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ABSTRACT 

Changes in fire regimes, invasive species dynamics, human land use, and drought 

conditions have shifted important plant species in the Northern Great Basin (NGB)—

including big sagebrush (Artemisia tridentata ssp.), conifers (e.g., Juniperus spp.) and 

invasive annual grasses (e.g., Bromus tectorum). Characterizing how these overlapping 

disturbances influence species distributions is critical for land management decision-

making. Previous research has explored the individual effects of drought, wildfire, 

restoration, and invasive species on sagebrush steppe communities, but the specific effects 

of these disturbances in context with one another remain poorly understood at a landscape 

scale. To address this gap, I constructed multilevel conditional autoregressive (CAR) 

species distribution models (SDMs) to map the distributions of big sagebrush, juniper, and 

cheatgrass on lands managed for grazing in the NGB, both with and without a history of 

fire. These models illuminate the concurrent influences of species co-occurrences, drought, 

wildfire characteristics (e.g., fire size, time since fire, and number of fires), and restoration 

treatments. For all SDMs, results indicate that species co-occurrence exhibits the strongest 

effect—between 1.23 and 19.2 times greater than the next strongest predictor—on all 

species’ probability of occurrence, suggesting that vegetation co-occurrence meaningfully 

influences landscape-scale species distributions. In portions of the NGB both with and 

without historical fire, number of fires and maximum vapor pressure deficit (VPD) also 

exert substantial influence on the likelihood of species presence, and results indicate that 

restoration treatments have broadly met desired outcomes for both sagebrush and juniper. 
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Narrowing down to only areas that have previously burned, however, models do not 

support the efficacy of post-fire restoration. All versions of the SDMs, which rely on 

Bureau of Land Management-administered grazing allotments as a spatial varying 

intercept, also explicitly point to the differential influence of long-term management 

regimes on species distributions. These model predictions capture post-disturbance 

vegetation outcomes under changing fire, climate, and invasive species regimes and in the 

context of human decision-making, in turn defining a plausible ecological space as these 

disturbance and management processes play out into the future.  
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INTRODUCTION 

Positionality Statement 

By necessity, all science carries with it a lens or paradigm that shapes the questions, 

data, interpretations, and conclusions of the work in complex, multifaceted ways (Scotland, 

2012; Secules et al., 2021). My research on plant species distributions in the NGB is no 

different, and is strongly informed by a background in private land protection and 

management in the inland Northwest. I come to this work with a distinctly Western lens, 

but one that also places primacy on systems thinking, social-ecological interactions, and a 

belief that people can, have, and should steward the land.  

Background 

Artemisia tridentata ssp., or big sagebrush (hereafter, sagebrush), is a foundation 

plant species throughout the Great Basin that has undergone substantial, ongoing decline 

in abundance and area of distribution due to development, grazing, shifting fire regimes, 

climate change, woody plant encroachment, and invasive species (Balch et al., 2013; 

Bradley, 2010; Coates et al., 2017; Davies et al., 2021; Falkowski et al., 2017; Prevéy et 

al., 2010). It now occupies just 56% of its historical range, leaving the remaining sagebrush 

highly fragmented and less able to support the wildlife and soils that have made sagebrush. 

so vital to the landscapes of the American West (Davies & Bates, 2020; Meinke et al., 

2009). Although a multitude of known disturbances—including climate change, wildfire, 

grazing, and human land-use—influence the composition and configuration of sagebrush 

landscapes, the drivers and outcomes of simultaneously shifting vegetation, climate, and 
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fire regimes remain especially unclear (M. L. Brooks et al., 2015; Copeland et al., 2021; 

Requena-Mullor et al., 2019). In this research, I examine these simultaneous dynamics in 

the context of the Northern Great Basin (NGB), a portion of the Great Basin ecoregion 

covering southeastern Oregon, southern Idaho, and parts of northern Utah, Nevada, and 

California (Map 1). 

Fundamentally, sagebrush ecosystems respond to disturbances, including wildfire 

and drought, both of which are exacerbated by climate change, based on their capacity for 

resilience or resistance, which varies based on subspecies and life histories (Chambers et 

al., 2019). Chambers, Miller, et al. (2014) define resilience as “the capacity of an ecosystem 

to regain its fundamental structure, processes, and functioning when altered by stressors 

like drought and disturbances like…altered fire regimes” (emphasis theirs). They define 

resistance as “the capacity of an ecosystem to retain its fundamental structure, processes, 

and functioning despite stresses, disturbances, or invasive species” (Chambers, Miller, et 

al., 2014; emphasis theirs). Big sagebrush subspecies, for example, have adapted to a 

historically low-severity fire regime which they have minimal capacity to resist, but to 

which they are ultimately resilient. As fire regimes and other disturbances change, species 

and ecosystems may not have adequate resistance and resilience capacity, which may 

induce state transitions (Chambers, Miller, et al., 2014; Ellsworth et al., 2016; Johnstone 

et al., 2016). 

In addition to resistance and resilience,  understanding landscape-scale disturbance 

ecology processes relies on accounting for ecological memory, or “the degree to which an 

ecological process is shaped by its past modifications of a landscape” (Peterson, 2002). 

This phenomenon guides how ecosystems respond to disturbances, and encompasses the 
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informational—long-term—and material—physical abiotic and biotic responses to 

disturbance events—legacies of landscape processes and patterns on the current state of a 

landscape’s function (Johnstone et al., 2016; Newman et al., 2019). These legacy effects 

are particularly relevant in post-fire vegetation recovery and dynamics, as well as in 

vegetation-fire cycles (Peterson, 2002; sensu Pickett et al., 2009; van Mantgem et al., 

2018). Informational legacies may confer ecosystem resilience; conversely, changing 

disturbance regimes can degrade ecological memory, triggering potential shifts in 

landscape pattern, process, and function (Johnstone et al., 2016). More generally, 

ecological memory relies on the idea that species have adapted to a particular set of 

disturbance regimes, and these past disturbances will dictate how species respond to current 

and future disturbances. The ability for NGB sagebrush systems to regain and/or retain 

their structure and function dictates abundance and distributions of species under shifting 

disturbance regimes, which may include novel disturbances, novel disturbance 

interactions, or disturbance characteristics outside of the historical range of variability.  

The NGB—here defined as the Northern Basin and Range EPA Level III 

Ecoregion—comprises plant functional groups typical of the entire Great Basin. Sagebrush 

shrublands and sagebrush steppe dominate the region, including plant species such as big 

sagebrush, Western juniper, Utah juniper, Rocky Mountain juniper, and various other 

conifers (e.g., Pinus monophylla, Pinus ponderosa) at higher elevations (R. F. Miller et al., 

2008). Grasslands, which historically have contained native bunchgrasses but are 

increasingly dominated by annual invasive grasses (e.g., Bromus tectorum, Taeniatherum 

caput-medusae [L.] Nevski) characterize the NGB at some lower elevations (Pilliod et al., 

2017). These plant functional groups have distinct dynamics with one another and varied 
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responses to abiotic disturbances such as climate change and wildfire. While these species 

do not represent the NGB’s full range of biotic diversity, they do collectively and 

individually represent key management challenges across the region that this research 

seeks to redress. 

Invasive Annual Grasses 

The first of these challenges is species invasions, and particularly the influx of 

cheatgrass—among other invasive annual grasses—into arid and semiarid ecosystems 

since its introduction alongside cattle and sheep grazing in the West in the mid-late 19th 

century (D’Antonio & Vitousek, 1992; Novak & Mack, 2001). Bromus tectorum (hereafter, 

cheatgrass) currently occupies nearly a third of the Great Basin (210,000km2), and 

outcompetes other native forbs, grasses, and shrubs through earlier germination, greater 

seed production, and faster growth (Bradley et al., 2018; Pilliod et al., 2017). This adds 

fine, arid fuels to otherwise more fuel-limited systems (Abatzoglou & Williams, 2016; M. 

L. Brooks et al., 2004; Pilliod et al., 2017). At the same time, cheatgrass also exhibits more 

resilience to fire than native species, with a far greater ability to re-establish post-fire than 

many native species, especially at lower elevations (Chambers, Miller, et al., 2014; Reisner 

et al., 2013). This positive feedback induces an invasive grass-fire cycle that has been 

explored at length in the Great Basin ecoregion (Balch et al., 2013; Bradley et al., 2018; 

M. L. Brooks et al., 2004; D’Antonio & Vitousek, 1992). Successful cheatgrass invasions 

occur particularly in years with higher than average winter precipitation, and are often 

exacerbated by human land-use activities, including grazing and development (Chambers, 

Bradley, et al., 2014; Pilliod et al., 2017). Cheatgrass also thrives in hotter, drier regions, 

both of which contribute to the grass-fire cycle and displacement of sagebrush species, 
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which are far less resilient to fires in the short term (Chambers, Miller, et al., 2014; 

Ellsworth et al., 2016; Pilliod et al., 2017).  

Conifer Expansion 

The second of these challenges is conifer expansion, which primarily includes 

Western juniper (Juniperus occidentalis) in southeastern Oregon and Rocky Mountain 

(Juniperus scopulorum) and Utah juniper (Juniperus osteosperma; hereafter, collectively 

referred to as “juniper”) in southern Idaho, northern Nevada, and northeastern Utah. 

Juniper species often exist in association with pinyon pine (e.g., Pinus edulis, Pinus 

monophylla), particularly in the more southern and eastern portions of the NGB, as well as 

further south in the Great Basin (Romme et al., 2009). This expansion, often characterized 

as encroachment by both researchers and managers, results in reduced productivity and 

diversity, as well as increased soil erosion and resource competition that can displace 

sagebrush and other associated species, including the imperiled greater sage-grouse 

(Centrocercus urophasianus; Bates et al., 2005; Coates et al., 2017; Olsen et al., 2021; C. 

J. Williams et al., 2014). There is also evidence that juniper removal may increase 

opportunities for cheatgrass invasion (Coultrap et al., 2008). 

Unlike cheatgrass, juniper species are native to the NGB, but the abundance and 

density of juniper and pinyon pine have increased substantially due to fire suppression and 

livestock grazing since settlers began colonizing the Great Basin in the mid-19th century 

(R. F. Miller & Rose, 1999; Shinneman & Baker, 2009b). In the central and northern parts 

of the Great Basin, studies indicate that pinyon and juniper have increased between 125 

and 625% since the 1860s, largely through infilling and ecotonal shifts  (R. F. Miller et al., 

2008, 2014; Weisberg et al., 2007). Pinyon-juniper is also the third-largest vegetation type 
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in the US, covering 40 million hectares (Filippelli et al., 2020). As a result, decades of land 

management and research in the Great Basin have focused on limiting or even eliminating 

juniper (e.g., Bates et al., 2005; Fick et al., 2022; R. F. Miller et al., 2014; Olsen et al., 

2021), despite their being native to the region, having cultural and ecological significance, 

and the fact that they are sharply declining in some areas due to persistent modern drought 

conditions (Filippelli et al., 2020).  

Studies of pinyon-juniper in the Great Basin have largely focused on rangeland 

management concerns, generally explicating the behavior of pinyon-juniper woodlands as 

a form of biotic disturbance itself, and often at relatively small scales (J. E. D. Miller & 

Safford, 2020). Rarely, though, does the literature address landscape-scale patterns of 

conifer responses to fire without the subtext of woodland eradication, nor do studies often 

examine the long-term legacies of disturbance on pinyon-juniper vegetation dynamics  

(Baker & Shinneman, 2004; Shinneman & Baker, 2009b) and ecological memory (sensu 

Johnstone et al., 2016; Pickett et al., 2009). While Miller and Safford (2020) explicitly 

suggest that plant responses to wildfire depend on adaptations to historical fire regimes 

(i.e., informational legacies; sensu Johnstone et al., 2016) the effects of specific fire 

attributes on pinyon-juniper woodlands remain understudied at landscape scales.  

Wildfire 

The third major management challenge, which builds from the first two, is wildfire. 

Fire has always characterized the NGB, contributing to the heterogeneity, regulation, and 

regeneration of the ecosystem’s various landscapes through pyrodiversity (e.g., 

McLauchlan et al., 2020), which can itself spur biodiversity (see Jones & Tingley, 2022). 

Indigenous populations also shaped historical fire regimes in the Great Basin through land 
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use and cultural burning, contributing to a fire regime of frequent low-severity fires (Carter 

et al., 2021).  On a global scale, it is becoming increasingly clear that interactions among 

fire and anthropogenic drivers like climate change, land use, and invasive species are 

shifting both fire regimes and biodiversity toward greater extremes and, in some cases, 

homogeneity (Kelly et al., 2020).  

Recent studies indicate that fire severity, frequency, anthropogenic ignitions, and 

size, in addition to fine fuels and aridity, have all increased across the American West due 

to climate change and land use (Abatzoglou et al., 2019; Abatzoglou & Williams, 2016; 

Balch et al., 2017; M. L. Brooks et al., 2015; Cattau et al., 2020; Dennison et al., 2014). 

Fire seasonality, including timing and length of fire season, have also changed in the past 

several decades (M. L. Brooks et al., 2015; Westerling et al., 2006). In other words, not 

only are average fire attributes experiencing increases, but the most extreme attributes of 

fires are also becoming more extreme, largely as the result of interacting biophysical and 

social factors (Balch et al., 2020). These pattern changes have borne successional 

consequences for the sagebrush biome, which is not adapted to the more frequent, higher-

intensity fires that increasingly characterize the NGB’s fire regime (Brooks et al., 2015; 

Ellsworth et al., 2020; Mahood & Balch, 2019). 

This holds true in the NGB, where the invasive annual grass-fire cycle is a well-

known threat, especially in sagebrush-dominated areas (Coates et al., 2016; D’Antonio & 

Vitousek, 1992; Shinneman & Baker, 2009a). Recently, researchers have suggested that 

the “human-grass-fire cycle” more accurately captures the role of anthropogenic influences 

on how invasive grasses alter fire regimes (Fusco et al., 2021). The threats posed by this 

cycle have been exacerbated by climate change, which has in turn increased fire 
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occurrence, frequency, ignitions, and season lengths in the NGB (Balch et al., 2013; 

Bradley et al., 2018; M. L. Brooks et al., 2004; Fusco et al., 2019). Meanwhile, a 

combination of historical grazing, fire suppression, and climate change has driven decades 

of conifer expansion (Falkowski et al., 2017; Romme et al., 2009). This not only reduced 

biodiversity, but has also increased canopy biomass, resulting in in larger, more intense 

fires than those that historically characterized sagebrush steppe (R. F. Miller & Tausch, 

2002; C. J. Williams et al., 2014). Conifer woodlands exhibit slow post-fire recovery, often 

on the order of decades, and this is particularly true in the wake of severe wildfires (Baker 

& Shinneman, 2004). Fire return interval approximations for pinyon-juniper woodlands 

range from 50 to 200 years, although there is evidence that increasing invasions of annual 

grasses, such as cheatgrass, may simultaneously alter fire frequency in pinyon-juniper and 

other Great Basin plant functional groups (Balch et al., 2013). 

Meanwhile, fire regimes themselves are changing in response to human influences 

(e.g. human ignitions, land use; Balch et al., 2017; Cattau et al., 2020), vegetation dynamics 

(Balch et al., 2013) and climate change (Abatzoglou & Williams, 2016), creating a set of 

interwoven fire-vegetation-climate feedbacks (Figure 1) whose impacts are difficult to 

predict yet critical for managers to understand (McLauchlan et al., 2020).  

Previous studies have generally addressed only single-species components of these 

fire-vegetation-climate dynamics, such as the respective relationships between wildfire and 

sagebrush, pinyon-juniper, and cheatgrass. Spatially-explicit, management-oriented data 

on these species’ interactions with each other, and with fire, remain sparse. Further, most 

studies on vegetation responses to wildfire have been conducted on the scale of a single 



9 

 

fire, rather than at a regional level that might have broader management implications (J. E. 

D. Miller & Safford, 2020).  

Climate Change 

Climate projections for the NGB depict a future that has hotter temperatures, more 

precipitation, and much greater variability in precipitation timing While climate change 

underlies the dynamics in each of the preceding interlinked challenges in the NGB, it also 

directly impacts sagebrush steppe ecosystems. In the Great Basin, increased atmospheric 

warming may induce particular adaptive mismatches for those subspecies that occupy basin 

sub-regions (e.g., A. tridentata ssp. wyomingensis), survive at higher elevations (e.g., A. 

tridentata ssp. vaseyana), or are better suited for either more xeric or more mesic 

conditions (Brabec et al., 2017; Kleinhesselink & Adler, 2018; Schlaepfer et al., 2012; Still 

& Richardson, 2015). Some studies suggest that sagebrush in cooler, wetter areas may 

actually be more resilient to the impacts of climate change since they respond positively to 

increased warming, while the inverse is true for sagebrush in warmer, drier areas (Rigge et 

al., 2019). Meanwhile, the impacts of climate change are projected to benefit cheatgrass, 

with populations expected to either remain steady or expand their land area in the NGB by 

as much as 18% (Boyte et al., 2016; Zimmer et al., 2020). Most studies agree that juniper 

(and the pinyon-juniper association more broadly) will face declines under climate change, 

particularly in the NGB (Zimmer et al., 2020).  

Here, I use maximum vapor pressure deficit (VPD) as the primary predictor related 

to climate, which represents the conditions of greatest aridity in a given location and serves 

as a proxy for drought. Increased warming has directly increased VPD, and will continue 
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to do so under climate change (A. P. Williams et al., 2019). In turn, this propels each of the 

aforementioned cycles of increased wildfire, cheatgrass invasion, and plant stress. 

Management and Restoration 

Collectively, the interlinked, climate-exacerbated challenges of species invasions, 

conifer expansion, and wildfire point to a broader ecological possibility: the diminution or 

possible displacement of big sagebrush and associated shrubs, forbs, and bunchgrasses. 

(Bowman-Prideaux et al., 2021; M. L. Brooks et al., 2015; Davies et al., 2021; Davies & 

Bates, 2017). This interplay among ecosystem disturbances and broader vegetation 

dynamics requires management responses, including restoration actions, in the face of 

increasing climatic uncertainty. In the NGB, management decision-making falls primarily 

to the Bureau of Land Management (BLM), which manages 63.6% of the total land mass 

of the ecoregion. This includes the state-level BLM administration of grazing allotments 

that account for an even greater proportion—roughly 74%—of the NGB. The BLM leases 

these allotments to private individuals for grazing livestock such as cattle and sheep at 

relatively low costs and with management plans overseen by the agency, a system that 

dates back to the federal 1934 Taylor Grazing Act (Wilkinson, 1992). 

Management actions in sagebrush systems can alter species’ resilience to 

disturbance and ability to withstand biotic invasions, contingent on historical community 

composition and disturbance regimes (Chambers, Miller, et al., 2014). Certain restoration 

treatments, particularly of expanding pinyon-juniper woodlands, have exhibited success, 

mostly at site-specific scales (e.g., Freund et al., 2021). However, regional-scale 

management requires a better understanding of how concurrent shifts in biotic and abiotic 

disturbances influence common rangeland species distributions at the scale of the NGB. 
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Specifying distributional responses to disturbance regimes is a critical step toward more 

effective conservation-decision making as climate change-induced fire activity expansion 

continues to accelerate (Abatzoglou et al., 2021).  

 

Figure 1. Conceptual framework for the social-ecological underpinnings of and 
feedbacks captured by sagebrush, juniper, and cheatgrass SDMs in the NGB. 

Although historical disturbance regimes tend to dictate species’ responses to 

wildfires in the present (Johnstone et al., 2016; J. E. D. Miller & Safford, 2020; Stevens et 

al., 2020), little is known about how recent changes in fire regimes influence shrubland 

vegetation dynamics. Many models implicitly assume that species respond to disturbances 

in isolation, rather than capturing the ways in which species jointly respond to shifting 

disturbance regimes based on their interactions with one another (Pollock et al., 2014). 

Here, I address these gaps by exploring how wildfire, vegetation co-occurrence, and 

restoration activities influence the distributions of sagebrush, juniper, and cheatgrass in the 

NGB. Clarifying disturbance-distribution dynamics for these three important sagebrush 

ecosystem species, particularly with the inclusion of anthropogenic factors like wildfire 



12 

 

and restoration, can highlight the outcomes of the disturbance-management interface at a 

landscape scale. In turn, these results point to considerations for sagebrush steppe 

management decisions, particularly as climate change continues to alter disturbance 

regimes. 

This work additionally addresses the issue of spatial autocorrelation—a lack of 

independence across spatially proximate points or features—, to which species distribution 

models (SDMs) are inherently sensitive (Beguin et al., 2012). To do so, I used multilevel 

Bayesian conditional autoregressive (CAR) models with NGB grazing allotments as the 

spatial unit. While examples of using a multilevel CAR model implementation exist in 

fields such as epidemiology (e.g., Bivand et al., 2017; Djeudeu et al., 2022), this appears 

to be the first implementation of the multilevel areal unit approach in an ecological context. 

The use of grazing allotments, which are a management-relevant areal unit, offers more 

useful management insights as compared to an arbitrary spatial unit, such as a grid. 

Objectives and Relevance 

Given the context of wildfires, vegetation co-occurrences and interactions, climate, 

and restoration in grazing allotments in the NGB, my research aims to answer the question: 

How do vegetation co-occurrence, wildfire histories, and human interventions influence 

the distributions of sagebrush, juniper, and cheatgrass in the NGB? In the context of 

previously burned areas, I also address the question: How do wildfire characteristics such 

as size, frequency, and time since fire influence plant species distributions in the NGB in 

the context of other abiotic and biotic drivers?  
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Within these two questions, I have three main objectives: 

1. Capture the relative effects of wildfire, restoration, and vegetation co-

occurrences—which may represent biological invasions—as well as climate and 

topography, on sagebrush, juniper, and cheatgrass distributions. 

2. Delineate spatially-explicit predicted distributions of sagebrush, juniper, and 

cheatgrass. 

3. Identify areas of management success and/or concern based on the outcomes of 

wildfire-restoration-species invasion dynamics across grazing allotments, while 

also clarifying the role of allotments themselves in determining species occurrence. 

This research serves to clarify the recent ecological past of the NGB and illuminate 

plausible ecological futures in sagebrush ecosystems. My results are particularly relevant 

to public land managers seeking to address complex fire-vegetation-climate dynamics in 

the NGB. 
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METHODS 

To meet the above objectives, I constructed multilevel Bayesian conditional 

autoregressive (CAR) SDMs to predict the distributions of sagebrush, juniper, and 

cheatgrass as a function of wildfire, climate, restoration, topography, and species co-

occurrences in NGB grazing allotments. These models, constructed and analyzed in the R 

environment (R Core Team, 2021), build on previous research that examines the roles of 

fire and management in sagebrush distributions (Requena-Mullor et al., 2019). The models 

also pull from the insights of prior work that has examined the effects of species co-

occurrence on species distributions (e.g., Mod et al., 2020; O’Reilly-Nugent et al., 2020; 

Pollock et al., 2014). 

Study Area 

Northern Great Basin 

The Great Basin, which spans the arid portions of the Western U.S. between the 

Sierra Nevada and the Rocky Mountains, comprises roughly half of the historical sagebrush 

biome in North America (Requena-Mullor et al., 2019). This location and composition 

make the Great Basin an appropriate area for studying the effects of fire and vegetation 

dynamics on sagebrush ecosystems in a variety of topographic contexts. Although the 

Great Basin has numerous hydrographic, ecological, and cultural definitions, I selected the 

Northern Basin and Range EPA Level III Ecoregion (referred to here as the NGB) for my 

study area based on discussions with Bureau of Land Management (BLM) personnel, many 
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of whom frequently work with these ecoregional boundaries (Map 1; Don Major, personal 

communication, Feb. 23, 2021).  

The NGB covers 140,200 km2 in the northern portion of the broader Great Basin, 

including parts of Oregon, Idaho, Utah, Nevada, and California (Map 1). The region also 

contains some or all of 1415 unique grazing allotments administered by the Department of 

the Interior (DOI) via the Bureau of Land Management (BLM). Collectively, these 

allotments comprise 74.25% of the total land area of the NGB, and are managed by a 

variety of stakeholders, primarily for livestock grazing. Complex dynamics among 

sagebrush, juniper, cheatgrass, wildfire, restoration, and increasing drought also manifest 

across the NGB.  

 
Map 1. BLM-allocated grazing allotments in the study area, the Northern 
Great Basin, in the context of BLM-managed lands. Black outline indicates the 

boundary of the Northern Basin & Range Level III Ecoregion. N.B. Not all grazing 
allotments are fully within BLM (public) lands; some extend across multiple 

management jurisdictions. (Data: EPA, BLM, US Census Bureau). 
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Data Selection 

Species distribution models rely on a combination of environmental variables and 

observations of species presence to predict where species are likely to occur across space 

(Elith & Leathwick, 2009). Typically, this involves identifying climatic and topographic 

predictor variables likely to influence a species’ broader environmental niche. Here, I 

expand beyond geophysical and climatic covariates to also include the influences of abiotic 

disturbance and biotic interaction factors. 

Species Occurrence Data 

My SDMs use both presence and absence points from confirmed field observations 

in the LANDFIRE Reference Database (LFRDB), where presence points are any of the 

three species or species groups, respectively, and absence points are any other plant species 

observation in the NGB. The LFRDB is a multi-agency effort that includes geolocated 

observations of plant species, including those of management concern, across the entire 

United States. These data come from a variety of sources, including the USFS Forest 

Inventory Analysis, USFS National Gap Analysis Program, and National Park Service 

Inventory and Monitoring (LANDFIRE, 2016). This includes observations from as far back 

as the mid-1950s for some species, and a data release in 2021 known as the LF 2016 Remap 

added species observations up to 2016, from a previous endpoint of 2006. Most point data, 

however, including for sagebrush, juniper, and cheatgrass, span a shorter temporal subset. 

The LF 2016 Remap process also substantially altered the available data, not only adding 

many more years of georeferenced observations to the LFRDB, but also removing previous 

submissions by federal agencies without noting their removal. This resulted in large gaps 
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in point data in the NGB and necessitated merging the initial LFRDB and the 2016 Remap 

version to retain a more complete dataset for the study area (Map 2).  

 
Map 2. Map of both merged datasets in the NGB with an overlay of the LF 

2016 Remap LFRDB data for comparison. All points in this map were incorporated 
in species distribution modeling as presence or absence points. 

The merge process added five additional years of data, updating the LFRDB points 

from 2004 to 2009 in the NGB. In total, this merge process resulted in 111,179 species 

points in the NGB. After subsequently limiting points only to BLM grazing allotments with 

spatial adjacencies to other allotments in the NGB, there were 13,827 combined instances 

of the species of interest (presence points) and 6398 true absence points from the LFRDB 

to use for the response variables in modeling, for a total of 20,225 points.  
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Map 3. Map of presence points for sagebrush, cheatgrass, and juniper in the 
NGB, collected between 1974 and 2009. Data: EPA, LFRDB, US Census Bureau, 

Stamen. 

Of the 13,827 presence points for the three species types of interest, 7334 were 

sagebrush, 2038 were juniper, and 4455 were cheatgrass (Map 3). Although the NGB 

contains four subspecies of sagebrush with unique traits and niches—ssp. tridentata (basin 

big sagebrush, ssp. vaseyana (mountain big sagebrush), ssp. spiciformis (snowfield big 

sagebrush), and ssp. wyomingensis (Wyoming big sagebrush)—I grouped them for 

purposes of this model as a unified sagebrush category, per previous sagebrush distribution 

modeling research  (Requena-Mullor et al., 2019). Known difficulties distinguishing 

among sagebrush subspecies, particularly in-field, further substantiated this grouping 

approach (McArthur et al., 1988; Richardson et al., 2012), as did similarities in subspecies’ 

responses to elevation and site exposure gradients (Appendix A). Similar in-field 

identification issues, as well as evidence for interspecific gene flow and hybridization 

among Great Basin juniper species, led to a similar decision to use one grouped juniper 
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category, rather than tracking Western juniper, Utah juniper, and Rocky Mountain juniper 

as separate response variables (Terry, 2010; Terry et al., 2000). Plotting group means and 

standard errors for juniper species’ responses to elevation and exposure indicated, as with 

sagebrush subspecies, some differences in elevational distributions, but very similar 

exposure distributions across species (Appendix A). This data exploration conveyed 

adequate similarities across species to use one juniper category as the juniper response 

variable.  

I further subset presence and absence data based on whether or not they fell within 

a grazing allotment. I eliminated any species presence/absence points not located in an 

allotment, and in turn eliminated any allotments without points in order to later build a 

neighbor adjacency matrix in order to account for the spatial effects of grazing units via 

conditional autoregressive models. 

Biotic Predictor Variables 

The models also included presence of the two non-focal species as predictor 

variables to represent co-occurrence. For example, the sagebrush distribution model 

included cheatgrass and juniper as predictor variables, and so on. Here, co-occurrence 

serves as a proxy for species interactions, whether competitive or symbiotic, that many 

correlative SDMs do not capture (Pollock et al., 2014). Past studies indicate that including 

biotic predictor variables in SDMs has improved their predictive performance (Araújo & 

Luoto, 2007; Leathwick, 2002; Pollock et al., 2014). In this case, since juniper, sagebrush, 

and cheatgrass so frequently co-occur in the NGB, these biotic covariates also stand to 

offer insights relevant to the simultaneous management of the three species groups. Species 

co-occurrence was indicated by any species observations that were collected in the same 
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batch and in close proximity. This approach ensured not only spatial, but also temporal, 

co-occurrence. 

Climate and Topographic Data 

Climatic and topographic variables (e.g., cumulative annual precipitation and 

elevation) are a typical component of SDMs, and often used as correlated proxies for more 

directly relevant factors affecting species distributions (Elith & Leathwick, 2009). Here, I 

use climatic and topographic variables with functional relevance to the distributions of 

sagebrush, cheatgrass and juniper across the NGB in the context of restoration and 

wildfires. The first of these is maximum VPD, taken from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) 30-year normals (1990-2020) at an 

800-meter resolution. VPD, a metric of the extent to which atmospheric water content is 

below the saturation point, contributes to fuel aridity and, by extension, to the size and 

severity of wildfires across the American West (Abatzoglou & Williams, 2016; Iglesias et 

al., 2022). VPD also directly contributes to drought-induced plant mortality, with most 

species exhibiting a VPD survival threshold (Grossiord et al., 2020). Together, VPD, the 

sensitivity of plants to water limitations (e.g., drought), and climate change all drive 

wildfire regimes (Rao et al., 2022). VPD is also notably underexplored as a factor in semi-

arid plant species distributions, and despite the fact that the more commonly-used covariate 

of precipitation is a relatively weak predictor of sagebrush in particular (Still & Richardson, 

2015). 

Both slope (steepness in degrees) and aspect (the direction a slope faces) relate the 

abiotic conditions driving species-specific site suitability and species ability to recover 

from disturbances (R. F. Miller & Tausch, 2002). Mountain big sagebrush (Artemisia 
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tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) and Wyoming big sagebrush (A. tridentata 

Nutt. ssp. wyomingensis Beetle & Young), for example, exhibit stronger natural and post-

restoration recovery on north-facing slopes (Davies & Bates, 2017). Meanwhile, more 

drought-prone (i.e., southerly) aspects may delay recovery among some A. tridentata 

subspecies (Nelson et al., 2014) and provide greater support for cheatgrass populations 

(Davies & Bates, 2017). Slope can determine aridity conditions, which affect sagebrush, 

cheatgrass, and juniper distributions (Condon et al., 2011; Requena-Mullor et al., 2019). 

Together, the steepness of catchment-scale slopes and more northern-facing aspects also 

increase the probability of fire refugia, which has implications for the occurrence of all 

three species of interest (Meigs et al., 2020). 

The topography-vegetation-fire nexus points to the utility of a topographic metric 

that combines both slope and aspect. Here, I first derived both slope and aspect in R (R 

Core Team, 2021) using USGS 1/3 arc-second digital elevation model data, which is 

approximately equivalent to 10-meter resolution (USGS, 2021). I then used site exposure 

as a metric to combine slope and aspect, calculated by the equation: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ×  cos(𝜋𝜋 ×  (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−180
180

)), 

where slope and aspect are in degrees, and the output exposure values range from -100 to 

100, ranging from less exposed to more exposed, or generally cooler to warmer (Balice et 

al., 2000). This index has demonstrated efficacy in a modeling context as a topographic 

metric that combines aspect and slope (Balice et al., 2000).  

Wildfire Covariates 

To account for the influence of disturbances on species distributions, models 

included a predictor variable for number of fires based on the 1878-2019 USGS Combined 
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Wildfire Datasets for the United States and Certain Territories, which includes information 

from Monitoring Trends in Burn Severity and other federal, state, and local agencies 

(Welty & Jeffries, 2020). For models looking only at distributions for species that have 

experienced fire, I also included fire size in acres and time since fire, where the number 

represented the year post-fire in which a species point was observed in the LFRDB.  

Land Treatment Digital Library 

Restoration data come from the Land Treatment Digital Library (LTDL; 

https://ltdl.wr.usgs.gov/), a database of over 55,000 records of BLM restoration work and 

management activities that is maintained and annually updated by the USGS (Pilliod et al., 

2021). Treatments include, among others, seeding, planting, fencing, herbicide application, 

and prescribed burning. I retained all treatments categorized as “Implemented” in the 

LTDL polygon records, then assigned each species presence or absence point a 

“Treatment” or “No Treatment” category based on whether or not the area of the species 

observation had been treated before the LFRDB point collection. Within the NGB, there 

were 749 Treatment and 6626 No Treatment points for sagebrush, 482 Treatment and 3997 

No Treatment points for cheatgrass, and 104 Treatment and 1948 No Treatment points for 

juniper. Among absences, there were 287 Treatment and 6185 No Treatment points. 

Species Distribution Modeling 

The inherently spatial nature of SDMs requires addressing spatial autocorrelation 

among species presence and absence points. Here, I elected to use a conditional 

autoregressive (CAR) modeling approach, in which the model structure accounts for the 

proximity of areal units—in this case, BLM grazing allotments—to address spatial 

dependencies across presence/absence points and within model outputs. CAR models are 
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most useful in cases where the spatial position of model input data likely influences the 

data themselves. One consistent use case for multilevel CAR models has been in 

epidemiological studies, where exploiting adjacencies of non-overlapping areal units can 

facilitate deeper understanding of disease spread (e.g., Bivand et al., 2013; Djeudeu et al., 

2022; Lee et al., 2014). The applicability of multilevel CAR models for ecological 

problems has been unexplored, but holds promise for understanding ecological processes 

that occur across human-managed spaces. 

Model Implementation 

I conducted all spatial and statistical analyses in R 4.1.1 (R Core Team 2021). For 

each of the three species of interest, I constructed a multilevel logistic CAR model in the 

R package CARBayes (Lee, 2016). CAR models specifically handle spatial dependencies 

by modeling spatial autocorrelation via a set of spatial random effects via a variety of 

implementations, all of which rely on adjacency matrices of the modeled areal units (Besag 

et al., 1991; Lee, 2016). This allows for easier interpretation of spatial variability in models 

than a non-CAR implementation while also maintaining high precision and low bias (Beale 

et al., 2010). Here, I constructed a multilevel CAR model for each species’ SDM via the 

CARBayes function ‘S.CARmultilevel’ (Lee, 2016), implemented with a binomial 

likelihood and variation modeled by the following decomposition: 

𝜓𝜓𝑘𝑘 = 𝜙𝜙𝑘𝑘  , 

𝜙𝜙𝑘𝑘|𝜙𝜙−𝒌𝒌 ~ 𝑁𝑁 �
𝜌𝜌∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝜙𝜙𝑘𝑘𝐾𝐾

𝑘𝑘=1

𝜌𝜌∑ 𝑤𝑤𝑘𝑘𝑘𝑘+1−𝜌𝜌𝐾𝐾
𝑘𝑘=1

, 𝜏𝜏2

∑ 𝑤𝑤𝑘𝑘𝑘𝑘+1−𝜌𝜌𝐾𝐾
𝑘𝑘=1

�, 

𝜏𝜏2,𝜎𝜎2 ~ Inverse Gamma (𝑎𝑎, 𝑏𝑏). 

𝜌𝜌 ~ Uniform (0,1). 
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Here,  𝜙𝜙 = (𝜙𝜙1, . . . , 𝜙𝜙k) represents the spatial variation of all individuals within a given 

area, where k is the total number of areas in the model. I used the default CARBayes priors 

for 𝜏𝜏2 and 𝜎𝜎2 (a=1, b=0.01), as well as 𝜌𝜌 proposed by Leroux et al. (2000), and set a 

regularizing prior on β to constrain the model space to values closer to zero and avoid 

model overfitting (McElreath, 2019; Polson & Sokolov, 2019). While there are a number 

of options for CAR priors in a Bayesian framework, the Leroux prior appears to outperform 

others, especially for models with a large (>100) number of areas (Aswi et al., 2020). 

To account for both spatial autocorrelation among species and absence points, as 

well as to acknowledge the role of grazing and rangeland management in the NGB’s 

ecological function, I used grazing allotments as the spatial varying intercept for each of 

the sagebrush, juniper, and cheatgrass SDMs, represented by k in the above decomposition. 

While the NGB partially or wholly contains 1415 grazing allotments overseen and 

allocated by the BLM, I retained 515 of these that allotments both contained LFRDB points 

and had adjacencies with other grazing units, which is necessary for CAR models, which 

rely on a neighborhood matrix, W, to indicate areal unit adjacency (De Oliveira, 2012; Lee, 

2016; Morris et al., 2019). 

Based on Requena-Mullor et al. (2019), who found that model performance in 

sagebrush systems improved with the inclusion of fire variables (number of fires and fire 

occurrence) I included number of fires as a covariate in each species’ SDM, with additional 

fire characteristics as predictor variables in the fire-only models (see below). Beyond 

number of fires, each model included predictor variables for implemented LTDL 

treatments, a site exposure index value, and maximum VPD from PRISM 30-year normal. 
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Each model also contained covariates for co-occurrence of the other two species of interest. 

See Figure 2 for a conceptual diagram of the CAR model workflow.  

 
Figure 2. Conceptual diagram of workflow for CAR model implementation. 
Orange highlight around “Grazing Allotments” indicates its use as the areal unit 
implemented as a spatial varying intercept. N.B. Fire size and time since fire were 

just included in fire-only versions of all SDMs. Diagram created using 
BioRender.com. 

I standardized all continuous predictor variables (maximum VPD, site exposure, 

number of fires) to a mean of 0 and standard deviation of 1 (Gelman, 2008), before fitting 

each model on three chains. Each chain of the sagebrush CAR model ran for 90,000 

iterations with a warmup of 40,000 samples and thinned to every fifth draw, resulting in 

30,000 total post-warmup samples. Both the cheatgrass and juniper CAR models ran on 

three chains for 100,000 iterations with 60,000 burn-in samples, then thinned to every fifth 
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draw, for 24,000 total post-warmup samples. The cheatgrass and juniper CAR 

implementations required a higher number of iterations and burn-in samples to achieve 

consistent convergence. I assessed model convergence and proper mixing using traceplots 

and R-hat values of less than 1.01, as well as Geweke diagnostic values in the range -1.96 

to 1.96 (S. P. Brooks & Gelman, 1998; Geweke, 1992). 

In addition to the baseline models for all three species, I ran another SDM for each 

species using only the LFRDB points that had experienced historical fire. These models 

retained the same covariates as the initial SDMs, and also included fire size and time since 

fire to offer more robust insights into the effects of fire characteristics on species 

distributions in historically burned areas. These models replicated the priors from the initial 

SDM for each species, but included a much smaller dataset, with 1652 species 

presence/absence points and 141 grazing allotments. Each fire-only model ran on three 

chains with 90,000 iterations and 40,000 warmup samples thinned to every fifth draw, for 

a total of 30,000 post-warmup samples. 

Model Validation 

To validate the models, I used block k-fold cross-validation with 515 folds, each of 

which corresponded to a single grazing unit, followed by an assessment of log-loss, overall 

classification accuracy, and balanced classification accuracy as error metrics. While k-fold 

cross-validation is a typical approach for assessing SDMs’ performance, using a blocking 

strategy may even further prevent overfitting and improve estimates of prediction errors 

(Merow et al., 2014; Roberts et al., 2017). Since the grazing allotments serve as the spatial 

random effect, this blocking method helps account for both spatial autocorrelation within 

the model and for the random effect structure (Roberts et al., 2017). The small size of these 
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blocks also limits extrapolation, while still allowing for prediction into areas lacking initial 

species observation points (Roberts et al., 2017).  

To assess classification accuracy, I compared the matrix of predicted 

presence/absence values for each point in a given left-out grazing allotment (i.e., a fold) to 

the actual presence/absence value for the same point. This allowed me to propagate model 

uncertainty through the error assessment before calculating the overall and balanced 

classification using the R package “yardstick” (Kuhn & Vaughan, 2021). Overall accuracy 

measures the number of correct predictions out of the total predictions, generally resulting 

in a somewhat more optimistic accuracy figure. Balanced accuracy corrects for imbalanced 

data, such as the LFRDB species presence/absence points, by taking the mean of sensitivity 

(number of correctly predicted true positives divided by total number of predicted 

positives) and specificity (number of correctly predictive true negatives divided by the total 

number of predicted negatives), which generally results in a somewhat less optimistic 

classification accuracy (Brodersen et al., 2012). 

To calculate log-loss for each model, I estimated the predicted probability of 

occurrence of points in each left-out allotment in each of the 515 folds. This resulted in 

1000 posterior predictive draws for each initial species presence/absence point in all three 

models (20,225,000 total predictions), which I then compared to the initial observed values 

in each allotment via the log-loss function. Log-loss represents the negative log likelihood 

of the test data produced in the k-fold cross-validation process; in other words, it assesses 

the uncertainties of probabilities estimated by the models by comparing fitted probabilities 

to the actual data (Phillips & Dudík, 2008; Requena-Mullor et al., 2019). Here, higher log-

loss indicates worse model performance, and the log-loss values can also be compared 
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across SDMs as a measure of relative performance across multiple logistic regression 

models.  

I repeated the same process to validate the fire-only models, using just the 141 

grazing allotments that contained fire, species presence/absence points, and were 

contiguous with at least one other allotment as the “folds.” This resulted, again, in 1000 

posterior predictions for each of the initial 1652 species presence/absence points in the fire-

only grazing allotments, for a total of 1,652,000 predictive posterior draws from which to 

calculate log-loss. To calculate overall and balanced accuracy, I compared the predicted 

presence/absence values from each left-out fold to the observed presence/absence values 

for the points in the corresponding fire-only grazing allotment. 

Model Interpretation 

I interpreted all regression coefficients whose Bayesian 95% credible intervals did 

not contain 0 as providing strong evidence of the given variable having an effect on the 

probability of species occurrence. This is, in some respects, a Bayesian analog to a 

frequentist p-value, but can be directly interpreted as the probability of either a positive or 

negative effect of a particular covariate. Conversely, for the purposes of these models, I 

considered regression coefficients whose Bayesian 95% CIs crossed zero to not have a 

strong directional effect on species occurrence, although these coefficients and CIs may 

still offer some ecological insights into the effects of the specific predictors (Kruschke & 

Liddell, 2018). 

Model Predictions 

Using the model fits for both the initial and fire-only models, I created spatially 

explicit predictions of sagebrush, juniper, and cheatgrass distributions, respectively, in the 
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NGB.  Each of the initial predictor variable datasets served as the new spatial layers on 

which to predict model outputs, with the exception of species presence/absence, which was 

LFRDB point data. To establish non-point spatial representations of sagebrush and 

cheatgrass presence in spatial predictions of the models, I used the National Land Cover 

Database (NLCD) Rangeland Condition Monitoring Assessment and Projection (RCMAP) 

sagebrush cover and annual herbaceous cover layers, respectively, from 2009 to represent 

the new test data for the correct time period.  

 
Figure 3. Conceptual diagram of raster-based model prediction process. 

To represent juniper presence, I used 2009 remotely-sensed estimates of pinyon-

juniper biomass in the Great Basin (Filippelli et al., 2020). I set a threshold such that any 

pixel in the NLCD data with ≥15% cover counted as species presence (i.e., the pixel value 

became 1) per Bradley et al., who considered 15% a threshold for “high abundance” based 

on remotely sensed data classification (Bradley et al., 2018). Given that pinyon-juniper 

biomass is predicated on the presence of pinyon-juniper, the any non-zero pixel from the 

2009 biomass layer represented juniper presence. I then stacked, scaled, and centered these 
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variable rasters to use as prediction layers. See Figure 3 for a visual explanation of this 

prediction process. 
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RESULTS 

Conditional Autoregressive Models for All NGB Grazing Allotments 

Overall, the three SDMs that included both burned and unburned areas indicate that 

species co-occurrence, number of fires, and maximum VPD have a nonzero effect on the 

probability of species occurrence in the NGB. Each species also exhibits different spatial 

responses to the predictor variables used herein (Map 4). 

Sagebrush Model 

Juniper co-occurrence exhibits the largest—over 5.5 times greater than the next-

most influential predictor—and most certain effect on sagebrush presence, increasing the 

probability of occurrence in the NGB by 71.7% (95% credible interval [CI]: 70.3%, 

73.0%). Cheatgrass co-occurrence also has a substantial positive effect on sagebrush 

presence, increasing the likelihood of sagebrush occurrence by 22.3% (95% CI: 20.1%, 

24.5%). Restoration treatment increases the probability of sagebrush presence by 9.35% 

(95% CI: 5.97%, 12.9%). Maximum VPD increases sagebrush occurrence probability by 

43.8% as maximum VPD increases from 8.76 kPa (the minimum observed 30-year normal 

value in the NGB) to 20.69 kPa (the maximum observed 30-year normal value in the NGB), 

but with a large amount of uncertainty (95% CI: 36.5%, 51.0%). Number of fires is the 

only covariate that negatively affects the probability of sagebrush occurrence. As the 

number of historical fires increases from zero to five, the probability of sagebrush 

occurrence decreases by 16.7% (95% CI: -21.84%, -8.36%). Site exposure has no 

discernable effect on sagebrush occurrence (see Figure 4). The sagebrush SDM had an 
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overall classification accuracy of 66.28% (95% CI: 65.21%, 67.18%), a balanced 

classification accuracy of 63.58% (95% CI: 62.64%, 64.44%), and a log-loss of 0.548 (95% 

CI: 0.534, 0.567). See Table 1 for a comparison of errors for all model iterations. 

Table 1. Comparison of overall accuracy, balanced accuracy, and log-loss 
assessments for full CAR and fire-only versions of sagebrush, juniper, and 
cheatgrass SDMs. Error assessments used a k-fold process that held out a single 
grazing allotment (fold) of data in each model run. 

Model Version Overall Acc. (95% CI) Balanced Acc. (95% CI) Log-loss (95% CI) 

Sagebrush 66.28% (65.21, 67.18) 63.58% (62.64, 64.44) 0.548 (0.534, 0.567) 

Cheatgrass 92.04% (91.66, 92.37) 89.20% (88.91, 89.48) 0.161 (0.155, 0.170) 

Juniper 89.41% (88.78, 90.01) 82.63% (81.90, 83.19) 0.155 (0.150, 0.166) 

Sage. (Fire-Only) 57.93% (55.75, 60.23) 55.62% (53.45, 57.96) 0.897 (0.878, 0.922) 

Cheat. (Fire-Only) 78.63% (76.82, 80.39) 77.92% (76.34, 79.57) 0.496 (0.485, 0.515) 

Jun. (Fire-Only) 84.20% (83.35, 84.93) 74.06% (71.39, 76.97) 3.949 (3.946, 3.953) 

 
Juniper Model 

Sagebrush co-occurrence conversely has the greatest effect on the likelihood of 

juniper, increasing the probability of occurrence by 88.1% (95% CI: 84.7%, 90.7%), with 

an overall effect more than 10 times stronger than that of any other covariate. Meanwhile, 

cheatgrass co-occurrence has very little effect on the likelihood of juniper presence in the 

NGB, increasing the probability of occurrence by just 0.409% (95% CI: 0.0126%, 

0.944%). Number of fires decreases the likelihood of juniper occurrence by 1.11% (95% 

CI: -1.49%, -0.386%) as the number of historical burns goes from zero to five. As 

maximum VPD moves from 8.76 kPa to 20.69 kPa, the probability of juniper occurrence 

decreases by 12.8% (95% CI: -10.3%, -7.70%). The application of treatment has a weak 

effect on juniper occurrence, with the 95% CI crossing zero, although the 50% CI 
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demonstrates that restoration treatments somewhat reduce juniper presence (see Figure 4). 

Based on these models, site exposure has a weak effect on juniper occurrence. The juniper 

SDM had an 89.41% overall classification accuracy (95% CI: 88.78, 90.01), 82.63% 

balanced classification accuracy (95% CI: 81.90%, 83.19%), and a log-loss of 0.155 (95% 

CI: 0.150, 0.166; Table 1).  

 
Figure 4. Combined effect size plot for all three SDMs across all NGB grazing 
allotments. Lines crossing zero indicates that the 95% CI contains 0. Dots indicate 

median effect size based on regression coefficients. Cheatgrass Model 

As with juniper, sagebrush co-occurrence has the largest influence on the 

probability of cheatgrass. Sagebrush co-occurrence has an effect on cheatgrass nearly 16 

times more influential than the next-strongest predictor, increasing the likelihood of 

presence by 94.3% (95% CI: 93.7%, 94.9%) compared to no co-occurrence. Juniper co-
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occurrence also positively affects the probability of cheatgrass presence, but by a much 

smaller amount, 2.03% (95% CI: 0.757%, 3.63%), while holding other conditions at their 

mean. By magnitude, number of fires has the second strongest effect on cheatgrass 

occurrence. As the number of historical fires increases from zero to five, the likelihood of 

cheatgrass presence increases 69.8% (95% CI: 49.2%, 83.2%). The probability of 

cheatgrass occurrence increases 11.4% (95% CI: 7.83%, 15.6%) as maximum VPD goes 

from 8.76 kPa to 20.69 kPa. Cheatgrass likelihood also increases 10.0% (95% CI: 5.12%, 

16.56%) as the site exposure index value moves from -15.1 to 21.6, corresponding to a 

shift from more north-facing to more south-facing. The application of restoration 

treatments has a weak effect on cheatgrass occurrence (see Figure 4). The cheatgrass SDM 

performed slightly better than the juniper SDM, with an overall classification accuracy of 

92.04% (95% CI: 91.66%, 92.37%), a balanced classification accuracy of 89.20% (95% 

CI: 88.91%, 89.48%), and a log-loss of 0.161 (95% CI: 0.155, 0.170; Table 1).  
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Map 4 Spatial predictions for sagebrush (a), cheatgrass (b), and juniper (c) CAR 
SDMs in historically burned and unburned NGB grazing allotments. Data: US 

Census Bureau, US EPA, USGS, BLM, NLCD, PRISM, SRTM, LFRDB. 

Spatial Autocorrelation 

Each CAR model’s structure included a grazing allotment adjacency matrix that 

allowed the model to explicitly handle inherent spatial autocorrelation across points in 

neighboring allotments. Each model then produced results for spatial autocorrelation, or 

spatial dependence, across allotments represented by ρ, a value between 0 (total 

independence) and 1 (total dependence). Posterior estimates for the spatial dependence 

term, ρ, are 0.712 (95% CI: 0.562, 0.830) for sagebrush, 0.531 (95% CI: 0.244, 0.768) for 

cheatgrass, and 0.878 (95% CI: 0.757, 0.944) for juniper, with higher values indicating 

higher spatial autocorrelation between grazing units (Figure 5). Juniper presence exhibits 

markedly higher spatial dependency across grazing units than sagebrush, and vastly more 

than cheatgrass. 
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Figure 5. Density plots comparing rho value distributions for sagebrush, 

juniper, and cheatgrass. Higher rho value indicates greater spatial dependency of 
species presence across grazing allotments.  

Fire-Only Models 

In the fire-only models, the direction and relative magnitude of covariates’ 

respective effects remain consistent with the initial model iterations, with species co-

occurrence continuing to exhibit the strongest influence on other species’ presence. The 

fire-only models also do not provide evidence of post-fire treatment efficacy for the three 

species of interest. See Map 5 for explicit spatial predictions of each species distribution in 

historically burned portions of the NGB. 

Fire-Only Sagebrush Model 

Juniper co-occurrence continues to have the largest effect on sagebrush presence—

4.5 times bigger than the next-strongest covariate, cheatgrass co-occurrence—in 

previously burned areas, increasing the likelihood of sagebrush occurrence by 42.62% 

(95% CI: 35.25%, 49.62%). The probability of sagebrush increases by 11.38% (95% CI: 
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5.887%, 16.83%) when cheatgrass co-occurs and by 50.44% (95% CI: 25.74%, 68.87%) 

as maximum VPD goes from 10.69 kPa to 20.42 kPa in areas that have experienced at least 

one fire. Notably, time since fire has a greater effect on sagebrush occurrence than number 

of fires, also increasing the probability of presence by 48.62% (95% CI: 27.90%, 63.59%) 

as time since fire goes from two to 87 years. Number of fires continues to negatively impact 

sagebrush, reducing the likelihood of occurrence by 25.66% (95% CI: -30.53%, -19.55%) 

as number of fires increases from one to five. Fire size, site exposure, and treatments have 

no meaningful effect on sagebrush occurrence in previously burned areas (Figure 6). The 

fire-only sagebrush model performed worse than its initial CAR counterpart, with an 

overall accuracy of 57.93% (95% CI: 55.75%, 60.23%), a balanced accuracy of 55.62%  

(95% CI: 53.45%, 57.96%), and a log-loss of 0.897 (95% CI: 0.878, 0.922; Table 1).   
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Figure 6. Combined effect size plot for all three SDMs in previously burned 

grazing allotments in the NGB. Lines crossing zero indicates that the 95% CI 
contains 0. Dots indicate median effect size based on regression coefficients. 

Fire-Only Juniper Model 

Sagebrush co-occurrence has over six and a half times more influence than the next-

most impactful predictor on juniper presence where fires have occurred, increasing the 

likelihood of occurrence by 56.93% (95% CI: 41.77%, 68.91%). Maximum VPD exhibits 

the next-strongest effect on juniper occurrence, followed by fire size, reducing likelihood 

of presence by 17.66% (95% CI: -38.81%, -5.664%) and 4.226% (95% CI: -9.357%, -

1.218%), respectively, as VPD moves from 10.69 kPa to 20.42 kPa and fire size increases 

from a minimum of 7 acres to a maximum of 95,148 acres. For areas with historical fires, 

unlike in NGB grazing allotments more broadly, cheatgrass co-occurrence has no 

discernable effect on juniper presence, nor do number of fires, time since fire, or site 



39 

 

exposure (Figure 6). The fire-only juniper model performed worse than its initial 

counterpart, and with a much higher log-loss than either the cheatgrass or sagebrush fire-

only models. Log-loss for this model was 3.949 (95% CI: 3.946, 3.953), overall accuracy 

was 84.20% (95% CI: 83.35%, 84.93%), and balanced accuracy was 74.06% (95% CI: 

71.39%, 76.97%; Table 1). 

Fire-Only Cheatgrass Model 

Based on the fire-only cheatgrass SDM, sagebrush co-occurrence is the strongest 

predictor—over 17.5 times more influential than the next-strongest meaningful covariate—

for cheatgrass presence in previously burned areas, increasing likelihood of occurrence by 

76.87% (95% CI: 72.98%, 80.09%). Conversely, time since fire negatively impacts 

cheatgrass, decreasing probability of occurrence by 13.85% (95% CI: -23.70%, -2.679%) 

as time since fire extends from two years to 87 years. For historically burned areas, 

maximum VPD, juniper co-occurrence, treatment application, site exposure, number of 

fires, and fire size have no meaningful effect on cheatgrass occurrence (Figure 6). The fire-

only cheatgrass model also performed worse than the initial cheatgrass CAR SDM, with 

an overall accuracy of 78.63% (95% CI: 76.82%, 80.39%), a balanced accuracy of 77.92% 

(95% CI: 76.34%, 79.57%). Log-loss for the cheatgrass fire-only model was 0.496 (95% 

CI: 0.485, 0.515; Table 1). 

Spatial Autocorrelation for Fire-Only Models 

Compared with the initial CAR models, the fire-only SDMs indicated both weaker 

spatial dependencies across grazing allotments and also much greater uncertainty around 

the level of spatial dependency for each species based on the models’ respective 𝜌𝜌 values. 

The sagebrush fire-only model had an overall 𝜌𝜌 of 0.598 (95% CI: 0.0752, 0.943), juniper 
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had a 𝜌𝜌 of 0.388 (95% CI: 0.0183, 0.906), and cheatgrass had a 𝜌𝜌 value of 0.559 (95% CI: 

0.0764, 0.885). See Appendix A for 𝜌𝜌 value density plots for fire-only SDMs.  

 
Map 5. Spatial predictions for sagebrush (a), cheatgrass (b), and juniper (c) 
fire-only SDMs in previously burned NGB grazing allotments. Data: US Census 

Bureau, US EPA, USGS, BLM, NLCD, PRISM, SRTM, LFRDB. 
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DISCUSSION 

Implications and Applications 

In response to the question How do vegetation co-occurrences, wildfire histories, 

and human interventions influence the distributions of sagebrush, juniper, and cheatgrass 

in the NGB?, these results highlight the importance of abiotic and biotic disturbances as 

drivers of species’ distributions in the semi-arid sagebrush steppe of the NGB, as well as 

the interconnectedness of ecological impacts and management outcomes. In particular, the 

relative strength of disturbance factors, such as wildfire and invasive species presence, 

compared to that of climatic and topographic predictors—maximum VPD and site 

exposure, respectively—points to the necessity of accounting for invasive species and 

wildfire in defining the plausible operating space for keystone rangeland vegetation, 

including sagebrush. These same disturbance regimes are equally critical to understanding 

the dynamics of competing species such as juniper and invasive annual grasses such as 

cheatgrass. This is particularly important given that many management and restoration 

decisions currently rely on slope, aspect, and other topographic features, which may miss 

key considerations. 

The results of using a multilevel CAR modeling approach with a management unit 

as the spatial varying intercept also underscore the relevance of long-term natural resource 

decision-making, here represented by a type of cadastral data, in broader ecological 

function and composition (Barber et al., 2022). Incorporating BLM grazing allotments into 

the three species’ CAR models revealed meaningful spatial dependencies of sagebrush, 
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juniper, and cheatgrass across grazing units, likely pointing to the effects of similarities in 

both management practices and biophysical characteristics across allotments (Niemiec et 

al., 2018). 

Notably, each of the models performed differently, with sagebrush exhibiting by 

far the highest error rate of the three species of interest, and a poor overall performance for 

the fire-only model in particular. Since the LFRDB data were richest and most widespread 

across the NGB for sagebrush, this may indicate a flaw in parameterization for sagebrush 

specifically, which could be further explored and rectified in future research. Conversely, 

the low level of error for cheatgrass and juniper models suggests that the selected predictor 

variables adequately captured the disturbance-management-biophysical dynamics of these 

species without overfitting. In all cases, these SDMs’ respective performance accuracies 

represent an improvement over the previous effort by Requena-Mullor et al. (2019) to 

model sagebrush distributions in response to wildfire and restoration. These improved 

accuracies, particularly for juniper and cheatgrass, may point to opportunities for using 

similar models for on-the-ground predictive purposes. 

The role of species co-occurrence 

One of the most notable implications of the full CAR models (i.e., not fire-only) 

for sagebrush, juniper, and cheatgrass is the substantial role of species co-occurrence as a 

driver of species presence for all three species. In particular, the strong influence of 

sagebrush co-occurrence on both cheatgrass and juniper presence supports the known 

pattern of both species’ expansion into native sagebrush ecosystems. Juniper co-occurrence 

as a strong predictor for sagebrush also reinforces the fact of juniper’s adaptations to and 

expansion within much of the NGB (Coates et al., 2017; Falkowski et al., 2017). Since the 
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study period (post-2009), the trajectory of pinyon-juniper woodlands has reversed course, 

with sharp declines in overall biomass (Filippelli et al., 2020).  

Overall, the role of co-occurrence in all six of these SDMs points to potential 

competition and invasion dynamics, and underscores some of the conditions of co-

occurrence that outstrip the effects of other landscape-scale climatic, management, and 

disturbance factors, including drought, restoration efforts, and wildfire. This finding also 

reinforces the value of jointly modeling species that consistently interact across landscapes 

and therefore likely influence each other’s distributions in complex ways beyond the role 

of climatic and topographic factors (Meier et al., 2010; Pollock et al., 2014). While 

incorporating co-occurrence is not, in and of itself, evidence of vegetation interactions 

(Blanchet et al., 2020) its clear relevance as a predictor opens the door for more particular 

questions about the mechanisms underpinning vegetation dynamics (e.g., dispersal, 

regeneration time, etc.) that influence species distributions in sagebrush ecosystems. 

However, the relatively smaller effect (or lack thereof) of species co-occurrence in the fire-

only models suggests that co-occurrences may become less relevant in areas that have 

burned. Additionally, these relationships are not entirely bi-directional; while cheatgrass 

does predict for sagebrush when considering the whole NGB, it has a much weaker effect 

on juniper presence, and no meaningful effect on either sagebrush or juniper for areas that 

have experienced at least one fire. 

One potential implication of sagebrush co-occurrence as a predictor for cheatgrass 

is that cheatgrass invasions do not necessarily require a prior disturbance, such as wildfire. 

Instead, this result indicates that cheatgrass can and does invade relatively intact sagebrush 

systems, or at minimum that its invasion can precede the wholesale disappearance of 



44 

 

sagebrush and associated native species. Although these data cannot account for the exact 

extent to which any sagebrush system remains intact on the ground, nor the abundance of 

cheatgrass, this result may counter the narrative that cheatgrass primarily invades already-

degraded areas (e.g., Whisenant, 1990). At the same time, widespread, long-term grazing 

across the NGB also lessens the likelihood that any given area remains truly undisturbed, 

and indeed itself increases the probability of cheatgrass spread (Williamson et al., 2020). 

The hypothesis that cheatgrass may invade relatively undisturbed sagebrush systems merits 

further research. 

Specific influences of fire on species distributions 

One of the primary takeaways from both SDM iterations for all three species is the 

relevance of fire as a predictor of and influence on species distributions in the NGB, 

responding directly to my second research question: How do wildfire characteristics such 

as size, frequency, and time since fire influence plant species distributions in the NGB in 

the context of other abiotic and biotic drivers? In particular, a higher number of fires 

reduces the likelihood of both sagebrush and juniper presence, which squares with the slow 

post-fire recovery of sagebrush and the general lack of fire tolerance of juniper (Chambers, 

Miller, et al., 2014). The inverse finding that a higher number of fires increases the 

likelihood of cheatgrass presence also confirms, at a landscape scale, cheatgrass’s success 

at infiltrating and becoming established in burned areas, generally at the expense of native 

species (Fusco et al., 2019; Whisenant, 1990). However, the influence of number of fires 

changes markedly when accounting only for areas that have experienced at least one fire, 

rather than the entire NGB. The fire-only models demonstrate that time since fire and fire 

size outweigh the relevance of number of fires in these areas. This holds true for all three 
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species, with time since fire exhibiting a stronger, and inverse, influence on both sagebrush 

and cheatgrass presence, and fire size having a larger negative effect than number of fires 

on juniper presence. 

These results build on the finding in Requena-Mullor et al. (2019) that using fire 

occurrence and number of fires as covariates improves SDM performance, confirming that 

characteristics beyond fire occurrence and number of fires, such as time since fire and fire 

size, matter for species distributions in historically burned areas. The time since fire result, 

in particular, supports previous findings that sagebrush recovery improves with increased 

time since fire (Shinneman & McIlroy, 2016). Importantly, these fire characteristics remain 

relevant even when accounting for the respective influences of species co-occurrence and 

management activities. Collectively, this implies that a fire regime in the NGB that more 

closely approximates historical normal for fire return interval and fire size may better serve 

sagebrush and juniper species while potentially limiting cheatgrass spread.  Conversely, 

this means that the ongoing shift toward shorter return intervals and larger fires will likely 

reduce the presence of sagebrush and juniper in sagebrush ecosystems and result in 

conversion of shrublands to herbaceous-dominated landscapes (Ellsworth et al., 2020). 

The decision to focus on number of fires, time since fire, and fire size stemmed 

from their relevance to the specific species of interest in this research, as well as historical 

data availability. While other fire characteristics such as ignition source, severity, and 

seasonality certainly have influences on species survival, competition, and distribution 

(Abatzoglou & Kolden, 2011; Bradley et al., 2018; Chambers et al., 2019; Roundy et al., 

2018), number of fires, time since fire, and fire size were considered important landscape-

scale, management-relevant factors here (Paul Makela and BLM staff, personal 
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communication, 16 Mar. 2022). Data on ignitions and burn severity also did not become 

consistently available until the 1980s, rendering it less applicable as a long-term historical 

fire predictor variable. Future research exploring additional fire variables would likely add 

granularity to this work and offer additional insights to conservation and restoration 

decision-makers. 

Effects of maximum vapor pressure deficit 

Maximum VPD, a proxy for “droughtiness,” affects the probability of presence or 

absence for all three species of interest, though not necessarily in the expected directions. 

VPD exerts a negative effect on juniper, decreasing its likelihood of occurrence, which 

aligns with juniper species’ known lack of drought tolerance and the broader role of 

drought conditions in mass tree die-offs (Breshears et al., 2005; Flake & Weisberg, 2021). 

Conversely, the cheatgrass model indicates a positive impact of increased 

maximum VPD on species presence, suggesting that cheatgrass is at least relatively more 

drought-tolerant than sagebrush or juniper in the NGB. Unlike sagebrush and juniper, 

cheatgrass adapts to increased VPD by germinating earlier in the year, when moisture tends 

to be higher (Mahood et al., 2021). Increased cheatgrass at higher maximum VPD may also 

indicate concurrent, overlapping effects of VPD and multiple fires; in other words, higher 

VPD supports more wildfires, which in turn create suitable openings for cheatgrass during 

the long recovery periods of less fire-tolerant species like sagebrush and juniper 

(Chambers, Bradley, et al., 2014). 

Somewhat counterintuitively, the big sagebrush SDMs indicate that increased 

maximum VPD actually also increases the likelihood of sagebrush occurrence. This may 

reflect the differences in sagebrush subspecies’ adaptations to drought and generally more 
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xeric conditions (Kolb & Sperry, 1999), ability to respond to changing climatic conditions 

(Kleinhesselink & Adler, 2018), and capacity for post-fire re-establishment (Brabec et al., 

2017). Sagebrush can also take decades to exhibit adaptations to changing climatic and 

other ecological conditions (Germino et al., 2019). In other words, the sagebrush CAR 

model may have had some averaging effect, resulting in an overall positive increase 

associated with VPD that likely smooths through adaptive lag effects and differential sub-

species responses to changing climatic conditions. Still, the sagebrush model here points 

to the need for additional research on sagebrush responses to projected future increases in 

VPD (e.g., A. P. Williams et al., 2019) under a warming climate.  

Restoration treatment efficacy 

Outputs of the initial CAR models (with and without fires) indicate that restoration 

treatments in the LTDL reduce the probability of juniper occurrence and increase the 

probability of sagebrush presence. In other words, these treatments may have been 

effective to some extent at accomplishing broad restoration goals: reducing juniper density 

and supporting sagebrush habitat. Conversely, cheatgrass model outcomes do not provide 

evidence of treatment efficacy at reducing cheatgrass occurrence, which also aligns with 

known difficulties mitigating its spread and impacts (Pilliod et al., 2021). 

In the fire-only models, the lack of interpretable effect of restoration treatments on 

the occurrence of any of the species of interest in previously burned areas also does not 

provide evidence of restoration treatment efficacy, at least at the scale of the NGB. Previous 

studies on post-fire sagebrush ecosystem restoration support the difficulty and time-

consuming nature of recovery processes (e.g. Ellsworth et al., 2016; Nelson et al., 2014), 

and much of the research on successful treatments has occurred in experimental settings 



48 

 

rather than on a landscape scale (Davies & Bates, 2017). The lack of evidence for post-fire 

restoration efficacy may also align with Barker et al.’s (2019) finding that invasive annual 

grasses have likely invaded the most fire-prone portions of sagebrush ecosystems pre-fire, 

and have in turn led to post-fire landscapes dominated by the same invasive grasses, a state 

that is notoriously hard to reverse (D’Antonio & Vitousek, 1992; Fusco et al., 2021; Pilliod 

et al., 2021). In other words, the combined difficulty of treating cheatgrass and the invasive 

annual grass-fire cycle have collided to reduce the landscape-scale efficacy of restoration 

treatments, particularly in areas where time since fire is shorter. 

The specific locations of restoration treatments may be another important factor in 

post-fire restoration treatment effectiveness. Post-fire restoration often occurs the BLM’s 

Emergency Stabilization and Rehabilitation (ESR) program, which requires rehabilitation 

plans within 21 days of a fire’s containment. Funding for these projects is also often 

allocated for the hardest-hit areas, and does not necessarily include resources for 

monitoring and evaluating treatments (personal communication, BLM staff, March and 

June 2021). To some extent, then, the conditions surrounding rehabilitation efforts may 

affect overall chances of success. However, it is unclear to what extent any of these 

circumstances applied to the 513 points in the fire-only model data in areas that had 

previously been treated (see Appendix B for maps of species points in previously burned 

and treated areas in the NGB). Additionally, the LTDL data do not necessarily include 

every treatment, and the approach used here does not disaggregate by treatment type. This 

means that some treatments included may have an effect on one species but no effect on 

another, which further research could clarify. Future research could also explore which 

wildfires and otherwise degraded areas actually receive treatments, which could partially 
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determine restoration outcomes. Ultimately, the inclusion of restoration treatments as a 

model covariate may be more important as a way to represent management realities than 

as a means of exploring the specific landscape-scale outcomes of restoration activities. 

Spatial dependencies across grazing allotments 

The use of multilevel CAR models with grazing allotments as a spatial random 

effect demonstrates spatial dependencies across neighboring units. This suggests that the 

likelihood of species presence or absence—particularly for sagebrush and juniper—will be 

most similar in adjacent allotments, a finding that connects to a complex and variable 

history of grazing management. Livestock grazing in the western United States dates back 

to the introduction of cattle and sheep in the 1800s, prior to the establishment of federal 

land management agencies. For decades, ranchers grazed cattle across the West with the 

tacit approval of the federal government, including on off-limits indigenous reservation 

lands, resulting in wide-scale degradation and desertification. In 1934, Congress passed the 

Taylor Grazing Act to directly responded to livestock-induced disturbances. The law 

sought to mitigate the degradation of rangelands by initiating a system of grazing 

allotments overseen by the Forest Service and Grazing Service (which later merged with 

the General Land Office to become what is now the BLM). This system remains in use 

today, and is managed on a state-by-state basis to give ranchers low-cost, fixed-term access 

to public lands for their operations while also preventing overgrazing. While the Taylor 

Grazing Act and subsequent federal legislation such as the Federal Land Policy and 

Management Act and Public Rangeland Improvement Act should serve as unifying 

guidance for rangeland management in theory, the majority of ground-level grazing policy 

implementation occurs at the level of local field offices (Wilkinson, 1992). Setting aside 
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the political, economic, and even ecological implications of this system, the inconsistency 

of implementation has resulted in a set management regimes whose effects on species 

distributions are difficult to track (but see the Public Employees for Environmental 

Responsibility’s BLM Rangeland Health Status (2020) interactive map, which provides an 

assessment of the level of degradation of grazing allotments on public lands). Between this 

history and the fact that livestock grazing is still the most prevalent type of land use in 

sagebrush ecosystems of the American West, grazing allotments remain critical to these 

landscapes’ structure, function, and management (Chambers et al., 2017).  

In other words, management and disturbance regimes in the NGB have long been, 

and continue to be, inextricably linked. Unsurprisingly, then, including grazing allotments 

as a spatial component of plant SDMs helps capture the effects of underlying management, 

which inherently vary by unit. This research is one of the first efforts to capture these spatial 

effects in a statistically rigorous way through the use of multilevel CAR models that 

highlight spatial dependencies across neighboring allotments. This novel implementation 

also directly responds to a call for the inclusion of cadastral data in anthropogenically-

informed SDMs in sagebrush systems (Requena-Mullor et al., 2019). 

The overall implication of the spatial dependency term, ρ, for each model is that 

neighboring allotments have similar juniper management approaches, somewhat less 

similar sagebrush management approaches, and relatively inconsistent (or perhaps simply 

ineffective) cheatgrass management practices. To some extent, these dependencies may be 

explained by the fact that a single manager may have a lease on multiple, potentially 

neighboring grazing allotments, and may therefore make similar decisions for these 

neighboring units. Other factors at play could be the influence of neighbor interactions (i.e., 

https://mangomap.com/peer/maps/126421/blm-rangeland-health-status-2020-the-significance-of-livestock-grazing-on-public-lands?preview=true
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hearing how a neighboring allotment is managed) and fear of social sanctions (i.e. being 

viewed negatively by neighbors for not adhering to local management norms), which have 

been found to motivate invasive species control in other contexts (Niemiec et al., 2018). 

This may be relevant to juniper management in particular, which is a longstanding vexation 

among ranchers for its rapid densification and substantial water usage. More generally, 

previous studies suggest that individual invasive management decisions are influenced by 

the collective nature and norms around weed control (Lubeck et al., 2019), which would 

potentially substantiate similarities in neighboring allotments. Spatial dependency may 

also simply reflect biophysical similarities across allotments, but this modeling effort does 

not specifically parse the various drivers of autocorrelation. However, correlative models 

like these may serve as a starting point for a mixed-methods social-ecological approach to 

understanding grazing management approaches and outcomes in sagebrush systems, 

potentially as a complement to ground-truthing interviews with land managers. 

Limitations 

As with any ecological-scale modeling effort, several key limitations and caveats 

accompanied this research. The first of these was in the LFRDB data that underpinned the 

model’s response variable (species presence/absence). SDMs typically employ point-based 

response variables, making point data like those in the LFRDB ideal for species presences 

and absences. However, the LFRDB data carry certain drawbacks that may have limited 

their utility for this research. One of these drawbacks is the age of the LFRDB point data 

available in the NGB. While data through 2009 offers a useful retrospective understanding 

of the interactions among wildfire, restoration, and vegetation dynamics, it does little to 

clarify the current state of management practices, nor does it offer direction for decision-
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making approaches. Additionally, the multi-source nature of the data points, along with 

agencies’ prerogative to rescind contributed points in the 2016 Remap process (personal 

communication, USGS EROS User Services, October 4, 2021), also adds a general level 

of uncertainty.  

The limitations of the LFRDB could be rectified through the use of different data 

for the species presence and absence points. In particular, remotely sensed data are 

becoming increasingly valuable—and functional—for use in SDMs, both as predictor and 

response variables (Randin et al., 2020; Schwager & Berg, 2021; Waltari et al., 2014; West 

et al., 2016). Alternatively, the BLM maintains the Assessment, Inventory, and Monitoring 

(AIM) database, which includes point observations of terrestrial data in the Terrestrial AIM 

Database (TerrADat). AIM data could supplement or supersede LANDFIRE in the absence 

of more regularly and thoroughly updated data collection in the LFRDB. 

Beyond the response data from the LFRDB, the three SDMs required numerous 

decisions about predictor variable selection, data selection for those predictor variables, 

and cleaning of that data. Among these decisions was the choice to treat all subspecies of 

big sagebrush as a single species group and all species of juniper in the NGB as a single 

species. In part, the LFRDB’s categorization of sagebrush and juniper as, depending on the 

year, simply “Artemisia tridentata” (no subspecies) or “Juniperus” (no species), drove this 

decision, since it prevented further specification for certain years. Additionally, relatively 

recent and, at times, debated, identification of differentiable juniper species (see Adams, 

2019), as well as known issues with in-field identification of both big sagebrush subspecies 

and juniper species prevented certainty in further sub-categorization (Terry, 2010; Terry et 

al., 2000). While these groupings largely exhibited similarities in group and sub-group 
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means and errors (see Appendix A), the trade-off was an inability to capture how big 

sagebrush sub-species and juniper species distributionally respond to different disturbance, 

restoration, and long-term management influences.  

Another decision was using NLCD sagebrush and herbaceous cover rasters and a 

juniper biomass (Filippelli et al., 2020) raster for creating spatially explicit model 

predictions. While these were imperfect replacements, they obviated the need for creating 

species co-occurrence rasters via kriging, which would have led to a situation in which 

kriged co-occurrence layers—themselves model outputs—would have been used in the 

overall spatial predictions of my SDMs. The rasters I selected provided plausible spatial 

locations for each co-occurring species while avoiding this circularity. 

These models also fail to capture the potential influences of other co-occurring 

native (e.g., Great Basin wild rye [Leymus cinereus], Idaho fescue [Festuca idahoensis], 

bluebunch wheatgrass [Pseudoroegneria spicata]) and invasive plant species (e.g., 

medusahead rye [Taeniatherum caput-medusae (L.) Nevski], ventenata (Ventenata dubia). 

While the focus here was on the disturbance, distribution, and restoration dynamics of 

representative examples of ecologically and management-relevant plant species, such an 

emphasis may come at the expense of illuminating other key dynamics and ecological 

realities. In particular, it does little to illuminate the roles of other invasive annual grasses 

that contribute to the grass-fire cycle and species competition. Recently, there have been 

calls for research that more fully addresses the disturbance dynamics and management 

outcomes related to other long-standing and emerging invasive annual grasses across the 

American West (Aslan & Dickson, 2020; Schroeder et al., 2022). Still other research has 

suggested that certain parts of the Great Basin have become invasive annual grasslands that 
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must be managed as a new type of persistent ecosystem, rather than through the more 

traditional lens of these annual grasses as invasions of other ecosystem types (Davies et al., 

2021). There have also been calls for treating juniper dynamics as expansion rather than 

encroachment—which is a more value-laden proposition—particularly considering they 

are native to the NGB (BLM staff, personal communication, June 2021). This aligns with 

another recent call to frame distributional movements of plants across a landscape as 

adaptations, including to climate change, rather than “invasions” (Urban, 2020). 

Considering juniper and cheatgrass from these perspectives would shift the paradigm 

underlying the use of SDMs for understanding restoration treatment efficacy in particular. 

Given the primacy of wildfire in my research objectives, maximum VPD was a 

logical climatic predictor since it has implications for vegetation survival, distribution, and 

recruitment (Grossiord et al., 2020; Littlefield et al., 2020; Mahood & Balch, 2019), the 

role of vegetation as fuel, and fire behavior more broadly (Abatzoglou & Williams, 2016). 

This decision also allowed the models to focus on the specific effects of fire histories and 

restoration treatments, with climate and topography serving more as baseline context. 

However, VPD captures a narrow swath of the broader climatic realities of species’ 

environmental niches; precipitation, particularly of the antecedent year, may have added 

granularity to the results. The effects of minimum temperature on sagebrush distributions 

also remain largely unexplored, although current research suggests that sufficiently high 

minimum temperature is a determinant of sagebrush seedling survival, and also varies by 

subspecies and seasonality (Brabec et al., 2017; Lazarus et al., 2019). 

Although a primary objective of this research was to disentangle the roles of 

different fire characteristics in species distributions, the models ultimately relied on a 
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relatively small number of fire attributes to represent wildfire histories. Fire severity, for 

example, which has been altered by vegetation shift and can dictate abundance and 

proximity of post-fire seed sources, could have supplemented number of fires, fire size, 

and time since fire as a covariate (Chambers et al., 2017; Littlefield et al., 2020). This may 

also have accounted for some of the remaining unexplained variance in the fire-only 

models. In future iterations of this modeling, a more remote sensing-driven approach would 

open new possibilities for fire data from MODIS or other fire-related remotely sensed data 

that could expand the characteristics considered. 

Finally, BLM grazing allotments were selected as the areal unit representing spatial 

random effects to reflect the reality of Western land management. However, choosing a 

different areal unit such as pastures, counties, census tracts, or even states, could have 

altered model results and interpretation. Additionally, the models do not point to benefits 

or shortcomings of any given allotment or associated management strategy. 

Future Directions 

There are several potential extensions of this work that would further improve its 

relevance to landscape-scale management of sagebrush ecosystems in the NGB. The first 

would be to update the data such that the models would reflect species distributions up to 

the present, rather than stopping at 2009. To achieve this, as aforementioned, might require 

the use of remotely sensed data or other ground-level field observations, such as BLM 

TerrADat records. 

Another obvious pathway for this research would be to explicitly incorporate future 

climate projections in order to help managers anticipate the future outcomes of 

management-disturbance-vegetation dynamics. While climate change will directly drive 
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future species distributions to some extent, the concomitant changes in species’ interactions 

and mechanisms, as well as responses to shifting disturbance regimes, might actually be 

the most relevant climate-related processes to capture. This would both increase ecological 

applicability (Guisan et al., 2013; Sinclair et al., 2010) and avoid issues with predicting 

species’ likely “idiosyncratic” responses to non-analog climates (Fitzpatrick & Hargrove, 

2009; Lewis, 2006). Additionally, research has suggested that, at least for big sagebrush, 

wildfire and invasive annual grasses may play a greater role in future species distributions 

and survival than the direct effects of a changing climate (Schlaepfer et al., 2021). This 

proposed role of future biotic and abiotic disturbance regimes, combined with the evident 

strength of species co-occurrence as a predictor in this work, points to a need for more 

research modeling the future relationships among sagebrush, juniper, and cheatgrass in the 

context of multiple, overlapping disturbances that capture unexpected, nonlinear effects 

and interactions. 

Future work might also include a more finely-resolved temporal component that 

could track changes in predicted distributions throughout time, rather than presenting a 

prediction for a single, historically-informed time step (e.g., Schliep et al., 2018). 

Theoretically, this might allow for better identification of the trajectories of overlapping 

disturbance and climate change processes, instead of assuming linear relationships between 

climate change and species distribution patterns (Austin, 2007; Elith et al., 2010; Hughes 

et al., 2019; Pearson & Dawson, 2003). Alternatively or additionally, future work could 

directly consider mechanistic components of species distributions, including, among other 

mechanisms, dispersal, post-fire regeneration, and other disturbance response processes 

(sensu Case & Lawler, 2017). This would move the work away from its current correlative 
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structure, and could improve overall model performance under changing environmental 

conditions (Buckley et al., 2010; Urban et al., 2016; Zurell et al., 2009). 

Critically, any expansion on this research should involve iterative communication 

with BLM staff—as well as other agency staff, private land managers, and Indigenous 

peoples—involved in management decisions related to sagebrush, juniper, cheatgrass, 

wildfire, and/or restoration. These interactions could directly improve the performance and 

relevance of future modeling efforts (Guisan et al., 2013). A collaborative approach could 

also offer predictive insights that support vegetation and restoration monitoring efforts, 

particularly in the Botany and Emergency Stabilization and Rehabilitation (ESR) 

departments of the BLM. In concert with the aforementioned incorporation of future 

climate projections, these efforts could also support adaptive management decision-making 

processes on the ground by highlighting plausible ecological transitions. 
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CONCLUSIONS 

The conditional autoregressive species distribution models of sagebrush, juniper, 

and cheatgrass used here point to three key management-relevant takeaways: 1) Species 

distributions depend not only on abiotic and biophysical factors, but also on species co-

occurrence, which has the strongest effect by far on occurrence; 2) Fire characteristics 

beyond fire occurrence meaningfully influence sagebrush steppe species distributions; 3) 

While restoration treatments have generally had some success with sagebrush and juniper, 

there is little evidence of landscape-scale efficacy of post-fire restoration of juniper, 

sagebrush, and cheatgrass; and 4) Drought conditions—here represented by maximum 

VPD—are a major driver of distributions even within the context of other disturbance and 

management factors at play. 

More broadly, these models collectively confirm that both biotic (e.g., invasive and 

quasi-invasive vegetation interactions) and abiotic disturbances (e.g., climate and wildfire) 

are linked to the distributions of plant species in the sagebrush steppe of the NGB. At the 

same time, direct human interventions, both in the form of restoration treatments and 

longer-term management regimes via grazing allotments, have bearing on ecological 

outcomes, and should be accounted for in any realistic SDMs. Together, these findings 

highlight ecological realities in light of inextricably linked, long-term disturbance, 

vegetation, and management interactions. In particular, explicating the relative roles of 

wildfire, biological invasions, and restoration on overall species distributions helps to 

define the space of plausible ecological futures. Doing so through a Bayesian framework 
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captures the uncertainties inherent in these disturbance-management-ecology relationships 

and dynamics and thus presents the full possibility space of their outcomes at a landscape 

scale. Notably, this work also points to the inherent spatial dependencies at play across 

grazing allotments in the grazing-dominated NGB. The use of multilevel areal unit 

modeling to address an ecological problem has broader promise in ecology and human-

environment systems science, and may help to contextualize the disturbance-management 

confluence in other social-ecological landscapes.  
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Historical Wildfire Trajectories in the NGB 

 
Figure A.1.1. Historical trend of maximum fire size in the NGB. The biggest fires 
have gotten bigger since the early 20th century, indicating that extreme fires are 

becoming increasingly extreme. 

 
Figure A.1.1. Historical trend of mean fire size in the NGB. Average fire size has 

increased in the NGB since the start of the 20th century. 
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Fire Characteristics by Species 

 
Figure A.2.1. Number of species presence points collected by year in the NGB 

between 1974 (the first year of LFRDB point collection in the NGB) to 2009 (the 
most recent collection year in the NGB for species of interest).   
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Figure A.2.2. Number of historical fires that occurred at each species presence point 

between 1912 and 2009 in the NGB. 

 
Figure A.2.3. Proportion of each species presence points that experienced at least 

one fire prior to LFRDB observation. 
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Group and Individual Species Means and Errors for Elevation and Exposure 

 
Figure A.3.1. Individual presence point values and group means for elevation (in 

meters) and site exposure for sagebrush and juniper, respectively broken into 
subspecies and species.  
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Figure A.3.2. Individual presence point values and group means for elevation (in 

meters) and site exposure for sagebrush and juniper.  



89 

 

 
Figure A.3.3. Group elevation means and standard errors for all sagebrush 

subspecies and juniper species points in the NGB. 

 
Figure A.3.4. Group site exposure index means and standard errors for all 

sagebrush subspecies and juniper species points in the NGB.  
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Adjacency Matrix Network Maps 

 
Map A.1.1. Network of neighboring grazing allotments used to determine values for 

adjacency matrix in full CAR models (for burned and unburned areas). Spatial 
network construction relied on the R packages “sdpep” (Bivand & Wong, 

2018),“igraph” (Csardi & Nepusz, 2006), and “spatialreg” (Bivand et al., 2013).  
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Map A.1.2. Network of neighboring grazing allotments used to determine values 
for adjacency matrix in fire-only CAR models. Spatial network construction relied 
on the R packages “sdpep” (Bivand & Wong, 2018), “igraph” (Csardi & Nepusz, 

2006), and “spatialreg” (Bivand et al., 2013). 
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Conditional effects plots for full CAR models 

 
Figure A.4. Counterfactual plots for the effects of each covariate on sagebrush, 

juniper, and cheatgrass. Clockwise from top left: juniper co-occurrence, number of 
fires, maximum VPD, site exposure, restoration treatment, cheatgrass co-

occurrence, and sagebrush co-occurrence. N.B. Not all predictor variables had 
interpretable effects in all models (see Results).  
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Rho Density Plots–Fire-Only Models 

 
Figure A.5. Density plots of rho values from the posterior of the fire-only CAR 
SDM for each species of interest. Rho values account for spatial dependency, with 

higher values indicating more spatial dependency of species across neighboring 
allotments.  
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APPENDIX B 

Supplemental Maps 
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Species presence and absence points in areas in the NGB with historical fire 

 
Map B.1.1. Figure B.1.3. Species presence and absence points for full sagebrush 
CAR model in the context of all NGB historical wildfires between 1912 and 2009. 

Orange polygons indicate wildfire boundaries. Data: EPA, USGS, LFRDB, Stamen. 

 
Map B.1.2. Species presence and absence points for full juniper CAR model in the 

context of all NGB historical wildfires between 1912 and 2009. Orange polygons 
indicate wildfire boundaries. Data: EPA, USGS, LFRDB, Stamen. 
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Map B.1.3. Species presence and absence points for full cheatgrass CAR model in 
the context of all NGB historical wildfires between 1912 and 2009. Orange polygons 

indicate wildfire boundaries. Data: EPA, USGS, LFRDB, Stamen. 
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Species presence and absence points in previously treated parts of the NGB 

 
Map B.2.1. Species presence and absence points for full sagebrush CAR model in 

the context of restoration treatments conducted in the NGB prior to 2009. Purple 
polygons indicate restoration areas. Data: EPA, LTDL, LFRDB, Stamen. 

 
Map B.2.2. Species presence and absence points for full juniper CAR model in the 

context of all restoration treatments conducted in the NGB prior to 2009. Purple 
polygons indicate restoration areas. Data: EPA, LTDL, LFRDB, Stamen. 
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Map B.2.3. Species presence and absence points for cheatgrass CAR model in the 

context of all restoration treatments conducted in the NGB prior to 2009. Purple 
polygons indicate restoration areas. Data: EPA, LTDL, LFRDB, Stamen. 
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