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1. Introduction
Crustal growth at convergent margins is generally thought to occur through accretion of juvenile arc crust and/
or addition of magmatic material to the edge of a craton (e.g., Rudnick, 1995). Arc-continent collision zones 
are thus major sites for crustal growth through time (e.g., Brown et al., 2011). Arc accretion generally leads to 
development of an accretionary orogen, associated magmatism and basin(s) (e.g., Cawood et al., 2009; Draut 
& Clift, 2012). The evolution of arc-continent collision zones is generally complex and shows a wide-range of 
variations depending on configuration of continental and arc crusts, and angle and rates of convergence (Brown 
et al., 2011). There is no simple model that explains the variations observed in modern and ancient arc-continent 
collisions.

In western North America, the development of the northern Cordilleran accretionary orogen began with collision 
of early Mesozoic peri-Laurentian arcs with the continental margin in latest Triassic to Early Jurassic (Colpron 
et al., 2015; George et al., 2021; Monger & Nokleberg, 1996; Monger & Price, 2002; Nelson et al., 2013). Initial 
accretion involved the Intermontane terranes (Figure 1), which occupy the core of the orogen in Canada and 
include a series of magmatic arcs (Stikinia, Quesnellia, and Yukon-Tanana), marginal ocean basins (Slide Moun-
tain), and accretionary complexes (Cache Creek) that evolved at the western edge of the Laurentian plate (ancestral 
North America) between mid-Paleozoic and early Mesozoic (Colpron et al., 2007; Monger et al., 1982;  Nelson 
et al., 2013). The Late Triassic magmatic arcs of Quesnellia and Stikinia are generally interpreted to have formed 
part of a contiguous arc system that was duplicated during Early to Middle Jurassic accretion, either as a conse-
quence of strike-slip faulting (Wernicke & Klepacki, 1988) or oroclinal bending (Mihalynuk et al., 1994, 2004; 
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Figure 1.  Late Triassic to Jurassic plutons and significant Cu ± Au(±Mo) porphyry deposits of the northern Cordillera. 
Selected producing mines are labeled. Simplified terrane map modified after Colpron and Nelson (2011). Plutons are from 
Cui et al. (2017) for British Columbia, Yukon Geological Survey (2020a) for Yukon, and Wilson et al. (2015) for Alaska. 
Selected porphyry deposits are from BC MINFILE (British Columbia Geological Survey, 2019) and Yukon MINFILE 
(Yukon Geological Survey, 2020b) databases. Abbreviations. BB, Bowser basin; HB, Hogem batholith; Mt., Mount; Mtn., 
Mountain; NRMT, Northern Rocky Mountain Trench; SA, Stikine arch; SK, Skeena arch; TM, Taylor Mountain batholith; 
YTs, Yukon-Tanana south; WT, Whitehorse trough.
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Nelson & Mihalynuk, 1993). This resulted in entrapment of the Cache Creek terrane—the accretionary complex 
and related arc and oceanic rocks that developed in the forearc of Stikinia and Quesnellia (Monger, 1977; Monger 
et al., 1982; Travers, 1978). There is increasing evidence that arc-continent collision and crustal thickening first 
occurred in the latest Triassic-earliest Jurassic in the northern Intermontane terranes north of the Stikine arch 
(Figure 1) and was followed by Early Jurassic exhumation of Stikinia and the Yukon-Tanana terranes in Yukon. 
Evidence of latest Triassic to Early Jurassic tectonism include: (a) folding of Late Triassic strata and develop-
ment of regional Early Jurassic unconformities (Brown et al., 1996; George et al., 2021; Greig, 2014; Greig & 
Gehrels, 1995); (b) ca. 205–195 Ma amphibolite-facies regional metamorphism in rocks of the Yukon-Tanana 
terrane (Clark, 2017; Gaidies et al., 2021); and (c) widespread Early Jurassic mica cooling ages in metamorphic 
rocks of the Yukon-Tanana terrane (Colpron et al., 2015). The Early to Middle Jurassic Whitehorse trough (WT) 
was developed as a synorogenic piggyback basin atop this nascent orogen, and its sediments were sourced from 
locally exhumed rocks of Stikinia and Yukon-Tanana terranes and their contained intrusions (Colpron et al., 2015; 
van Drecht, 2019). Initial encroachment of the accreted terranes onto the western North American margin is 
constrained by Early Jurassic syn-tectonic, Alaskan-type intrusions in Quesnellia (Murphy et al., 1995;  Nixon 
et al., 1997, 2020), and initial subsidence of the Alberta foreland basin that contains strata with syn-depositional 
detrital zircons (Sinemurian-Toarcian; Asgar-Deen, 2003; McCartney, 2012; Pană et al., 2018). The demise of 
the early Mesozoic peri-Laurentian arcs and initial growth of the Cordilleran orogen in the latest Triassic to 
Early Jurassic was apparently related to the westward drift of the North American continent during breakup of 
the supercontinent Pangea and subsequent opening of the central Atlantic Ocean (Coney, 1972; Dickinson, 2004; 
Monger & Gibson, 2019).

Between Late Triassic and Late Jurassic, the evolution of this arc-continent collision was accompanied by 
intrusion of granitoid plutons (Armstrong, 1988; Nelson et al., 2013; Wheeler & McFeely, 1991; Woodsworth 
et al., 1991). The Late Triassic to Early Jurassic plutons broadly form two parallel belts that extend the length 
of Quesnellia and Stikinia in British Columbia and converge in the Yukon-Tanana terrane of central Yukon and 
eastern Alaska (Figures 1 and 2). They have generally been considered arc plutons related to coeval juvenile 
volcanism in Stikinia and Quesnellia (e.g., Dostal et al., 2001; Logan & Mihalynuk, 2014), but plutons in Yukon 
have received limited attention to date. In this contribution, we present a synthesis and interpretation of the exten-
sive data set compiled by Sack et al. (2020) in their Atlas of Late Triassic to Jurassic plutons in the Intermontane 
terranes of Yukon. The Atlas presents a systematic description of most Late Triassic to Jurassic plutons exposed 
between latitudes 60°N and 63°15′N in southern Yukon (Figure 2). This data set is anchored on 35 high-precision 
U-Pb zircon dates and associated geochemical and isotopic data that allow for a detailed analysis of magmatism
within the arc-continent collision zone in Yukon. The integrated data set provides means to refine terrane bound-
aries in Yukon, more specifically between Stikinia and Quesnellia, and to test current tectonic models. Our anal-
ysis shows that Late Triassic to Jurassic plutons in Yukon record a transition from arc, to syn- and post-collision
magmatism that is distinct from continued, juvenile arc magmatism in British Columbia (George et al., 2021).
Together with recent studies of Late Triassic to Jurassic sedimentary and volcanic strata in British Columbia and
Yukon (Colpron et al., 2015; George et al., 2021; Nelson et al., 2022; van Drecht, 2019) our synthesis provides the 
basis for a revised tectonic model for the early Mesozoic development of the northern Cordilleran accretionary
orogen. Our model provides another example for the evolution of an ancient arc-continent collision and subse-
quent development of an accretionary orogen.

2. Accretionary History of the Intermontane Terranes
The Intermontane terranes are primarily composed of a series of superposed magmatic arc successions rang-
ing from Late Devonian to Early Jurassic. The oldest of the Intermontane terranes in Yukon is the Yukon-Ta-
nana terrane, which includes three arc successions of Late Devonian to middle Permian age (Finlayson, Klinkit, 
and Klondike assemblages) that were developed on top of a pre-Devonian metasedimentary succession (Snow-
cap assemblage; Colpron, et  al.,  2007; Colpron, Nelson, & Murphy, 2006; Colpron, Mortensen, et  al.,  2006; 
Mortensen, 1992; Mortensen & Jilson, 1985). The Snowcap assemblage is interpreted as a rifted fragment of 
the western Laurentian continental margin (Piercey & Colpron, 2009). Arc successions in the Yukon-Tanana 
terrane comprise two main pulses of felsic magmatism at 365–330 and 264–254 Ma, and an intervening mafic 
volcanic succession (Colpron, Nelson, & Murphy, 2006; Colpron, Mortensen, et al., 2006; Nelson et al., 2006). 
The Mississippian to early Permian mafic volcanic and carbonate rocks of the Klinkit assemblage are correlated 
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with Paleozoic arc sequences of Quesnellia in British Columbia (Lay Range and Harper Ranch assemblages; 
Beatty et al., 2006; Ferri, 1997), leading to the interpretation that Yukon-Tanana is locally the basement to Meso-
zoic Quesnellia (Colpron et al., 2007; Nelson & Friedman, 2004; Nixon et al., 2020; Roots et al., 2006; Simard 
et al., 2003).

Arc development in the Yukon-Tanana terrane was coeval with opening of the Slide Mountain back-arc ocean 
between Late Devonian and early Permian (Colpron et  al.,  2007; Colpron et  al.,  2009; Creaser et  al.,  1999; 
Mortensen, 1992; Nelson et  al.,  2006). Closure of the Slide Mountain ocean is recorded in ca. 270–255 Ma 
eclogite at the eastern edge of Yukon-Tanana terrane (e.g., Creaser, Heaman, & Erdmer,  1997; Erdmer 
et al., 1998; Gilotti et al., 2017; Petrie et al., 2016) and ca. 264–254 Ma magmatism of the Klondike assemblage 
(Mortensen, 1990, 1992). By Middle to Late Triassic, siliciclastic rocks, derived in part from the Yukon-Ta-
nana terrane and the Laurentian craton, overlap Yukon-Tanana, Quesnellia, Slide Mountain, and the western 
North American margin and indicate that the Slide Mountain Ocean had closed by that time (e.g., Beranek & 
Mortensen, 2011; Unterschutz et al., 2002).

The oldest rocks in Stikinia are also Paleozoic arc successions; these are distinctly more primitive in character 
and of uncertain relationship with coeval arc magmatism in the Yukon-Tanana terrane. In northwest British 
Columbia, the Stikine assemblage comprises Devonian to Permian volcanic and volcaniclastic rocks of primitive 

Figure 2.  Distribution of Late Triassic to Jurassic plutons in the Intermontane terranes of southern Yukon. The names of plutons described in the Atlas of Sack 
et al. (2020) are indicated. General locations of Paleozoic (Takhini, Boswell) and Triassic (Lewes River, Semenof) assemblanges of Stikinia are also indicated. Terrane 
map is modified after Colpron and Nelson (2011). Plutons and distribution of Whitehorse trough strata are from Yukon Geological Survey (2020a). Jurassic faults (red 
labels). Abbreviations. NRT, Needlerock thrust; TF, Tadru fault; WLF, Willow Lake fault; YRF, Yukon River fault. Abbreviations. Lk, lake; Mtn, mountain; R., river.
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arc affinity, associated Late Devonian to Early Mississippian calc-alkaline plutons, and Carboniferous to lower 
Permian (Cisuralian) limestone (Gunning et al., 2006; Logan et al., 2000; Monger, 1977). Correlative rocks in 
southern Yukon include metamorphosed volcanic, volcaniclastic, and minor carbonate rocks of the Pennsyl-
vanian-Permian Takhini assemblage (Hart, 1997). Takhini metabasites have the geochemical characteristics of 
primitive island arc tholeiites (Bordet et al., 2019). In central Yukon, east of Carmacks (Figure 2), the Boswell 
assemblage includes: (a) a lower unit of Upper Devonian to Lower Mississippian basalt (normal and enriched 
mid-ocean ridge basalt [MORB]) and limestone and (b) an upper unit of Upper Mississippian to lower Permian 
arc volcanic, volcaniclastic, and sedimentary rocks (including Pennsylvanian-Permian fossiliferous limestone and 
Pennsylvanian tonalite and rhyolite; Colpron, 2011; Simard, 2003; Simard & Devine, 2003). These rocks were 
previously assigned to Quesnellia (e.g., Colpron, 2011; Gordey & Makepeace, 2001) but are considered part of 
Stikinia in this article for reasons discussed below.

Volcanic components of the Upper Triassic successions of Quesnellia and Stikinia are predominantly augite-
phyric basalt and andesite with primitive arc geochemical and isotopic signatures (Bordet et al., 2019; Dostal 
et al., 1999). The similar Upper Triassic stratigraphy and petrogenesis in these two terranes suggest that they 
formed parts of a common Late Triassic arc system that is now duplicated as the result of Early Jurassic oroclinal 
bending (Mihalynuk et al., 1994) and/or strike-slip faulting (Wernicke & Klepacki, 1988). In British Columbia, 
Upper Triassic to Lower Jurassic rocks of Stikinia and Quesnellia occur on either side of the Cache Creek terrane, 
the accretionary complex that developed adjacent to the arc terranes (Figure 1; Monger, 1977; Travers, 1978). 
In southern Yukon, the Cache Creek terrane terminates near 61°N latitude (Figure 2; Bickerton et al., 2020) and 
similar Upper Triassic strata of Stikinia occur continuously around its northern end.

The Cache Creek terrane includes fragments of primitive arc crust, seamounts with Pennsylvanian-Permian 
limestone caps (locally with early Permian fusilinids of Tethyan affinity; Monger & Ross,  1971; Ross & 
Ross, 1983), extensive late Permian (Lopingian) to Middle Triassic supra-subduction zone ophiolites, pelagic 
sedimentary rocks, and synorogenic clastic rocks with protolith ages ranging from Mississippian to Early Jurassic 
(Cordey, 2020; Cordey et al., 1991; McGoldrick et al., 2017; Mihalynuk et al., 2004; Monger, 1977).

The Lower to Middle Jurassic clastic sedimentary rocks of the WT (Laberge Group) overlap Stikinia and Cache 
Creek terranes in Yukon and northern British Columbia (Colpron et al., 2015; English et al., 2005; Hart, 1997; 
Mihalynuk et al., 1999; Wheeler, 1961). Correlative strata are also locally unconformable on metamorphic rocks 
of the Yukon-Tanana terrane (Colpron et al., 2015). In British Columbia, coeval volcanic-sedimentary strata in 
Stikinia south of the Stikine arch (Figure 1) are assigned to the uppermost Triassic to Middle Jurassic, arc-related 
Hazelton Group (Gagnon et al., 2012; Nelson et al., 2018; Tipper & Richards, 1976).

Late Triassic to Early Jurassic plutons intrude the length of Stikinia and Quesnellia, and the Yukon-Tanana 
terrane in Yukon and eastern Alaska (Figures 1 and 2; Colpron, Israel, & Friend, 2016; Cui et al., 2017; Wilson 
et al., 2015; Woodsworth et al., 1991). These plutons are closely associated with coeval arc volcanic rocks and 
porphyry Cu-Au(-Mo) deposits in British Columbia (Figure 1; Logan & Mihalynuk, 2014; Mortensen et al., 1995; 
Nelson et al., 2013). In Yukon, Late Triassic plutons are inferred to be subvolcanic feeders to basaltic andesite 
of the Lewes River Group, but the younger, Early Jurassic plutons lack direct association with coeval volcan-
ism, and Lower Jurassic volcanic rocks are limited to local tuff horizons within the Laberge Group (Colpron & 
Friedman, 2008; Hart, 1997; Johannson et al., 1997; Tempelman-Kluit, 1984, 2009). Detrital zircon ages and 
clast compositions in strata of the Laberge Group indicate that the Late Triassic to Early Jurassic plutons exposed 
on the flanks of WT were major, local sediment sources that were exhumed during marine deposition (Colpron 
et al., 2015; Dickie & Hein, 1995; Hart et al., 1995; Shirmohammad et al., 2011; van Drecht, 2019). The Laberge 
Group is unconformably overlain by fluvial and lacustrine strata of the Upper Jurassic to Lower Cretaceous 
Tantalus Formation, which are interpreted to have been deposited in confined intermontane valleys (Long, 2015; 
Tempelman-Kluit, 1984, 2009).

Strata of the Intermontane terranes were folded and imbricated by east-dipping, west-verging thrust faults prior to 
intrusion of Middle to Late Jurassic plutons (Gabrielse, 1998; Mihalynuk et al., 2004; Tipper, 1978). In Yukon, 
these plutons define a central belt that stitches Stikinia, Cache Creek, and WT west of the Teslin fault (Figure 2). 
Major Jurassic structures include the King Salmon, Nahlin, Wann River, and Llewellyn faults in northern British 
Columbia (Currie & Parrish, 1993; Gabrielse, 1998; Mihalynuk et al., 1999), and the Needlerock, Tadru, and Yukon 
River faults in Yukon (Figure 3; Colpron et al., 2002, 2003; Colpron & Ryan, 2010; Parsons et al., 2018; Ryan 
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Figure 3.  Palinspastic map of Early to Middle Jurassic plutons in southern Yukon and northern British Columbia; after 
restoration of dextral displacements along the Cenozoic Tintina fault (∼490 km) and Cretaceous Big Salmon–Teslin fault 
system (∼130 km; BSTF). Displacement estimates from Gabrielse et al. (2006) and Nelson et al. (2013, p. 88). Restoration 
on the Tintina fault aligns the portions of the Yukon-Tanana and Slide Mountain terranes northeast of the fault with their 
counterparts in west-central Yukon. Displacement of the BSTF north of 61°N is inferred to be partitioned into splays of the 
d’Abbadie, Big Salmon, and Towhata faults (Figure 2), which collectively account for ∼125 km of dextral displacement 
(Nelson & Colpron, 2007; Nelson et al., 2013). Jurassic structures are shown as gray lines with red labels. Dots show the 
location of samples analyzed by CA-TIMS for this study (Tables 1 and 2 and Appendix 4 in Sack et al., 2020). Ages are 
rounded for simplicity; see Sack et al. (2020, Tables 1 and 2; Sack et al., 2022) for precise dates. Yellow dots indicate samples 
for which inherited zircon cores were analyzed by LA-ICPMS. Black star shows approximate location of the Early Jurassic 
Turnagain complex in northern British Columbia (T; Nixon et al., 2020). Black squares show approximate location of the 
towns of Atlin (A), Carmacks (C), and Whitehorse (W) for reference. The Aishihik and Coconino-Simpson Peak-Nome Lake 
(C-SP-NL) batholiths are labeled and discussed in the text.
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et al., 2013, 2014). Metamorphic studies of the Yukon-Tanana terrane in west-
ern Yukon and northwestern British Columbia indicate that structural imbri-
cation led to crustal thickening, tectonic burial to depths of 20–30 km, and 
subsequent exhumation in the Early Jurassic (Berman et al., 2007; Clark, 2017; 
Dyer, 2020; Gaidies et al., 2021). The Willow Lake fault in central Yukon is a 
low-angle normal fault inferred to have accommodated part of the Early Juras-
sic exhumation (Colpron & Ryan, 2010; Knight et al., 2013).

The Intermontane terranes and their Late Triassic to Jurassic plutons 
are dissected by a series of post-accretionary strike-slip faults, including 
the Late Cretaceous Teslin, d’Abbadie, Big Salmon, and Towhata faults, 
and the Paleocene Tintina fault (Figure  2). In seismic and magnetotel-
luric profiles  across  southern Yukon (SNORCLE line 3), the Teslin fault 
appears to be underlain by east-dipping anomalies that project to mid-crustal 
levels (Cook et  al.,  2004; Dehkordi et  al.,  2019). Farther north, in central 
Yukon,  an  interpretation of seismic and gravity data across the Intermon-
tane terranes shows the Big Salmon fault as a more significant west-dipping 
structure that extends to lower crustal levels and is laterally more continuous 
than  the Teslin fault at this latitude (Calvert et al., 2017).

In Figure 3, dextral strike-slip displacement has been restored on major Late 
Cretaceous and Paleocene faults in order to show the configuration of terranes 
and distribution of Early and Middle Jurassic plutonic suites in Late Jurassic 
to Early Cretaceous time, after imbrication of the Intermontane terranes and 
accretion to western North America. This Early Cretaceous palinspastic map 
provides the framework for the following discussion of Late Triassic to Juras-
sic magmatism in the Intermontane terranes of Yukon.

3. Late Triassic-Jurassic Plutonic Suites
Extensive studies, summarized in this article, result in subdivision of the Late 
Triassic to Jurassic plutons in Yukon into eight plutonic suites based mainly 

on age (Figure 4) and composition (Figure 5), but also to some extent on relationship with their host terrane, and 
geographic distribution (Figures 2 and 3; Sack et al., 2020). From oldest to youngest, these suites are:

1. �The Late Triassic Pyroxene Mountain (220–214 Ma) and Stikine (217–214 Ma) suites.
2. �The latest Triassic to Early Jurassic Minto (205–194 Ma), Lokken (195–184 Ma), Long Lake (188–183 Ma),

and Bennett (178–175 Ma) suites.
3. �The Middle Jurassic Bryde suite (174–168 Ma) and Late Jurassic McGregor suite (163–146 Ma).

3.1.  Methods and Data Set

The core of this data set was acquired during field investigations of 32 plutons between 2014 and 2018, augmented 
with data collected during previous regional mapping programs (1999–2013; see Sack et al., 2020, for complete 
sources of data). Of the more than 450 granitoid rock samples collected, 171 were slabbed and stained for 
petrographic analysis (Appendices 2 and 13 in Sack et al., 2020), including semi-automated estimates of modal 
abundances of quartz, alkali feldspar, plagioclase, and mafic minerals using the ImageJ software (Figure 5a; 
Schneider et al., 2012). Thin sections were cut from 209 samples and 204 samples were analyzed for major and 
trace element geochemistry (Figures 5b–5d; Appendix 8 in Sack et al., 2020). Age ranges for the eight plutonic 
suites are anchored on 35 high-precision U-Pb zircon dates determined using the chemical abrasion thermal 
ionization mass spectrometry (CA-TIMS) method (Figure 4; Tables 1 and 2 and Appendix 4 in Sack et al., 2020; 
see also Sack et al., 2022 for one additional sample). Thirty-four of these samples were analyzed at Boise State 
University (BSU) and one sample at the University of British Columbia (UBC). Most samples analyzed at BSU 
were first imaged by cathodoluminescence (CL) and analyzed by laser ablation inductively coupled plasma 
mass spectrometry (LA-ICPMS) before CA-TIMS analysis (Appendix 3 in Sack et al., 2020). Approximately 30 

Figure 4.  Summary of new CA-TIMS dates constraining the age of Late 
Triassic and Jurassic plutonic suites in southern Yukon (Tables 1 and 2 and 
Appendix 4 in Sack et al., 2020; Appendix 2 in Sack et al., 2022). Interpreted 
ages and their 2σ errors are shown by black boxes. Colored boxes show the 
range for individual plutonic suites.
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LA-ICPMS spots in each sample were analyzed for U-Pb isotopes and trace element chemistry to characterize 
the zircon population(s) present. Zircon grains dated by CA-TIMS were selected from the youngest statisti-
cally coherent LA-ICPMS population with similar chemical composition and CL response. Inherited cores were 
encountered in 15 of the 33 samples analyzed and documented by LA-ICPMS (Tables 1 and 2 and Appendix 3 
in Sack et al., 2020). The Atlas also reports new  40Ar/ 39Ar dates for hornblende, muscovite, and  biotite from 25 
samples (Appendix 6 in Sack et al., 2020). Most of the mica dates provide estimates for cooling of these plutons 
to upper crustal levels (≤300°C–350°C; Hodges, 2014). A few hornblende dates from Late Triassic intrusions 
and muscovite dates in the central part of the Late Jurassic McGregor pluton provide the best estimate for crys-
tallization for these plutons.

Whole rock analyses of Rb-Sr and Sm-Nd isotopes were acquired at Carleton University from 30 of the dated 
samples (Tables 1–4 and Appendix 9 in Sack et al., 2020). Zircons from 22 of the samples dated at BSU were also 
analyzed for Lu-Hf isotopes using the LA-ICPMS laboratory at Memorial University of Newfoundland (MUN; 
Appendix 10 in Sack et al., 2020). The Hf isotope data were acquired at MUN on the same zircon mounts used 
at BSU with 40 μm Hf spot analyses located on top of smaller U-Pb ablation pits so the data are as related as 
possible.

Crystallization pressures were calculated using the Al-in-hornblende geobarometer for 26 samples that contain 
the required mineral assemblage (Anderson & Smith, 1995; Hammarstrom & Zen, 1986). Electron microprobe 
analyses of plagioclase and hornblende were performed at UBC (Tables 1–3 and Appendix 5 in Sack et al., 2020). 

Figure 5.  Compositional range of Late Triassic to Jurassic plutonic suites in the Intermontane terranes of Yukon. (a) Simplified Quartz-Alkali-feldspar-Plagioclase 
plot (after Le Bas & Streckeisen, 1991). (b) Total alkali versus silica diagram for plutonic rocks (after Le Bas et al., 1986). (c) K2O versus SiO2 diagram of Peccerillo 
and Taylor (1976). (d) Alumina saturation index of Shand (1943). Modal abundances from stained hand sample slabs and major element geochemistry from Sack et al. 
(2020, Appendix 8).
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Total 1σ errors in pressure generally range from 0.8 to 1.1 kbar, such that all depth estimates quoted in this study 
have an associated error of ∼3 to 4 km.

3.2.  Late Triassic Plutonic Suites

Late Triassic plutons associated with arc volcanic rocks of Stikinia occur in two main clusters in southern Yukon. 
South of Whitehorse (Figure 2), the Stikine suite (217–214 Ma) comprises small monzodiorite, monzonite, and 
granodiorite plutons (Figure 5a) that intrude Upper Triassic volcanic and volcaniclastic rocks of Stikinia (Lewes 
River Group) near its western edge. Uranium-lead zircon CA-TIMS  206Pb/ 238U dates range from 216.48 ± 0.06 to 
214.42 ± 0.07 Ma (Figure 4). The plutons are oxidized, calc-alkaline to high-K calc-alkaline, and mostly metalumi-
nous (Figures 5c and 5d). They are isotopically juvenile with εNdt of +5.2 to +5.3 and  87Sr/ 86Sri of 0.7042 to 0.7047 
(Figures 6 and 7). Zircons from the Stikine suite have εHft ranging +9.7 to +11.6 (Figure 6c). No inherited zircon 
cores were encountered in the Stikine suite. Crystallization pressure estimates were determined from only one pluton 
(Friday Creek, Figure 2) and indicate emplacement at 3.1–3.5 kbar (emplacement depths of 12–13 km; Figure 8).

A second cluster of small Late Triassic plutons north of Carmacks (Figure 2), the Pyroxene Mountain suite (220–
214 Ma; Ryan et al., 2013), is not as well studied. They include mainly hornblende gabbro, diorite, and pyroxenite 
that are generally coarse to very coarse grained. The plutons intrude metamorphic rocks of the Yukon-Tanana 
terrane northwest of the last exposures of Upper Triassic volcanic rocks of Stikinia (Povoas Formation, Lewes River 
Group) with which the plutons are inferred to be comagmatic (Ryan et al., 2013; Tempelman-Kluit, 1984, 2009). 
Similar coarse grained hornblende gabbro and amphibolite also occur within rafts in Early Jurassic plutons of 
the Minto suite where they intrude Upper Triassic metavolcanic rocks (Ryan et al., 2013). Zircons from plutons 
of the Pyroxene Mountain suite previously yielded imprecise U/Pb dates between 220 and 211 Ma, but  40Ar/ 39Ar 
dates from hornblende of the Pyroxene Mountain pluton and amphibolite rafts in Early Jurassic batholiths have 
a narrower range from 218 to 214 Ma (Sack et al., 2020). A new CA-TIMS date from a Pyroxene Mountain 
pluton at Mount Nansen, west of Carmacks (Figure 2; previously dated at ca. 211 Ma by LA-ICPMS; Klöcking 
et al., 2016), has an age of 216.16 ± 0.07 Ma (Sack et al., 2022) and CA-TIMS analysis of zircon fragments 
in a mineralized raft at the Carmacks Copper deposit indicate a protolith age of 217.53 ± 0.16 Ma (Kovacs 
et al., 2020). These results suggest that the Pyroxene Mountain suite is the northern extension of the Stikine suite 
in central Yukon and that Stikinia is locally anchored on the Yukon-Tanana terrane.

3.3.  Early Jurassic Plutonic Suites

Early Jurassic granitoid plutons are widespread in southern Yukon, where they occur on either side of Triassic 
volcanic rocks of Stikinia/Quesnellia, and Jurassic sedimentary strata of the WT (Figures 2 and 3). Although the 
earliest phases in some plutons of the Minto suite are latest Triassic (ca. 205-203 Ma), the bulk of these plutons 
are Early Jurassic (198–195 Ma) and assigned to that epoch here for simplicity. The Early Jurassic plutons have a 
distinct character on either side of the Big Salmon-Teslin fault system (BSTF). West of the BSTF, large batholiths 
of the Minto (205–194 Ma), Long Lake (188–183 Ma), and Bennett (178–175 Ma) suites intrude the boundary 
between Stikinia and Yukon-Tanana terranes. They are mainly composed of granodiorite and granite (Figures 5a 
and 5b) with the older Minto suite intruding near the apex of Late Triassic Stikinia and progressively younger 
batholiths of the Long Lake and Bennett suites intruding its western edge to the south (Figures 3 and 4). East 
of the BSTF, Early Jurassic plutons of the Lokken suite (195–184 Ma) are distinctly more mafic and alkalic 
(Figures 5a and 5b), typically form small plutons, show no systematic age distribution (Figures 3 and 4), and 
intrude only the Yukon-Tanana terrane.

3.3.1.  Minto Suite

The Minto suite is predominantly composed of hornblende-biotite granodiorite and subordinate granite, quartz 
monzonite, and diorite (Figures 5a and 5b). Uranium-lead zircon CA-TIMS  206Pb/ 238U dates range mainly from 
198.22  ±  0.06 to 194.71  ±  0.07  Ma (Figure  4). The granodiorite is medium grained equigranular to coarse 
grained and K-feldspar porphyritic. It is locally foliated or gneissic, but more typically unfoliated. Euhedral 
magmatic epidote is common in granodiorite of the Minto suite (Sack et  al.,  2020). Minto suite plutons are 
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Figure 6.  Plots of  87Sr/ 86Sri (a), εNdt (b), and zircon εHft (c) versus age for Late Triassic to Jurassic plutons in southern 
Yukon. Note the contrasting isotopic evolution from plutons west and east of the Big Salmon-Teslin fault system. Data from 
Sack et al. (2020, Tables 1–4, Appendices 9 and 10). Whole rock Sr (a) and Nd (b) analyses were done on samples precisely 
dated by CA-TIMS while the Hf data in c was acquired by LA-ICPMS spot analyses of igneous zircons yielding a scatter 
of U-Pb dates. Gray circles in (b) are from volcanic and sedimentary rocks of the Stuhini and Laberge groups reported in 
Jackson et al. (1991). Note that the age of sandstone samples with subchondritic εNdt were corrected using detrital zircon 
maximum depositional ages from nearby strata of the Laberge Group (Kellett & Iraheta Muniz, 2019). Contours for Hf 
isotopic data in (c) were generated using the HafniumPlotter routine of Sundell et al. (2019). Dash gray line shows the 95th 
percentile contour for detrital zircon from the Laberge Group (WT dz; van Drecht, 2019; n = 954). Abbreviations. BSE, bulk 
silicate Earth; CHUR, chondritic uniform reservoir.
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generally oxidized, calc-alkaline to high-K calc-alkaline to weakly shoshonitic, and predominantly peraluminous 
(Figure 5). Whole rock isotopic data range from −3.6 to +1.3 for εNdt, and 0.7047–0.7062 for  87Sr/ 86Sri; εHft in 
zircon range from +0.5 to +10.9 (Figures 6 and 7).

The K-feldspar megacrystic border phase of the Tatchun batholith yielded an older CA-TIMS  206Pb/ 238U date of 
203.32 ± 0.06 Ma (Figure 4). Although this is the only precisely dated latest Triassic phase in this study, the pres-
ence of 205–203 Ma zircon antecrysts in the Granite Mountain batholith (Kovacs et al., 2020; Sack et al., 2020) 
and an imprecise date of 204.9 ± 3.3 Ma from the Pelly pluton (Knight et al., 2013) suggest that this early phase 
may be more widespread than presently documented in the Minto suite. Inherited zircons are documented in 
the Granite Mountain, Minto, and Tatchun plutons (Figure 3; Kovacs et al., 2020; Sack et al., 2020). They show 
a bimodal age distribution with peaks in the Late Triassic (ca. 213 Ma) and Mississippian (ca. 344–327 Ma; 
Figure 9a). Late Triassic zircons have εHft of +3.2 to +6.0 and Mississippian zircons have εHft of +3.7 to +10.9.

Crystallization pressure estimates using the Al-in-hornblende method were determined for the Granite Moun-
tain, Minto, Walhalla, and Tatchun plutons (McCausland et al., 2002; Sack et al., 2020; Tafti, 2005; Topham 
et al., 2016). Plutons west of the Teslin fault have emplacement pressures of 4.8–5.9 kbar, whereas samples from 
the Tatchun batholith to the east of the fault consistently yield higher pressures of 6.4–6.8 kbar (Figure 8). These 
values suggest emplacement depths of 15–25 km for the Granite Mountain, Minto, and Walhalla plutons, and 
of 21–30 km for the Tatchun batholith. These emplacement pressures are consistent with upper greenschist to 
amphibolite facies metamorphism of host rocks for these plutons (Read et al., 1991).

Figure 7.  Distribution of  87Sr/ 86Sri (a) and εNdt (b) values for Late Triassic and Jurassic plutons shown on palinspastic map from Figure 3. Isotopic data from 
Sack et al. (2020, Tables 1–4). Data for the southernmost Sr samples in (a) are from Currie (1994) for Early Jurassic plutons (Bennett suite; n = 2) and Mihalynuk 
et al. (1992) for the Middle Jurassic Fourth of July suite (n = 3).
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Plutons of the Minto suite contain a belt of Cu-Ag-Au deposits (Minto, Carmacks Copper and Stu; Figure 2). 
The mineralization is dated at ca. 217–213 Ma and occurs in variably metamorphosed and migmatized rafts and 
xenoliths of foliated intermediate to mafic meta-igneous rocks of probable Stikine suite affinity, enveloped within 
massive plutonic phases of the Minto suite (Kovacs et al., 2020; Sack et al., 2020).

3.3.2.  Long Lake Suite

The Long Lake suite is primarily represented by the Aishihik batholith, Big Creek pluton, and southwest portion of the 
Granite Mountain batholith (Figures 2 and 3); it ranges from tonalite-granodiorite to granite and syenite (Figures 5a 

Figure 8.  Plot of total Al content (AlTOT) of hornblende (a) and Pressure (b) versus age for Late Triassic and Jurassic plutons 
in Yukon. Pressures calculated using the Al-in-hornblende geobarometer of Anderson and Smith (1995). Data is presented in 
Sack et al. (2020, Tables 1–3 and Appendix 5). Depth estimated using a lithostatic gradient of ∼3.7 km/kbar. Samples from 
previous studies are shown in gray; data from McCausland et al. (2002) and Tafti (2005).
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Figure 9.  Probability density plots for Phanerozoic dates and εHft data from inherited zircon cores analyzed by LA-ICPMS 
(Appendices 3 and 10 in Sack et al., 2020). (a) Minto suite; (b) Long Lake suite; (c) Lokken suite; (d) McGregor suite; and 
(e) composite plot for all analyses. The range of crystallization age (crystal.) from CA-TIMS dates for each suite (Figure 4) is
indicated by black bar at the young end of the age spectra. (f) Plot of εHft versus age for inherited zircon cores. Hatched, pink
areas indicate ranges of εHft values for source units from the literature (or equivalent range for εNdt data, calculated using 
equation of Vervoot et al., 1999). Abbreviations. F, Finlayson assemblage, mafic rocks εNdt (Creaser, Erdmer, et al., 1997;
Piercey et al., 2006); K, Klondike assemblage, felsic rocks εNdt (Ruks et al., 2006); Kt, Klinkit assemblage, mafic rocks
εNdt (Simard et al., 2003); M, Minto suite, zircon εHft (Sack et al., 2020; this study); P, Povoas formation, mafic rocks εHft
(Bordet et al., 2019); SR, Simpson Range suite, granitoid rocks εNdt (Piercey et al., 2006); YTs, Devonian detrital zircon εHft 
from Yukon-Tanana terrane of southeastern Alaska (Pecha et al., 2016).
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and 5b). The Aishihik batholith comprises two main phases that are close in age and locally intermixed. The older 
phase is composed of hornblende (±biotite) granodiorite to tonalite. It is fine to medium grained, equigranular to 
locally K-feldspar porphyritic, and melanocratic with hornblende typically more abundant than biotite. The younger 
phase comprises coarser grained granodiorite and granite characterized by coarse, gray quartz glomerocrysts. The 
rock is equigranular to K-feldspar porphyritic, generally leucocratic with mainly biotite and rare hornblende, and 
local muscovite. Granite phases are commonly associated with aplite dikes and pegmatite pods. The southwest 
portion of the Granite Mountain batholith is composed mainly of granodiorite and minor granite. Distinctive very 
coarse grained, hornblende-K-feldspar monzonite and syenite comprise the main phase in the Big Creek pluton.

Zircon CA-TIMS  206Pb/ 238U dates range from 187.46 ± 0.07 to 182.83 ± 0.05 Ma (Figure 4). In the Aishihik 
batholith, the “older,” melanocratic granodiorite phase (Aishihik 1 in Tables 1 and 2 of Sack et al., 2020) yielded 
dates ranging from 186.22 ± 0.10 to 183.28 ± 0.07 Ma, while the “younger” granite phase (Aishihik 2) is dated 
at 184.06 ± 0.06 Ma, consistent with intermingling of these phases observed in outcrop.

Granodiorite and granite of the Long Lake suite are oxidized, calc-alkaline to high-K calc-alkaline, and mainly 
peraluminous, whereas syenite of the Big Creek pluton is oxidized, high-K calc-alkaline to shoshonitic, and 
metaluminous (Figure 5). Plutons of the Long Lake suite have the most evolved isotopic signature of all Jurassic 
intrusions in Yukon with  87Sr/ 86Sri of 0.7051 to 0.7065, εNdt of −5.9 to −1.5, and εHft in zircon of −5.8 to +6.4 
(Figures 6 and 7).

Inherited zircon cores were documented in 7 of the 10 samples analyzed from plutons of the Long Lake suite. The 
dominant population (53% of analyses) includes cores with dates ranging from 209 to 193 Ma that define a sharp 
peak at ca. 199 Ma (Figure 9b). Older zircon cores are present but form more subdued populations compared to 
those in the Minto suite. Six cores yielded Late Triassic dates (233–213 Ma), four are Permian (275–250 Ma), 
ten are Mississippian (353–324 Ma), and five are Late Devonian (378–374 Ma; Figure 9b). The latest Triassic 
to Early Jurassic zircons have εHft of −6.0 to +7.2, the Late Triassic zircons εHft of +3.0 to +10.1, the Permian 
zircons εHft of −15.3, and Devonian-Mississippian zircons εHft of −14.3 to +12.1.

Aluminum-in-hornblende pressures were calculated for seven samples from the Aishihik batholith (Figure 2) and 
range from 2.3 to 6.0 kbar, indicating emplacement depths of 9–23 km (Figure 8; Sack et al., 2020). Previous 
Al-in-hornblende pressures for the southwest Granite Mountain batholith range from 4.4 to 4.7 kbar (McCausland 
et al., 2002).

3.3.3.  Bennett Suite

The Bennett suite includes much of the Bennett and Alligator Lake plutons south of Whitehorse in Yukon (Figure 2); 
a trend of plutons from this suite extends into northern British Columbia west of Atlin (Figure  3; Mihalynuk 
et al., 1999). The Bennett suite is composed of K-feldspar porphyritic granodiorite and equigranular monzodiorite 
and diorite that are locally weakly foliated (Figure 5a). The groundmass in the granodiorite is generally fine grained 
with granophyric or graphic textures, suggesting emplacement at shallow depth and/or a water-saturated magma 
(Sack et al., 2020). A sample of the Bennett Lake batholith has a CA-TIMS  206Pb/ 238U date of 178.18 ± 0.06 Ma 
(Figure 4). Previous dates from the Bennett suite suggest it may range as young as ca. 175 Ma (Hart, 1995). The 
rocks are oxidized, subalkaline diorite to granite in composition (SiO2 62%–70%; Figure 5b). They are calc-alkaline 
to high-K calc-alkaline and peraluminous (Figures 5c and 5d) and have some of the most enriched trace element 
concentrations of all Early Jurassic plutons (Sack et al., 2020). Two samples from the Bennett suite have moderately 
evolved isotopic signatures with  87Sr/ 86Sri of 0.7052 and 0.7053, and εNdt of −2.5 (Figures 6 and 7). No inheritance 
was documented in the limited LA-ICPMS U-Pb analyses from the Bennett suite. Two samples were analyzed for 
Al-in-hornblende barometry. One sample has total Al (Al TOT) too low to yield meaningful results, while a crystalli-
zation pressure of 3.5 kbar from the other sample suggests emplacement at depths ≤13 km (Figure 8).

3.3.4.  Lokken Suite

The Lokken suite is a belt of small plutons intruding metamorphic rocks of the Yukon-Tanana terrane east of the 
BSTF in southern Yukon (Figures 2 and 3). The Lokken suite extends south into northernmost British Colum-
bia, where it forms parts of the large, composite Coconino-Simpson Peak-Nome Lake batholith (Figure 3; Cui 
et al., 2017; Han et al., 2020; Roots et al., 2006). The plutons are composed mainly of mesocratic, medium grained, 
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equigranular hornblende-biotite-clinopyroxene monzodiorite, monzonite, diorite, and granodiorite (Figures 5a 
and 5b). Zircon CA-TIMS  206Pb/ 238U dates range from 194.67 ± 0.05 to 184.21 ± 0.05 Ma (Figure 4). K-feldspar 
porphyritic monzonite and granodiorite also occur in some of the younger plutons (e.g., ca. 188–184 Ma Logjam 
and Two Ladder plutons). Mafic to ultramafic gabbro, pyroxenite, and variably serpentinized dunite locally occur 
as border phases in some plutons (e.g., Roots et al., 2004). Hornblende-clinopyroxene syenite is present in plutons 
intruding the Yukon-Tanana terrane northeast of the Tintina fault (e.g., Banana pluton, Figures 2 and 3). Older 
phases of the Lokken suite are locally foliated and local development of myrmekitic texture suggests subsolidus 
metasomatism and/or deformation.

Plutons of the Lokken suite are oxidized, subalkaline to alkaline, high-K calc-alkaline to shoshonitic, and meta-
luminous, and occupy fields distinct from other suites on Figure 5. They have whole rock isotopic data rang-
ing from 0.7044 to 0.7059 for  87Sr/ 86Sri and −4.3 to −0.6 for εNdt; εHft in zircon range from −2.9 to +9.3 
(Figures 6 and 7). Inherited zircon cores were documented in 3 samples from the youngest part of the Lokken 
suite (<186 Ma; Figure 3). Only 12 analyses were acquired from these samples (Figure 9c), of which 5 have dates 
ranging ca. 202–196 Ma, 2 are Late Triassic (ca. 235 and 226 Ma), and 2 are Mississippian (ca. 354 and 341 Ma). 
Precambrian cores (n = 3) with dates of ca. 2,285, 1,698, and 605 Ma were analyzed from the two youngest 
plutons in the suite, the ca. 184 Ma Logjam and Sawtooth plutons (Figures 2 and 3). Inherited cores with Late 
Triassic dates have εHft of +9.2 and +11.6 (Figure 9).

Only two samples of the Lokken suite had the suitable assemblage for Al-in-hornblende geobarometry. The ca. 
192 Ma Lokken and Macmillan Range plutons have calculated pressures of 3.1 and 2.6 kbar, respectively, indi-
cating emplacement at depths of ∼10 to 12 km (Figure 8).

3.4.  Middle to Late Jurassic Plutonic Suites

The Middle Jurassic Bryde suite occurs along the central axis of the Intermontane terranes, immediately west of 
the BSTF, and in between the two main belts of Early Jurassic plutons (Figures 2 and 3). Plutons of the Bryde 
suite are relatively sparse in southern Yukon but form large batholiths in northern British Columbia, where they 
are assigned to the Fourth of July suite (Figures 2 and 3; Mihalynuk et al., 1999). They intrude Stikinia and Cache 
Creek terranes, and the overlapping Early to Middle Jurassic WT, and postdate the Jurassic southwest-verging 
structural imbrication of these tectonic elements (Bickerton et al., 2020; Mihalynuk et al., 2004).

Plutons of the Bryde suite are composed of hornblende-clinopyroxene-biotite syenite, monzonite, granodiorite, 
tonalite, and diorite (Figures 5a and 5b). Zircon CA-TIMS  206Pb/ 238U dates for three of four samples analyzed 
have a narrow range of 173.44 ± 0.05 to 171.62 ± 0.05 Ma (Figure 4). The Michie pluton, east of Whitehorse, 
is younger with a date of 168.09  ±  0.05  Ma (Figures  2–4). The rock varies from fine to coarse grained, to 
porphyritic and locally pegmatitic, and from leucocratic to melanocratic. Plutons of the Bryde suite are generally 
reduced, subalkaline to alkaline, calc-alkaline to high-K calc-alkaline, and straddle the metaluminous and peralu-
minous fields (Figure 5). They have relatively juvenile isotopic signatures with  87Sr/ 86Sri of 0.7040 to 0.7050, and 
εNdt of +0.5 to +3.5 (Figures 6 and 7). Zircon εHft form two clusters with samples from the ca. 173 to 172 Ma 
Teslin Crossing and Fourth of July plutons yielding juvenile εHft values of +4.7 to +8.5, whereas the younger, 
ca. 168 Ma Michie pluton has lower εHft values of +0.8 to +4.0 (Figure 6c). No inheritance was documented 
in the four samples that were analyzed. A single sample from the northern tip of the Fourth of July batho-
lith contained the suitable assemblage for Al-in-hornblende geobarometry. However, the very low Al TOT in this 
sample precluded calculation of reliable pressure estimate (Figure 8). Harris et al. (2003) reported Al-in-horn-
blende pressures ≤3.1 kbar from the Fourth of July batholith in northern British Columbia.

A single Late Jurassic pluton, the McGregor batholith, intrudes the Boswell assemblage between the Teslin and 
Towhata faults (Figure 2). It comprises two phases: (a) an older phase of hornblende-biotite granodiorite and gran-
ite and (b) a younger, central phase of two-mica granodiorite and tonalite (Sack et al., 2020). The older granodiorite 
is medium to coarse grained and commonly K-feldspar porphyritic. Medium grained, equigranular granodiorite 
is locally present, and a foliation is developed locally along the pluton margins. The two-mica (biotite-muscovite) 
phase is generally fine to medium grained and equigranular, but also locally K-feldspar porphyritic.

Zircon CA-TIMS  206Pb/ 238U dates for three samples of the early granodiorite phase of the McGregor batholith 
range from 163.42 ± 0.05 to 161.16 ± 0.05 Ma (Figure 4). Zircon from the younger, central phase of two-mica 
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granodiorite yielded a scatter of U-Pb LA-ICPMS dates between ca. 172 and 136 Ma, including high-U zircon, 
which precluded precise estimate of its crystallization age (Sack et al., 2020). A muscovite  40Ar/ 39Ar date of 
146.8 ± 0.9 Ma provides a minimum age for the two-mica phase of the McGregor batholith. Both phases are 
reduced, subalkaline, high-K calc-alkaline and peraluminous (Figure 5). Isotopic data were only collected from 
the older granodiorite phase of the McGregor batholith. Whole rock  87Sr/ 86Sri values for two samples are 0.7055, 
and εNdt are −0.1 and + 0.7; εHft in zircon range from +0.8 to +4.2 (Figures 6 and 7).

Inherited zircon cores were documented in one sample of ca. 161 Ma granodiorite from the McGregor batholith. 
Twelve of the sixteen spots analyzed have dates ranging from 208 to 187 Ma, defining a peak at ca. 199 Ma 
(Figure 9d). The remaining four analyses are Carboniferous with dates of 322–312 Ma. Early Jurassic cores have 
εHft of +3.2 to +4.7 and Mississippian cores have εHft of +7.0 to +11.0. Two samples of early granodiorite 
from the McGregor batholith were analyzed for Al-in-hornblende geobarometry and yielded pressures of 4.5 and 
5.3 kbar (emplacement depths of ∼17 to 20 km; Figure 8).

4. Magmatic Evolution and Tectonic Settings
The Late Triassic to Jurassic plutons in south-central Yukon were intruded during progressive arc-continent colli-
sion and accretion of the Intermontane terranes in the early Mesozoic; they record distinct steps in the transition 
from arc to syn- and post collisional magmatism.

4.1.  Late Triassic Stikine-Lewes River Arc

The Late Triassic (ca. 217–214 Ma) plutons of the Stikine suite intrude comagmatic, Upper Triassic (Carni-
an-Norian) volcanic and volcaniclastic rocks of the Povoas formation (Lewes River Group, Stikinia) in southern 
Yukon (Figure 2). Stikine suite rocks have metaluminous, calc-alkaline compositions and juvenile isotopic signa-
tures (average εNdt +5.3; εHft in zircon of +10.0; Figure 6) that are consistent with the primitive arc tholeiite to 
calc-alkaline basalt compositions of the Povoas formation (average εNdt +7.5; εHft +7.3; Bordet et al., 2019). 
These data support correlation with the Stuhini-Takla groups and related Late Triassic plutons in British Colum-
bia (average εNdt +7.5; Dostal et al., 1999), and the concept that these formed parts of a continuous Late Triassic 
arc system (e.g., Dostal et al., 1999; Mihalynuk et al., 1994, 1999). The Late Triassic gabbro and pyroxenite of 
the Pyroxene Mountain suite (best ages ca. 218–214 Ma) are the northern extension of the Stikine suite in central 
Yukon (Figure 2; Ryan et al., 2013; Tempelman-Kluit, 1984, 2009). The Pyroxene Mountain suite intrudes the 
Yukon-Tanana terrane north of Carmacks, suggesting that the northern end of the Late Triassic arc of Stikinia was 
locally anchored on Yukon-Tanana basement. The ca. 215–212 Ma Taylor Mountain batholith and related plutons 
of east-central Alaska also intrude the Yukon-Tanana terrane and likely represent the northernmost expression of 
Stikine arc magmatism (Figure 1; Dusel-Bacon et al., 2015).

4.2.  Early Jurassic Syn-Collisional Magmatism

The style of magmatism in the northern Intermontane terranes of Yukon changed profoundly in the latest Triassic 
to Early Jurassic, from juvenile intra-oceanic arc to a spatial-temporal sequence of syn-collisional pluton clusters. 
These plutons were intruded after crustal thickening and burial of the Yukon-Tanana terrane was initiated at ca. 
205–200 Ma (Clark, 2017; Kovacs et al., 2020) and during the following phase of exhumation recorded along 
the flanks of the WT. Crustal thickening was accommodated along a series of southwest-verging shear zones and 
thrust faults, of which the Needlerock, Tadru, Yukon River, and Reindeer faults are inferred remnants (Figure 3; 
Colpron et al., 2002, 2003; Parsons et al., 2018; Ryan et al., 2013, 2014). This latest Triassic to Early Jurassic 
orogenic activity is inferred to record the initiation of the northern Cordilleran orogen (Colpron et al., 2015).

4.2.1.  West of the BSTF

Plutons intruding Stikinia and Yukon-Tanana terranes west of the BSTF form large batholiths of generally peralu-
minous, calc-alkaline to shoshonitic compositions with more evolved isotopic signatures (εNdt −5.9 to +1.3; 
zircon εHft −6.0 to +10.3; Figure 6). In southern Yukon, the locus of magmatism migrated southward through 
the Early Jurassic, with the older Minto suite (ca. 205–194 Ma) in the north and progressively younger plutons 
of the Long Lake (ca. 188–183 Ma) and Bennett suites (ca. 178–175 Ma) to the south (Figures 3 and 4). Early 
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Jurassic plutons west of the BSTF also show progressively more evolved isotopic signatures through time, with 
the Minto suite yielding near chronditic εNdt (average of −0.4) compositions and the younger Long Lake and 
Bennett suites having more evolved εNdt averages of −3.5 and −2.5, respectively (Figure 6b). Similar patterns are 
apparent in  87Sr/ 86Sri (Figure 6a) and εHft in zircon (Figure 6c). This progressive shift to more evolved isotopic 
signatures indicates an increase in crustal interaction through time. Incorporation of older crustal components 
(e.g., Snowcap assemblage; Piercey & Colpron, 2009) into the Early Jurassic magma is also reflected in the rela-
tive abundance of inherited zircon cores in plutons of the Minto and Long Lake suites (Figures 3 and 9).

Plutons of the Minto suite were emplaced in the mid- to lower crust during peak regional metamorphism, and local 
development of a solid-state foliation in early phases suggest syn-tectonic intrusion. They have Al-in-hornblende 
crystallization pressures of ∼5 to 7 kbar (∼20 to 25 km; Figure 8) that are consistent with the common occurrence 
of magmatic epidote in these plutons (Sack et al., 2020; Zen & Hammarstrom, 1984). Although the presence of 
magmatic epidote and the Al-in-hornblende geobarometer have been questioned as reliable indicators for depth of 
emplacement (see Schmidt & Poli, 2004, for discussion), regional metamorphic studies of the Yukon-Tanana terrane 
in western Yukon indicate peak pressures in the Early Jurassic (4–9 kbar, ca. 195–188 Ma; Berman et al., 2007; 
Clark, 2017; Gaidies et al., 2021) that are broadly consistent with Al-in-hornblende pressures from Minto suite 
plutons (Figure 10a). In particular, kyanite-rich metapelitic rocks in the aureole of the 199.1 ± 6.8 Ma Walhalla 
pluton (Figure 2) formed at 195.0 ± 1.7 Ma (monazite) and have an estimated pressure of 5.4–7.6 kbar at 600°C 
(Berman et al., 2007), which is consistent with the Al-in-hornblende pressure estimate of 5.9 ± 0.9 kbar for the 

Figure 10.  (a) Spatial distribution of crystallization pressure estimates from Al-in-hornblende geobarometry in Jurassic granitoid plutons (data from Tables 1–3 in 
Sack et al., 2020) and Early Jurassic peak pressures from regional metamorphic studies of the Yukon-Tanana terrane (Berman et al., 2007; Clark, 2017; Dyer, 2020; 
Gaidies et al., 2021). (b) Mica cooling ages for metamorphic and igneous rocks of the Intermontane terranes in Yukon (data from compilation of the Yukon Geological 
Survey, 2020c) and northern British Columbia (data from compilation of Han et al., 2020). Jurassic cooling ages are highlighted by yellow circles with labels showing 
the range for cluster of ages. Hatched area in the hanging wall of the Willow Lake fault (WLF) indicates part of the Yukon-Tanana terrane that cooled in the Paleozoic 
(Colpron et al., 2015; Knight et al., 2013; Staples et al., 2016). Sample locations are shown on the palinspastic restoration from Figure 3. Abbreviation. C, Carmacks.
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granodiorite in the pluton (Figure 10a). North of Carmacks, Upper Triassic  rocks  of  Stikinia are locally  metamor-
phosed to greenschist and lower amphibolite facies (Colpron et al., 2003;  Colpron & Ryan, 2010; Read et al., 1991).

Exhumation of the Minto suite plutons and their Yukon-Tanana host rocks followed shortly after intrusion and peak 
metamorphism (Clark, 2017), and ca. 200–180 Ma mica dates suggest cooling below 300°C–350°C in the Early 
Jurassic (Figure 10b). The Minto and Granite Mountain plutons were emplaced at ∼20 km at ca. 198–195 Ma and 
exhumed by ≤10 km in 8–14 Myr, for average exhumation rates of 0.7–1.3 mm/yr (Sack et al., 2020). To the east, 
the Tatchun batholith was emplaced deeper (∼25 km) and exhumed ∼15 km in only 2–7 Myr, for average exhuma-
tion rates of 2.1–7.5 mm/yr. The higher exhumation rates suggest that unroofing may have been aided by tectonic 
denudation. The Willow Lake fault is a low-angle extension fault that is inferred to have accommodated part of the 
tectonic denudation in the Early Jurassic (Figures 2 and 3; Colpron & Ryan, 2010). Its hanging wall contains rela-
tively undeformed and unmetamorphosed Mississippian volcanic and plutonic rocks of the Yukon-Tanana terrane 
that preserve Mississippian mica cooling ages (Joyce et al., 2015; Knight et al., 2013). These rocks formed an upper 
crustal lid beneath which strongly foliated, locally protomylonitic, amphibolite facies metasedimentary and meta-
plutonic rocks in the footwall were exhumed in the Early Jurassic (ca. 189-185 Ma mica cooling ages; Figure 10b).

Plutons of the Long Lake (ca. 188–183 Ma) and Bennett suites (ca. 178–175 Ma) were emplaced at shallower 
crustal levels during this Early Jurassic phase of exhumation (Figures 8 and 10a). Plutons of the Long Lake 
suite generally yield Al-in-hornblende pressures of 3.4–5.3 kbar (emplacement depths of 13–20 km) and cooled 
rapidly within 2–4 Myr after crystallization. Similarly, Al-in-hornblende pressures of 4.3–5.5 kbar are reported 
from Early Jurassic plutons of the Long Lake and Bennett suites in northern British Columbia (Currie, 1994).

4.2.2.  East of the BSTF

The Lokken suite (ca. 195–184 Ma) intrudes the Yukon-Tanana terrane east of the BSTF. It comprises mainly 
small plutons in Yukon but includes the large, composite Coconino-Simpson Peak-Nome Lake batholith in north-
ern British Columbia (Figures 2–4). Unlike the Early Jurassic plutons to the west, there is no apparent pattern of 
age distribution in the Lokken suite. The Lokken plutons are generally more mafic, locally ultramafic, metalumi-
nous, and high-K calc-alkaline to shoshonitic with subchondritic εNdt,  87Sr/ 86Sri generally >0.7047, and εHft in 
zircon of −2.9 to +9.3 (Figures 6 and 7). Overall, the Lokken suite has a range of isotopic values comparable to 
Minto suite plutons to the west. In contrast to Early Jurassic plutons west of the BSTF, the Lokken suite shows 
an apparent trend of decreasing crustal influence through time, with a generally more juvenile isotopic signa-
ture in younger plutons (Figure 6). Zircon inheritance is less common in Lokken suite plutons, with inherited 
cores encountered in only three of eight samples analyzed, and in younger plutons of the suite (ca. 186–184 Ma; 
Figures  3 and  9). Limited Al-in-hornblende data suggest emplacement depths ≤10  km (Figures  8 and  10a), 
consistent with predominantly greenschist facies assemblages in the Yukon-Tanana host rocks (Read et al., 1991). 
Mica dates also suggest relatively rapid cooling within ≤2 Myr (Figure 10b). Local development of foliation and 
myrmekitic textures suggest emplacement during deformation and metamorphism.

Lokken suite plutons in Yukon are probably along-strike equivalents of syn-tectonic, Alaskan-type intrusions in 
Quesnellia and Yukon-Tanana terranes in British Columbia, including the Turnagain (Figure 3; ca. 190–185 Ma; 
Nixon et al., 2020) and Polaris complexes (ca. 186 Ma; Nixon et al., 1997). Like the Turnagain complex, plutons 
of the Lokken suite locally include mafic to ultramafic phases and were apparently emplaced during regional 
deformation and metamorphism related with imbrication of Yukon-Tanana and Quesnellia with the western 
North American margin.

4.3.  Middle to Late Jurassic Post-Collisional Magmatism

Middle Jurassic plutons of the Bryde and Fourth of July suites intruded the axis of the Intermontane terranes 
and the overlapping WT (Figures  2 and  3) after initial imbrication with Stikinia and Cache Creek terranes 
(Bickerton et al., 2020; Mihalynuk et al., 2004). The post-collisional Bryde suite is generally more alkalic with 
juvenile  87Sr/ 86Sri (<0.7047), and superchronditic εNdt and zircon εHft values (Figure 6) that indicate renewed 
mantle input in the Middle Jurassic (ca. 174 Ma). By the Late Jurassic, peraluminous granodiorite and granite of 
the McGregor pluton (ca. 163–146 Ma) show another shift to more evolved isotopic signatures and increasing 
crustal input. The shift in isotopic values between the Middle and Late Jurassic is similar to the trend observed 
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in Late Triassic to Early Jurassic plutons west of the BSTF (Figure 6) and likely reflects continued crustal thick-
ening and growth of the orogen.

4.4.  Whitehorse Trough

Crustal thickening and emplacement of Early Jurassic plutons were coincident with development of the WT 
(Colpron et al., 2015), a marine synorogenic sedimentary basin that overlaps Stikinia and Cache Creek terranes 
north of the Stikine arch (Figures 1 and 11). Its siliciclastic fill, the Laberge Group, comprises proximal, shallow 
marine sandstone, and conglomerate along the northern (Tanglefoot formation) and western margins (Takwahoni 
Formation), and generally more distal, deep-water sandstone-mudstone (turbidite), and mass-flow conglomerate 
of the Richthofen and Inklin formations near the center of the basin (English et al., 2005; Hart, 1997; Johannson 
et al., 1997; Lowey, 2008; Souther, 1971; Wheeler, 1961). Subsidence in the WT began in late Hettangian to 
Sinemurian (ca. 199  Ma) during emplacement of the Minto suite within a thickening orogen and continued 
through Early Jurassic exhumation until the Bajocian (Middle Jurassic). Pliensbachian (ca. 188–186 Ma) crys-
tal-lithic tuff of the Nordenskiöld facies occur at various stratigraphic levels within the Tanglefoot and Richthofen 
formations in Yukon and likely represent pyroclastic deposits sourced from magma of the Long Lake suite to the 
west (Colpron & Friedman, 2008). Conglomerate clasts in the Laberge Group indicate progressive unroofing of 
Stikinia with mostly volcanic and sedimentary clasts in Sinemurian to lower Pliensbachian strata, mostly plutonic 
clasts in the upper Pliensbachian, and appearance of metamorphic clasts in upper Toarcian strata (Dickie & 
Hein, 1995; Hart et al., 1995; Johannson et al., 1997; Shirmohammad et al., 2011). Eclogite clasts occur locally in 
Pliensbachian-Toarcian strata of the Laberge Group in northern British Columbia (Figure 11; Canil et al., 2006). 
They record rapid exhumation in the Early Jurassic (Kellett et al., 2018). Chert clasts are locally present in Bajo-
cian strata in Yukon (Colpron et al., 2015) and are abundant in strata of this age in northern British Columbia 
(Shirmohammad et al., 2011).

Figure 11.  Regional relationships of Early to Middle Jurassic sedimentary basins, volcanic, and magmatic belts in the northern Intermontane terranes of Yukon and 
northern British Columbia. Palinspastic restoration as in Figure 3 with additional restoration of dextral displacement on the Cassiar-Kutcho (∼50 km) and Kechika-
Finlay (∼195 km) faults following Gabrielse (1985), Evenchick (1988), and Gabrielse et al. (2006). Note that this map is rotated with modern-day north pointing to 
upper left. Heavy red line along the Skeena arch marks approximate location of the Hazelton subduction zone (teeth pointing to upper plate). Heavy black line with 
teeth indicates the western boundary of Quesnellia with Cache Creek and Stikinia, which follows the modern traces of the Big Salmon-Teslin fault system (BSTF). 
Heavy green lines are traces of inferred Early Jurassic sinistral transform faults. Purple diamonds show locations of Early Jurassic eclogite clasts in Laberge Group 
(Eclogite Ridge, ER) and Middle Jurassic blueschists in the French Range (FR), Cache Creek terrane.
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Detrital zircon provenance studies show that Laberge Group rocks were locally derived from basement sources on 
the flanks of WT (Colpron et al., 2015; van Drecht, 2019). Late Triassic-Early Jurassic zircons make the domi-
nant age peaks in Laberge sandstones with Paleozoic (mainly Carboniferous) zircons representing subordinate 
but locally significant populations. This pattern matches igneous ages from plutons surrounding the WT (Colpron 
et al., 2015) and inherited zircons in Jurassic plutons (Figures 3, 4, and 9). The Hf isotopic signatures of detrital 
zircons in sandstones of the Laberge Group show a shift from superchondritic to subchondritic values between 
Late Triassic and Early Jurassic (van Drecht, 2019), a pattern that mimics the trend observed in Late Triassic and 
Jurassic plutons in Yukon (Figure 6c).

Final imbrication of the Intermontane terranes in Middle Jurassic (Aalenian-Bajocian) brought the end of marine 
deposition in the WT, local tilting of Laberge strata, surface uplift, and deposition of the overlying Upper Jurassic 
to Lower Cretaceous Tantalus Formation in fluvial and lacustrine settings within confined intermontane valleys 
(Long, 2015). Detrital zircons in the Tantalus Formation have mainly similar sources as, or were recycled from 
Laberge Group strata, with exception of minor Late Jurassic populations that Colpron et al. (2015) attributed to 
ash-fall from distal volcanic sources in the Insular terranes. New CA-TIMS dates from the main phase of the 
McGregor batholith (163–161 Ma; Figure 4) and a  40Ar/ 39Ar muscovite age of ca. 146 Ma from its younger phase 
(Sack et al., 2020) indicate that local sources are available for Late Jurassic zircons in the Tantalus Formation.

5. Discussion
5.1.  Improved Geochronology and Tempos of Magmatism

The new zircon CA-TIMS U-Pb dates produced for this study provide tight constraints on the duration of pluton 
emplacement in southern Yukon (Figure 4). These data indicate that Late Triassic to Early Jurassic suites that intrude 
Stikinia and Yukon-Tanana terrane west of the BSTF were emplaced in discrete episodes of 2–5 Myr in duration, 
possibly as long as 8–9 Myr for the Minto suite. These new data bring refinement over the apparent continuum in 
magmatism from Late Triassic to Middle Jurassic suggested when all U-Pb zircon dates acquired from these plutons 
are considered, including ages determined using less precise analytical techniques such as LA-ICPMS, secondary ion 
mass spectrometry (SIMS), and TIMS on multi-grain, air-abraded zircon fractions (Figure 12). The large batholiths 
of the Minto suite were primarily constructed over ∼3.5 Myr between 198.22 and 194.71 Ma (Figures 4 and 12). 
Older, ca. 205–203 Ma phases are locally documented and the common occurrence of ca. 205–203 Ma zircon ante-

Figure 12.  Ranked plot of U/Pb zircon ages for all Late Triassic to Jurassic igneous samples analyzed from the Intermontane 
terranes in Yukon (data from Yukon Geological Survey, 2020c). Data points are shown with 2σ errors and color-coded 
according to analytical technique. Data for the Lokken suite, east of the BSTF, are shown separately at right. A probability 
density plot for ages from plutons west of the BSTF is shown in red at left (n = 92). The age ranges of plutonic suites 
determined from CA-TIMS dates (Figure 4) are indicated by color boxes.
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crysts suggest that Minto magmatism may have lasted up to 8–9 Myr. Construction of the Aishihik batholith (Long 
Lake suite; Figure 3) occurred over ∼3 Myr between 186.22 and 183.28 Ma, and the full range of Long Lake magma-
tism lasted ∼4.6 Myr, from 187.46 to 182.83 Ma (Figures 4 and 12). The Lokken suite, east of the BSTF, spans 9 Myr 
and includes a magmatic pulse at ca. 192 Ma during an apparent lull between the Minto and Long Lake suites to the 
west (Figures 4 and 12). The tempos of magmatism indicated from the range of CA-TIMS dates in Early Jurassic 
plutons in Yukon are consistent with construction rates of ≤10 Myr determined for other well-studied large batholiths 
(e.g., Coleman et al., 2004; Frazer et al., 2014; Glazner et al., 2004; Schwartz et al., 2017).

Limited CA-TIMS data for the Bennett suite precludes exact estimate of the intrusive rate for these plutons, 
however when considering previous TIMS dates a tempo of ∼3 Myr is also indicated. Plutons of the Middle 
Jurassic Bryde suite were mostly intruded in <2 Myr, between 173.44 and 172.62 Ma (Figures 4 and 12). The 
168.09 Ma Michie pluton could represent continuum of Bryde suite magmatism over ∼5.4 Myr or a distinct, 
younger pulse of magmatism. In northern British Columbia, Mihalynuk et al. (2004, 2018) estimated a range of 
ca. 172–166 Ma for the Fourth of July suite based on U-Pb zircon TIMS, and K-Ar and  40Ar/ 39Ar biotite dates.

5.2.  Sources of Inheritance

Inherited zircon cores were documented in 15 of 30 Jurassic samples analyzed both by LA-ICPMS and CA-TIMS 
(Figures 3 and 9). A total of 129 cores were analyzed with 54% yielding Triassic to Jurassic (ca. 235–187 Ma), 
37% Devonian to Carboniferous (ca. 378–306 Ma), 4% Permian (ca. 275–250 Ma), and 5% Precambrian dates (ca. 
2,606–571 Ma; Figure 9e). Late Triassic cores (peak at 213 Ma) are most common in the Minto suite, although 
Paleozoic cores make up the majority of zircon xenocrysts analyzed in these samples (68%; Figure 9a). The Late 
Triassic zircon cores have juvenile εHft values (+3.2 to +6.0), similar to those of the Stikine-Lewes River arc (whole 
rock εHft +3.2 to +10.6; Figure 9f); this is consistent with the local abundance of variably migmatized xenoliths 
of Late Triassic intermediate to mafic rocks in plutons of the Minto suite (Kovacs et al., 2020; Sack et al., 2020).

Inherited zircons in samples of the Long Lake, Lokken, and McGregor suites are dominated by latest Triassic 
to Early Jurassic dates (ca. 209–193 Ma) with ca. 199 Ma peaks and εHft values of −6.0 to +9.3 (Figure 9). 
These peaks match well with the age range of the Minto suite (Figure 4), but igneous zircons from these plutons 
are consistently superchondritic (εHft +0.5 to +10.9; Figure 6). Occurrences of Minto-age xenocrysts in Early 
Jurassic granitoids from both sides of the BSTF point to similarity in latest Triassic to earliest Jurassic magmatic 
activity, although plutons older than ca. 195 Ma are not documented in the Lokken suite in Yukon. The oldest 
phases in the Hogem batholith of central British Columbia (Figure 1) are ca. 207–194 Ma (Jones et al., 2021) and 
older plutons (ca. 215–205 Ma) are common in southern Quesnellia (Han et al., 2020; Mortensen et al., 1995).

Inherited zircons with Paleozoic dates are present in all suites and generally match well the ages and Hf isotopic 
composition of local Paleozoic units in Yukon-Tanana and Stikinia (Figure 9f). The Late Devonian inherited 
zircons (ca. 378–374 Ma) with mostly subchondritic εHft values in the Aishihik batholith (Long Lake suite) 
are the exception (Figure 9). There are no known sources in local rocks of Stikinia or Yukon-Tanana terrane for 
these zircons. In southern Yukon, ca. 378–373 Ma volcanism is only documented in continental margin strata of 
the Earn Group, presently ∼250 km away northeast of the Tintina fault (Cobbett et al., 2021; Yukon Geological 
Survey, 2020a, 2020b, 2020c). Zircons within this age range are also documented in the Yukon-Tanana terrane 
of southeast Alaska (>400 km south) but consistently have superchondritic εHft values (Pecha et al., 2016). Rare 
Precambrian zircons in Early Jurassic plutons in Yukon were likely recycled through incorporation of minor 
metasedimentary sources in the Yukon-Tanana terrane (e.g., Snowcap assemblage; Piercey & Colpron, 2009).

5.3.  Spatial Versus Temporal Isotopic Patterns

Armstrong (1988) showed that the regional distribution of  87Sr/ 86Sri isopleths in Mesozoic igneous rocks of the 
Canadian Cordillera defines a hairpin geometry with juvenile values (≤0.704) in the core of the Intermontane 
terranes surrounded by more evolved values (≥0.705) in central Yukon. This pattern was one of the lines of 
evidence that led to the oroclinal entrapment model of Mihalynuk et al. (1994). The new isotopic data reported 
here confirm the general patterns of  87Sr/ 86Sri isopleths (Figure 7a) observed by Armstrong (1988) but with the 
added benefit of improved geochronological constraints (Figure  4). As noted above, the isotopic evolution of 
Late Triassic and Jurassic plutons in southern Yukon is directly linked with the age of magmatism, with Early 
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Jurassic  plutons west of the BSTF yielding more evolved values in progressively younger plutons, and those east 
of the  BSTF showing a reverse trend (Figure 6). Juvenile isotopic values are mainly documented in plutons of the 
Late Triassic Stikine suite and Middle Jurassic Bryde suite that only occur southwest of the BSTF (Figure 7). Juve-
nile  87Sr/ 86Sri (<0.704) values are only documented in one pluton of the Lokken suite, east of the BSTF, and the 
distribution of isopleths is likely somewhat modified by Cretaceous or younger displacement along the fault zone.

5.4.  Redefining Terrane Boundaries

The difference in style of Early Jurassic magmatism across the BSTF provides new constraints on locating the 
boundary between Stikinia and Quesnellia in central Yukon (Figures 3 and 11). In British Columbia, the two 
arc terranes occur on either side of the Cache Creek accretionary complex, but in Yukon the absence of Cache 
Creek rocks north of ∼61°N have made the distinction between Stikinia and Quesnellia difficult (Figure 1). The 
Thibert fault marks the boundary between Quesnellia and Cache Creek terranes in northern British Columbia and 
its extension in Yukon, the Teslin fault, has traditionally been inferred to mark the Quesnellia-Stikinia boundary 
(Colpron, 2011; Colpron, Israel, Murphy, et al., 2016; Gordey & Makepeace, 2001; White et al., 2012). Near 
62°N in central Yukon, seismic and gravity results suggest that the Big Salmon fault is a more significant crustal 
structure than the Teslin fault (Calvert et al., 2017).

The peraluminous plutons of the Minto suite that were emplaced at lower crustal levels are restricted to the 
west of the BSTF (Figures 2 and 3). East of Carmacks, the Tatchun batholith intrudes Carboniferous rocks of 
the Boswell assemblage and overlying Upper Triassic volcanic rocks of the Semenof formation (Colpron, 2011; 
Tempelman-Kluit,  1984,  2009). Augite-phyric volcanic and volcaniclastic rocks and minor Carnian-Norian 
limestone of the Semenof formation resemble coeval strata of the Lewes River Group to the west (Figure 2). 
They unconformably overlie mafic to intermediate metavolcanic, metavolcaniclastic, and metasedimentary 
rocks (Boswell assemblage) which have been interpreted to represent local Paleozoic basement to Quesnellia 
(Colpron, 2011). Their association with Minto suite plutons suggests, however, that they are part of the same 
crustal panel as Stikinia west of the Teslin fault.

East of the BSTF, metaluminous plutons of the Lokken suite were emplaced at higher crustal levels into part of 
the Yukon-Tanana terrane that includes strata of the Klinkit assemblage, which are correlated with Paleozoic arc 
successions of Quesnellia in British Columbia (Lay Range assemblage; Ferri, 1997; Nelson & Friedman, 2004; 
Nixon et al., 2020; Roots et al., 2006; Simard et al., 2003). The Lokken suite is generally more mafic than Early 
Jurassic plutons west of the BSTF and locally includes ultramafic phases (Roots et al., 2004). Upper Triassic rocks 
overlying Yukon-Tanana east of the BSTF are fine-grained siliciclastic rocks and local conglomerate that are 
inferred to correlate with those overlapping the western Laurentian margin (Beranek & Mortensen, 2011; Colpron, 
Nelson, & Murphy, 2006; Colpron, Mortensen, et al., 2006; Golding et al., 2016; Unterschutz et al., 2002).

The present crustal architecture of the Intermontane terranes in central Yukon was acquired through superpo-
sition of Jurassic to Late Cretaceous (and younger) structures (Calvert et al., 2017; Nelson et al., 2013). The 
Cretaceous structures dissected and overprinted older Jurassic faults such as the Tadru and Needlerock faults 
(Figures 2 and 3; Colpron et al., 2002, 2003). The Needlerock thrust is a folded thrust fault that juxtaposes the 
Snowcap assemblage (Yukon-Tanana terrane) in its hanging wall with greenstone and amphibolite of the Boswell 
assemblage in its footwall. The Boswell assemblage was intruded at mid to lower crustal level by the Tatchun 
batholith (Minto suite) in the Early Jurassic, suggesting that the Needlerock thrust may be a remnant of the Juras-
sic boundary between Stikinia to the west and Yukon-Tanana/Quesnellia to the east. Extension of the Needlerock 
thrust, and the Stikinia-Quesnellia boundary, into western Yukon remains enigmatic.

5.5.  Relationship to Hazelton Arc

The syn-collisional intrusion of Early Jurassic plutons and development of the WT north of the Stikine arch 
contrasts with continued Early to Middle Jurassic arc activity recorded in volcano-sedimentary strata of the Hazel-
ton Group to the south (Figure 11; Gagnon et al., 2012; George et al., 2021; Nelson et al., 2018, 2022). Widespread 
exposures of the Hazelton Group across 300 km in northern British Columbia, between the Stikine and Skeena 
arches, were interpreted by Marsden and Thorkelson (1992) to result from development of two magmatic arcs 
above opposing subduction zones on either side of Stikinia. However, more recent studies show that Rhaetian 
to Toarcian arc magmatism in the lower Hazelton Group focused on an arcuate belt that spans the Skeena arch 
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(including the Telkwa and Toodoggone formations) and that coeval magmatism in the Stewart-Iskut region formed 
in the back-arc (Figure 11; George et al., 2021; Nelson et al., 2018, 2022). The onset of lower Hazelton arc magma-
tism (ca. 205-200 Ma) coincides with initial collision and intrusion of the Minto suite north of the Stikine arch. 
Following initial collision, the Hazelton arc is inferred to have migrated southward through the Early Jurassic. 
Subduction rollback was accommodated by north-south extension and subsidence in the back-arc region (e.g., 
Diakow et al., 1993; Diakow & Rhodes, 2006; Gagnon et al., 2009; Nelson et al., 2022). Sinistral transpression 
along structures such as the Llewellyn and Wann River faults (Currie & Parrish, 1993; Mihalynuk et al., 1999) 
probably linked the retreating Hazelton arc with the collision zone, Early Jurassic extensional exhumation of the 
Yukon-Tanana terrane, and subsidence of the WT north of the Stikine arch (Figure 11). Early Jurassic syn-col-
lisional plutons in Stikinia north of the Stikine arch show a southward migration that suggests that the source of 
magmatism remained tied to the supra-subduction mantle wedge associated with the retreating Hazelton arc.

South of the Stikine arch, post-arc extension and subsidence is recorded by predominantly sedimentary strata of 
the upper Hazelton Group (Pliensbachian-Callovian), which onlapped the arch in Toarcian, and development of 
the Eskay rift in Aalenian-Bajocian (Barresi et al., 2015; Gagnon et al., 2012; Nelson et al., 2018). The Hazelton 
Group is conformably overlain by southward-propagating synorogenic clastic rocks of the Middle Jurassic to 
Lower Cretaceous Bowser Lake Group (Evenchick et al., 2007, 2010).

Detrital zircons in sandstones from the Hazelton Group are dominated by Triassic and Jurassic ages that resemble 
age distribution in strata of the Laberge Group in Yukon (Colpron et al., 2015; George et al., 2021). However, 
Triassic-Jurassic zircons in the Hazelton Group in central Stikinia have consistently juvenile εHft values (George 
et al., 2021) that contrast with the isotopic pull-down observed in detrital zircons from the Laberge Group (van 
Drecht, 2019) and in igneous zircons from Early Jurassic syn-collisional plutons of southern Yukon (Figure 6c).

5.6.  Tectonic Evolution

Over the last 25 yr, the oroclinal entrapment of the Cache Creek terrane has been the prevalent tectonic model for 
the Jurassic evolution of the Intermontane terranes in the Canadian Cordillera (Colpron et al., 2015; Mihalynuk 
et al., 1994, 2004; Nelson et al., 2013; Nelson & Mihalynuk, 1993). In this model, similar late Paleozoic-early 
Mesozoic arc terranes of Stikinia and Quesnellia, which include Permian and Triassic fauna endemic to south-
ern Laurentia (Belasky et al., 2002; Stanley & Senowbari-Daryan, 1999; Stevens, 1995), were oroclinally folded 
around the accretionary complex of the Cache Creek terrane containing Permian faunal elements of Tethyan 
(exotic) affinity (Ross & Monger, 1978; Ross & Ross, 1983). Oroclinal enclosure was thought to be triggered 
by introduction of oceanic plateaus (Mihalynuk et al., 1994) or primitive arc crust (Kutcho assemblage; Colpron 
et al., 2015) into the Late Triassic subduction zone, and the axial region of the Stuhini-Lewes River arc rotated 
counterclockwise around a hinge zone in the Yukon-Tanana terrane relative to the arc axis of Quesnellia. A chal-
lenge with this model is the implied ≥90° rotation, around a vertical axis, of a subduction zone with slab width 
≥2,000 km that would have been characterized by a southward increase in retreat velocities of the trench, possibly 
exceeding 12 cm/yr near the south end of Stikinia (assuming angular rotation of as much as 2,500 km in ∼20 Myr). 
Modeling of modern subduction zones, however, shows that for slabs ≥2,000 km trench retreat velocities are slow 
(to nearly stationary) near the center of the slab, generally ≤2 cm/yr (Schellart et al., 2007). Faster velocities (up 
to 6–16 cm/yr) are only observed in narrow slabs (≤1,500 km) with curved, convex geometries, such as the Oligo-
cene to Holocene Scotia and Calabrian subduction zones. Additionally, three-dimensional numerical modeling 
of continental ribbons with horizontally stratified lithosphere (as observed in arc crust; Calvert, 2011) show that 
horizontal-axis folding and thickening of the lithosphere is more probable than vertical-axis rotation of an orocline 
(Smith et al., 2021). Thus, it is improbable that the Stikinia subduction zone was subject of wholesale angular 
rotation in the Early Jurassic, as implied in some recent models (Colpron et al., 2015; Logan & Mihalynuk, 2014). 
Alternative models invoking strike-slip duplication of the Quesnellia-Stikinia arc have been proposed (Wernicke 
& Klepacki, 1988), but fail to explain the concentric south-facing patterns of geological elements in the northern 
Intermontane terranes (Figures 1 and 2). Detailed documentation of the Early Jurassic collision zone north of the 
Stikine arch provides new constraints and the basis for an alternative model (Figure 13).

The configuration of Triassic arc terranes outboard of western Laurentia is inferred to have resembled a mirror 
image of the present-day geometry of the western Aleutian and Kamchatka subduction zones, where parts 
of Quesnellia (and its Yukon-Tanana basement in the north) were anchored on the margin of western Pangea 



Tectonics

COLPRON ET AL.

10.1029/2021TC007060

24 of 32

NRT

LwF WLF

NAMNAM

NAMNAM

0 N330330°N3 °30°N30°N

30°N30°N

30°N30°N

30°N30°N

PEPEEPEPE WRWR
ST

YT

QN

PE
WRRWRWR

ST
YT

NQQQQNQQQN

Panthalassa

Panthalassa

Angayucham

crustal
thickening

NAMNAM

NAMNAM

PE

PE

WR

WRWWWRWR

TTTTSTSST

YT

QN

QN

extensional
exhumation

rWhitehorseW
gtrouro ghht

Whitehorse
trough

Whitehorse
gtroutrough

Whitehorse
trough

back-arc
t i

back-arc
extension

surface
uplift

bl hi
h ti

blueschist
exhumation

lithospheric
d l i ti
lithospheric
delamination

Fernie

Fernie

rr
b

Bowser
basin

Minto
suite

Long Lake
suite

Lokken
suite

BrydeBryde
4  of Julyl

it

Bryde
4th of July
suite

Stikine
suite

b tearb tearl bslab tear

KKuKKu

CCCCCCCCC

Hazelton trench slab rollback

CC

C
C

overlap
Triassic 
overlap

subduction transform thrust

line of se
cti

on

North America plate vector

Panthalassa plate vector

2000 km

2000 km

2000 km

Carnian – Norian
ca. 230-215 Ma 

a)

b)

c)

d)

late Rhaetian – early Sinemurian
ca. 205-195 Ma 

Toarcian – Bajocian
ca. 176-168 Ma 

late Sinemurian – Pliensbachian
ca. 195-180 Ma 

Figure 13.



Tectonics

COLPRON ET AL.

10.1029/2021TC007060

25 of 32

(Beranek & Mortensen, 2011; Unterschutz et al., 2002) and Stikinia extended westward into an intra-oceanic 
island arc festoon (Figure 13a; Colpron et al., 2015; George et al., 2021; Mihalynuk et al., 1994). Plutons of the 
Stikine and Pyroxene Mountain suites in Yukon indicate that Stikinia was locally anchored on the Yukon-Tanana 
terrane by the Late Triassic. Other parts of the Late Triassic Stikinia arc (present-day northern and central British 
Columbia) appear to have been constructed on distinct Paleozoic basement with probable affinity to the Insular 
terranes (George et al., 2021). Late Triassic (Carnian-Norian) volcanic and sedimentary rocks of Stikinia also 
unconformably overlie Middle Triassic volcanic units that form part of the Kutcho assemblage in southern Yukon 
and northern British Columbia and indicate juxtaposition prior to development of the Stikine arc (e.g., Bordet 
et al., 2019; Logan et al., 2012; Schiarizza, 2012). This postulated arc configuration suggests that plate motion in 
Panthalassa was northeasterly in the Late Triassic.

End-on arc collision in northern Stikinia was likely triggered by onset of the northwestward drift of North Amer-
ica as break-up of the Pangea supercontinent began in latest Triassic (Coney, 1972; Dickinson, 2004; Monger & 
Gibson, 2019). This resulted in initial imbrication and crustal thickening of the northern Intermontane terranes, 
north of the Stikine arch, and intrusion of Minto suite plutons that are transitional between arc and syn-col-
lisional granitoids and show increased crustal influence (Figures  6 and  13b). Subduction waned beneath the 
Stuhini-Lewes River arc north of the Stikine arch and part of the slab was reconfigured into a shorter segment 
above which the Hazelton arc was developed to the south (Nelson et al., 2022). The Sinemurian exhumation of 
eclogite bodies, recorded as clasts in Pliensbachian strata of the Laberge Group (Kellett et al., 2018), may have 
been facilitated by slab tear associated with this subduction reconfiguration. To the east, subduction of Panthal-
assa lithosphere continued beneath Quesnellia (Figure 13b).

Between Sinemurian and Toarcian, the Hazelton trench retreated to the south and back-arc extension occurred 
south of the Stikine arch (Figure 13c; Nelson et al., 2022). This evolving arc–back-arc system was probably linked 
to the collision zone to the north by sinistral strike-slip faults such as the Llewelyn fault (Figure 11). Sinistral 
transtension likely accommodated extensional exhumation of the burgeoning orogen and subsidence of the WT 
to the north (van Drecht, 2019). Subsidence may have been aided by underplating of mafic crust and develop-
ment of an eclogitic root after cessation of Late Triassic subduction. Isotopically evolved granitoid plutons of the 
Long Lake and Bennett suites were emplaced within the exhuming orogen. In this revised model, entrapment of 
the Cache Creek terrane occurred as a result of development of sinistral transform faults that were linked to the 
retreating Hazelton subduction zone.

Continued westward drift of North America, as opening of the central Atlantic Ocean began, possibly as early 
as late Sinemurian (Labails et al., 2010), resulted in convergence of the Intermontane terranes with the North 
American continental margin in late Sinemurian to Pliensbachian (Murphy et al., 1995; Nixon et al., 1997, 2020). 
Paleomagnetic data and faunal assemblages from strata in Stikinia suggest it was ∼11.2° ± 6.1° (1,200 ± 680 km) 
south of its present position relative to the North American craton in late Sinemurian to early Pliensbachian 
(Kent & Irving, 2010; Smith, 2006; Smith et al., 2001). The collision zone now located in southern Yukon was 
then probably at similar latitude as present-day southern Aberta, and the easterward convergence of the accreted 
terranes likely drove the onset of subsidence and deposition of the Fernie Formation in the Alberta foreland 
basin (Figure 13c; Asgar-Deen, 2003; Cant & Stockmal, 1989; Colpron et al., 2015; McCartney, 2012; Pană 
et al., 2018).

By Middle Jurassic, subduction had ceased beneath Quesnellia, blueschists were exhumed in the northern 
Cache Creek terrane, and the Intermontane terranes were imbricated along a series of west-verging thrust faults 
(Figure 13d; Mihalynuk et al., 2004). The post-collisional plutons of the Bryde suite are characterized by a return 
to isotopically juvenile magmatism at ca. 174 Ma (Figure 6) that suggests asthenospheric upwelling following 
terrane imbrication. This coincides with surface uplift that marked the end of marine deposition in WT and devel-
opment of intermontane river systems recorded in strata of the Tantalus Formation. The combination of juvenile 
magmatism and surface uplift suggests that lithospheric delamination or slab breakoff occurred following final 

Figure 13.  Schematic representation of paleogeography and tectonic evolution of the Intermontane terranes and northwestern edge of North America in Late Triassic to 
Middle Jurassic (a)–(d). Schematic section across southern Yukon shown in upper right in (b)–(d). Relative position of plutonic suites discussed in this paper are shown 
by red dots. Synorogenic clastic rocks are shown by yellow stippled pattern. Terrane labels: Abbrrviations. CC, Cache Creek; Ku, Kutcho (including Sitlika-Wineglass-
Venables assemblages; Logan & Mihalynuk, 2014); PE, Peninsular; QN, Quesnellia; ST, Stikinia; WR, Wrangellia; YT, Yukon-Tanana. Fault labels in cross-sections: 
Abbreviations. LwF, Lewellyn fault; NRT, Needlerock thrust; WLF, Willow Lake fault.
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collision of the northern Intermontane terranes (e.g., Davies & von Blanckenburg, 1995; Kay & Kay, 1993; von 
Blanckenburg & Davies, 1995).

6. Conclusions
The Late Triassic to Jurassic plutons in the Intermontane terranes of Yukon record the transition from arc to syn- 
and post-collisional magmatism. Juvenile Late Triassic magmatism of the Stikine and Pyroxene Mountain suites 
represent the northern extension of the Stikinia arc that locally intrudes the Yukon-Tanana terrane in Yukon and 
Alaska. The Early Jurassic plutons west of the BSTF in Yukon were intruded into a thickening orogen and show 
increasing crustal contributions with time. This contrasts with coeval, juvenile magmatism of the Hazelton arc 
in British Columbia that apparently records a southward arc migration in the Early Jurassic. East of the BSTF, 
Early Jurassic plutons that intrude into Yukon-Tanana basement are the northern extension of Quesnellia arc 
magmatism. Syn-collisional, Early Jurassic magmatism in Yukon is interpreted to result from end-on arc collision 
in northern Stikinia. Exhumation of the Yukon-Tanana terrane and coeval subsidence in the WT developed as 
a result of sinistral transtension linked to the retreating Hazelton trench to the south. A revised tectonic model 
shows that entrapment of the Cache Creek terrane is the result of Hazelton slab rollback and development of 
sinistral transform faults that originated from the collision zone to the north. The continued westward drift of the 
North American continent resulted in imbrication and final accretion of the Intermontane terranes in the Middle 
Jurassic. This was accompanied by lithospheric delamination as indicated by a return to juvenile magmatism in 
Middle Jurassic and surface uplift that marked the end of marine deposition in the WT.

Data Availability Statement
Data for this article are available for download from the following references: Sack et al. (2020), http://data.geol-
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