
Boise State University Boise State University

ScholarWorks ScholarWorks

Computer Science Faculty Publications and
Presentations Department of Computer Science

3-2022

Machine Learning Methods for Generating High Dimensional Machine Learning Methods for Generating High Dimensional

Discrete Datasets Discrete Datasets

Giuseppe Manco
ICAR-CNR

Ettore Ritacco
ICAR-CNR

Antonino Rullo
University of Calabria

Domenico Saccà
University of Calabria

Edoardo Serra
Boise State University

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs

ADVANC ED R EV I EW

Machine learning methods for generating high dimensional
discrete datasets

Giuseppe Manco1 | Ettore Ritacco1 | Antonino Rullo2 |

Domenico Saccà2 | Edoardo Serra3

1ICAR-CNR, Rende, Calabria, Italy
2DIMES Department, University of
Calabria, Rende, Calabria, Italy
3Computer Science Department, Boise
State University, Boise, Idaho, USA

Correspondence
Domenico Saccà, DIMES Department,
University of Calabria, Rende, CS 87036,
Italy.
Email: domenico.sacca@unical.it

Funding information
European Commission, Grant/Award
Number: 952026; Ministero
dell'Istruzione, dell'Università e della
Ricerca, Grant/Award Number:
ARS01_00587; National Science
Foundation, Grant/Award Number:
1820685

Edited by: Elisa Bertino, Associate Editor
and Witold Pedrycz, Editor in Chief

Abstract

The development of platforms and techniques for emerging Big Data and

Machine Learning applications requires the availability of real-life datasets. A

possible solution is to synthesize datasets that reflect patterns of real ones

using a two-step approach: first, a real dataset X is analyzed to derive relevant

patterns Z and, then, to use such patterns for reconstructing a new dataset X 0

that preserves the main characteristics of X . This survey explores two possible

approaches: (1) Constraint-based generation and (2) probabilistic generative

modeling. The former is devised using inverse mining (IFM) techniques, and

consists of generating a dataset satisfying given support constraints on the

itemsets of an input set, that are typically the frequent ones. By contrast, for

the latter approach, recent developments in probabilistic generative modeling

(PGM) are explored that model the generation as a sampling process from a

parametric distribution, typically encoded as neural network. The two

approaches are compared by providing an overview of their instantiations for

the case of discrete data and discussing their pros and cons.

This article is categorized under:

Fundamental Concepts of Data and Knowledge > Big Data Mining

Technologies > Machine Learning

Algorithmic Development > Structure Discovery

KEYWORD S

constraints-based models, data generation, generative adversarial networks, generative
models, inverse frequent itemset mining, synthetic dataset, variational autoencoder

1 | INTRODUCTION

Emerging “Big Data” platforms and applications call for the invention of novel data analysis techniques that are capable
to effectively and efficiently handle large amount of data (Chen & Zhang, 2014; Michael & Miller, 2013). There is there-
fore an increasing need to use real-life datasets for data-driven experiments but the scarcity of significant datasets is a
critical issue for research studies (Weikum, 2013). Companies have data resulting directly from the services they

Received: 11 September 2021 Revised: 19 December 2021 Accepted: 20 December 2021

DOI: 10.1002/widm.1450

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. WIREs Data Mining and Knowledge Discovery published by Wiley Periodicals LLC.

WIREs Data Mining Knowl Discov. 2022;12:e1450. wires.wiley.com/dmkd 1 of 33

https://doi.org/10.1002/widm.1450

https://orcid.org/0000-0001-9672-3833
https://orcid.org/0000-0003-3978-9291
https://orcid.org/0000-0002-6030-0027
https://orcid.org/0000-0003-3584-5372
https://orcid.org/0000-0003-0689-5063
mailto:domenico.sacca@unical.it
http://creativecommons.org/licenses/by-nc/4.0/
http://wires.wiley.com/dmkd
https://doi.org/10.1002/widm.1450
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fwidm.1450&domain=pdf&date_stamp=2022-01-18

provide, and industrial labs have access to such data and real-life workloads; however, such datasets are often proprie-
tary and out of reach for academic research.

A main question is hence whether it is possible to benefit of such proprietary data for academic purposes, without
forcing companies and private entities to disclose the information coming from them. Synthetic data generation can
help in this, by reproducing the internal mechanisms and dependencies that justify the occurrence of some specific
pieces of information, and hence being able to replicate them stochastically. The idea underlying a synthetic data gener-
ation process is hence to synthesize the main properties of real data, either by understanding and modeling the underly-
ing processes or by accurately describing the distribution of their features.

Inmany situations, synthetically generated datasets are the only choice as comprehensive real data is often hard to come by
for many reasons: it might not be available at all, it might not be comprehensive enough to evaluate the system under test, its
availability is limited by copyright or intellectual property rights, or its disclosure is forbidden or hindered for privacy reasons.

The latter case includes, for instance, organizations that outsource the testing tasks of their database applications to
other organizations without being able to share proprietary data due to privacy considerations. In these circumstances,
data masking techniques (i.e., the process of deidentifying or obscuring data) such as encryption, shuffling, substituting,
and nulling (Ravikumar et al., 2011), can be adopted in order to outsource a database where original information are
hidden, so as sensitive information remain unavailable outside of the origin place. An alternative choice
(or complementary, depending on the privacy degree to be pursued) to data masking techniques is to generate synthetic
data based on the properties (e.g., distributions, integrity constraints, functional dependencies, domain constraints, etc.)
of the original dataset, that is, summarize the features of the input tuples and generate new tuples with same features.
In this way, organizations can reveal characteristics of data patterns without actually revealing the actual patterns.

As pointed out at the beginning, an other important motivation for designing synthetic datasets is “availability.” For
instance, a key need for many research areas studying the behavior of large populations of individuals is the ready avail-
ability of realistic synthetic datasets that reproduce relevant attributes and activities of large populations without violat-
ing confidentiality of individuals (Wu et al., 2018).

In this article, we focus essentially on the problem of generating high-dimensional discrete data. The latter is com-
mon in several scenarios, such as customer modeling, molecular biology, social media analytics, natural language
processing. An example is a high-dimensional discrete tuple representing a given customer, where each feature can rep-
resent a preferences/purchase or any other attribute characterizing the customer and his behavior. Generating such
data is a challenge for several reasons. First, the high dimensionality that naturally arises in the underlying domains
makes it difficult to appropriately model concepts such as proximity or relevance. Although several approaches in the
current literature exist, based on subspace modeling, the curse of dimensionality is still a huge problem. The situation
is further exhacerbated by the discrete nature of the domain, for which the modeling can be affected by the combinato-
rial explosion of the possible subpatterns, which can represent the regularities in the data. In practice, the combination
of both high dimensionality and discrete components may result in a complex structural domain with lots of variety
and irregularities and not necessarily smooth.

Throughout the article, we study approaches to data generation, which rely on the idea that high-dimensional discrete
data can be mapped into a simpler manifold where smoothness and regularity can be recovered and suitably exploited.
The core idea is that each point in the real domain can be mapped into a suitable latent space and vice versa. These map-
pings guarantee a consistency with regards to the original dataset. At the same time, the manifold in the latent space sum-
marizes the main characteristics of the data, that can hence be injected into the synthesized data in a controlled way.
Thus, learning manifold representations for data and then utilizing it for synthetic generation can be particularly
effective.

We consider two main approaches here. The first approach exploits inverse mining techniques. In practice, given a
dataset D, the frequent itemsets are discovered first. Next, a new dataset can be generated that satisfies given support
constraints on the itemsets of an input set. We call this approach IFM. By contrast, the recent developments in probabi-
listic generative modeling (PGM) has given rise to approaches which model the generation as a sampling process from
a parametric distribution, typically encoded as neural network. variational autoencoders (VAEs) and generative adver-
sarial networks (GANs) are the most prominent examples of this line of research. We will discuss these and study their
adaptation for the case of discrete data.

In the end, this article will provide an overview and comparison of such lines of research. The objective is to illus-
trate similarities and differences, together with strengths and weaknesses.

The rest of the article is organized as follows: in Section 2 we provide a brief overview and related work of the IFM
problem, along with a number of techniques used for discovering the set of frequent itemsets, as well as the PGM

2 of 33 MANCO ET AL.

techniques VAE and GANs; in Sections 3 and 4 we go into detail of IFM- and machine learning-based generative
models, respectively; in Section 5 we provide a comparison of the two approaches by means of experimental results;
finally, in Section 6 we conclude the article.

2 | BACKGROUND

Let us first recall some basic definitions on complexity theory—the interested reader may consult (Papadimitriou, 1994)
for more details. The class P is the set of decision problems where the “yes”-instances can be decided in polynomial
time by a nondeterministic Turing machine. A problem in P is P-complete if it is P-hard, that is, every problem in P
can be reduced to it in logarithmic space. The class NP (resp., PSPACE) is the set of decision problems whose “yes”-
instances can be decided in polynomial time (resp., space) by a nondeterministic Turing machine. The notions of
NP-completeness and PSPACE-completeness are defined in a similar way as for P-completeness. It is well known that,
P⊆NP⊆PSPACE. The class PP is the set of decision problems that can be solved by a nondeterministic Turing
machine in polynomial time, where the acceptance condition is that a majority (more than half) of computation paths
accept. It is known that NP⊆PP⊆PSPACE. Finally, NEXP is the class of decision problems that can be solved by a
nondeterministic Turing machine using time O 2p nð Þ� �

for some polynomial p nð Þ, where n is the size of the input.
Several techniques for generating realistic synthetic datasets have been proposed in literature that mainly follow

two distinct approaches, procedural and declarative.
Procedural approaches provide for a programmer to give the features of the original dataset as input to a generation

algorithm, where the steps for generating new tuples are specified. These techniques differ with each other mainly in
the set of features that underlie the generation task. Bruno and Chaudhuri's Data Generation Language (Bruno &
Chaudhuri, 2005) specifies value distributions. Hoag and Thompson's Synthetic Data Description Language (Hoag &
Thompson, 2007) has a construct for specifying foreign keys. Houkjær et al. (2006) presented a graph-model based data-
generation algorithm which uses cardinalities and value distributions to generate data for large database schemas with
complex inter- and intratable relationships. More recently, Li et al. (2018) presented Touchstone, a query-aware syn-
thetic data generator, which adopts a random sampling algorithm for instantiating the query parameters. The key tech-
nical challenge here is to meet the equality constraints over the join operator, which involve the dependencies among
primary and foreign keys from multiple tables.

On the other hand, declarative approaches require the user to specify how new data has to look like rather than
how it has to be generated. A rule-based probabilistic approach, based on an extension of Datalog, has been proposed
in (B�ar�any et al., 2017), which is capable of generating data characterized by parametrized classical discrete distribu-
tions. Arasu et al. (2011) exploited the declarative characteristic of cardinality constraints for the design of a linear pro-
gramming based algorithm which instantiates tables that satisfy those constraints. More recently, Gilad et al. (2021)
have drawn on (Arasu et al., 2011) for the design of a generation algorithm which allows for the satisfaction of integrity
constraints also, enabling the generation of foreign keys for existing database relations. HYDRA (Sanghi et al., 2018)
uses a declarative approach that allows for the generation of a database summary that can be used for dynamically gen-
erating data for query execution purposes.

A declarative technique that has received particular attention in the context of the generation of synthetic transac-
tional databases is the Inverse Frequent Itemset Mining (IFM). IFM is the problem of constructing a binary dataset satis-
fying given support constraints for frequent itemsets that belong to the original dataset. Given an itemset
I¼ i1, i2,…, inf g, its support is defined as the number of transactions in the original database that contain the items
i1, i2,…, in. An itemset is defined as frequent if its support is above a certain user-defined threshold. Frequent itemsets
along with their support are considered as the features of the original data to be replicated in the synthetic data.

IFM was initially introduced by Mielikainen (2003) and characterized as a NP-hard problem. Subsequent work have
mainly focused in reducing the computational workload by means of approximated solutions. Wu et al. (2005) proposed
a heuristic according to which the original itemsets are divided into components that preserve maximum likelihood
estimation, and then the iterative proportional fitting method is used on each component. In the approach presented by
Guzzo et al. (2009), each equality support constraint is relaxed into a minimum and maximum support constraint.
Then, the minimum support is satisfied as long as possible while guaranteeing the maximum support, which improves
the tractability of IFM. Wong et al. (2019) introduced the marginal support and global closure concepts. The marginal
support of an itemset is the nonderivable information based on the support of all of its supersets. By determining the
marginal support, all itemsets whose supports can be derived by their supersets can be detected. When the sum of all

MANCO ET AL. 3 of 33

marginal supports in a set of itemsets is less than or equal to 1 then the set of itemsets is globally closed. Finally, they
propose Itemset2Data, an algorithm for generating Boolean datasets which is efficient (i.e., it makes the problem of
reconstructing data from itemsets tractable), if a globally closed set of itemsets can be derived by the set of frequent
itemsets of the original dataset.

Later on, IFM has been reformulated in terms of frequencies by Calders (2004, 2007) with the name FREQSAT
{NTRANS}. This version is equivalent to the original formulation and their decision complexity has been better charac-
terized: they are in PSPACE and NP-hard. A simpler version of the frequency formulation, simply called FREQSAT,
does not fix the number NTRANS of transaction in a feasible database and the decision problem has been proved to be
NP-complete. In the same work Calders introduced a further variant of the problem with the name FREQSAT
{NTRANS, NDUP}: all itemsets may occur as transactions in the synthetic data at most a fixed number of times
(i.e., NDUP). This problem is in PSPACE and PP-hard.

Besides the NP-hardness, another drawback of the original IFM problem is that the generation task may output
itemsets that result to be frequent in the synthetic dataset but that are not in the original one. To overcome this issue,
Guzzo et al. (2013) proposed an alternative formulation where itemsets that are not frequent are constrained to be infre-
quent below a threshold, and solved using a column generation technique as a variation of the simplex method,
designed to solve linear programs with a huge number of variables.

We observe that an other popular data mining technique could be used to generate realistic datasets: Association
Rules (ARs), that were introduced few decades ago by Agrawal et al. (1993a) for discovering regularities between prod-
ucts in large-scale transactional data and are still attracting further investigations (e.g., multitask AR miner to jointly
discover rules by considering multiple tasks [Taşer et al., 2020]). However, to the best of our knowledge, ARs have been
rarely used as the basis of the generation task. Indeed, the only work we are aware of that exploits the potential of AR
mining for generating synthetic datasets is (Ansari et al., 2018). Here, the authors proposed an ARs-driven algorithm,
which generates frequent itemsets ensuring their support value is kept within an acceptable range of their original sup-
port used as the basis of the generation task. Nevertheless, ARs may play an important role in the overall process of
dataset generation: they can be used to determine whether a synthetic dataset preserves the original patterns. Thus, if
the AR patterns discovered in the original data are also present in the synthetically generated data, then the synthetic
dataset can be considered to be realistic.

The declarative techniques previously described require a preliminary learning task to be performed for discovering
the frequent itemsets in a database, given a user-defined support value. The problem of computing the frequent itemsets
of a database was first stated by Agrawal et al. (1993b), and called the frequent itemset mining (FIM) problem. FIM was
originally developed for market basket analysis, and it is used nowadays for almost any task that requires discovering
regularities between nominal variables. Among the best known methods are Apriori (Agrawal et al., 1993b), Eclat (Zaki
et al., 1997), FP-Growth (Frequent Pattern Growth) (Han et al., 2000), and LCM (Linear time Closed item set Miner)
(Uno et al., 2003). Other frequency-based solutions include the Itemset Generating Model (IGM) (Laxman et al., 2007),
and the more recent Latent Dirichlet Allocation-based (LDA) model (Lezcano & Arias, 2019). IGM connects the process
of frequent itemsets discovery with the learning of generative models. An IGM generates transactions by embedding a
specific pattern in a transaction according to a probability distribution that is peaked at the pattern in question, and is
uniform everywhere else. In this manner, each itemset is associated with a specific IGM, so as, given any two itemsets,
the IGM associated with the more frequent itemset is the one more likely to generate the database of transactions. Such
a connection allows for a generative model-learning interpretation of the frequent itemsets mining process.

LDA (Blei et al., 2003) is a generative model whose main aim is to model a set of documents by discovering the prin-
cipal topics each document contains, and how the words are distributed for each of these topics. Every document of the
corpus is assumed to have its own probability distribution of topics, and every word in a document is created by sam-
pling from a probability distribution determined by topic. In this regard, the authors of (Lezcano & Arias, 2019) pro-
posed to consider each transaction as a document of a corpus, and each item of a transaction as a word in a document.
This way a LDA-based model can be fitted to a transactional dataset, and a synthetic version of this dataset using the
probability distribution functions thrown by the model can be created.

Unlike the above algorithms, which define the relevance of an itemset based solely on its frequency/support, alter-
native solutions based on different statistical models to define the relevance of an itemset. Some of the most successful
approaches are MTV (Maximally informaTiVe summaries) (Mampaey et al., 2011), KRIMP (Dutch for “to shrink”)
(Vreeken et al., 2011), and SLIM (Dutch for smart) (Smets & Vreeken, 2012), that are based on the minimum description
length principle, according to which the most relevant itemsets are those that best compress the dataset following a pre-
viously defined encoding scheme. These methods have been shown to lead to much less redundant pattern sets than

4 of 33 MANCO ET AL.

FIM. To find relevant itemset, Fowkes and Sutton (2016) used a probabilistic learning approach that directly infers the
itemsets that best explain the underlying data. They also proposed a generative model, called Interesting Itemset Miner,
that is, a probability distribution over the database in the form of a Bayesian network model, based on the relevant
itemsets.

Approaches pertaining to a different line of research than the ones described so far, are those based on the use of
deep neural networks as generative models. In the context of machine learning, generative modeling is an unsupervised
learning task that involves automatically discovering and learning the patterns in the input data so as the model can be
used to generate new examples that plausibly could have been drawn from the original dataset.

Two examples of deep learning generative modeling algorithms include the VAEs, and the GANs. VAEs (Kingma &
Welling, 2013) are autoencoders with the fundamental property of having a continuous latent space, which allows for
an easy random sampling, thus for generating new data (Greco et al., 2020). This is achieved by making its encoder not
output just an encoding vector, but rather outputting two vectors, that are a vector of means μ, and a vector of standard
deviations σ. They form the parameters of a vector of random variables, with the ith element of μ and σ being the mean
and standard deviation of the ith random variable from which we sample to obtain the sampled encoding passed
onward to the decoder. This stochastic generation means that, even for the same input, the actual encoding will some-
what vary simply due to randomly sampling from the area of the latent space identified by the circle centered in μi with
radius σi. This makes VAEs generative models, as opposed to discriminative models such as autoencoders that are
designed to classify (i.e., replicate) the input data.

GANs (Goodfellow et al., 2014b) consist of two components, the generator and the discriminator. These components
are trained together in a zero-sum game: the generator generates a batch of samples, and these, along with real exam-
ples from the domain, are provided to the discriminator and classified as real or fake (generated). When the discrimina-
tor is not able to distinguish about half of the generated examples, it means the generator is generating plausible
examples. The zero-sum game is because when the discriminator successfully classifies the samples, no change are
needed to the model, whereas the generator is penalized with large updates. Alternately, when the generator fools the
discriminator, no changes are needed to the model, but the discriminator is penalized and its model parameters are
updated.

The main difference between IFM and machine learning-based techniques is that the former is supervised, as it
needs the user to find the characteristics of the original dataset (in terms of relevant itemsets) by means of a preliminary
discovery task (e.g., FIM), and feed the generation algorithm with these characteristics so as to be replicated on the syn-
thetic data. On the contrary, machine learning-based techniques are totally unsupervised, as they do not need any a
priori knowledge to work properly, rather, the discovery of relevant itemsets is performed in parallel with the learning
task. In the next sections, we provide a more detailed analysis of the two approaches.

3 | INVERSE FREQUENT ITEMSET MINING-BASED GENERATIVE
MODELS

Let ℐ be a finite domain of n elements, also called items. Any subset I ⊆ℐ is an itemset over ℐ, also called a transac-
tion. Let Uℐ denote the set of all itemsets on ℐ; then, j Uℐ j¼ 2n. A (transactional) database D over R is a set of tuples
k,I½ �, where k is the key and I is an itemset. The size j D j of D is the total number of its itemsets, that is, transactions.

A transactional database D is very often represented as a bag of itemsets, that is, the keys are omitted so that tuples
are simply itemsets and may therefore occur duplicated—in this case D is also called a transactional dataset. In the arti-
cle, we shall also represent an itemset I �D by its one-hot encoding x, that is a binary vector of size n (the number of
items in A) such that its i-th position xi ¼ 1 if the i-th item in A is in I, 0 otherwise. Consequently, X ¼ x1,…,xη

� �
,

where η¼jD j, is the one-hot encoding of the whole dataset D.
For each itemset I �D, there exist two important measures: (i) the number of duplicates of I, denoted as δD Ið Þ, that

is the number of occurrences of I in D, and (ii) the support of I, denoted as σD Ið Þ, that is the sum of the number of
duplicates of each itemset J in D containing I, that is, σD Ið Þ¼P

J � D^ I ⊆ Jδ
D Jð Þ.

A dataset D can be represented in a succinct format as a set of pairs I,σD Ið Þ� �
. Given ℐ¼ a,b,c,df g, an example of

dataset in the succinct, one-hot format is shown in Table 1a.
We say that I is a frequent (resp., infrequent) itemset in D if its support is greater than or equal to (resp., less than) a

given threshold. A classical data mining task over transaction datasets is to detect the set of the frequent/infrequent
itemsets, and a rich literature deals with this topic: after the seminal articles in the 1990s (Agrawal et al., 1993b;

MANCO ET AL. 5 of 33

Gunopulos et al., 1997), additional aspects were studied in the 2000s (Han et al., 2007; Zhong, 2007) and in the last
decade (Cagliero & Garza, 2013; Jindal & Malaya, 2016). Given the threshold 50, the frequent itemsets for the dataset of
Table 1a are listed in Table 1b.

The perspective of the FIM problem has been later inverted as follows: given a set of itemsets together with their fre-
quency constraints the goal is to compute, if any, a transaction dataset satisfying the above constraints. The new prob-
lem, called the inverse IFM problem, has been introduced for defining generators for benchmarks of mining algorithms
(Mielikainen, 2003), and has been later investigated also in privacy preserving contexts (Agrawal & Srikant, 2000; Wu
et al., 2005)).

Given a set ℐ of items, the IFM problem consists in finding a dataset D that satisfies given support constraints on
some itemsets Si on ℐ—the set of such itemsets is denoted by S. The support constraints are represented as follows:
8Si � S : σimin ≤ σD Sið Þ≤ σimax, where σ

D Sið Þ is the sum of all number of duplicates of itemsets in D containing I. As men-
tioned in Section 2, IFM has been proved to be in PSPACE and NP-hard (Mielikainen, 2003).

As an example, consider ℐ¼ a,b,c,df g, S¼ a,bf g,f b,cf g, c,df gg, and the support constraints represented in
Table 1b—in this example minimal and maximal supports coincide. The itemsets S1 ¼ a,bf g and S2 ¼ b,cf g must occur
in exactly 100 transactions (possibly as their sub-transactions) whereas the itemset S3 ¼ c,df g must occur in exactly
50 transactions. It is also required that the dataset size (i.e., the total number of transactions) be 170.

The dataset D1 shown in Table 2a is feasible as it satisfies all constraints: S1 is satisfied by the transactions a,b,cf g
and a,bf g, S2 by the transactions a,b,cf g, b,c,df g, and b,cf g, and S3 by the transactions b,c,df g and c,df g.

Let S0 be the set of all itemsets that are neither in S nor subsets of some itemset in S. In the example, S0 consists of
a,b,c,df g, a,b,cf g, a,b,df g, a,c,df g, b,c,df g, a,cf g, a,df g, and b,df g. IFM does not enforce any constraint on the

itemsets in S0 and, therefore, it may happen that D contains additional (and, in some cases, unsuspected or even unde-
sired) frequent itemsets. In the dataset D1 of Table 2a, the itemset a,b,cf g is in S0 but it turns out to be frequent with a
support of 70.

To remove the anomaly, Guzzo et al. (2009) have proposed an alternative formulation, called IFMS, that requires
that only itemsets in S can be included as transactions in D and, therefore, no unexpected frequent itemsets may even-
tually occur. Obviously, the decision complexity of this problem is lower as it is NP-complete. Despite the complexity
improvement, the IFMS formulation has a severe drawback: it is too restrictive in excluding any transaction besides the
ones in S as confirmed by the fact that no feasible dataset exists for our running example.

To weaken the tight restrictions of IFMS, Guzzo et al. (2013) proposed a new formulation of the problem, called
IFM with infrequency support constraints (IFMI for short), which admits transactions in S0 to be in a feasible dataset if
their supports are below a given threshold σ0. By the anti-monotonicity property, the number of infrequency support
constraints can be reduced by applying them only to a subset of S0 consisting of its minimal (inclusion-wise) elements.
This subset, denoted by BS0 , is called the negative border and coincides with the set of all minimal transversals of the
hypergraph E¼ ℐnI : I � Sf g (see [Gunopulos et al., 1997]). In the example, BS0 ¼ a,cf g, a,df g, b,df gf g and the dataset
D2 in Table 2b is a feasible dataset for IFMI for σ0 ¼ 40. In fact, all infrequency support constraints on BS0 are satisfied
as the supports of a,cf g, a,df g, and b,df g are respectively 40, 0, and 40.

TABLE 1 Transactional dataset end frequent itemsets

(a) Dataset D
a b c d σD

1 1 1 0 40

0 1 1 1 40

1 1 0 0 60

0 1 1 0 20

1 0 1 1 10

(b) Frequent itemsets with threshold 50

Si a b c d σSi

S1 1 1 0 0 100

S2 0 1 1 0 100

S3 0 0 1 1 50

6 of 33 MANCO ET AL.

An other possibility to enforce infrequency constraints is to fix a duplicate threshold δ0 so that an itemset in S0 is
admitted as transaction in a feasible dataset if its number of occurrences is at most δ0. This formulation has been given
in (Saccà et al., 2019) with the name of IFM with infrequency duplicate constraints (IFMD for short). Observe that dupli-
cate constraints are less restrictive than infrequency constraints in the sense that some itemset I in BS0 may happen to
be eventually frequent as it may inherit the supports of several itemsets in S0 with duplicates below the threshold. For
instance, given the threshold δ0 ¼ 30, the dataset D3 in Table 2c is a feasible dataset for IFMD . However, the supports of
a,cf g, a,df g, and b,df g are respectively 60, 30, and 50, thus a,cf g and b,df g are frequent.

3.1 | General formulation of IFM

In this section, we present the general formulation of IFM given in (Saccà et al., 2019) that takes into account both
infrequency and duplicate constraints. Let us first recap and extend the notation introduced at the beginning of this
section:

• ℐ is a set of n items and Uℐ is the set of all 2n itemsets on ℐ;
• S is a set of m nonempty itemsets in Uℐ (frequent itemsets);
• S0 ¼ I �Uℐj∄J � S : I ⊆ Jf g (infrequent itemsets);
• BS0 ¼ I � S0 jf ∄I 0 � S0 : I 0 � Ig (minimal infrequent itemsets);
• ΣS ¼ I,σImin,σ

I
max

� � j�
I � S, 0≤ σImin ≤ σImaxg is a set of triples assigning a minimum and maximum support to each

itemset in S (frequent itemset support constraints)—an unlimited maximum support is denoted by ∞;
• σ0 is the support threshold for infrequent itemsets (infrequency support constraint;
• δ0 is the duplicate threshold for infrequent itemsets (infrequency duplicate constraint;
• size is the number of transactions in a feasible dataset.

The general inverse frequent itemset mining problem (IFMG) consists in finding a dataset D over ℐ such that:

TABLE 2 Examples of feasible datasets with size 170 for an IFM instance

a b c d σD

(a) Dataset D1
1 1 1 0 70

0 1 1 1 10

1 1 0 0 30

0 1 1 0 20

0 0 1 1 40

(b) Dataset D2
1 1 1 0 40

0 1 1 1 40

1 1 0 0 60

0 1 1 0 20

0 0 1 1 10

(c) Dataset D3
1 1 1 1 30

1 1 1 0 30

0 1 1 1 20

1 1 0 0 40

0 1 1 0 50

MANCO ET AL. 7 of 33

8I � S : σImin ≤ σD Ið Þ≤ σImax ð1Þ

8I �BS0 : σ
D Ið Þ≤ σ0 ð2Þ

8I � S0 : δD Ið Þ≤ δ0 ð3Þ

j D j¼ size: ð4Þ

IFMG reduces to: IFM if σ0 ¼ δ0 ¼∞, to IFMI if δ0 ¼∞, and to IFMD if σ0 ¼∞. It also reduces to IFMS if the con-
straint (3) is replaced by 8I �� S : δD Ið Þ¼ 0 so that only the itemsets in S are admitted as transactions in a feasible
dataset. In the latter case, constraints (2) can be removed as they are automatically enforced by the revised formulation
of constraints (3).

It is easily seen that: (i) a feasible dataset for IFMS is also feasible for both IFMI and IFMD , (ii) a feasible dataset for
IFMI or IFMD is also feasible for IFM, and (iii) if σ0 ≤ δ0, a feasible dataset for IFMI is also feasible for IFMD .

The complexity of the decision version of IFMG has been proved to be NEXP-complete in (Saccà et al., 2019). Next,
we summarize the complexity of the decision versions of all formulations of IFM:

• Decision IFMG and IFMI are NEXP-complete;
• decision IFMD is in PSPACE and PP-hard;
• decision IFM is in PSPACE and NP-hard;
• decision IFMS is NP-complete.

The NEXP complexity of IFMG and of IFMI depends on the size of BS0 that can be exponential in n and m. To reduce
this complexity for IFMI , Guzzo et al. (2013) have considered a subclass k-bounded IFMI (k� IFMI for short) of
instances for which the size of BS0 is polynomial and can be computed in polynomial time as well. This subclass is com-
posed by all IFMI instances ℓ for which jBS0 j ≤n�nþnκ ℓð Þ, where n¼j [I � SI j, where κ ℓð Þ is an instance parameter
that can be computed in polynomial time, κ ℓð Þ≤ k and k is a given rational constant. Experiments conducted in (Guzzo
et al., 2013) and the analysis of 12 real large datasets, performed in the same article, show that the parameter κ ℓð Þ is
small (around 3) in practice. Saccà et al. (2019) have applied the notion of k-boundedness to IFMG , thus defining the
class k-bounded IFMG (k� IFMG). As a consequence, the complexity of the two problems reduces as follows: decision
k� IFMG is in PSPACE and PP-hard and decision k� IFMI is in PSPACE and NP-hard.

To get a further and more drastic reduction of the complexity, the integer constraint for the number δI of duplicates
for a transaction I of a feasible dataset has been relaxed, that is, δI may be a rational number. Then, there is a relaxed
version for each IFM formulation and their decision complexity is:

• relaxed k� IFMG and relaxed IFMD are in PSPACE and PP-hard;
• relaxed k� IFMI and relaxed IFM are NP-complete;
• relaxed IFMS is in P.

3.2 | Modeling general IFM by linear programming

IFMG has been formulated in (Saccà et al., 2019) as a linear program LP with a very large number of variables and con-
straints, following the approach used by (Guzzo et al., 2013) to solve IFMI . A model based on a set of decision variables,
an objective function to optimize, and a set of constraints to be satisfied has been also used in (Guns et al., 2011).

As for the formulation given in (Guzzo et al., 2013) for IFMI , the linear program LP contains a very large number of
variables: 2n—to get an idea, the number of variables for a problem with 250 items is around 1:8�1075, which is of the
order of the number of atoms in the universe, as estimated by scientists. In addition, the linear program formulation of
IFMG also includes a large number of constraints because of the presence of infrequency duplicate constraints. We
anticipate that LP is represented in a succinct format (Bertsimas & Tsitsiklis, 1997) that avoids to list all variables and
duplicate constraints.

8 of 33 MANCO ET AL.

We next present the LP formulation of IFMG , which gives a unified framework for the resolution of the various spe-
cializations of IFMG as they are achieved by simply removing some of the constraints.

Let us first take any ordering of all nonempty itemsets, say I1,…, I2n�1f g, for example, by selecting any lexicographic
order of them. The vector v¼ 1,…,2n�1½ � lists all possible nonempty itemset indices according to this ordering. We
denote subsets of such indices as follows:

• the vector s¼ i1,…, im, j1,…, jm0½ � contains the indices of the itemsets in S and in BS0 , that is, S¼ Ii1 ,…, Iimf g and BS0 ¼
Ij1 ,…, Ijm0

� �
- these indices in s are actually stored;

• the vector s0 contains the indices of the itemsets in S0—these indices are not stored but it can be easily checked in
O m0ð ÞÞ time whether an index is in s0.

We next present suitable data structures for representing coefficients and variables of LP:

• l and u are two vectors of m integers such that for each j,1≤ j≤m, lj ¼ σJmin and uj ¼ σJmax, where J ¼ Isj is the j-th
itemset in S according to the ordering of s - the two vectors are actually stored;

• y is a vector of 2n�1 non-negative rational variables such that, for each j<2n, yj stores the number of duplicates for
the transaction Ij—a suitable data structure is used to store only the nonzero elements;

• A is a mþm0ð Þ� 2n�1ð Þ matrix such that for each i,1≤ i≤mþm0, and for each j� v, aij ¼ 1 if Isi ⊆ Ij or aij ¼ 0
otherwise—the elements are not stored but they are easily computed in linear time whenever they are needed;

• w is a vector of 2mþ1 non-negative rational number artificial variables, whose values are the costs of violating sup-
port constraints: w1,…,wm and wmþ1,…,w2m are associated to respectively lower-bound and upper-bound support
constraints on the itemsets in S and w2mþ1 is the cost of violating the database size constraint—the two vectors are
actually stored.

The relaxed version of IFMG is formulated using the following linear program, whose objective function is minimizing
the overall cost of violating the constraints:

LP : minimize
X2mþ1

i¼1

wi ð5Þ

wiþ
X
j � v

aijyj ≥ li 1≤ i≤m ð6Þ

wmþi�
X
j � v

aijyj ≥ �ui 1≤ i≤m ð7Þ

�
X
j � v

aijyj ≥ �σ0 mþ1≤ i≤mþm0 ð8Þ

yj ≤ δ0 j� s0 ð9Þ

w2mþ1þ
X
j � v

yj ≥ size ð10Þ

�
X
j � v

yj ≥ � size ð11Þ

wi,xj �Qþ 1≤ i≤ 2mþ1, j� v ð12Þ

Inequalities (6) and (7) enforce the satisfaction of respectively lower bounds and upper bounds of frequency support
constraints. The infrequency support constraints and the infrequency duplicate constraints are modeled by the

MANCO ET AL. 9 of 33

inequalities (8) and (9), respectively—note that the number of inequalities (9) is exponential because of the size of the
array s0. Inequalities (10) and (11) enforce any feasible dataset to have the required size. Finally, the constraints (12)
require the variables wi (1≤ i≤ 2mþ1) and yj (8j� v) to be non-negative rational numbers.

The artificial variables in w have the role of absorbing possible violations of the constraints (6), (7), and (10).
Instead, the constraints (8), (11), and (9) must be directly satisfied as nonartificial variables are included in them. The
optimal solution of LP consists of a dataset (described by the nonzero variables y in the optimal solution) with a mini-
mal value for the sum of all artificial variables, that is, the minimization of such values select a dataset with the mini-
mal number of violations of the constraints (6), (7), and (10). Two important remarks are in the order:

• an optimal solution for LP always exists as an initial feasible solution can be easily constructed as follows:
w2mþ1 ¼ size1, wi ¼ li, wmþi ¼ 0, and yj ¼ 0 (1≤ i≤m and 8j� v);

• if the optimal solution of LP problem happens to be greater than zero, then the dataset D returned by the resolution
of LP is only an approximate solution, since no feasible dataset actually exists for one (or both) of the following rea-
sons: the frequency support of at least one itemset in S is below the prescribed lower bound or the dataset size is less
than the required value.

As mentioned before, LP is represented in a succinct format. In particular, the input is given by: (1) the vector s with
size mþm0ð Þ storing the indices of the itemsets in S and BS0 , (2) the two vectors l and u of support bounds (each with
size m), (3) the values of σ0 and δ0, (4) the database size, and (5) two arrays of index tuples storing the indices of the
itemsets in S and in BS0 respectively, whose overall size is at most n�mþn�m0. Therefore, the input size is at most
nþ nþ1ð Þ mþm0ð Þþ2mþ3ð Þ �ω, where ω is the number of bits that are used to represents constants. The coefficients
aij as well the bound constraints (9) are computed as they are needed. We stress that the algorithm for the resolution of
LP, described in the next sub-section, implements suitable mechanisms to avoid the whole input expansion.

3.2.1 | Column generation algorithm to solve general IFM

The linear program LP for IFMG has been solved in (Saccà et al., 2019) by extending the column generation algorithm
(see [Gilmore & Gomory, 1961]), which is variant of the simplex method used in operation research literature for solv-
ing linear programs with an exponential number of variables (Beheshti & Hejazi, 2015). A column generation algorithm
has been first adopted in (Guzzo et al., 2013) to solve IFMI and has been later extended in (Saccà et al., 2019) to handle
inequalities (9) defining infrequency duplicate constraints. We recall that the number of such inequalities is exponential
and the novelty of the extension is to solve them by exploiting their succinct representation.

We first present the general scheme of the classical column generation simplex by referring to a generic linear pro-
gram LPg with nc variables and nr inequalities for which nc �nr , represented in the following standard format:

minimize cTy, subject to Ay¼ b and y≥ 0,

where y is the array of nc variables, cT is the transpose of the nc-array c of costs, b is the array of bounds for the nr
inequalities, and A is a nr �nc matrix. We assume that (1) both the variables and the coefficients are rational numbers,
(2) mr ¼O pol logncð Þð Þ, where pol is a polynomial in lognc, and (3) LPg can be represented in a succinct format with
input size polynomial in nr . Any assignments of values to the nc variables represents a point, the feasible region of LPg

is a convex polytope of the points satisfying Ay¼ b and a basic feasible solution, also called a basis, is any vertex of
it. The variables taking a value different from zero in a basis are at most nr (basic variables) so that any basis can be rep-
resented with size linear in nr by simply storing the list of basic variables together with their values. From linear pro-
gramming theory (see (Bertsimas & Tsitsiklis, 1997)), it is known that if there is an optimal solution, then there is an
optimal basis as well.

The column generation simplex solves the linear program LPg without explicitly including all nc columns but only
nr of them. These columns are selected by solving an auxiliary optimization problem, called the pricing problem, which
searches for the ones, which reduce the overall current cost by exploiting suitable properties to avoid to perform the
evaluation of all possible columns.

If we modify the standard format by adding an upper bound to all nr variables, the classical column generation sim-
plex cannot be used anymore as the number of inequalities is now exponential. Therefore, an extension of column

10 of 33 MANCO ET AL.

generation is needed to take into account the additional bounds without expanding their representation. Such an exten-
sion has been devised in (Saccà et al., 2019) to handle the bounds introduced by the inequalities (9). In the following,
we briefly describe this extension that has been implemented in (Saccà et al., 2019) for solving the linear program LP
modeling IFMG .

The linear program LP to be solved is called the master problem (MP) and consists of r¼ 2mþm0 þ2 rows and c¼
2nþ2m columns. In addition, the variables yj with j�es0 have an upper bound of δ0. A linear program with only a subset
of c0 columns, with c0 ¼ r, is called the restricted master problem (RMP). As r is polynomial in the succinct size of the
input, RMP does not need a succinct representation. We point out that the number of columns c0 managed by RMP can
be greater than r, provided that c0 is polynomial in r.

The column generation method looks for an optimal basis as within the simplex algorithm. It starts from an initial
basis that, as anticipated in the previous sub-section, is easily obtained by setting w2mþ1 ¼ size1 and wi ¼ li (1≤ i≤m),
whereas all other variables are set to zero. The algorithm moves from a current basis to a new one by adding a new
basic column with a negative reduced cost (iteration step)—the reduced cost of a column can be computed by using the
current dual variables. Primal feasibility is maintained during all the iteration steps and the objective function is non-
increasing during each step. The selection of a column with a negative reduced cost is delegated to the pricing problem.
If no such a column exists, then the algorithm terminates and the current basis is optimal.

The extension of the column generation method introduced by (Saccà et al., 2019) to handle bound constraints (9)
follows the approach described in (Luenberger, 2003), which adopts an extended notion of basic solution to avoid to
explicitly include the bounds as constraints of the program. An extended basic solution is a basic feasible solution where
the variables are partitioned into three groups: the set B of the classic basic variables, the set U of the variables equal to
the duplicate bound and the set N of those equal to 0. It turns out that only the additional list of the variables in U is to
be stored during the iteration steps. A crucial part of the extension is the implementation of the pricing problem that is
different from the one presented in (Guzzo et al., 2013) for the resolution of IFMI because of the bound constraints (9).
The problem has been then reformulated using a novel resolution scheme—more details on the formulation and resolu-
tion of the pricing problem can be found in (Saccà et al., 2019). We stress that the hardest task is the resolution of the
pricing problem, that is in general NP-hard.

As the execution time for the column generation algorithm could be high, Saccà et al. (2019) have fixed a time-limit
TL for termination. The algorithm stops for one of the following two conditions: (i) the time-limit has been reached so
that the algorithm returns a sub-optimal solution and (ii) the pricing algorithm does not return a column with negative
reduced cost and, therefore, the current solution is optimal. The overall algorithm eventually terminates, provided that
certain precautions against cycling are taken. We point out that the hardest task is the implementation of procedure
PRICE, that is in general NP-hard.

Saccà et al. (2019) have shown that the extended column generation algorithm can handle linear programs with an
enormous number of variables and constraints (from 1022 to over 10240 in their experiments) using a reduced amount of
space. These experiments reveal that time does not grow exponentially in practice as it often happens for the classical
execution of the simplex algorithm. Indeed, the column generation algorithm has an attractive characteristic that allows
it to overcome its theoretical intractability: it makes a bounded use of the space, proportional to the number r of con-
straints and of the size of the list U.

Finally, as shown in (Saccà et al., 2019), the extended column generation algorithm can be easily specialized to solve
all versions of the general problem but IFMs, in particular:

• IFMI is modeled by LP if the inequalities (9) are removed. Then, the extension of the column generation algorithm
to handle bounded variables is not necessary anymore and, then, the algorithm reduces to the one proposed in
(Guzzo et al., 2013). The main simplifications w.r.t. to the extended version are two: the list U of variables with value
equal to the duplicate bound is not used and (ii) the pricing problem has a simpler formulation whose implementa-
tion can be done in most cases by an efficient polynomial-time heuristic.

• IFMD is modeled by LP if inequalities (8) are removed. Because of the presence of inequalities (9), the column gener-
ation algorithm must preserve the extension introduced to satisfy them, in particular the procedures for constructing
and maintaining the list U of bounded variables and for using them in the resolution of the pricing problem. The
only difference w.r.t. the general algorithm for IFMG is efficiency: the negative border BS0 no longer has to be com-
puted and, as its size is typical very large also when is not exponential because of k-boundedness, the number of
inequalities is drastically reduced.

MANCO ET AL. 11 of 33

• IFM is modeled by LP if both inequalities (9) and (8) are removed. Therefore, the simplifications of the two previous
versions are combined and the column generation algorithm of (Guzzo et al., 2013) is performed in a very efficient
way because of the reduced number of inequalities.

As for the resolution of IFMS, there is no need to use a column generation algorithm as its linear program formulation
has a polynomial number of columns, one for each frequent itemset in S. Then IFMS can be immediately solved by any
classical linear program solver—in a sense, the resolution can be simply obtained with a single call of RMP.

3.3 | Accuracy analysis

Saccà et al. (2019) performed an empirical accuracy comparison of the solutions computed by IFMS, IFM, IFMI , IFMD

using two accuracy indices that were computed by comparing the original dataset D and the dataset D^ computed by the

column generation algorithm for each of the various IFM formulations—let S
^

denote the set of frequent itemsets in D^ ,
S
^

F ¼ I � S j σD
^

Ið Þ
n

> σ0g (i.e., the frequent itemsets of D^ that are also frequent in D) and S
^

I ¼ I � S0 j σD
^

Ið Þ
n

> σ0g
(i.e., the frequent itemsets of D^ that are infrequent in D):

• Frequency Accuracy, that evaluates how much the set S of the frequent itemsets in D is reflected in D^ :

AF D^
� �

¼ 1
j S j

X
I � S

min σD Ið Þ,σD
^

Ið Þ
� �

max σD Ið Þ,σD^ Ið Þ
� �

This index is a variant of the Jaccard similarity index for bags (i.e., multi-sets) that only evaluates the similarity of all
itemsets in S (i.e., the frequent ones in D) in the two datasets but not the similarity of all itemsets in S

^nS (the frequent
ones in D

^

but not in D).

• Overall Accuracy, that evaluates the overall similarity between S and S
^

using the classical Jaccard similarity index
for sets:

A D^
� �

¼ j S\S
^ j

j S[S
^ j

¼ j S^F j
j S j þ j S^I j

As the computation of S
^

I is, in general, very heavy for the datasets computed by IFM or IFMD, the following approxi-
mate overall accuracy index was actually used that is obtained from A D^

� �
by replacing S

^

I with S
^

B ¼
I �BS0 jσD

^

Ið Þ> σ0
n o

(i.e., the frequent itemsets of D^ that are minimal infrequent ones in D):

AA D^
� �

¼ j S^F j
j S[S

^

B j
¼ j S^F j
j S j þ j S^B j

As A D^
� �

≤ jAA D^
� �

, the approximate index AA D^
� �

gives an “optimistic” estimation of the overall accuracy measure, par-
ticularly for IFM and IFMD.

The experiments conducted in (Saccà et al., 2019) have shown that: (1) IFMI achieves very high overall accuracy but it
may get a lower frequency accuracy when the number m0 of infrequent itemsets in BS0 is so large that the column gener-
ation algorithm execution is interrupted by time limit expiration, thus delivering a sub-optimal solution, (2) both IFM
and IFMD have a good frequency accuracy but return a large number of frequent itemsets that were instead supposed
to be infrequent, and (3) IFMS does respect infrequency constraints but often returns inaccurate support values for the
itemsets in S mainly because enforcing the transactions to be in S may prevent it from satisfying frequent constraints.

To provide more insights on the accuracy of the various IFM versions, we next report the experiments on two of the
three dataset analyzed in (Saccà et al., 2019): the real dataset BMS-WebView-1 with around 60,000 click-stream

12 of 33 MANCO ET AL.

transactions from an e-commerce web site and the artificial dataset T10I4D100K with hundred thousands transactions
synthesized by the IBM Almaden AR data generator. Both datasets can be consulted at the link (KDDCUP, 2000).

A total of nine test instances for each of the two datasets were constructed by using standard itemsets discovery
algorithms to extract the set S of all itemsets that are frequent w.r.t. the nine thresholds s: 0:2%,0:3%,…,½
0:9%,1%�—the thresholds s are expressed in percentage points w.r.t. the number of itemsets in the dataset. Table 3
reports the number n of items for the two datasets and the number m and m0 of itemsets in respectively S and BS0 in the
nine instances associated to the various thresholds s of the two datasets.

For each dataset and for every S of the nine related test instances, the four IFM problems were formulated by set-
ting: (1) σImin ¼ σImax ¼ σD Ið Þ for each I � S, (2) σ0 ¼ σmax

0 �0:04 � j D j, where σmax
0 is the greatest integer number that

divided for the size of D is smaller than the threshold t, and (3) δ0 ¼ 10, which is significantly smaller than σ0.
The column-generation algorithms were coded in Java using the Ilog cplex 12:0 library for solving the restricted

master LP problem RMP. A time limit of 3 h was imposed to each test—we recall that a solution is delivered also after
an interruption for time limit, although it will probably be sub-optimal.

For the dataset BMS-WebView-1, all executions were completed within the time limit. Not surprisingly, IFMS had the best
performance, followed by IFM. For this dataset IFMI performed better than IFMD because the value of m0 was rela-
tively “small.” The performances for the dataset T10I4D100K were much worse: the executions were completed within
the time limit for all values of s only for IFMS, whereas IFM and IFMD succeeded to complete the execution only for
s≥ 0:7% and for s≥ 0:9%, respectively. Due to the high values of m0, IFMI never completed the execution within the
time limit.

The frequency accuracy for the nine instances for the two datasets are reported in Figure 1. The accuracy for the
dataset BMS-WebView-1 of all IFM formulations but IFMS is substantially 1 for all nine cases. The reason for the rather
low accuracy of IFMS is that frequency constraints on the itemsets in S result to be so restrictive that they cannot be sat-
isfied without including infrequent transactions. As for the dataset T10I4D100K, the accuracy of IFMI is not anymore
1 as instead it continues to be for IFM and IFMD. The lower accuracy of IFMI accuracy, which still reaches values over
0.8, was caused by the large number of infrequency support constraints that brought to prematurely interrupt the IFMI

column generation algorithm. Also in this case the accuracy of IFMS is rather poor and decreases with increasing of s.
The overall accuracy values, reported in Figure 2, clearly show that only IFMI is able to delivery accurate solutions

for both datasets. In particular, as for the dataset BMS-WebView-1, accuracy for IFMI is close to 1 for all nine instances,
whereas it is between 0.6 and 0.8 for IFMS and is close to zero for IFM and IFMD when sst is less than 0:8% and 0:6%,
respectively. The result is not surprising for IFM as it confirms that the lack of any type of infrequency constraints may
yield very inaccurate solutions. Instead, the low accuracy of IFMD for s<0:6% is rather unexpected. Concerning the
dataset T10I4D100K, the results clearly show that only IFMI is able to delivery accurate solutions, whereas both IFM
and IFMD have accuracy close to zero and IFMS starts from a value around 0:7 and then drops below 0:5 for s>0:4%.

In conclusion, IFMI results to be the most effective method but it has the drawback of a heavy execution time when
the number m0 of infrequent itemsets in BS0 becomes too large. A possible solution is to select a higher threshold for

TABLE 3 Characteristics of the nine test instances for the two datasets

BMS-WebView-1 T10I4D100K

n¼ 497 n¼ 870

s %ð Þ m m0 m m0

0.20 798 36,506 13,255 273,436

0.30 435 25,530 4552 238,332

0.40 286 16,605 2001 197,796

0.50 201 11,498 1073 161,617

0.60 162 8732 772 133,080

0.70 133 6260 603 113,368

0.80 105 4226 494 98,294

0.90 90 3260 421 81,858

1.00 77 2633 385 70,611

MANCO ET AL. 13 of 33

infrequency support constraints to reduce the value of m0, compensated by the introduction of infrequency
duplicate constraints whose execution cost is lower. In other words, the general formulation of IFMG is a promising
solution provided that the two thresholds σ0 and δ0 for infrequency constraints are suitably selected through careful
tuning.

4 | MACHINE LEARNING-BASED GENERATIVE MODELS

In this section, we provide a probabilistic perspective on the problem of synthetic data generation. Probability theory
can be applied to any problem involving uncertainty. In terms of data generation, the question that we would like to
answer is: what is the best model to explain some data?

The probabilistic approach to modeling transactional data (PGM) assumes that in a database D the itemsets are
modeled as stochastic events: that is, they are sampled from an unknown true distribution Pr . The analysis of the statis-
tical distribution of the stochastic events provides insights on the mathematical rules governing the generation process.
The problem hence becomes how to obtain a smooth and reliable estimate of Pr .

0.6

0.7

0.8

0.9

1.0

1.1
F
re
q
u
e
n
c
y
a
c
c
u
ra
c
y

s (%)

BMS-WebView-1

IFMI
IFMD
IFM
IFMS

(a) Dataset BMS-WebView-1

0.0

0.2

0.4

0.6

0.8

1.0

F
re
q
u
e
n
c
y
a
c
c
u
ra
c
y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

s (%)

T10I4D100K

IFMI
IFMD
IFM
IFMS

(b) Dataset T10I4D100K

FIGURE 1 Comparison of frequency accuracy indices AF

0.0

0.2

0.4

0.6

0.8

1.0

O
v
e
ra
ll
a
c
c
u
ra
c
y

s (%)

BMS-WebView-1

IFMI
IFMD
IFM
IFMS

(a) Dataset BMS-WebView-1

0.0

0.2

0.4

0.6

0.8

1.0
O
v
e
ra
ll
a
c
c
u
ra
c
y

s (%)

T10I4D100K

IFMI
IFMD
IFM

IFMS

(b) Dataset T10I4D100K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

FIGURE 2 Comparison of approximate overall accuracy indices AA D^
� �

14 of 33 MANCO ET AL.

In general, it is convenient to use a parametric model to estimate Pr when the constraints on the shape of the distri-
bution are known. By associating each observation x with a probability measure P xjθð Þ� Pθ xð Þ where θ is the set of the
distribution parameters, our problem hence becomes:

1. to devise the optimal parameter set θ that guarantees a reliable approximation Pθ ≈Pr , given X , or alternatively
2. to infer Ptrue xjXð Þ≈ R

Pθ xð ÞP θjXð Þθ.

The idea is that, by identifying an accurate parameter θ (or, alternatively, being able to devise a tractable inference), we
can then emulate the sampling process x	Pr in a tractable and reliable way.

An example parametric model can hence be represented by θ¼ λ,Πf g where λ is the parameter of a Poisson distri-
bution and Π� π1,…,πn represent the parameters of a multinomial distribution. The sampling process for an itemset x
can hence be summarized as

h	Poisson λð Þ

x	Multi h;Πð Þ

The above notation encodes a two steps process: first we devise the number h of items composing the transaction; next,
we sample h items from A according to a multinomial distribution over Π.

A natural way of estimating parameters of a given probabilistic model is via Maximum likelihood. The principle is
that, given the underlying stochastic generation process, the observed data X is the most likely under Pr . As a conse-
quence, any model Pθ should maximize the probability of observing X as well:

L θjXð Þ¼ P x1,x2, jθð Þ¼
Yη
i¼1

Pθ xið Þ

Maximum likelihood estimation chooses the model parameter θ that maximizes L θjXð Þ or, equivalently, minimizes the
negative log-likelihood ℒ θjXð Þ¼�P

ilogPθ xið Þ. For the example above, the likelihood on X is

ℒ λ,ΠjXð Þ¼ nλ� logλ
Xη

i¼1

ni�
Xη

i¼1

Xn
j¼1

xi,jlogπj

where ni is the number of nonzero elements in xi and xi,j represents the jth element of xi.
A clear advantage of a parametric approaches to data generation lies in the insights that it can provide within the

data generation process. They allow to detect the factors governing the data, thus providing a meaningful explanation
of complex phenomena. Besides data generation, probabilistic generative models can be used for compression, den-
oising, semi-supervised learning, unsupervised feature learning, and other tasks. However, simple parametric models,
like the one exemplified above, do not accurately capture complex phenomena characterized by manifold distributions.
Mixture models (McLachlan & Peel, 2000) generalize the approach by assuming more complex distributions structured
into mixtures. In practice, the basic idea underlying mixtures is that the probability space can be devised into compo-
nents and, as a consequence, the underlying generative process can be expressed as a composition of two hierarchical
steps: first, choose the component responsible for the generation of the data; second, generate the instance according to
the parameters of the components. More formally, given a multinomial distribution α1,…,αK representing the prior
probabilities, and a parameter set θk associated with each component k, the generative process can be devised as:

k 	Multi 1;α1,…,αkð Þ
x 	Pθk

The overall probability for an example x can be obtained through the mixture

MANCO ET AL. 15 of 33

P xjθ1,…,θK ,α1,…,αKð Þ¼
X
k

αkP xjθkð Þ,

which can be exploited to estimate the optimal parameter set θ1,…,θK ,α1,…,αK through maximum likelihood or its
approximations (Bishop, 2006).

The current literature has been focusing on deep generative models parameterized by neural networks. The adop-
tion of Stochastic backpropagation and approximate Bayesian inference, deep neural networks and adversarial learning
have made these models extremely flexible and accurate in describing the properties of the data. In the following, we
shall review two main approaches and will study how they can be adapted to the task of modeling high-dimensional
discrete data.

4.1 | Variational autoencoders

A VAE is an artificial neural architecture that combines traditional autoencoder architectures (Baldi, 2012) with the
concept of latent variable modeling (Murphy, 2012). Essentially, we can assume the existence of a K-dimensional latent
space Z, that can be the generation engine of the samples in X . The transactions X ¼ x1,…,xη

� �
can be modeled

through a chain dependency: (i) given a distribution Pθ (over the parameter set θ) we can sample z�Z, and (ii) given a
z and another distribution Pϕ (over the parameter set ϕ) we can sample x. Hence, the likelihood of X can be specified
as the marginalization over Z:

P Xð Þ¼
Yη
i¼1

P xið Þ¼
Yη
i¼1

Z
z � Z

Pϕ xijzð ÞPθ zð Þdz

The core idea is that even complex dependencies can be explained by normally distributed variables. Hence, the distri-
bution Pϕ xijzð Þ can be seen as a function that maps the realizations z into such dependencies. A simple way to imple-
ment Pϕ is by exploiting a neural network, whose input is z and whose parameters are ϕ.

Optimal values of ϕ can be found by trying to maximizing P Xð Þ (or more conveniently its logarithm), according to
the maximum likelihood principle. Unfortunately, the maximization of logP Xð Þ is typically an intractable problem that
requires the exploitation of heuristics. Variational inference (Blei et al., 2017) introduces a proposal distribution Q zjxð Þ,
whose purpose is to approximate the true posterior P zjxð Þ. By considering a single sample x �X , by Jensen's inequality
and the concavity of the logarithm we can in fact observe the following:

logP xð Þ ¼ log
R
z � ZP xjzð ÞP zð Þdz

¼ log
R
z � ZQ zjxð ÞP xjzð Þ P zð Þ

Q zjxð Þdz

≥
R
z � ZQ zjxð Þlog P xjzð Þ P zð Þ

Q zjxð Þ
� 	

dz

¼Ez	Q logP xjzð Þ½ ��KL Q zjxð Þ k P zð Þð Þ

In short, the inequality

logP xð Þ≥Ez	Q logP xjzð Þ½ ��KL Q zjxð Þ k P zð Þ½ � ð13Þ

defines a suitable approximation of the likelihood, which depends on the choice of Q. In practice, the right-hand side of
the inequality (called evidence lower bound, ELBO) offers a tractable version of the likelihood when Q is accurately
chosen.

Based on the above inequality, a VAE can be devised by concatenating two neural networks: an “Encoder,” that
maps an input x into a latent variable z, exploiting Qλ zjxð Þ, and a “Decoder” that reconstructs x by applying Pϕ xjzð Þ to
z. The loss function of VAE is based on the ELBO devised Equation (13):

16 of 33 MANCO ET AL.

ℒ λ,ϕ;Xð Þ¼ 1
η

X
x � X

ELBO x,λ,ϕð Þ¼ 1
η

X
x � X

Ez	Qλ
logPϕ xjzð Þ
 ��KL Qλ zjxð Þ kP zð Þ½ �

As a consequence, by solving the optimization problem argmaxλ,ϕℒ λ,ϕ;Xð Þ we can finally find a suitable approxima-
tion of the likelihood function. The issue with this formulation is that the optimization with regards to λ can be prob-
lematic. In fact, optimizing the term Ez	Qλ

logPϕ xjzð Þ
 �
would require sampling from the proposal distribution Qλ zjxð Þ

that we want to optimize. However, sampling is a nondeterministic function that depends on λ and is not differentiable.
Monte Carlo approximations are prone to high variance and consequently to instability in the learning process, which
is hence likely to produce weak solutions.

Kingma and Welling (2014) proposed to overcome this issue by resorting to a reparametrization trick: instead of
sampling z directly from Q, we can sample an auxiliary noise variable ϵ according to a fixed distribution P bsϵð Þ, and
then obtain z by means of a deterministic transformation which depends on both λ and ϵ. In practice, λ would model
the core properties of the distribution underlying Qλ zjxð Þ, whereas ϵ models the stochastic nature of the sampling. To
illustrate this, we can model Q as a Gaussian distribution Q zjxð Þ¼N zjμλ xð Þ,Σλ xð Þð Þ, whose parameters μλ xð Þ,Σλ xð Þ are
obtained through a neural with input x and λ representing network weights and biases. By exploiting the properties of
the Gaussian, the sampling z	N zjμλ xð Þ,Σλ xð Þð Þ, we can obtained by sampling from an auxiliary standard-normal-
distributed variable ϵ	N 0, IKð Þ, and then obtain zλ ϵ,xð Þ¼ μλ xð Þþσλ xð Þ �ϵ.

The original VAE framework (Kingma & Welling, 2014; Rezende et al., 2014) assumes z to be a standard normal
random variable, that implies θ¼ 0,IKf g and z	N 0,IKð Þ. It turns out that the KL-divergence between two Gaussian
distributions has a closed form:

KL N μ1,Σ1ð Þ kN μ2ð ,Σ2Þ½ � ¼ 1
2

log
jΣ2 j
jΣ1 j�Kþ tr Σ�1

2 Σ1
� �þ μ2�μ1ð ÞTΣ�1

2 μ2�μ1ð Þ
�

By simplifying the Σλ xð Þ parameter into a diagonal matrix, that is, Σλ xð Þ¼ diag σλ,1 xð Þ,…,σλ,K xð Þð Þ, we can finally obtain
a fully tractable loss function:

ℒ ϕ,λ;Xð Þ¼
X
x � X

1
2

XK
k¼1

σλ,k xð Þ�1� logσλ,k xð Þþμλ,k xð Þ2� ��Eϵ	N 0,Ið Þ logPϕ xjzλ ϵ,xð Þð Þ
 �()
ð14Þ

To summarize, by using the loss 14 we can learn the parameters λ and ϕ, and consequently the encoder Qλ zjxð Þ and the
decoder Pϕ xjzð Þ.

The reference model that we shall investigate for discrete high-dimensional data is the
multinomial variational autoencoder proposed in (Liang et al., 2018). This framework devises x according to the genera-
tive setting:

z 	N 0, IKð Þ
π zð Þ ¼ softmax exp f ϕ zð Þ

h in o
x 	Multi n;π zð Þð Þ

ð15Þ

The Decoder is modeled by:

logPϕ xjzð Þ¼
Xn
i¼1

xilogπi zð Þ

thus enabling a complete specification of the overall variational framework.
Generation for new itemsets is accomplished by resorting to the learned function f ϕ. The overall process can be

devised according to the above algorithmic scheme:

MANCO ET AL. 17 of 33

In short, each transaction xi is characterized by a size (sampled from a Zipf distribution with parameter α)
and a latent Gaussian variable zi upon which the sampling distribution π zið Þ relies. The parameter of the
Zipf distribution can be estimated from the initial dataset. Below we report typical values for popular benchmark
datasets.

This first algorithm has a strong drawback due to the sampling of z, in fact, the term zi 	N 0,IKð Þ in Equation (15)
represents a strong bias in data generation. It assumes that data maps into the latent space according to standard nor-
mal distribution, but this assumption is very likely to not hold in many cases. To better fit the data domain, we can
modify the algorithm according to the following generation process:

The new procedure requires X , a real dataset that can represent the transaction domain. Initially, it trains a
VAE over X (function train_VAE). This operation produces the embeddings Z that can be clustered by an
Expectation Maximization algorithm (Dempster et al., 1977) for Gaussian Mixture (function gmm_EM). The
clustering algorithm provides, for each cluster c, the number mc of items belonging to its shortest transaction, its proba-
bility ξc, and its mean μc and standard deviation σc in the latent space Z. These parameters are the key setting to feed
the loop generating synthetic transactions. For each generation: (i) a cluster c is chosen according to a
multinomial distribution over the probability distribution ξ; (ii) a number Ni of items is determined by the sum of mc

and a Zipf distribution governed by the input parameter α; (iii) a new latent representation zi is created by
sampling from a normal distribution with mean μc and standard deviation σc; and finally, (iv) a brand new synthetic
transaction xi is generated by selecting Ni items through a multinomial sampling over the VAE decoder distribution
π zið Þ.

4.1.1 | Analysis

In order to provide a practical idea of the generative capability of a VAE, we can consider a simple
example. Let us supposed to deal with a transaction domain, related to a very large item space, that is charac-
terized by only two main patterns (i.e., maximal frequent itemsets): this means that each transaction is a varia-
tion of one of the two patterns by including some other rare items which are not able to generate a third
frequent itemset.

We built a dataset X composed by η¼ 4000 transactions that are sampled over a domain of n¼ 1000 items. The first
pattern p1 is the transaction containing only the first 100 items in the domain, while the second one p2 contains only
the last 100 ones. We set the probability of sampling from p1 to 	 60% and to 	 40% for p2 (according to an exponential
prior) and each transaction x �X was generated as follows:

First, a pattern pi between p1 and p2 has been chosen according to their probabilities, than a number Ni of noisy
items ζi was sampled through a truncated to 20 exponential function. ζi items were collected according to a discrete
uniform distribution over the candidates list (items not in p1 or p2) and were added to pi to obtain the new sample xi.
Notice that, since n�Ni, it is very unlikely to generate an unexpected third pattern.

The encoder of a VAE can map the transactions into the latent space Z splitting them into two clouds of
points; a possible 2D graphical representation of this generated data is depicted in Figure 3a, where the red dots belong
to p1, while the blue ones to p2. By applying the algorithms Algorithms 1 and 2, to generate new synthetic datasets, we

(a) Real data mapping inZ (b) Synthetic data generation using alg. (1) (c) Synthetic data generation using alg. (2)

FIGURE 3 Illustration of the data generation process within VAE

18 of 33 MANCO ET AL.

obtained the results shown in Figure 3b and Figure 3c, respectively. The former shows a low capability of representing
the data domain, being only able to generate data around the coordinates 0,0ð Þ in a single pattern of the latent space,
while the latter seems to well fit the domain, by isolating the two input patterns in the same latent regions of the
original data.

4.2 | Generative adversarial networks

4.2.1 | General framework

We have seen in the above section that a generative approach based solely on VAEs can be problematic when the
original data exhibit multiple modalities. The fact is that a VAE aims at approximating the likelihood, thus in a
sense it still tries to maximize the likelihood. However, the approaches based on maximum likelihood have been
shown to suffer from over-generalization (Theis et al., 2016). Let Pr denote the true data distribution, and Pθ a gener-
ative distribution parameterized by θ. The maximum likelihood approach finds the parameter bθ maximizing the empiri-
cal evidence, or alternatively minimizing the Kullback–Leibler divergence between the true and the generative
distribution:

Algorithm 1

Itemset generation using variational autoencoders

Data: Itemset size parameter α;
η0 number of transactions to generate.
Result: A new synthetic database X0 ¼ x1,…xη0

� �
of transactions.

For i� 1,…,η0f g do
Ni 	Zipf αð Þ;
zi 	N 0,IKð Þ;
xi 	Multi Ni;π zið Þð Þ;

end

Algorithm 2

Itemset generation via mixtures of Gaussian posteriors

Data: A real dataset X representing the transaction domain.
Itemset size parameter α;
η0 number of transactions to generate.
Result: A new synthetic database X0 ¼ x1,…xη0

� �
of transactions.

Z¼ train_VAE Xð Þ;
m1,ξ1,μ1,σ1ð Þ,…, mM ,ξM ,μM ,σMð Þf g¼ gmm_EM Zð Þ;

for i� 1,…,η0f g do
c	Multi 1;ξð Þ;
Ni 	mcþZipf αð Þ;
zi 	N μc,σcð Þ;
xi 	Multi Ni;π zið Þð Þ

end

MANCO ET AL. 19 of 33

bθ ¼ arg max
θ

x	Pr logPθ xð Þ½ �

¼ arg max
θ

Z
x
Ptrue xð ÞlogPθ xð ÞPtrue xð Þ

Ptrue xð Þdx

¼ arg max
θ

Z
x
Ptrue xð Þlog Pθ xð Þ

Ptrue xð Þdxþ
Z

x
Ptrue xð ÞlogPtrue xð Þdx

¼ arg max
θ

Z
x
Ptrue xð Þlog Pθ xð Þ

Ptrue xð Þdx

¼ arg max
θ

�
Z

x
Ptrue xð ÞlogPtrue xð Þ

Pθ xð Þ dx

¼ arg min
θ

Z
x
Ptrue xð ÞlogPtrue xð Þ

Pθ xð Þ dx

¼ arg min
θ

KL Pr kPθ½ �

Maximum likelihood is consistent: it can learn any distribution, provided that it is given infinite data and the model
space for θ has sufficient capacity. However, when data from Pr is limited, the analysis of the above equivalence shows
that there can be instances where Ptrue xð Þ<Pθ xð Þ. In such case, in fact, the contribution of such instances to the
Kullback–Leibler is 0, and still the model Pθ does not provide a reliable approximation of Pr . Figure 4a shows this with
an example on one-dimensional data.

FIGURE 4 Difference between maximum likelihood and adversarial learning. The red lines represent Pr and the blue lines represent Pθ

Algorithm 3

Synthetic transaction generation with two frequent itemsets

Data: The number of items n;
The frequent itemsets p1,p2f g as binary vectors;
The number of transactions to generate η
Result: A new synthetic database X ¼ x1,…xη

� �
of transactions.

candidates¼ 1,…,nf g�p1�p2
for i� 1,…,ηf g do

pi 	Binomial P p1ð Þ,P p2ð Þð Þ
Ni 	TruncatedExp 20ð Þ
ζi 	DiscreteUniform floor Nið Þ;candidatesð Þ
xi ¼ piþ ζi

end

20 of 33 MANCO ET AL.

GANs (Goodfellow et al., 2014a) propose an alternative modeling which departs from the maximum likelihood and
instead focuses on an alternative optimization strategy. In order to learn the probability space Pθ, Adversarial Networks
rely on an auxiliary classifier D trained to discriminate between real and generated data. In practice, optimality can be
achieved when x	Pθ indistinguishable from x	Pr . The training process can be hence devised as a competitive game,
with the generator trying to produce realistic samples, starting from random samples in the latent space Z, and the clas-
sifier focusing on the detection of generated data. By denoting with ϕ the parameters of the classifier D, we can define a
value function V ϕ,θð Þ as

V ϕ,θð Þ¼x	Pr logDϕ xð Þ
 �þx	Pθ log 1�Dϕ xð Þ� �
 �
: ð16Þ

The adversarial game is set up by solving the optimization problem

min
θ

max
ϕ

V ϕ,θð Þ:

In practice, by minimizing ϕ we ensure that Dϕ is capable of discriminating between real and generated data. By con-
trast, the maximization of θ aims at “fooling” Dϕ, by generating data for which the response of the classifier is not
consistent.

It can be shown (Goodfellow et al., 2014a) that the adoption of this alternate optimization is equivalent to train θ to
minimize the Jensen–Shannon divergence, defined as

 Pr kPθ½ � ¼ 1
2
 Pr kPθ½ �þ Pθ kPr½ �ð Þ: ð17Þ

Differently from the approaches based on maximum likelihood (which minimize the directional Kullback–Leibler
divergence), minimizing the Jensen–Shannon has the objective of a complete adherence of Pr and Pθ. Figure 4b shows
this difference on the same true distribution illustrated in Figure 4b.

The algorithmic scheme for learning both θ and ϕ is outlined in Figure 4 (Algorithm 4).
Besides the general scheme, the adoption of GANs for data generation poses some questions that we will try to

answer in the next subsections.

Algorithm 4

Adversarial learning

for number of training iterations do
for number of discrimination steps do

Update ϕ by ascending

rϕ x	Pr logDϕ xð Þ
 �þx	Pθ log 1�Dϕ xð Þ� �
� �
end
for number of generation steps do

Update θ by descending

rθ x	Pθ log 1�Dϕ xð Þ� �
 �� �
end

end

MANCO ET AL. 21 of 33

4.2.2 | Discrete data

Within the learning process, the first issue is how to compute the gradient of the generator, namely

rθ x	Pθ log 1�Dϕ xð Þ� �
 �� �
:

Once again, the main problem is how to compute the gradient of the expectation. In practice, passing the gradient to
the generator is not trivial and some assumptions are needed. Within continuous domains such as image data
(i.e., where x �ℝH�W), a typical trick consists in structuring the generator as a neural network Gθ :ℝK 7!ℝH�W which
depends on a latent code z	Pz (where Pz represents a prior such as, e.g., a uniform distribution). As a consequence,
the gradient can be rewritten as

z	Pz rθlog 1�Dϕ Gθ zð Þð Þ� �
 �
,

and can backpropagate through G.
Transactions, on the other side, represent discrete elements, where x � 0,1f gn. The main problem with discrete

domains is that the resulting neural network G, in order to map the latent code z into 0,1f gn, has to introduce discrete
random variables at some point in the computation. As a consequence, backpropagation does not directly apply and a
workaround is needed.

The simplest workaround is to admit a continuous relaxation of the output of the generator. Just like with the VAE,
the output of G can be modeled a multinomial probability (with no direct sampling channel), rather than a binary vec-
tor. However, there is a major problem with this: the input of the discriminator would be a softmax distribution from
the generated transactions, and a binary vector for the real transactions. As a result, the discriminator could easily tell
them apart, with the result that the GAN would get stuck in an equilibrium that is not good for the Generator. Different
formulations of the adversarial training (based on Wasserstein distance [Arjovsky et al., 2017], to be discussed in
Section 4.2.3) can partially mitigate this issue. Also, using an approximated embedding layer (Xu et al., 2017) to map
both real and generated transactions into dense representations can solve this. In practice, the discriminator D would
be trained to provide a response on r xð Þ rather than x, where r is a pretrained embedding mapping itemsets into a
lower dimensional space according, for example, to their closeness.

A possible solution is to consider the generative model as a stochastic parametrized policy which can be trained by
policy gradient (Sutton et al., 2000). The latter naturally avoids the differentiation difficulty for discrete data in a con-
ventional GAN, by means of the equality

rθ x	Pθ log 1�Dϕ xð Þ� �
 �� �¼x	Pθ log 1�Dϕ xð Þ� �rθlogPθ xð Þ
 �
:

However, the problem with this solution lies in the estimation of the mean x	Pθ . Exact estimation requires an explora-
tion of the complete domain space,

x	Pθ log 1�Dϕ xð Þ� �rθlogPθ xð Þ
 �¼ X
x � 0,1f gn

Pθ xð Þlog 1�Dϕ xð Þ� �rθlogPθ xð Þ

which is clearly intractable when n is large. We can introduce Monte Carlo approximation: given a set x1,…,xη
� �

where
xi 	Pθ,

X
x � 0,1f gn

Pθ xð Þlog 1�Dϕ xð Þ� �rθlogPθ xð Þ≈ 1
η

Xη
i¼1

log 1�Dϕ xið Þ� �rθlogPθ xið Þ

Again, the approximation is prone to high variance as it strongly depends on the size η of the sample. As a consequence,
the learning process can become extremely unstable and the resulting Pθ poorly fits Pr and variance reduction tech-
niques need to be employed.

22 of 33 MANCO ET AL.

Alternative solutions to this issue consider the adaptation of the Gumbel–Max trick (Maddison et al., 2017). The
trick essentially consists in a refinement of the continuous relaxation through Softmax/Sigmoid distribution by exploi-
ting the concrete distribution (also referred to as the Gumbel-Softmax/Sigmoid distribution in [Jang et al., 2017]). To
illustrate this, consider a categorical distribution with class probabilities π1,…,πn. Maddison et al. (2017) provide a sim-
ple way of drawing a sample ξ from such distribution as

ξ¼ one_hot arg max
i

log πiþ gi½ �
�

ð18Þ

where gi ¼�log �loguið Þ (with ui 	Uniform 0,1ð Þ) are samples drawn from the Gumbel distribution.1 In fact, it can be
shown that, with the above construction, ξ	Cat π1,…,πnð Þ. This simple trick allows to introduce a reparametrization in
the style of (Kingma & Welling, 2014), which allows a control of the variance in the sampling procedure. In practice,
when the logits of the discrete distribution depend on a parameter set θ (i.e., Cat π1,…,πnð Þ�Cat π1,…,πnjθð Þ), the repar-
ametrization trick induces the equivalence

rθξ	Cat π1,…,πnjθð Þ f ξð Þ½ � ¼ui 	Uniform 0,1ð Þ
i¼ 1,…n

f 0 ξð Þ �rθξ½ �

and the problem hence becomes the estimation of the gradient of Equation (18). The latter is still indefinite
because of the nondifferentiable argmax operator, but it can be approximated by the Gumbel-Softmax distribution eξ,
defined as

eξk ¼ exp logπkþgkð Þ=τð ÞPM
j¼1

exp logπjþgj
� �

=τ
� �

where τ is a temperature parameter. The resulting distribution is smooth for τ>0 and has the property that
limτ!0

eξ¼ ξ. We can hence devise a Straight-Through (ST) Gumbel approximation rθξ≈rθ
eξ, with the further trick to

annihilate the temperature τ during the training process to make the trade-off between smooth samples and small
variance.

The concrete distribution allows to sample single items from a categorical distribution. The
generation of a transaction x � 0,1f gn requires additional refinements, since the objective is to generate an itemset
instead.

• We can decompose the problem in two steps: First, identify the number k of items to generate. Then, given k, a sub-
set of k items can be obtained by repeatedly sampling from the Gumbel-Softmax. Xie and Ermon (2019), propose an
extension to the Gumbel-max trick which perturbs the log-probabilities of a categorical distribution with Gumbel
noise and takes the top-k elements to produce samples without replacement. The extension introduces on a differen-
tiable approximation of a top-k operator, in the same vein as the Gumbel-Softmax proposes a differentiable approxi-
mation to argmax. The intuition is to emulate a repeated sampling with the guarantee that items previously drawn
are not resampled: By defining the sequence 8i� 1,…,nf g

α 1ð Þ
i ¼ logπiþgi

p tð Þ
i ¼

exp α tð Þ
i =τ

� �
Pn
j¼1

exp α tð Þ
j =τ

� �

MANCO ET AL. 23 of 33

α tþ1ð Þ
i ¼ α tð Þ

i þ log 1�p tð Þ
i

� �
,

where the superscript tð Þ indicates the iteration step in the loop for t � 1,…,kf g, we can finally obtain an approximationex¼Pk
t¼1p

tð Þ, with p tð Þ ¼ p tð Þ
1 ,…,p tð Þ

n

n o
. Again, it can be shown that, when τ! 0, each p tð Þ converges to a one-hot vector

and consequently ex to an itemset.

• Alternatively, x can be considered as a the result of sampling from a joint distribution of n binary random variables
xi 	Bernoulli πið Þ, for which a simple adaptation of the Gumbel-Max trick (Maddison et al., 2017) yields

xi ¼
1 if log u � log 1�uð Þ þ log π � log 1�πð Þ>0

0 otherwise

�

with u	Uniform 0,1ð Þ. Again, by defining αi ¼ logπi� log 1�πið Þ, we can exploit the Sigmoid relaxation

exi ¼ 1þexp
logu� log 1�uð Þþαi

τ

� 	� �1

from which the approximation x can be devised.

4.2.3 | Extensions

Despite its elegance in modeling, there are a number of issues with GANs that the recent literature is still investigating.
First of all, the training process with GANs can be extremely unstable. Unlike other neural network architectures, a
GAN does not have a fixed optimization minimum during training. Rather, the optimization minimum changes dynam-
ically during the training procedure. The result is that the overall optimization does not converge to a minimum but to
a potentially unstable equilibrium. Regularization (Roth et al., 2017) and improved training through noise (Arjovsky &
Bottou, 2017) partially mitigate these issues.

However, one of the sources of instability is given by the difficulty in training a good generator, when the underly-
ing distributions are supported by low-dimensional manifolds. In situations where Pr and Pθ are perfectly separable,
the auxiliary discriminator provides little feedback to the generator (which exhibits a vanishing gradient), which conse-
quently does not learn to generate realistic data. The problem is to effectively measure the distance between Pr and Pθ,
rather than their separability, and to use this distance as a feedback to the generator. Wasserstein GAN (Arjovsky
et al., 2017) (WGAN) is an extension to the GAN model that adopts such a change. Within a WGAN, the discriminator,
does not model the probability of a generated x being “real”: Rather, it quantifies the “realness” of x. This change com-
plies theoretically with a different optimization objective: instead of minimizing the JS divergence of Equation (17), a
WGAN minimizes the Earth Mover (or Wasserstein) distance between Pr and Pθ, through the objective

min
θ

max
ϕ:kDϕkL ≤ 1

Ex	Pr D xð Þ½ ��Ex	Pθ D xð Þ½ �

Here, the constraint kDϕkL ≤ 1 denotes that Dϕ is required to be a 1-Lipschitz function. The constraint on Dϕ can be
enforced by clipping the weights (Arjovsky et al., 2017), or alternatively stabilizing the gradient (Gulrajani et al., 2017)
during the learning process. The adaptation with the Wasserstein criterion allows to train a Dϕ that approximates the
real distance between Pr and Pθ. As a consequence, there is no need to balance the capacity of Gθ and Dϕ and the over-
all learning process is more stable, with a resulting a more robust generator.

Another advantage of WGAN is the capability to deal with mode collapse, which occurs when the adversarial game
gets stuck in a local minimum where generator identifies a subspace that the discriminator has difficulty in detecting.

24 of 33 MANCO ET AL.

This situation is illustrated in Figure 4b, where only one modality is identified, as it represents a viable solution to the
adversarial game. The adoption of the EM criterion can better model the difference between the two distributions, thus
alleviating the mode collapse.

FIGURE 5 Illustration of the data generation process within GAN and WGAN models

TABLE 4 Originary experimental dataset

Tuple ID i1 i2 i3 i4 nd

t1 1 0 1 1 210

t2 0 1 0 1 140

t3 1 1 1 0 110

t4 1 0 0 0 100

t5 1 1 0 0 90

t6 0 0 0 1 80

t7 0 1 1 0 70

t8 1 1 0 1 70

t9 0 1 0 0 70

t10 1 0 1 0 60

Itemset Frequent Support

i1 Y 640

i2 Y 550

i3 Y 450

i4 Y 500

i1, i2 Y 270

i1, i3 Y 380

i1, i4 Y 280

i3, i4 N 210

i2, i3 N 180

i2, i4 N 210

MANCO ET AL. 25 of 33

4.2.4 | Analysis

To perform an empirical comparative analysis between GAN and WGAN we used the same dataset X described in
Section 4.1.1 generated by Algorithm 3. We trained a GAN and a WGAN model, based both on the Bernoulli's
approach. This time, we have no information or assumption about the prior distribution of the latent variable Z, so we
decided to explore the whole domain Z. Both the models were trained by feeding them latent vectors z of size 2, whose
elements are randomly sampled from a Uniform distribution and, then, were exploited to generate 20,000 data points
that were clustered according to their distance with respect to the two patterns. The results of this kind of analysis are
shown in Figure 5:

• Figure 5a shows that the GAN model collapsed on the first patter, associating all the latent point to it (red dots);
• Figure 5b highlight the capability of the WGAN model to mitigate the mode collapsing issues, dividing the latent

space into two regions: the red one, corresponding to p1, covers the 	 60% of the space, while the blue one,
corresponding to p2, covers the 	 40% of it. As it can be noticed, the coverage reflects the prior probabilities of the
patterns.

TABLE 5 Discrepancy

Patterns IFM IFMI IFMD IFMDI IFMDI – 5% VAE VAE� t4, t6f g IFMDI – 5%� t4,t6f g
Transactions 33.00% 12.00% 48.00% 50.00% 4.80% 7.00% 36.00% 23.10%

Items and item pairs 3.68% 0.82% 1.91% 0.82% 0.11% 3.02% 16.68% 4.71%

FIGURE 6 Details of the discrepancies on the number of duplicates between the original dataset and IFM-based techniques

FIGURE 7 Details of the discrepancies on the itemsets support between the original dataset and IFM-based techniques

26 of 33 MANCO ET AL.

5 | COMPARATIVE ANALYSIS

In this section we compare the two approaches discussed in Sections 3 and 4 by analyzing their behavior on a set of
controlled experiments. For these, we use a toy dataset, shown in Table 4, comprising 4 items upon which 10 patterns
are selected. The dataset used in the experiments is hence built by replicating such patterns with some fixed frequen-
cies. We use the following approaches to generate the synthetic datasets:

• IFM: IFM formulation with support constraints on the frequent itemsets. In our analysis the frequent itemsets are all
the itemsets with a support greater or equal of 250.

• IFMI: IFM formulation imposing that the supports of all the infrequent itemsets to be lower or equal than a fixed
threshold. In our analysis, the threshold is 210.

• IFMD: IFM formulation imposing that the number of duplicates for all the transactions to be lower or equal than a
fixed threshold. In our analysis, the threshold is 100.

• IFMDI: IFMD merged with IFMI.
• IFMDI�5%: IFMI formulation imposing that each transaction has a number of duplicates that differ less than 5% from

the number of duplicates in the original dataset.
• VAE: Variational Auto Encoder generator.
• VAE–{t4, t6}: VAE without the generation of t4 and t6 transactions (see Table 4) by means of sampling with rejection.
• IFMDI�5%–{t4, t6}: IFMDI – 5% formulation imposing the number of duplicates for t4 and t6 to be zero.

Table 4 shows the details of the dataset and the patterns exploited. The purpose of the experiments is to observe the
reconstruction process in both methods and compare the resulting reconstructed datasets. The comparison relies on the
transactions (t1…t10 in the table) as well as both simple items and item pairs. We evaluate the faithfulness of the

FIGURE 8 Details of the discrepancies on the number of duplicates between VAE and IFM-based techniques, without transactions t4
and t6

FIGURE 9 Details of the discrepancies on the itemsets support between VAE and IFM-based techniques, without transactions t4 and t6

MANCO ET AL. 27 of 33

FIGURE 10 Details of the discrepancies on the number of duplicates between VAE and IFM-based techniques

FIGURE 11 Details of the discrepancies on the itemsets support between VAE and IFM-based techniques

FIGURE 12 Two-dimensional representation of the latent space

28 of 33 MANCO ET AL.

reconstruction in two respects: (1) whether the patterns are reproduced and (2) whether their frequencies are faithful.
The empirical comparison we propose is meant to better characterize both groups of methods, with their advantages
and limits. We deliberately choose to use a toy dataset, where the number of patterns is low and the same patterns are
simple. This allows us to carefully analyze the results of the generation and compare the methods on them.

A simple metric to measure the reconstruction accuracy is the discrepancy S, computed as

S ¼

P
i
jDi�Oi jP
i
Oi

,

where, for a pattern i (either a transaction or an item pair), Di and Oi represent the frequency of the pattern in the
reconstructed and original dataset, respectively. Table 5 reports the values of discrepancy, which are further detailed in
Figures 6–9.

We first analyze the results of the reconstruction for a VAE-based generative model by means of Algorithm 2. Fig-
ures 10 and 11 show a comparison with IFMDI – 5%, the IFM-based formulation which provides the best performances.
The reconstruction provided by IFMDI – 5% is extremely faithful, both on the itemsets and the transactions. This because
this formulation enforces that the number of duplicates of each transaction differs less than 5% from the number of
duplicates in the original dataset. Figure 12 shows the details of how the original patterns are mapped into the latent
generative space: the leftmost picture shows the mapping of the original data, and the rightmost shows how the genera-
tion results from a larger region of the latent space. The main advantage of the approach based on generative modeling
through latent variables is that the latter allows to control the reconstruction process. By acting on the latter we can
modify the characteristics of the reconstructed space. For example, we see that transaction t11 (the only spurious trans-
action generated by VAE) is placed in a specific region, denoted by a red star in the figure. Sampling repeatedly from
that region would allow us to change the overall distribution of the transactions while still maintaining the itemset
distribution.

By contrast, the IFM-based approaches are in general successful in maintaining the itemset distributions. However,
they tend to produce a higher noise with transactions unless not explicitly constrained by the IFMDI – 5% formulation
(see Figures 6 and 7). This noise can in principle be considered an advantage in specific contexts where a differentiation
from the original dataset is required (e.g., due to privacy concerns).

In principle, the adoption of IFM allows to implement a reconstruction “by design,” by choosing which itemsets to
maintain or suppress. As an evidence, we report the cases of IFMDI – 5%� t4, t6f g and VAE� t4, t6f g, where transaction
t4 and t6 are removed from the generation phases. In fact, Figures 8 and 9 shows that IFMDI – 5%� t4, t6f g keeps the

FIGURE 13 Execution times of autoencoder, IFM, IFMD, and IFMI for the datasets BMS-WebView-1 and T10I4D100K

MANCO ET AL. 29 of 33

number of duplicates and the supports almost similar to the ones of the original dataset, while VAE� t4, t6f g changes
many of them to remove the two transactions.

We extend the comparison also to by analyzing the running time of the proposed methods. To do so, we consider
the datasets in Figures 1 and 2 and reports the results of the execution times in Figure 13. The approach based on gener-
ative modeling is in general more efficient. However, constraint-based generation is sensitive to the frequency threshold
and a suitable tuning can make these approaches comparable.

To summarize, these experiments support an underlying intuition: Constraint-based generation allows more control
on the expected outcome at the expense of a higher computational cost, whereas probabilistic generative models pro-
vide more faithful reconstructions but are less controllable. This essentially means that, without any further modeling
artifact (that we do not consider here), generative models are prone to fail in providing tailored reconstructions where
some patterns can be suppressed and new ones introduced. By contrast, constraint-based generation is more suitable
for reconstructions “by design.”

6 | CONCLUSIONS

This article has provided an overview about state-of-the-art approaches for synthetic transactional data generation. A
transaction has been modeled as a high-dimension sparse itemset, that can be mapped into a binary vector, defined
over the item space. The goal of the generation is to build synthetic transactions with a high degree of realism, by:
(i) keeping all the statistical properties of a reference domain, (ii) avoiding to introduce inexistent or unexpected pat-
terns, and (iii) preventing any data leakage of confidential information. In this perspective, the biggest challenges to
tackle are essentially the scalability of the discovery of the patterns, due to their exponential explosion, the exploration
and understanding of the complex manifold that may characterize the domain.

The algorithms, investigated in this work, are actually machine learning models, which need a training phase for
learning the underlying patterns in a real dataset extracted from the domain, before being able to infer new data. The
studied approaches can be divided into two families:

• Inverse frequent itemset mining (IFM), whose objectives are to: (i) find out the frequent itemsets (of any size) in the
training set, (ii) exploit them as constraints for the new data generation, and (iii) prune unexpected patterns;

• Probabilistic generative models (PGMs), which map the training data patterns into suitable data generative functions
from which sampling the synthetic data.

According to our analysis, the IFM approaches result to be extremely flexible and understandable; they enable the con-
trol of the data generation procedure by the direct identification of the discovery patterns to preserve. On the other
hand, they proved to have extremely onerous computational costs, to the point of not being feasible in high-
dimensional contexts. An opposite conclusion has been obtained by analyzing PGMs: they are extremely fast and accu-
rate, but strongly lacking in control, flexibility, and understandability.

We argue that the need for methods for synthetic data generation is crucial when real-life datasets are scarce or
incomplete (due essentially to privacy concerns or high costs of data collection), or even inaccurate (due to inconsis-
tencies in the data collection process). This is an extremely relevant topic in several areas, including, but not limited to,
financial services, healthcare, manufacturing, security, marketing and social media. We would like to stress that in all
these scenarios the aforementioned issues are likely to occur and, since the data can be deemed “transactional”
(i.e., organized in transactions representing events or properties), the approaches that we survey here can be applied.
For example, when transactions represent patients' health records, synthetic data generation can be exploited to gener-
ate data preserving all the original statistical properties. Thus, the generated data can be distributed as a viable alterna-
tive to the adoption of complex data anonymization processes. More in general, synthetic data generation can be used
with several objectives.

• Data quality improvement. Generated data fit the original patterns, hence, they are: smooth (with low presence of
outliers); and denoised (since noise is not learnt);

• Domain focus. Generation algorithms allow generation control: empowerment of chosen patterns; class imbalance
mitigation; and smart oversampling;

• Reducing the costs of data collection. Collecting brand new data may be expensive in term of resources or time;

30 of 33 MANCO ET AL.

• Support for next data manipulation and analysis. Smart data compression (data can be summarized by the functions and the
patterns learnt by the data generation algorithms); Improved classification (the generating algorithms can be exploited to
produce samples hard to predict, in order to force any classifier to better define their decision boundaries);

• Data obfuscation, since synthetic data generation enables a control of which information to highlight or hide.

As future work, an interesting research line is trying to investigate and define novel methodologies and techniques that
are able to take advantage of IFM and PGMs, by combining their strong points and mitigating their weakness. Another
promising research line is to apply the combination of the two approaches to NoSQL applications by considering the
extension of IFM that has been recently proposed in (Saccà et al., 2019). This extension considers more structured
schemes for the datasets to be generated, as required by emerging big data applications, for example, social network
analytics. To this end, the basic simple schema R K,Að Þ is replaced with a more general NoSQL schema
R K,A1,…,Ap,A1,
�

…, AqÞ, where K is the table key, A1,…,Ap are single-valued attributes, and A1,…,Aq are multi-valued
attributes. This problem reduces to classical case when p¼ 0 and q¼ 1, that is, there is exactly one multi-valued attri-
bute. As an example, consider individuals who are characterized by the SV attributes Gender, Location and Age and by
the MV attributes Groups and Events: an individual may belong to various groups and may attend a number of events.
A transaction I ¼ Male,Rome,25, g1,f½ g4g, e1,e3f g� represents a 25-year old male individual located in Rome who
belongs to the groups g1 and g4 and attends the events e1 and e3.

ACKNOWLEDGMENT
This work has been partially funded by the PON-MIUR Project ARS01_00587 “SecureOpenNet: Distributed Ledgers for
Secure Open Communities—SON,” by the EU H2020 ICT48 Project "HumanE-AI-Net" under contract #952026, and by
the National Science Foundation under the award #1820685. Open Access Funding provided by Universita della Cala-
bria within the CRUI-CARE Agreement. [Correction added on 25 May 2022, after first online publication: CRUI
funding statement has been added.]

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Giuseppe Manco: Methodology (equal); supervision (equal); writing – review and editing (equal). Ettore Ritacco:
Data curation (equal); investigation (equal); software (equal); writing – original draft (equal). Antonino Rullo: Data
curation (equal); investigation (equal); validation (equal); visualization (equal). Domenico Sacca': Conceptualization
(equal); supervision (equal). Edoardo Serra: Data curation (equal); investigation (equal); software (equal); writing –
original draft (equal).

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ENDNOTE
1 A nice property of the Gumbel distribution is its reparametrization: given u	Uniform 0,1ð Þ, we have
that �log �loguð Þ	Gumbel 0,1ð Þ.

REFERENCES
Agrawal, R., Imieli�nski, T. & Swami, A. (1993a). Mining association rules between sets of items in large databases. Proceedings of the 1993

ACM SIGMOD International conference on Management of data. Washington, DC, USA, May 26-28, 1993. Vol. 22, pp. 207–216.
Agrawal, R., Imieli�nski, T., & Swami, A. (1993b). Mining association rules between sets of items in large databases. Proceedings of the 1993

ACM SIGMOD International Conference on Management of Data, SIGMOD'93. ACM, New York, NY. pp. 207–216.
Agrawal, R. & Srikant, R. (2000). Privacy-preserving data mining. Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD'00. ACM, New York, NY. pp. 439–450.
Ansari, M., Rasoolian, B. & Smith, J. S., & Synthetic Order Data Generator for Picking Data. (2018). 15th IMHRC Proceedings (Savannah,

Georgia. USA – 2018). 15. https://digitalcommons.georgiasouthern.edu/pmhr_2018/15
Arasu, A., Kaushik, R. & Li, J. (2011). Data generation using declarative constraints. Proceedings of the 2011 ACM SIGMOD International

Conference on Management of Data. Athens, Greece, June 12-16. pp. 685–696.

MANCO ET AL. 31 of 33

https://digitalcommons.georgiasouthern.edu/pmhr_2018/15

Arjovsky, M. & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. Proceedings of the 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26.

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. Proceedings of the 34 th International Conference
on Machine Learning. pp. 214–223.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver
(Eds.). Proceedings of ICML workshop on unsupervised and transfer learning, Volume 27 of Proceedings of Machine Learning Research.
PMLR, Bellevue, WA. pp. 37–49.

B�ar�any, V., Cate, B. T., Kimelfeld, B., Olteanu, D., & Vagena, Z. (2017). Declarative probabilistic programming with datalog. ACM Transac-
tions on Database Systems (TODS), 42(4), 1–35.

Beheshti, A. K., & Hejazi, S. R. (2015). A novel hybrid column generation-metaheuristic approach for the vehicle routing problem with gen-
eral soft time window. Information Sciences, 316, 598–615.

Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical

Association, 112(518), 859–877.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
Bruno, N. & Chaudhuri, S. (2005). Flexible database generators. Proceedings of the 31st International Conference on Very Large Data Bases,

Trondheim, Norway, August 30 - September 2, pp. 1097–1107.
Cagliero, L., & Garza, P. (2013). Itemset generalization with cardinality-based constraints. Information Sciences, 244, 161–174.
Calders, T. (2004). Computational complexity of itemset frequency satisfiability. Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS '04. ACM, New York. pp. 143–154.
Calders, T. (2007). The complexity of satisfying constraints on databases of transactions. Acta Informatica, 44(7–8), 591–624.
Chen, C. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information

Sciences, 275, 314–347.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal

Statistical Society. Series B (Methodological), 39(1), 1–38.
Fowkes, J. & Sutton, C. (2016). A bayesian network model for interesting itemsets. Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer. pp. 410–425
Gilad, A., Patwa, S., & Machanavajjhala, A. (2021). Synthesizing linked data under cardinality and integrity constraints. arXiv preprint arXiv:

2103.14435.
Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9(6), 849–859.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y. (2014a). Generative adversarial

nets. Advances in Neural Information Processing Systems. Vol. 27, December 8-13 2014, Montreal, Quebec, Canada.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014b). Generative adversarial

networks. arXiv preprint arXiv:1406.2661.
Greco, G., Guzzo, A. & Nardiello, G. (2020). FD-VAE: A feature driven VAE architecture for flexible synthetic data generation. International

Conference on Database and Expert Systems Applications, Bratislava, Slovakia. Springer. pp. 188–197
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. (2017). Improved training of wasserstein GANs. In Proceedings of the

31st International Conference on Neural Information Processing Systems, NIPS'17, Long Beach, CA, USA, pp. 5769–5779.
Gunopulos, D., Khardon, R., Mannila, H. & Toivonen, H. (1997). Data mining, hypergraph transversals, and machine learning. In A. O. Men-

delzon & Z. M. Özsoyoglu (Eds.). Proceedings of the 16-th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS '97, Tucson, Arizona, USA. ACM Press. pp. 209–216

Guns, T., Nijssen, S., & Raedt, L. D. (2011). Itemset mining: A constraint programming perspective. Artificial Intelligence, 175(12), 1951–1983.
Guzzo, A., Moccia, L., Saccà, D., & Serra, E. (2013). Solving inverse frequent itemset mining with infrequency constraints via large-scale lin-

ear programs. ACM Transactions on Knowledge Discovery from Data, 7(4), 18:1–18:39.
Guzzo, A., Saccà, D., & Serra, E. (2009). An effective approach to inverse frequent set mining. Proceedings of the 2009 9th IEEE International

Conference on Data Mining, ICDM '09. IEEE Computer Society, Washington, DC. pp. 806–811.
Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: Current status and future directions. Data Mining and Knowledge

Discovery, 15(1), 55–86.
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOD Record, 29(2), 1–12.
Hoag, J. E., & Thompson, C. W. (2007). A parallel general-purpose synthetic data generator. ACM SIGMOD Record, 36(1), 19–24.
Houkjær, K., Torp, K. & Wind, R. (2006). Simple and realistic data generation. Proceedings of the 32nd International Conference on Very

Large Databases, Seoul, Korea, pp. 1243–1246.
Jang, E., Gu, S. & Poole, B. (2017). Categorical reparameterization with gumbel-softmax. Proceedings of the 5th International Conference on

Learning Representations, Toulon, France, (ICLR'17).
Jindal, R., & Malaya, D. B. (2016). A novel approach for mining frequent patterns from incremental data. International Journal of Data Min-

ing, Modelling and Management, 8(3), 244–264.
KDDCUP 2000 http://www.ecn.purdue.edu/KDDCUP.
Kingma, D. & Welling, M. (2014). Auto-encoding variational bayes. Proceedings of the 2nd International Conference on Learning Represen-

tations, ICLR'14,
Kingma, D. P. & Welling, M. (2013). Auto-encoding variational bayes. CoRR, abs/1312.6114.

32 of 33 MANCO ET AL.

http://www.ecn.purdue.edu/KDDCUP

Laxman, S., Naldurg, P., Sripada, R. & Venkatesan, R (2007). Connections between mining frequent itemsets & learning generative models.
Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha, Nebraska, USA. IEEE. pp. 571–576.

Lezcano, C. & Arias, M. (2019). Synthetic dataset generation with itemset-based generative models. 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, October 27-30, 201. IEEE. pp. 288–293

Li, Y., Zhang, R., Yang, X., Zhang, Z. & Zhou, A. (2018). Touchstone: Generating enormous query-aware test databases. 2018 {USENIX}
annual Technical Conference ({USENIX} {ATC} 18), Boston, MA, USA. pp. 575–586.

Liang, D., Krishnan, R. G., Hoffman, M. & Jebara, T. (2018). Variational autoencoders for collaborative filtering. Proceedings of the 2018
World WideWeb Conference,WWW'18, Lyon, France. pp. 689–698.

Luenberger, D. G. (2003). Linear and nonlinear programming (2nd ed.). Springer.
Maddison, C. J., Mnih, A. & Teh, Y. W. (2017). The concrete distribution: A continuous relaxation of discrete random variables. Proceedings

of the 5th International Conference on Learning Representations, (ICLR'17), Toulon, France.
Mampaey, M., Tatti, N. & Vreeken, J. (2011). Tell me what i need to know: Succinctly summarizing data with itemsets. Proceedings of the

17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA. pp. 573–581.
McLachlan, G. J., & Peel, D. (2000). Finite mixture models. Wiley.
Michael, K., & Miller, K. W. (2013). Big data: New opportunities and new challenges [guest editors' introduction]. Computer, 46(6), 22–24.
Mielikainen, T. (2003). On inverse frequent set mining. Proceedings of 2nd Workshop on Privacy Preserving Data Mining, PPDM'03. IEEE

Computer Society, Washington, DC. pp. 18–23.
Murphy, K. P. (2012). Machine learning: A probabilistic perspective. The MIT Press.
Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.
Ravikumar, G., Manjunath, T., Hegadi, R. S., & Umesh, I. (2011). A survey on recent trends, process and development in data masking for

testing. International Journal of Computer Science Issues (IJCSI), 8(2), 535.
Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. Pro-

ceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014, Volume 32 of JMLR
Workshop And Conference Proceedings. pp. 1278–1286. JMLR.org.

Roth, K., Lucchi, A., Nowozin, S., & Hofmann, T. (2017). Stabilizing training of generative adversarial networks through regularization.
Saccà, D., Serra, E., & Rullo, A. (2019). Extending inverse frequent itemsets mining to generate realistic datasets: Complexity, accuracy and

emerging applications. Data Mining and Knowledge Discovery, 33(6), 1736–1774.
Sanghi, A., Sood, R., Haritsa, J. R. & Tirthapura, S. (2018). Scalable and dynamic regeneration of big data volumes. International Conference

on Extending Database Technology (EDBT), Vienna, Austria.. pp. 301–312.
Smets, K. & Vreeken, J. (2012). Slim: Directly mining descriptive patterns. Proceedings of the 2012 SIAM International Conference on Data

Mining, Brussels, Belgium Belgium. SIAM. pp. 236–247.
Sutton, R. S., McAllester, D., Singh, S. & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approxima-

tion. Advances in Neural Information Processing Systems, Denver, Colorado, USA. Vol. 12.
Taşer, P. Y., Birant, K. U., & Birant, D. (2020). Multitask-based association rule mining. Turkish Journal of Electrical Engineering & Computer

Sciences, 28(2), 933–955.
Theis, L., van den Oord, A. & Bethge, M. (2016). A note on the evaluation of generative models. International Conference on Learning Repre-

sentations (ICLR), San Juan, Puerto Rico.
Uno, T., Asai, T., Uchida, Y., & Arimura, H. (2003). LCM: An efficient algorithm for enumerating frequent closed item sets. Fimi. Vol. 90. Citeseer.
Vreeken, J., Van Leeuwen,M., & Siebes, A. (2011). Krimp:Mining itemsets that compress.DataMining and Knowledge Discovery, 23(1), 169–214.
Weikum, G. (2013). Where's the data in the big data wave? ACM Sigmod Blog, MARCH 6, 2013. http://wp.sigmod.org/?p=786.
Wong, I. S., Dobbie, G. & Koh, Y. S. (2019). Items2data: Generating synthetic boolean datasets from itemsets. Australasian Database Confer-

ence, Sydney, NSW, Australia. Springer. pp. 79–90.
Wu, H., Ning, Y., Chakraborty, P., Vreeken, J., Tatti, N., & Ramakrishnan, N. (2018). Generating realistic synthetic population datasets.

ACM Transactions on Knowledge Discovery from Data, 12(4), 45:1–45:22.
Wu, X., Wu, Y., Wang, Y., & Li, Y. (2005). Privacy aware market basket data set generation: A feasible approach for inverse frequent set min-

ing. Proceedings of SIAM International Conference on Data Mining, SDM'05. SIAM, Philadelphia, PA. pp. 103–114.
Xie, S. M. & Ermon, S. (2019). Reparameterizable subset sampling via continuous relaxations. In Proceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI'19), Macao, SAR, China.
Xu, Z., Liu, B., Wang, B., Sun, C., Wang, X., Wang, Z. & Qi, C. (2017). Neural response generation via GAN with an approximate embedding

layer. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, Denmark.
Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). Parallel algorithms for discovery of association rules. Data Mining and Knowledge

Discovery, 1(4), 343–373.
Zhong, S. (2007). Privacy-preserving algorithms for distributed mining of frequent itemsets. Information Sciences, 177(2), 490–503.

How to cite this article: Manco, G., Ritacco, E., Rullo, A., Saccà, D., & Serra, E. (2022). Machine learning
methods for generating high dimensional discrete datasets. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 12(2), e1450. https://doi.org/10.1002/widm.1450

MANCO ET AL. 33 of 33

http://jmlr.org
http://wp.sigmod.org/?p=786.
https://doi.org/10.1002/widm.1450

	Machine Learning Methods for Generating High Dimensional Discrete Datasets
	Machine learning methods for generating high dimensional discrete datasets
	1 INTRODUCTION
	2 BACKGROUND
	3 INVERSE FREQUENT ITEMSET MINING-BASED GENERATIVE MODELS
	3.1 General formulation of IFM
	3.2 Modeling general IFM by linear programming
	3.2.1 Column generation algorithm to solve general IFM

	3.3 Accuracy analysis

	4 MACHINE LEARNING-BASED GENERATIVE MODELS
	4.1 Variational autoencoders
	4.1.1 Analysis

	4.2 Generative adversarial networks
	4.2.1 General framework
	4.2.2 Discrete data
	4.2.3 Extensions
	4.2.4 Analysis

	5 COMPARATIVE ANALYSIS
	6 CONCLUSIONS
	ACKNOWLEDGMENT
	 CONFLICT OF INTEREST
	 AUTHOR CONTRIBUTIONS
	 DATA AVAILABILITY STATEMENT

	ENDNOTE
	REFERENCES

