervals with less than five occurrences were 
not included in the figure for visualization. 

All motor units had recruitment thresholds between > 0 and 75% MVC and 

followed an exponential distribution. The average (± standard deviation) motor neuron 

diameter in the neuronal network of 310 motor units was 61.58 ± 13.08 μm. The average 

(± standard deviation) motor neuron diameter for motor units recruited between 0 – 30% 

MVC was 57.77 ± 8.25 μm. The average (± standard deviation) motor neuron diameter 

for motor units recruited between 50 and 75% MVC was 94.60 ± 3.10 μm. 

The neuronal network exhibits rate coding based upon the discharge rates of each 

motor unit, shown for two representative motor units (Figure 4.7). Below the minimum 

discharge rate (6.78 nA), no spiking occurs. After the minimum discharge rate, there is a 

linear relationship between stimulation intensity, represented by an increase in amplitude 
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of the applied current, and the discharge rate. This relationship continues until the peak 

discharge rate is reached, after which point the discharge rate has little variation. 

 
Figure 4.7 (a) Discharge times for every 20th motor unit (dashes) with resulting 
muscle force output (solid line). The stimulation profile increased linearly for one 

second until reaching the peak amplitude corresponding to 10% MVC, after which 
point it was held constant for two seconds. (b) Discharge rate, in pulses per second, 
of motor units 40 and 60 over the course of the simulation, showing the relationship 

between intensity and discharge rate to demonstrate rate coding. 

4.3.2 Incorporation of Tissue Mechanics Predictions 

The contact pressure between tibial and talus articular cartilage during ankle 

plantar flexion was measured throughout the simulation (Figure 4.8). The peak pressure 

achieved during the simulation was 14.89 MPa. The inclusion of cartilage and contact 

interaction in the integrated model demonstrates the ability of the model to perform more 

complex biomechanical analyses than is possible using rigid body simulations. 
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Figure 4.8 (a) Contour map showing contact pressure on the tibia articular 
cartilage during ankle plantarflexion. The region of higher contact pressure is 

located posteriorly. (b) Plantarflexed position of the tibia-talus joint. 

4.4 Discussion 

The direct agreement between the muscle force output from Kim38 and the single 

motor neuron FE NMS model verifies that the NEURON model has been accurately 

integrated with the Abaqus FE environment. The capability of the integrated NMS model 

with neuronal network to exhibit the principles of motor unit recruitment and rate coding 

show that the model accurately simulates the neural drive to muscles. 
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The independent computation times for the NEURON and Abaqus components of 

the FE NMS model highlight the ability to increase complexity in either component 

without modifying the run time in the other. A benefit of using NetPyNE to scale the 

neural architecture to be more representative of physiological muscle is that the software 

has been designed to run parallelized simulations, which in future models will increase 

efficiency of large-scale neuronal networks. 

The efficacy of this model to accurately simulate various neural commands at 

different muscle force levels was shown through the verification of the principles of 

motor unit recruitment and rate coding. This illustrated the ability of the NMS model to 

accurately simulate skeletal muscle forces needed to drive in vivo movement. It was 

shown that the NMS model is capable of robust neural architecture scaling, and is 

therefore applicable to muscles of all sizes throughout the body. 

The interspike intervals presented at 10% MVC (Figures 4.5d, 4.6d) are slightly 

lower than those reported by Thompson et al.116 for soleus motor unit spontaneous 

discharges, but spontaneous discharges would be more variable, and therefore have 

longer interspike interval times than stimulated motor units. Also, the decrease in 

interspike interval with an increase in intensity is physiologically accurate across both 

stimulation profiles (Figures 4.5 and 4.6) because discharge rate increases with intensity 

resulting in a decrease in time between subsequent discharges. In the ramp-up and ramp-

down stimulation profile (Figure 4.6), there was an asymmetry in discharge rates between 

recruitment and de-recruitment of motor units, as was shown to be the case in soleus 

motor units during experimental recordings.117 
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The average motor neuron diameters within recruitment threshold ranges were 

calculated to verify the motor unit size distribution in the neuronal network. The average 

diameters were comparable to previously published values,118 showing that the 

recruitment threshold distribution occurring due to the exponential diameters of the motor 

units matched in vivo values. The discharge rates at 10% MVC ranged from 7.03 to 11.28 

pulses per second (pps) (Figure 4.8). These values are within the range found for motor 

unit discharge rates at recruitment and peak force.114 

The model developed here has a similar neural architecture to previously 

developed fully predictive NMS models.24-31 The neuron geometry in this model was 

reconstructed from a cat spinal motor neuron,38 which is more complex and 

physiologically accurate than previous models which built two-compartment cell 

models.27, 28 The most similar model is the five-component model (motor neuron pool, 

muscle spindles, half-sarcomere, fiber, and continuum mechanics) of Heidlauf and 

Röhrle.25 Our model incorporates a program designed specifically for neuronal network 

simulations, rather than using a general bioengineering software.25 This has potential 

benefit because it is easier to create larger, complex neural architectures, as exhibited 

here with a 310 motor neuron pool compared to 10 in prior literature.25 This can be 

accomplished with NetPyNE, as was done in the motor unit recruitment and rate coding 

verification, since it was designed to facilitate the development of large neuronal 

networks using NEURON. 

In this study we presented a FE model with a simplified representation of the 

ankle with two point-to-point muscles to serve as proof-of-concept that a NEURON 

simulation can be integrated with a FE environment to create a fully predictive NMS 
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model. Musculoskeletal model complexity in the isometric contraction simulations used 

for verification of software integration is similar to that of existing NMS models with 

rigid-body musculoskeletal representation.29-31 The inclusion of contact interaction at the 

tibia-talus joint takes the analysis a step further to demonstrate that additional FE model 

complexity can easily be incorporated within our integrated FE NMS environment. 

Abaqus is frequently used for more complex musculoskeletal simulations, 

including the use of three-dimensional muscle geometries and sophisticated biomaterial 

models.119-123 Future work on this model will focus on incorporating these components so 

that the FE NMS model may be extended to perform more complex biomechanical 

analyses that better capture physiological interactions and dependencies between the 

nervous and musculoskeletal systems. Additionally, the neuronal network developed in 

this study will facilitate future work with complex three-dimensional muscle architectures 

because the current network can be minimally modified to include muscle fiber 

innervation. 

The scope of this work was limited to verifying integration between the software 

platforms and the resulting muscle force generation from the FE NMS model. Limitations 

of the current model are the simplicity of the musculoskeletal model, lack of validation 

against kinematic data, and neural signal only including input from motor neurons. The 

complexity of the FE model should be increased in future work to incorporate three-

dimensional representations of musculature and ligaments and validate the resulting 

human motions against experimental data. Additionally, the NEURON simulation should 

be expanded to include additional cell types representative of electrical signals generated 

in the brain necessary to study neurodegenerative disorders. 
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This is the first time that a predictive neural architecture has been integrated into a 

musculoskeletal finite element environment. A fully predictive NMS model capable of 

running within a FE environment, as presented in this work, can aid in improving our 

understanding of how the neural and musculoskeletal systems work together to generate 

and control movement in both healthy and pathological individuals. In the future, this 

model may be applied to study neurodegenerative and neurodevelopmental movement 

disorders. 

4.5 Data Availability 

The neuromuscular model used here to validate results from the finite element 

framework was provided by ModelDB (Kim38) at the publicly available 

repository: https://senselab.med.yale.edu/ModelDB/ (Model #235769). The integrated 

model is also available on ModelDB (Model #267184). 
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5.1 Background 

Neurodevelopmental disorders stem from irregularities in the nervous system 

during early brain development that lead to complications in function, behavior, and 

movement. Neurodevelopmental disorders are commonly diagnosed during childhood but 

these disorders can persist to cause lifelong impairments. As of 2008, approximately 1 in 

6 children in the United States has a developmental disability with prevalence increasing 

from 12.84% to 15.04% over a 12-year period.3 Examples of these conditions include 

autism spectrum disorders, attention deficit/hyperactivity disorder, intellectual disability, 

and Rett syndrome.4, 5 Neurodevelopmental disorders can be caused by both genetic and 

environmental factors, or a combination of both.5 

Studying neurodevelopmental disorders can be difficult to do especially with the 

challenge of performing experimental studies in vivo. It is not feasible to record all 

measurements of interest and ethical considerations must be taken when performing 

experimental studies with humans. Oftentimes animal studies are used to bridge this gap 

and information from animal experiments can be extrapolated to humans. For parameters 

that are unable to be measured experimentally, neuromusculoskeletal (NMS) models can 

provide missing information. NMS models often only include complexity in either the 

neuromuscular or musculoskeletal components. One type of NMS model that overcomes 

this is a fully predictive model. Fully predictive NMS models allow for parameterization 

in both the nervous and musculoskeletal systems which enables them to be used for 

studies of the entire motion generation feedback loop in the body. 

Rett syndrome (RS) is a neurodevelopmental disorder that affects 1 out of every 

10,000 female births.42 RS is caused by a range of genetic mutations on the methyl-CpG-
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binding protein 2 (Mecp2).41 Females are predominantly affected by RS due to Mecp2 

being located on the X chromosome.43 RS causes primary motor symptoms of a loss of 

purposeful hand movement, progressive changes in muscle tone, loss of speech, and, in 

severe cases, difficulty breathing and gait abnormalities.44 To better treat and care for 

those living with RS, the underlying disease mechanism must be understood. RS was 

chosen as the neurodevelopmental disorder to be modeled in this study as there is already 

a well-developed experimental mouse model with supporting data that can be used for 

validation.45 Other neurodevelopmental conditions can be studied using the work 

presented here once the feasibility is demonstrated in the RS population. 

There are different Mecp2 mutations that impact numerous cortical areas and have 

varying RS-related symptoms. It has been shown that restoration of Mecp2 function 

could reverse RS.124, 125 This means that if the mechanisms by which varying mutations 

of Mecp2 cause RS-related impairments were understood, possible treatments could be 

developed to restore the normal function of Mecp2.126 There are existing experimental 

mouse models that study the effect mutations and deficiencies in Mecp2 have on 

signaling in pyramidal cells.127-129 These models do not investigate how the changes in 

signaling effect movement, but rather just attribute these changes to the symptoms of RS. 

Other work has analyzed the effect Mecp2 mutations have on the behavior 

abnormalities,130, 131 anxiety,132 and stress responses133 individuals with RS experience 

based on Mecp2 mutations in different brain regions and neuron types. One study tracked 

eye movement changes in RS to see if the signaling pathway to the oculomotor system 

was affected by Mecp2 mutations.134 These studies analyze neural signal changes 

stemming from RS that cause the associated motor symptoms, but fail to take the analysis 
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a step further to look at how the movement is changed to better understand the disease 

mechanism. 

The goal of this work is to develop a fully predictive NMS model of a mouse 

hindlimb within a single software framework that can be used to study 

neurodevelopmental disorders. The neural model was developed to include neural 

morphology that may be altered to represent healthy or pathological neural morphology, 

so that a spectrum of neurodevelopmental states may be simulated. This is done using 

NEURON and Abaqus software programs for the neuromuscular and musculoskeletal 

components, respectively. NEURON (version 7.7.2) is an open-source, python-based 

simulation environment for models ranging from single neurons to networks of neurons.37 

Abaqus is a finite element (FE) software useful for generating complex biomechanical 

models that can include soft-tissue geometries and measure parameters unable to be 

measured experimentally, such as joint contact pressures. The fully predictive NMS 

mouse model described in this study was based upon a previously developed NMS model 

that showed the effective integration of NEURON simulations within the Abaqus 

environment.135 This model will be applied to study the effect that changes in neural 

morphology have on resulting joint kinematics. 

5.2 Finite Element Model Development 

The musculoskeletal portion of the model was developed in Abaqus/Explicit 

(Simulia, Providence, RI). Mouse bone and cartilage geometries were extracted from a 

mouse micro computed tomography (uCT) scan. The scan was taken on a 22-week-old 

mouse using a Skyscan machine at 70 kV, 142 uA, and a 0.5 mm Al filter. All geometries 

were segmented in Amira (Thermo Fisher Scientific, 2020, Waltham, MA) (Figure 5.1). 
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Hypermesh (Altair Hyperworks, Troy, MI) was used to generate FE meshes from the 

STL surface representations. Bony geometries are modeled as rigid (R3D3) elements. 

Cartilage of the femur, tibia, and patella were modeled as three-dimensional tetrahedral 

elements (C3D10M). The cartilage are also modeled as rigid, but cartilage-to-cartilage 

contact behavior is represented by a linear pressure-overclosure relationship.104 Muscles 

were represented as point-to-point connecters based upon a publicly available, previously 

validated rigid-body mouse hindlimb model.136 The knee flexors and extensors were 

scaled and aligned to the segmented geometry for use in this study (Figure 5.2). 

 
Figure 5.1 Three-dimensional bone and cartilage geometries were segmented 

from a mouse uCT scan. 
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Figure 5.2 Abaqus FE musculoskeletal geometries from the pelvis to the foot. 

Articular cartilage is included at the knee. 

The model simulates the kinematics of a full gait cycle of the mouse hindlimb. 

The hip joint is kinematically controlled and modeled as a ball and socket joint. The 

ankle joint is modeled as a one degree of freedom hinge joint and is also kinematically 

controlled. The tibiofemoral and patellofemoral joints are controlled by the muscle forces 

of the knee flexors and extensors. The knee is modeled as six degree-of-freedom joint. 

Contact mechanics, including contact pressure and contact area, are measured throughout 

the gait cycle at the tibiofemoral and patellofemoral joints (Figure 5.3). 
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Figure 5.3 Contour map showing contact pressure on the femur articular 

cartilage at the tibiofemoral joint during the propulsion phase of the gait cycle. 

5.3 Neural Model Development 

The neural portion of this model simulates the signal traveling from pyramidal 

cells in the brain to motor neurons in the spinal cord (Figure 5.4). Pyramidal cells were 

included in the model to incorporate the electrical signal from the brain to motor neuron 

pool that was lacking in the previous integrated NMS model. Pyramidal cells were 

specifically chosen as they have been shown to have morphological and ionic channel 

changes due to neurodevelopmental conditions.45, 137 The neural models38, 138 were 

available from the public repository ModelDB.105 The pyramidal cell is a layer 5 cell that 

is representative of cells found in the premotor cortex.138 The original pyramidal cell 

geometry included a soma, apical dendrites, basal dendrites, and axon. The geometry was 

modified to include an axon initial segment (AIS) to allow for morphology changes 

caused by RS. All pyramidal cell components include passive membrane channels 

representative of leak currents in the cell used to maintain homeostatic membrane 
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potential. The soma also includes potassium (voltage-gated, calcium-activated, persistent, 

transient), sodium (persistent, transient), and calcium (low voltage activated, high voltage 

activated) property definitions. The apical dendrites have potassium (voltage-gated, 

calcium-activated), sodium (transient), and calcium (low voltage activated, high voltage 

activated) channels included as well. The motor neuron geometry includes a soma, axon 

hillock, AIS, and a reduced dendritic tree to improve signal reception. All components of 

the motor neuron exhibit passive properties. In the soma, axon hillock, and AIS there are 

potassium (delayed rectifier, calcium-activated) and sodium (fast, persistent) channels to 

elicit spiking that occurs in all active cells. Calcium channels (N-type, L-type) are in the 

dendritic tree and soma to help with bursting necessary for proper muscle force 

generation. 
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Figure 5.4 Three-dimensional representations of the pyramidal cell and motor 
neuron geometries included in the neural portion of the integrated NMS model. 

The entire neural component of the model includes pyramidal cells sending 

signals to a motor neuron pool of 180 motor neurons. This network was generated using 

NetPyNE (Networks in python and NEURON).109 The motor neuron pool was scaled 

according to experimental studies of the number of motor neurons that stimulate the 

quadriceps femoris muscles of a mouse hindlimb.139 The neuromuscular junction is 

comprised of modules for calcium dynamics, activation dynamics, and force 

production.38 Force production is based on a Hill-type muscle model with active and 

passive force generating elements. Even though Hill-type muscle models are simplified 
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representations, they have been shown to accurately reproduce experimentally measured 

in vivo muscle forces.140 

5.3.1 Neuron Morphology Changes 

Previous experimental work has found alterations to axon morphology in mice 

with deletion of Mecp2 that replicates the features of human individuals with severe 

RS.124, 141 The AIS in pyramidal cells in the premotor cortex is found to have a higher 

tortuosity and be shorter in Mecp2 mice compared to wildtype, healthy controls (Figure 

5.5).45 These morphology changes lead to disrupted signaling that causes impaired 

movements and decreases in fine motor coordination. These changes are seen on AIS 

staining using beta-IV spectrin, ankyrin G, and neurofascin as AIS markers. 

 
Figure 5.5 (a) Healthy wildtype AIS compared to (b) AIS with increased 

tortuosity, a morphological change associated with RS. 

To better quantify the relationship between AIS tortuosity in wildtype and RS 

groups, tortuosity was quantified using root mean square error (RMSE), arc-to-chord 

ratio, and rate of angular change. AIS geometries were segmented using Amira software 

(Thermo Fisher Scientific, 2020, Waltham, MA) from scans showing AIS staining 

(Figure 5.5). From each mouse ten axons were segmented. Each axon was turned into a 

point cloud of vertex locations that was fit with a line-of-best-fit in three-dimensional 
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space (Figure 5.6a). This line of best fit is representative of what would be the center of a 

perfectly straight AIS. Each point cloud was then normalized to 30 points along the 

length of the axon (Figure 5.6b). The RMSE was measured as the average distance 

between each of the points along the axon to the straight line-of-best-fit in all three 

dimensions. The arc-to-cord ratio is measured as the Euclidian distance between each of 

the 30 points divided by the length of the straight line (Figure 5.6b). To quantify the rate 

of angular change, the angle between each point along the length of the axon was 

calculated and summed for the total amount the AIS corkscrewed in space. 

 
Figure 5.6 (a) Point cloud of vertices (blue) from STL segmentation of AIS fit 

with a line-of-best-fit (red). (b) Normalization of point cloud to 30 centroids (blue) 
along length of AIS. The arc-to-chord ratio is the Euclidian distance between the 

centroids (blue line) divided by the length of the line-of-best-fit (red). 

5.4 Current Status 

The work completed on this project includes the creation of the Abaqus FE 

musculoskeletal model and the NEURON neuromuscular model independently. The FE 

model includes geometry and material properties for mouse hindlimb bones, knee 

articular cartilage, and knee flexor and extensor point-to-point muscle connectors. The 



100 

 

model simulates a full gait cycle of a mouse hindlimb. The NEURON model includes all 

cellular geometries with various ion channels embedded to elicit spiking activity. The 

motor neuron pool has been scaled to an appropriate size for the quadriceps muscles of a 

mouse hindlimb. AIS tortuosity has been quantified for the wildtype control mice 

throughout their time course development at 5 weeks, 10 weeks, and adult stages for 

comparison to diseased populations. The protocol is set up to run the remaining Mecp2 

stained AIS scans as soon as they are available.  

5.5 Ongoing Work 

The development of the fully predictive NMS mouse hindlimb model is ongoing. 

Current work includes software integration, model validation, and application of AIS 

morphology changes. Software integration involves communication between the 

NEURON and Abaqus portions of the model which occurs through an Abaqus-specific 

Fortran subroutine (vuamp). A NEURON simulation will be performed for 100 ms, or a 

smaller time increment if the length of the overall simulation is in a different order of 

magnitude, and the resulting muscle activation levels from the neuron spiking will be 

used to calculate the muscle forces input into the Abaqus FE musculoskeletal simulation 

(Figure 5.7). The quadriceps muscles, rectus femoris, vastus intermedius, vastus medialis, 

and vastus lateralis, will be controlled by the NEURON simulation. The total quadriceps 

muscle force will be calculated as the summation of the twitch muscle force of each 

motor unit innervating the muscles. The hamstrings muscle forces will be controlled to 

counterbalance the quadriceps movements to perform the necessary joint motions. 

Ligaments and tendons will also be included at the knee to help with joint control when 

applying the muscle forces. After the 100 ms from the initial NEURON simulation has 
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completed in Abaqus, the current muscle parameters will be sent back to NEURON to 

run the next updated portion of the simulation (Figure 5.7). At this stage, computational 

run time will be assessed to see if it would be beneficial to parallelize the NEURON 

simulation to improve run time with the increased complexity of including pyramidal 

cells and scaling the motor neuron pool. 

 
Figure 5.7 Flow of information in integrated NMS model. A NEURON 

simulation runs for a set amount of time, which is 100 ms in this example. The 
activation from NEURON is input into the muscle force calculation. The force is 

then applied to the quadriceps muscles in the Abaqus musculoskeletal mouse model. 

Model validation of the healthy baseline model against experimental data must be 

performed to ensure accurate results and applications of the integrated NMS mouse 

model. Experimental data is being collected by collaborators at University of Nevada Las 

Vegas. This includes electroencephalography (EEG) and electromyography (EMG) data 

collected simultaneously with kinematics during purposeful movement in mice. The EEG 

will be used to compare to neural spike outputs from NEURON that are used to calculate 

muscle activation levels. Muscle force outputs from the FE portion of the integrated 
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model will be verified against EMG. Joint kinematics will be compared to joint location 

in space determined from video recordings during experimental trials.  

The integrated and validated NMS healthy baseline mouse hindlimb model will 

be applied to study the effect of AIS morphological changes associated with RS on 

movement. The AIS geometry of the pyramidal cells will be modified to account for the 

increased tortuosity quantified in Mecp2 mice. The resulting changes in kinematics and 

contact mechanics at the knee during gait will be studied. The sensitivity of 

morphological changes will be studied by varying the degree of tortuosity and the 

number of pyramidal cells affected by an increase in tortuosity. Modeling the effects 

neural morphological changes have on movement in RS and other neurodevelopmental 

disorders, using a fully predictive NMS model, can help to inform about the underlying 

disease mechanisms and lead to potential treatment options. 

5.6 Discussion 

The development of a fully predictive NMS mouse hindlimb model in the 

integrated NEURON-Abaqus framework enables studies of underlying mechanisms of 

neurodevelopmental diseases. When this work is successfully concluded, there will be a 

healthy baseline mouse hindlimb model that can be adapted in both the neural and 

musculoskeletal portions to study the resulting effects. The potential of this baseline 

model for applicability to neurodevelopmental disorders will be shown through the 

modification of AIS tortuosity, representative of individuals with RS, to investigate the 

resulting movement-related effects. This can lead to analyzes on the effects of additional 

modifications to the model, such as modifying ion channel distributions or ion current 

parameters, to see if they overcome the movement variations resulting from the AIS 



103 

 

morphology changes. Results of these analyzes could inform treatment options such as 

medications targeting specific ion channels. 

The applicability of this model to study neurodevelopmental disorders will be 

demonstrated using morphology changes associated with RS, but the model can be 

modified to study other neurodevelopmental and neurodegenerative conditions. 

Intellectual disability (ID) is a neurodevelopmental condition that has been found to 

impact the α2 subunit of GABAA receptors which are localized in AIS synapses in 

chandelier cells that leads to irregular spiking activity.137 The baseline mouse NMS 

model could be adapted in the neural portion to include chandelier cell geometries with 

inhibiting signals being sent to the pyramidal cells to investigate how this affects the 

musculoskeletal joint motion. Additionally, the model could be used to study the effects 

of stimulation from electrodes implanted during deep brain stimulation (DBS) to treat 

motor symptoms of Parkinson’s Disease, a neurodegenerative condition. Different initial 

activation profiles could be applied to the pyramidal cells that represent various 

modulation profiles applied using DBS electrodes to see which profile optimally relieves 

motor symptoms. 

A key benefit of fully predictive NMS models is the capability to modify 

parameters in both the neural and musculoskeletal components. On the neural side, the 

geometry of any cellular component can be modified to represent varying shapes or 

include additional features that modify signaling, such as adding myelination to an axon. 

There is also large variability in the types of ion channels used, as well as varying the 

properties of a given ionic channel. The FE musculoskeletal model can simulate different 

motions depending on what would showcase the differences due to a specific 
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neurodevelopmental or neurodegenerative condition, such as one with more fine motor 

control like a string pull task. The FE model is currently set-up to primarily study the 

knee, but different muscles and soft tissues could be included in the additional joints 

depending on the motion most affected by the neural disorder. Changes in soft tissue 

outputs, such as tissue stress and strain, might be indicative of changes in fine motor 

control that represent early onset changes resulting from neurodevelopmental and 

neurodegenerative conditions. This will be tested using the integrated NEURON and FE 

model, as soft tissue representations are not possible within simpler musculoskeletal 

models, such as rigid-body modeling. 

Studying neurodevelopmental and neurodegenerative diseases is more feasible to 

study experimentally in mice compared to humans. Findings related to changes in neural 

morphology and signaling in mice can be extrapolated to humans. The current integrated 

fully predictive NMS model is of a mouse hindlimb, but it can be modified to incorporate 

human musculoskeletal geometry and scaled to represent human neural circuits. 

Kinematic changes in the human and mouse models could then be compared to see if the 

changes at the mouse-level are equivalent in humans. Additional future work should 

include three-dimensional muscle geometries to better represent in vivo muscle force 

generation where each motor unit will directly stimulate a set of embedded active muscle 

fibers for muscle contraction.  

The development of a fully predictive mouse hindlimb model built within a FE 

framework can aid in improving our understanding of neurodevelopmental and 

neurodegenerative conditions. A healthy baseline, wildtype model exists that can be 

modified to analyze the effect changes in neural morphology and signaling have on 
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musculoskeletal function to study underlying disease mechanisms and develop targeted 

treatment options. 
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CHAPTER SIX: CONCLUSION 

Neurodegenerative and neurodevelopmental diseases stem from irregularities in 

the nervous system during early brain development or due to the aging process that lead 

to complications in function, behavior, and movement. There are treatment options for 

many of these diseases, but none that cure the root cause of the condition. The underlying 

disease mechanisms must be better understood to design targeted treatment options. This 

body of work showcases the development of computational tools and models that can be 

applied to study neurodegenerative and neurodevelopmental disorders. 

Chapter Two details the development of an automated measurement system used 

to measure the accuracy of electrodes implanted during robot-assisted asleep deep brain 

stimulation (DBS). DBS is a surgical treatment option for Parkinson’s Disease (PD), a 

neurodegenerative condition. The electrodes implanted during DBS help to regulate 

atypical firing patterns in the basal ganglia region of the brain to alleviate the primary 

motor symptoms of PD, including tremor, dystonia, and rigidity.8-11 Accurate placement 

of electrodes is key to successful clinical outcomes, and the developed measurement 

system removes human bias for increased precision of accuracy measures. It also can 

analyze large cohorts of patient implants in a reduced amount of time. By quantifying 

electrode placement accuracy in this manner, informed improvements can be made to the 

robotic technology and surgical procedure to further improve patient outcomes following 

surgery. This work was published in the Annals of Biomedical Engineering in February 

2019.98 
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Chapter Three applies the automated measurement system developed to measure 

electrode accuracy in DBS to pedicle screw placement during spinal fusion procedures. 

Spinal fusions are used to treat a variety of degenerative musculoskeletal conditions 

including spondylolisthesis, lumbar stenosis, and degenerative disc disease.46-48 Screws 

are placed in the pedicle region of the vertebrae to act as anchor points for rods that 

restrict movement between the attached vertebrae. Precise screw placement is required 

for optimal clinical outcomes, similar to electrodes in DBS. A breach outside of the 

pedicle region can cause impairments to the spinal cord. The automated measurement 

system was modified to measure pedicle screw placement accuracy in all three 

anatomical planes. The uncertainty associated with the necessary step of fusing 

preoperative to intra- or postoperative images was quantified to capture the measurement 

system variability. This measurement process quantifies additional pedicle screw 

placement accuracy metrics compared to the conventional grading system scales that 

group placements by amount of pedicle breach. Information about implanted screw 

location as it directly relates to the target can inform technological developments and 

surgical procedure changes. This study was submitted for publication to the Journal of 

Neurosurgery: Spine in April 2022. 

Chapter Four summarizes the development of a fully predictive 

neuromusculoskeletal (NMS) model within a single finite element (FE) framework. This 

model improves upon existing models by integrating two software programs that allow 

for complexity in both the neuromuscular and musculoskeletal modeling components. 

NEURON is an open-source program designed for creating models ranging in size from a 

single neuron to large scale neuronal networks. Abaqus is a FE solver that has been used 
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to create complex biomechanics models that incorporate soft tissue definitions and 

measure properties unable to be determined experimentally, such as contact pressures. 

The integration of NEURON and Abaqus within a single framework allows for 

parameterization within either system to study the effects that neural and musculoskeletal 

components have on one another. This interaction can help to better understand the 

underlying mechanisms of neurodegenerative and neurodevelopmental conditions. This 

study was published in Scientific Reports in November 2021.135 

Chapter Five applies the integrated NMS model to study neurodegenerative and 

neurodevelopmental diseases. A fully predictive NMS mouse hindlimb model was 

developed in the integrated software platform to study Rett syndrome (RS). RS is a 

neurodevelopmental disorder caused by a mutation of the Mecp2 gene with hallmark 

motor symptoms of a loss of purposeful hand movement, changes in muscle tone, and a 

loss of speech.44 The neural component of the model was expanded to include pyramidal 

cells representative of the brain sending signals to the spinal cord. The musculoskeletal 

component of the model is of a three-dimensional mouse hindlimb with soft tissue 

inclusion at the knee joint. This mouse hindlimb NMS model will be used to study the 

effect axon initial segment morphology changes associated with RS, including an 

increased tortuosity, have on joint movement. This will help to expand the knowledge 

about the underlying mechanisms of RS and provide a platform for understanding how to 

overcome the effects of neural morphological changes caused by neurodevelopmental 

diseases. This work is in preparation to be submitted to Scientific Reports in Summer 

2022. 
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Collectively, this body of work has made the following contributions to the 

scientific community: (1) An automated measurement algorithm for determining the 

accuracy of surgically implanted devices during procedures used to treat 

neurodegenerative and degenerative musculoskeletal conditions. The uncertainty 

associated with image fusion during said procedures was quantified to better inform 

improvements in surgical procedures and robotic technological advances. (2) Integrated 

neuromusculoskeletal modeling framework built by incorporating NEURON simulations 

within a FE environment. This simulation framework allows for complexity in both 

neural and musculoskeletal components, which is needed to study motion generation in 

the body and underlying disease mechanisms in neurodegenerative and 

neurodevelopmental diseases. (3) A fully predictive NMS mouse hindlimb model 

developed in the integrated FE framework. This model will be applied to study the effect 

changes in neural morphology will have on resulting joint movement due to 

neurodevelopmental and neurodegenerative diseases, and how movement changes can be 

used as a marker for early diagnosis. 

Future directions for this work include continuing to build on the complexity of 

the integrated NMS model and using it for additional applications to neural conditions. 

The neural modeling component of the NMS model should be improved to include 

additional anatomical geometries, including interneurons, and to enhance connectivity 

between different neurons to better represent signals travelling from the brain to spinal 

cord. The FE musculoskeletal portion of the NMS model should be advanced to 

incorporate three-dimensional musculature with embedded active fibers that are directly 

activated by the electrical signaling from the motor neuron pool in the NEURON 
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simulation. The integrated NMS model can be applied to study additional movements 

related to RS that show early-onset motor changes, such as a string pull task, which 

requires finer motor control than gait. Other disorders can also be studied, such as the 

effect the loss of Gabra2-1 receptors plays on movement in individuals with intellectual 

disabilities.137 The automated measurement system ought to be applied to measure 

accuracy of different surgical procedures as well as measure changes in accuracy due to 

new instrumentation and robotic devices. The quantified uncertainty in the fusion process 

should be accounted for when developing new robotic technology, particularly to develop 

an automated approach that would remove manual intervention in any step of the 

measurement process. This work encompasses a range of research that uses 

computational models and algorithms to study the underlying mechanisms and design 

targeted treatment options for neurodegenerative and neurodevelopmental disorders. 
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