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Abstract The Paleocene-early Eocene continental magmatic arc (PECMA) in the Northern Andes is an
example of arc magmatism following a major collisional event. This arc formed after the arc-continent collision
between the Caribbean Plate and the South American continental margin at ca. 72 Ma. We used detrital

zircon LA-ICP-MS and CA-ID-TIMS geochronology and geochemistry to complement the limited plutonic
record of the PECMA and better characterize the PECMA's magmatic evolution. Zircon geochronology and
their respective trace element geochemistry were analyzed from Paleocene-early Eocene strata of the Bogotd
Formation in the foreland region. Our results show that after the collision of the Caribbean Plate, the magmas
in the PECMA differentiated under a thick continental crust with limited subduction input at ca. 66 Ma. By
62-50 Ma, scattered patterns of Hf, U, U/Yb, and Yb/Gd ratios in detrital zircons suggest the existence of
contrasting magmatic inputs attributed to different depths of crustal fractionation, varied temperatures of
crystallization, and significant mantle and subduction inputs. These diverse magmatic patterns reflect the
evolution of the continental crust. We proposed that oblique convergence and strike-slip tectonics favored
contrasting crustal architectures along the continental margin while local lithosphere dripping from a previously
thickened crust promoted the formation of hot magmas under a thick continental crust.

1. Introduction

The spatial distribution and composition of magmatic arcs are controlled by interactions between the mantle
and the upper and lower plates, led by tectonic processes that typically last over one to tens of millions of years
(Ducea et al., 2015; Gerya & Meilick, 2011; Paterson & Ducea, 2015; Syracuse & Abers, 2006). The plutonic and
volcanic products that result from these interactions reflect different stages of the magmatic evolution: whereas
plutonic rocks represent a more homogenized final record of a magmatic event, volcanic rocks are a snapshot of
the magmatic settings at the time of the eruption (e.g., Glazner et al., 2015; Zimmerer & Mclntosh, 2012).

Andean-type orogens are characterized by coeval magmatism, exhumation, and surface uplift (Bayona et al., 2021;
Horton, 2018; Horton et al., 2010, 2015). These concurrent events often result in the erosion of the uppermost
segment of the volcanic arcs (volcanic and shallow plutonic rocks) and in the exposure of deeper plutons (e.g.,
Barth et al., 2013; Yang et al., 2012). The exhumation and erosion of the initial magmatic products often biases
the record of past volcanic arcs (Gaschnig et al., 2017).

Despite this bias, some of the volcanic arc's older record can be preserved in adjacent basins and their study
can provide additional insights into the magmatic system (Barth et al., 2013; Malusa et al., 2011; McKenzie
et al., 2018; Schwartz et al., 2021; Yang et al., 2012). Magmatic zircons provide the isotopic and chemical
composition of the system at the time of their crystallization (Cavosie et al., 2005; Grimes et al., 2015; Vervoort
et al., 2004). Because these minerals are resistant to low grade metamorphism, weathering, and sedimentary
processes, they can retain their geochemical signatures after transport and burial (Morton & Hallsworth, 2007;
Rubatto, 2017). The record of detrital zircons found in sedimentary basins adjacent to magmatic arcs can there-
fore provide evidence of their isotopic and chemical signatures (Barth et al., 2013; Cavosie et al., 2005, 2006;
McKenzie et al., 2018; Yang et al., 2012).
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Figure 1. (a) Regional map showing the Paleocene-Eocene volcanic, plutonic, and sedimentary units in the Colombian
Andes; circles denote the available radiometric ages. (b) Detailed geological map of the study region modified from Acosta
and Ulloa (1998). WC: Western Cordillera, CC: Central Cordillera, EC: Eastern Cordillera, SM: Santa Marta Massif, LIB:
Llanos Basin, PA: Allochthonous Panama Arc, CR: Cauca River, MR: Magdalena River, TA: Timbiqui Arc.

In the Northern Andes, the Late Cretaceous collision between the Caribbean and the South American Plates
led to intense deformation, crustal thickening, and topographic growth along the continental margin (Bayona
etal.,2012; Jaramillo et al., 2017; Kennan & Pindell, 2009; Le6n et al., 2021; Pindell & Kennan, 2009; Villagémez
& Spikings, 2013; Zapata et al., 2021). During the Paleocene and early Eocene, subduction of the Caribbean Plate
formed a post-collisional magmatic arc along the South American continental margin (Paleocene—early Eocene
continental magmatic arc, PECMA). The plutonic remnants of this arc are partially preserved and exposed in
the Central Cordillera and Caribbean regions of Colombia, but the volcanic components are either not exposed
nor preserved (Figure la) (Bayona et al., 2010, 2012; Bustamante et al., 2017; Cardona et al., 2011, 2018;
Duque-Trujillo, Orozco-Esquivel et al., 2019; Leal-Mejia et al., 2019; Ordofiez et al., 2001). Based on this limited
record, the subduction of the Caribbean Plate beneath a thick continental crust (Bayona et al., 2012; Bustamante
et al., 2017) and slab break-off at ca. 58 Ma (Leal-Mejia, 2011; Leal-Mejia et al., 2019) have been proposed as
the tectonic scenarios that controlled the post-collisional magmatic evolution. The absence of a more complete
magmatic record, however, hinders the understanding of the evolution of the NW South American margin.

The PECMA was built on top of the basement (Permian-Triassic metamorphic rocks and Cretaceous igneous and
sedimentary rocks) of the Central Cordillera and the Santa Marta Massif, which have had a positive high-relief
since the Late Cretaceous. These high relief regions acted as a sediment source for adjacent basins including
the foreland basins to the East (Bayona et al., 2012, 2021; Horton et al., 2015; Zapata et al., 2021). The middle
Paleocene-early Eocene Bogota Formation is a ca. 1.4 km-thick clastic sequence located in the axial zone of the
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Eastern Cordillera, around 150 km east of the Central Cordillera (Figure 1a). Triassic, Jurassic, Cretaceous, and
Paleocene-early Eocene populations of detrital zircons suggest that the basement of the Central Cordillera (base-
ment of the PECMA) and the PECMA were the dominant source areas for the sediments of the Bogota Formation
(Bayona et al., 2010, 2012, 2021). Given that maximum depositional ages (MDA) of sandstones of the Bogota
Formation and Paleocene—early Eocene populations of detrital zircons become progressively younger toward the
top of the sequence, it is likely that vulcanism of the PECMA was nearly coeval with sedimentation in this basin
(Alberts et al., 2021; Gonzalez et al., 2018; Rodriguez-Alonso et al., 2004). We used LA-ICP-MS and CA-ID-
TIMS detrital zircon geochronological and geochemical constraints from the Bogota Formation to improve our
understanding of the PECMA. The integration of this detrital record with data from exposed plutonic rocks
(Bustamante et al., 2017; Cardona et al., 2011, 2018; Duque-Trujillo, Orozco-Esquivel et al., 2019; Leal-Mejia
et al., 2019) provides further insight into the dynamics of convergent margin tectonic settings, especially after the
transition from collision to subduction (Brown & Ryan, 2011; Draut & Clift, 2001).

2. Cretaceous to Eocene Tectonic Evolution of the Northern Colombian Andes
(6-12°N)

The basement of the Western Cordillera of Colombia is a remnant of the allochthonous Caribbean Plate—a
thick oceanic plateau and intraoceanic arc accreted to the continental margin during the Late Cretaceous (ca.
72 Ma) (George et al., 2021; Jaramillo et al., 2017; Kennan & Pindell, 2009; Kerr et al., 1997; Pardo-Trujillo
et al., 2020; Pindell & Kennan, 2009; Restrepo & Toussaint, 1988; Villagémez & Spikings, 2013). Various
sources of evidence—thermo-kinematic models, stratigraphy, and crustal thickness estimates based on whole-rock
geochemistry—suggest that the collision of this plate caused the deformation, uplift, and exhumation of the
pre-Cretaceous basement that is currently exposed in the Central Cordillera (Bustamante et al., 2017; Ledn
et al., 2021; Zapata et al., 2021; Zapata-Villada et al., 2021).

The onset of subduction after the collision was responsible for the development of PECMA. U-Pb zircon ages
from exposed plutons show that magmatism started at ca. 62 Ma and ceased at ca. 50 Ma. The age of this plutonic
record has been interpreted as evidence of a hiatus between the collision (ca. 72 Ma) and the onset of subduction
(Bayona et al., 2012; Bustamante et al., 2017; Cardona et al., 2018; Duque-Trujillo, Bustamante, et al., 2019;
Leal-Mejia et al., 2019). Magmatism has also been interpreted as a product of asthenospheric upwelling driven by
a post-collisional slab break-off (Leal-Mejia, 2011; Leal-Mejia et al., 2019), yet this interpretation assumes that
the collision of the Caribbean Plate and the NW South American continental margin occurred during the Eocene.
An Eocene collision does not agree with time constraints based on the intrusion of undeformed plutonic rocks
that show evidence of an earlier, Late Cretaceous collision (Bustamante et al., 2017; Duque-Trujillo, Bustamante,
et al., 2019; Jaramillo et al., 2017; Villagémez & Spikings, 2013; Zapata-Villada et al., 2021). During the Oligo-
cene, the northern segment of the PECMA was fragmented and became displaced, resulting in the formation of
the Santa Marta Massif and Guajira ranges (Kennan & Pindell, 2009; Montes et al., 2010, 2019; Parra et al., 2020;
Pindell & Kennan, 2009; Weber et al., 2010).

This Late Cretaceous-Paleocene collisional orogenic phase resulted in the development of high topography
that became the source area of adjacent syn-orogenic basins to the east (Bayona et al., 2021; Le6n et al., 2021;
Pardo-Trujillo et al., 2020; Zapata et al., 2021). The syn-orogenic middle Paleocene-early Eocene continen-
tal succession of the Bogota Formation (61-50 Ma) corresponds to a fluvial system that accumulated under
high subsidence rates in a basin adjacent to the PECMA (Figure 1a) (Bayona et al., 2012, 2021). Fluvial sedi-
ments were mainly sourced from the paleo-Central Cordillera and the PECMA in addition to several intrabasinal
uplifts (Montes et al., 2012) and smaller volcanic sources within the basin (Bayona et al., 2012, 2021; Caballero
et al., 2020).

In addition to the PECMA, two other Paleocene-Eocene magmatic arcs are currently exposed in the Northern
Andes (Figure 1a). These comprise (a) the Timbiqui continental volcanic arc (~55-35 Ma) that intruded the
oceanic basement of the Western Cordillera south of 3°N (Barbosa-Espitia et al., 2019; Cardona et al., 2018), and
(b) the allochthonous oceanic Panama-Choc6 arc exposed along the western flank of the Western Cordillera and
the Pacific coast north of 4°N (Barbosa-Espitia et al., 2019; Ledn et al., 2018; Montes et al., 2015; Villagémez
et al., 2011; Zapata-Garcia & Rodriguez-Garcia, 2020). These arcs are, however, unlikely sources of sediments
for the Bogota Formation given that the Timbiqui arc is significantly younger, and the Panama arc formed in a
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®g © distal position, SW of the continental margin, and collided with the continen-
tal margin in the Middle Miocene (Le6n et al., 2018; Montes et al., 2015).

-0 3. Previous Paleocene-Eocene Whole-Rock and Zircon

o Geochemical and Isotopic Data

The magmatic record of the PECMA in the Colombian Andes is restricted
to plutonic rocks exposed in the Central Cordillera and Santa Marta Massif.
These rocks have been interpreted as part of an active magmatic arc char-
acterized by U-Pb zircon ages between 62 and 50 Ma with calc-alkaline
‘ = 10.4 Py and adakite-like geochemical signatures (Bustamante et al., 2017; Cardona
et al., 2011, 2018; Leal-Mejia et al., 2019) (Bayona et al., 2012; Bustamante

etal.,2017; Cardonaetal.,2018; Duque-Trujillo, Orozco-Esquivel etal.,2019;

*7 =e & Leal-Mejia et al., 2019). Currently, evidence of PECMA magmatism earlier
09 -0.1 0.2 than 60 Ma is restricted to small plutons in the Santa Marta Region (Cardona
-5 0 © W_ZS et al., 2011; Duque-Trujillo, Orozco-Esquivel et al., 2019) and antecrysts in
104 L eHf younger, Late Paleocene plutons (Bustamante et al., 2017). These antecrysts
~154 " o : : : have eHf;, values between +1.5 and +5.9 (Figure 2a), which are charac-
50-55 Ma 55-62 Ma 62-66 Ma teristic of zircons formed in magmas that derived from the mantle (lizuka

Figure 2. Compiled whole-rock analyses from the Paleocene-early Eocene

Age (Ma)

et al., 2017) and were modified by assimilation of an older continental crust
(Bustamante et al., 2017; Cardona et al., 2018).

continental magmatic arc (PECMA) plutonic rocks (Bustamante et al., 2017; Plutons between 62 and 50 Ma show whole rock (La/Yb)n ratios between

Cardona et al., 2011, 2018; Leal-Mejia et al., 2019; Ordoiiez et al., 2001;
Rueda-Gutiérrez, 2019). (a) Age (Ma) versus Zircon ¢Hf values from plutonic
(green circles) and detrital zircons (yellow circles). (b) Age (Ma) versus La/Yb
normalized to the chondrite composition (McDonough & Sun, 1995). (c) Age

3.3 and 19.7 (Figure 2b) that suggest crustal thickness values between 39
and 59 km (Bustamante et al., 2017; Ledn et al., 2021). These also show
whole-rock eNd; values between —3 and +4 while eHf; values range

(Ma) versus eNd whole-rock geochemical data obtained from in situ plutons, between —4.2 and +6.9 (Figures 2a and 2c¢) that indicate both mantle and crus-
the boxplots show the error bars, and thick lines correspond to the mean values  tal inputs (Bustamante et al., 2017; Cardona et al., 2011, 2018; Leal-Mejia

after removing outliers (red borders).

et al., 2019; Ordofiez et al., 2001).

Zircons with ages between 66 and 62 Ma have eHf; values between —4.0
and —2.0 in addition to a single grain with an eHf ;) of +6.6; those with ages

between 62 and 50 Ma have a higher variation in eHf;, values and range between —14.4 and +8.1 (Figure 2a)

@
(Bustamante et al., 2017). These isotopic data also suggest different amounts of mantle and crustal contributions

throughout the magmatic evolution of the PECMA.

4. Methods
4.1. Field Observations and Sampling Strategy

Eight samples of fluvial sandstones and a reworked volcanic tuff were collected from two stratigraphic sections of
the Bogot4 Formation. These are separated less than 3 km apart and crop out in the Parque Industrial Mochuelo,
Bogota Colombia (Figure 1b). The sections comprise thick, mottled mudstone beds with paleosol development
(argillisols and oxisols) (Mordn et al., 2013), interbedded fine-grained to conglomeratic fluvial sandstones,
volcaniclastic sandstones, and a reworked volcanic tuff. Figure 4 shows the relative stratigraphic position of the
analyzed samples. All samples were collected as part of previous stratigraphic and paleontological studies carried
out in an area with abundant leaf beds and vertebrates that record the Paleocene-early Eocene global warming
events (e.g., Bayona et al., 2012; Jaramillo & Cérdenas, 2013; Moron et al., 2013). In this location, the Bogota
Formation is interpreted as a middle Paleocene-early Eocene meandering to a braided fluvial depositional system
sourced from the west (Bayona et al., 2010, 2021). This unit is conformably overlying the middle Paleocene
sandstones of the Cacho Formation, and it is unconformably overlain by middle to upper Eocene fluvial conglom-
eratic sandstones of the Regadera Formation (Bayona et al., 2010). Both the Cacho and Regadera formations lack
evidence of syn-sedimentary magmatism.

4.2. Zircon U-Pb Geochronology

Zircon U-Pb geochronology and geochemistry have been widely used to reconstruct the evolution of magmatic
rocks (Schaltegger et al., 2015). Given that sedimentary transport and diagenesis do not significantly modify
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Figure 3. (a) Summary of the cluster analysis created using Euclidean distance and coniss agglomeration method on the
geochemical composition of 126 Paleogene detrital zircons. Two main clusters are shown and detailed in (b, c) (b) Detail
of Cluster 1, grouping older zircons (66.0 to 62.0 Ma). (c) Detail of Cluster 2, grouping younger zircons (62.0 to 50.9 Ma).
(d) Distribution of p-values from Mann-Whitney and Levene tests used for comparing the mean values and variance of 10
geochemical parameters between older and younger zircons (Cluster 1 and 2, respectively). CT: Crustal thickness estimates
based on Eu anomaly; T (°C): Magma temperature estimated from Ti values.
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zircon geochemical composition, detrital grains can be used to constrain the ages and the composition of the
magmatic sources (Gehrels, 2014; Horton et al., 2015).

Zircon U-Pb dating was obtained by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
(LA-ICP-MS) and Chemical Abrasion-Isotope Dilution-Thermal Ionization Mass Spectrometry (CA-ID-
TIMS) in the isotope geology laboratory at Boise State University, Boise, Idaho, USA. Detailed analytical
procedures for each technique are presented in Text S1 and Text S2 in Supporting Information S1 (Condon
et al., 2015; Gerstenberger & Haase, 1997; Hiess et al., 2012; Jaffey et al., 1971; Kennedy et al., 2014;
Krogh, 1973; Ludwing, 2003; Schmitz & Schoene, 2007; Slama et al., 2008). LA-ICP-MS is often used
to obtain large amounts of single-grain zircon dates with errors <5% (Gehrels et al., 2008; Schaltegger
et al., 2015). In CA-ID-TIMS damaged regions within zircon crystals that may have lead loss are removed,
resulting in highly accurate and precise dates (errors <0.1%) (Black et al., 2004; Crowley et al., 2007,
Mattinson, 2005). Combining these two techniques is the most adequate method to identify detrital age
populations and to obtain dates that can resolve high-resolution stratigraphic or magmatic problems (Cilliers
et al., 2021; Herriott et al., 2019).

Zircons separated from the nine samples from the Bogotd Formation were analyzed with LA-ICP-MS to obtain
U-Pb dates and trace element concentrations (Table S1, https://doi.org/10.6084/m9.figshare.19131857). Only
sharply faceted, euhedral crystals were analyzed with the aim to increase the chances of collecting data from the
young volcanic grains and avoid older crystals that could have undergone multiple sedimentation cycles (Creta-
ceous to Precambrian). This procedure may have created a bias in the zircon populations; however, this contri-
bution focuses on the magmatic evolution of the Paleocene-Eocene magmatic arc and does not intend to answer
a question of provenance. Various provenance analyses have already been previously carried out in the Bogota
Formation (Bayona et al., 2010, 2012, 2021).

The zircons that yielded the youngest LA-ICP-MS dates were further dated using CA-ID-TIMS. Twenty-nine
zircon grains from three clastic samples (860046-2, D1190, and D1650) and one from a reworked tuff sample
(D928) were analyzed using CA-ID-TIMS (Tables 1 and S2, https://doi.org/10.6084/m9.figshare.19131857).
Sample locations are presented in Table 1 and Figure 1b. Figures 4 and S2 in Supporting Information S1 show
the Kernel density estimates (KDEs), concordance plots, and MDA estimated using the radial plot method
(Vermeesch, 2021). Each sample was plotted using Isoplot R (Vermeesch, 2018). We discuss and interpret zircon
data from 128 grains (seven samples) with dates between 66 and 50 Ma. We only considered zircon grains that
had ages with 20 errors lower than 4 Ma.

4.3. Zircon Geochemistry and Estimates of Crustal Thickness

The relative concentration of trace elements in zircons is controlled by multiple magmatic processes. For instance,
Hf, Th, and U can be directly associated with specific magma compositions and are therefore indicative of magma
compositional differentiation and crustal assimilation (Claiborne et al., 2006; Kirkland et al., 2015). Yb and Y
can be preferentially trapped in minerals crystallized at high pressures, which allows inferring crystallization
depths (Barth et al., 2013), and Ti content is dependent upon magma temperatures (Ferry & Watson, 2007).

The crustal thickness was estimated following Tang et al. (2021). This approach is based on the Eu anomaly (Eu/
Eu* ratio), which is sensitive to fractionation under varying pressure (Tang et al., 2021). Under high pressures,
the preferential incorporation of Fe*? into garnet enhances the oxidation of multivalent trace elements such as Eu
(Tang et al., 2018, 2019). The oxidation of Eu increases the availability of Eu*? concerning Eu*? and facilitates
the incorporation of Eu in the zircon lattice. As a consequence, zircons crystallized under high pressure and
crustal thickness exhibit lower Eu anomalies evidenced in higher Eu/Eu* ratios. Conversely, shallow magma
fractionation will result in higher Eu anomalies and low Eu/Eu* ratios (Tang et al., 2021). Crustal thickness
values derived from zircon geochemistry are nonetheless approximations and need to be interpreted carefully,
as Eu/Eu* ratios may be affected by different magmatic processes such as assimilation of mature basements,
co-crystallization of plagioclase, and zircon at shallow depths, and variations in the redox state of the melts
(Holder et al., 2020; Tang et al., 2021).

We used cathodoluminescence and reflected images to avoid ablating close to zircon inclusions. Additionally, the
geochemical signatures of zircons with Th/U > 0.1, P > 500, and Lan > 30 were discarded to prevent potential
contamination induced by inclusions (apatite, monazite, rutile, etc.), metamictization, and metamorphism.
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Figure 4. Generalized stratigraphic section of the Bogota Formation
(modified from Bayona et al., 2012). Blue stars denote the samples with zircon
geochronological and geochemical data and the rectangles are samples without
zircon REE data, compiled from Bayona et al. (2012). KDE distributions

are presented for each sample showing only the Paleocene-Eocene
geochronological data. The red number corresponds to the younger CA-ID-
TIMS age while the black number indicates maximum depositional ages
calculated with the unmixed radial plot method (Vermeesch, 2021).

5.1. LA-ICP-MS and CA-ID-TIMS Geochronology

We analyzed 489 zircons that measure 60-390 pm long and have a length:
width aspect ratios of 2:1-4:1 (Figure 5a). Under cathodoluminescence, the
predominant zircon population exhibits oscillatory zoning (Figure 5a) char-
acteristic of magmatic growth (Corfu et al., 2003). Some of these zircons
show sector zoning which may be related to rapid changes in the growth
conditions (e.g., temperature and growth rates) during crystal formation
(B. A. Paterson & Stephens, 1992). Zircons with homogeneous cores and
complex rims were interpreted as older xenocrysts with younger overgrowth
(Miller et al., 2003).

LA-ICP-MS dates included Triassic (~238 Ma; n = 26), Jurassic (~160 Ma; n = 58), Late Cretaceous (~84 Ma,
n = 197), and Paleocene (~59 Ma; n = 156) populations (Figure 5b), which despite the bias induced by the
selection of sharply faceted grains are similar to the zircon age distributions presented in previous provenance
studies (Bayona et al., 2012; Bustamante et al., 2017). Paleocene to early Eocene zircons range between 66.0 and

50.9 Ma and have a large population with dates ca. 57.7 Ma and a secondary population with dates ca. 62.8 Ma
(Figure 5b).

Detrital zircon populations of Paleocene—Eocene age become progressively younger toward the top of the

Bogota Formation, suggesting that volcanism was contemporary with sediment deposition (Figure 4) (Alberts
et al., 2021; Gonzélez et al., 2018). The basal segment of the Bogotd Formation is characterized by zircon
dates between 65.3 and 59.5 Ma (18 zircons) with MDA between 62.5 and 61.6 Ma (Figure 4). Samples from
the upper stratigraphic segment show zircon dates between 66.0 and 50.9 Ma with MDA between 61.2 and
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Table 1

55.1 Ma. Zircon grains with dates between 55.0 and 50.9 Ma are restricted to

Location and Maximum Depositional Ages Obtained From LA-ICP-MS and a few zircons at the top of the stratigraphic section (Figure 4), suggesting an

CA-ID-TIMS From the Nine Samples Analyzed

early Eocene age for the uppermost beds of the Bogota Formation (Bayona

et al., 2012, 2021). The dates of detrital zircons from the Bogota Formation

Maximum Youngest
depositional CA-TIMS obtained using LA-ICP-MS are overall older than the LA-ICP-MS dates from
Sample Lat Long LA-ICP-MS age age PECMA plutonic rocks (¢-value = —16.526, degrees of freedom = 567.67,
860016—1 4.53454 —74.13919 61.6+1.6 p-Value < 2.2e—16) (Bustamante et al., 2017; Cardona et al., 2011, 2018;
860043—1 453367 —74.13951 62.5+ 13 Leal-Mejia et al., 2019; Ordofiez et al., 2001; Rueda-Gutiérrez, 2019).
Whereas detrital grains have a mean age of 59.4 Ma, plutonic zircons have a
860043-2 4.53357  —74.13910 (PRESS mean age of 55.7 Ma (Figure 6a). Therefore, our data represent older stages
HEDIabSL ASHIRE TeAlE Ll of the magmatic evolution that are not preserved in the plutonic record of the
8600462  4.53173 —74.14040 56.6+ 0.4 59.07+0.02  cordillera.
R 453700 —74.16300 S0l =0 60.68 +0.04 Detrital zircon grains (68 per sample) analyzed under CA-ID-TIMS yielded
D937 4.53700 —74.16300 61.2 + 0.3%* MDA between 55.53 + 0.04 Ma and 60.68 + 0.04 Ma (Table 1). Overall,
D1190 4.53700 —74.16300 57.8 + 0.5%* 58.72 + 0.04 dates obtained using CA-ID-TIMS are 0.4-3.6 Ma older than those obtained
D1650 453700 —74.16300 55.1 + 0.4% 5553 +0.04  using LA-ICP-MS. These discrepancies may be related to lead loss or radi-

ation damage which are not detected by LA-ICP-MS (Herriott et al., 2019).

5.2. Trace Element Composition of Detrital Zircons From the Bogota Formation

A cluster analysis based on the age and geochemical composition of 128 Paleocene-early Eocene detrital zircon
grains is shown in Figures 3a—3c. The silhouette width criterion recognizes two distinct clusters (Figure S3 in
Supporting Information S1) that group zircons between 66.0 and 62.0 Ma (n = 18) and those between 62 and
50 Ma (n = 110). These results suggest changes in magma composition and crystallization conditions over time
(before and after 62.0 Ma). Trace elements in older zircon grains (66.0-62.1 Ma) are less variable than in younger
grains (62-55 Ma) (Figures 6 and 7). Even though a larger number of younger zircon grains can account for a
higher heterogeneity, U, Hf, U/Yb, and crustal thickness values show statistically distinctive trends before and
after 62 Ma despite differences in the numbers of zircons (see Section 4.4 and Figure 3d).

The content of U across the 128 Paleocene-early Eocene detrital zircons analyzed ranges between 60 and 2,200 ppm,

and Th/U ratios range between 0.1 and 1.4. U content (mean values and variance) differs significantly between

b ~84 ~58.3
~59

o4
[
~160,20 55 60 65
rooum ~238 Age (Ma)
L n=479
e [ 1T T T III' [T I' | | ' LI .
0 100 200 300 400 500

Age (Ma)

Figure 5. (a) Cathodoluminescence of representative Paleocene-Eocene detrital zircons. Blue circles indicate grains with
CA-ID-TIMS ages and geochemical data obtained using LA-ICP MS. Green circles indicate grains with age and geochemical
data obtained using LA-ICP-MS. Circles are 25 pm wide and indicate the position of the LA-ICP-MS laser spot. (b) Age
distribution (blue) and kernel density estimation (yellow) of 479 detrital zircons. The inset contains age distribution for

156 zircons dated between 66 and 50 Ma. The black bars on the x-axis of KDE represent individual ages. Sample data are
presented in Table S1, https://doi.org/10.6084/m9.figshare.19131857.
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Figure 6. (a) Normalized probability density plot (PDP) of Paleocene-early Eocene continental magmatic arc (PECMA)
zircon dates from the Central Cordillera (green shadow) (Bayona et al., 2012; Bustamante et al., 2017; Cardona
etal., 2011, 2018; Duque-Trujillo et al., 2019; Rueda-Gutiérrez, 2019) and detrital zircon dates from the Bogot4d Formation
(yellow shadow) (Bayona et al., 2012; this work). (b) Age (Ma) versus U (ppm). (c) Age (Ma) versus Th/U. (d) Age (Ma)
versus Ti (ppm) and the inferred saturation temperatures (Ferry & Watson, 2007). (e) Age (Ma) versus Hf (ppm). (f) Age
(Ma) versus Zr/Hf. The dashed red box indicates the time interval between 62 and 55 Ma. Annotations are from Belousova
et al. (2002); Claiborne et al. (2006, 2010); Kirkland et al. (2015); McKay et al. (2018); Yang et al. (2012).
the younger and older detrital zircon populations (LVQ1 = 0.03 and MWQ1 = 0.01; Figure 3d and Table S3,
http://doi.org/10.6084/m9.figshare.19131857) even though no significant differences in Th/U ratios are observed
(LVQ1 =0.21 and MWQI = 0.05; Figure 3d; Table S3, http://doi.org/10.6084/m9.figshare.19131857). Ti values
range between 1.7 and 33.2 ppm and do not show significant differences across both age groups (LVQI = 0.21
and MWQ1 = 0.25; Figure 3d). These Ti values correspond to zircon saturation temperatures between 937°C
and 641°C. Hf content varies between 6,000 and 18,000 ppm and Zr/Hf ratios range between 17 and 71.7. Hf
content in younger zircons differs from that in older zircons (MWQ1 = 0.04 and LVQ1 = 0.34), whereas Zr/Hf
JARAMILLO ET AL. 9 of 19
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Figure 7. Whole-rock and detrital zircon geochemistry in relation to zircon age. (a) Age (Ma) versus U/Yb ratios. (b) Age
(Ma) versus Er/Yb ratios. (c) Age (Ma) versus Yb/Gd ratios. (d) Age (Ma) versus Whole-rock geochemistry (La/YD). (e)
Age (Ma) versus Whole-rock Nd radiogenic isotope signatures. (f) Age (Ma) versus Hafnium isotopic signature in zircons
from the Paleocene-early Eocene continental magmatic arc (PECMA) and detrital zircons from Bogota Formation. Whole
rock geochemical and isotopic data are from (Bustamante et al., 2017; Cardona et al., 2011; Duque-Trujillo et al., 2019;
Leal-Mejia, 2011; Villagémez et al., 2011). Annotations are from Barth et al. (2013); Grimes et al. (2015); Profeta

et al. (2015); and Sundell et al. (2021).

ratios show no significant differences in mean values or variance (LVQ1 = 0.08 and MWQ1 = 0.17; Figure 3d).
U/YD ratios vary between 0.1 and 5.3 and show differences in mean values and variances measured in younger
and older zircons (LVQ1 = 0.02 and MWQ1 = 0.00; Figure 3d). Zircons older than 62 Ma have low U/Yb
ratios (0.2-1.0), whereas the ratios measured in grains younger than 62 Ma are more widespread and range up
to 5 (Figure 7a). Er/Yb ratios range between 0.2 and 0.9 with the highest values observed among the younger
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Figure 8. (a) Crustal thickness (km) versus Temperature (°C) with marginal histograms showing the bimodal behavior

of the data. (b, c) Magmatic history of NW South America during the 75-50 Ma interval. (b) Age (Ma) versus Crustal
thickness calculated using the methods presented by Tang et al. (2021), (c) Age versus Zircon Ti saturation temperature.
Complete legend is presented in Figure 6. The magmatic lull between 72 and 66 Ma, the Caribbean Plate collision, and the
pre-collisional magmatism are indicated with black arrows. Gray squares correspond to changes in temperatures and crustal
thickness from published whole-rock geochemical data (Bustamante et al., 2017; Cardona et al., 2011; Duque-Trujillo
etal., 2019; Leal-Mejia et al., 2019; Rueda-Gutiérrez, 2019).

grains (62 to 50 Ma), even though no significant differences between groups were found (MWQI1 = 0.14 and
LVQ1 = 0.06; Figure 3d). Yb/Gd ratios range between 1.3 and 60 and show no differences in younger and older
zircons (MWQ1 =0.17 and LVQ1 = 0.19; Figure 3d). Estimates of crustal thickness based on Eu anomalies (Eu/
Eu*) fall between 30.2 and 96 km. These estimates show a bimodal distribution with mean values of 41 + 6 and
73 + 9 km (Figures 8a and 8b). The smaller values of crustal thickness are only retrieved from younger zircons
(62 to 50 Ma), and therefore the variance of estimated crustal thickness differs significantly between younger and
older zircons (LVQ1 = 0.02). No significant difference was observed for mean values of the crustal thickness
MWQ1 =0.14).

The composition of trace elements in detrital zircons dating between 95 and 73 Ma (n = 196) differs from that of
PECMA-derived zircons. Cretaceous zircons are characterized by lower U content (<1,000 ppm) and U/YDb ratios
(<1), a narrow range of Zr/Hf ratios (15-30), and smaller crustal thickness values (mean of 44.6 + 8.1 km) when
compared with the Paleogene zircons (Detailed results are presented in Figure S4 in Supporting Information S1).

6. Discussion

The deformation and exhumation phases that characterized the Late Cretaceous to Cenozoic tectonic evolution
of the Northern Andes eroded the volcanic cover and shallow plutonic rocks on top of the PECMA (Bayona
et al., 2010, 2012; Pardo-Trujillo et al., 2020; Villagébmez & Spikings, 2013). The poor preservation of the
magmatic record presents a major limitation for understanding the processes that controlled the evolution of this
magmatic arc. As a means to overcome these limitations, we analyzed detrital zircons deposited in a synorogenic
basin adjacent to the PECMA and preserved in Bogota Formation.

We interpret the Paleocene-early Eocene detrital zircon populations recovered from sandstones of the Bogota
Formation to be part of the eroded volcanic and plutonic cover of the PECMA. Previous provenance and strati-
graphic analyses of the Bogotd Formation indicate that this sequence formed in a mature fluvial system that
drained the paleo-Central Cordillera. This depositional system may have also had a large source area that facil-
itated sediment mixing (Bayona et al., 2010, 2021; Bustamante et al., 2017). Our results show that samples
collected in different stratigraphic positions have progressively younger zircon populations toward the top of
the Bogota Formation, consistent with a scenario in which volcanism is coeval with sedimentation. Despite the
induced bias in our analytical strategy (see Section 4.2), samples from similar stratigraphic positions exhibit simi-
lar and reproducible zircon age distributions, suggesting a homogenized detrital record of the Paleocene-Eocene
magmatism (e.g., samples 860046-1 and 860046-2). This detrital record is older than zircons retrieved from in
situ plutonic rocks (Figure 6a) and therefore complements the plutonic record by providing a geochemical finger-
print of the volcanic and plutonic rocks formed during earlier magmatic phases of the PECMA.
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6.1. Early Onset of Magmatism Indicates a Short Post-Collisional Magmatic Lull

The plutonic remnants of the PECMA include 62 to 60 Ma plutons and extensive plutonism between 55 and
50 Ma (Figure 1a). In the absence of evidence of earlier magmatism, this fragmentary plutonic record has been
interpreted as the result of a magmatic hiatus between 72 and 62 Ma caused by the collision of the Carib-
bean Plateau (Bayona et al., 2012; Bustamante et al., 2017; Duque-Trujillo, Bustamante, et al., 2019; Jaramillo
et al., 2017; Zapata-Villada et al., 2021).

The detrital zircons retrieved from the Bogotd Formation exhibit a longer and more robust record of arc magma-
tism that spans between 66.0 and 50.9 Ma. The age of this record suggests that following the accretion of the
Caribbean Plate at ca. 72 Ma, subduction and magmatism restarted at least by 66 Ma, instead of 62 Ma, as
previously interpreted (Bayona et al., 2012; Bustamante et al., 2017; Duque-Trujillo, Bustamante, et al., 2019;
Jaramillo et al., 2017; Zapata-Villada et al., 2021). Detrital zircons with ages between 66.0 and 64.0 Ma repre-
sent the ~8% of the Paleocene-Eocene detrital zircon population found in the Bogota Formation and indicate
an earlier onset of post-collisional magmatism. Zircon antecrysts of similar Late Cretaceous-Paleocene age (ca.
66 Ma) have been documented from in situ plutonic rocks of the PECMA, further supporting magmatism that
pre-dates 62 Ma. Our finding implies that the magmatic hiatus was shorter (<6 Ma) than previously proposed
(Duque-Trujillo, Bustamante, et al., 2019; Leal-Mejia et al., 2019) and that magmatism was nearly continuous in
the transition from a collisional to a subduction setting.

6.2. Geochemistry and Isotopes Reflect Changes in Magma Composition/Magmatic Evolutionary Trends

A clustering analysis based on zircon trace element composition identifies two distinct clusters (Figure 3a): an
older cluster that groups 66.0 to 62.0 Ma zircons (Figure 3b), and a younger cluster that includes zircons with
ages between 62.0 and 50.9 Ma (Figure 3c). These results show that zircon geochemistry changed significantly
after 62.0 Ma and suggest varying conditions in the magmatic processes that controlled the zircon crystallization
through time.

6.2.1. Early Stages of Post-Collisional Magmatic Arc Evolution (66.0 to 62.0 Ma)

The 66.0 to 62.0 Ma detrital zircon geochemistry represents the early stages of the arc that followed the Late
Cretaceous collision of the Caribbean Plate with the continental margin. This record shows a scenario of limited
subduction and magmas that emplaced and differentiated in a thick continental crust (>55 km) that formed during
the collision, similar scenarios have been previously suggested (George et al., 2021 and references therein; Leon
et al., 2021).

Whole-rock geochemistry of Cretaceous magmatic rocks (100 to 80 Ma) supports the existence of a thin to
medium (20-55 km) crust before the collision of the Caribbean Plate with the continental margin (Bustamante
et al., 2017; Jaramillo et al., 2017; Le6n et al., 2021). Detrital zircons of Cretaceous age (101.9 to 66.2 Ma)
retrieved from the Bogot4d Formation agree with this scenario: their low Eu anomalies (Eu/Eu*) are consistent
with a medium crust and provide thickness estimates of 44 + 8 km (Figure S4 in Supporting Information S1.
See Section 4). Paleocene detrital zircons from the same sedimentary unit, however, present higher Eu anomalies
(Table S1, http://doi.org/10.6084/m9.figshare.19131857), that reflect a thick crust by the early Paleocene and
provide crustal thickness estimates between 55 and 80 km (mean value of 72 + 7.3 km; Figures 6-8). Independ-
ent evidence from whole-rock geochemistry of a 65.0 Ma pluton exposed in the Santa Marta Massif reported by
Cardona et al. (2011) and Duque-Trujillo et al. (2019) supports this observation. The (La/Yb)n ratio of this pluton
provides estimates of a crustal thickness of ca. 50 km (Cardona et al., 2011; Duque-Trujillo, Orozco-Esquivel
et al., 2019), and further indicates that the continental crust thickened during the Late Cretaceous. Both the detri-
tal and plutonic record support that a thick crust (>50 km) was in place during the early stages of the PECMA.

The geochemistry of the 66.0 to 62.0 Ma detrital zircon population is suggestive of limited subduction in the early
development of the PECMA. The relatively low U content and low U/Yb ratios (Figure 6) are consistent with
zircon-forming magmas that are derived from a depleted mantle with a limited presence of fluids. This compo-
sition is expected under limited subduction (Barth et al., 2013; Grimes et al., 2015). Even though the 66.0 to
62.0 Ma detrital zircon record overall coincides with a coeval plutonic record, contrasting values of eHf;)
tially highlight differences in magmatic sources. Whereas detrital zircons have negative eHf; values (—4 to —2)

poten-

(Figure 7f), zircon antecrysts with ages between 66 and 62 Ma found in 55-50 Ma plutonic rocks show positive
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eHf ;) values (1.5-5.9) (Bustamante et al., 2017; Cardona et al., 2011). This dissimilarity suggests that between 66

and 62 Ma, magmatic sources were a mixture of juvenile magmas and an old continental crust.
6.2.2. A Continental Margin Dominated by Diverse Magmatic Evolutionary Trends (62 to 50 Ma)

Even though dates from LA-ICP-MS may be inadequate to identify distinct trends in zircon age composition
within short time intervals (<10 Ma), the combination of LA-ICP-MS dates and geochemical data with more
precise CA-ID-TIMS dates allowed us to identify different compositional pools in zircons with ages between
66.0 and 50.9 Ma. These Younger zircons are characterized by a wider range and differences in mean values of
U, U/Yb, Ti, Hf, and crustal thickness when compared to older—66.0 to 62.0 Ma—zircons (Figures 6-8). A wider
range in these values suggests the occurrence of both low and highly differentiated and fractionated magmas
(Belousova et al., 2002) after 62 Ma. Since Zr/Hf ratios and U values do not exhibit a systematic enrichment and
an associated Ti reduction, these variations cannot be explained by the fractionation of a single magma (Grimes
et al., 2009; Wang et al., 2010).

The significant increase of the U values and U/YDb ratios after 62 Ma may be indicative of a major input of
subducted sediments (Grimes et al., 2015). Ti contents indicate crystallization temperatures between 679°C and
937°C, which also suggests the presence of hot and cold granitic magmas (Miller et al., 2003) (Figures 5d and 7a).
Estimates of crustal thickness further indicate that zircons crystallized in both a normal (41 + 6 km) and a thick
(73 + 9 km) continental crust (Figures 8a and 8b). We interpret that the compositional heterogeneity observed
between 62.0 and 50.9 Ma is the result of at least two distinct and unrelated magmatic suites that formed under
contrasting crustal architectures.

The in-situ plutonic rocks that crystallized between 62 and 50 Ma have geochemical signatures that coincide with
those of detrital zircons from the Bogota Formation (Bustamante et al., 2017; Cardona et al., 2011; Duque-Trujillo,
Orozco-Esquivel et al., 2019; Leal-Mejia et al., 2019). Crystallization temperatures calculated from whole-rock
geochemistry coincide with the bimodal temperatures inferred from Ti content in detrital zircons (whole-rock
geochemistry from Cardona et al., 2011; Leal-Mejia et al., 2019) (Figure 8a). Additionally, whole-rock isotopic
data also reveals the presence of low and highly differentiated magma sources (Figures 2 and 7 e.g., Bustamante
et al., 2017) (Figure 8b). Finally, these plutonic rocks have (La/Yb)n ratios between 9 and 16, which are charac-
teristic of magmas crystallized in a thick continental crust (>50 km) (Figure 8a).

6.3. Potential Tectonic Controls for Diverse Magmatic Trends in Accretionary Orogens: The Case of the
PECMA in the Northern Andes

Major collisional events on accretionary orogens promote extensive deformation and crustal thickening along
continental margins (Cawood et al., 2013; van Avendonk et al., 2014). Such changes in the architecture of the
crust can modify the composition of the magmas by providing higher pressures for mineral crystallization and
facilitating crustal assimilation (Chapman et al., 2015; Chiaradia et al., 2009; S. M. Kay et al., 2014; Profeta
etal.,2015). The collision of the Caribbean Plate was one of the major collisional events in the Cretaceous to Ceno-
zoic tectonic evolution history of the Andes and was responsible for the development of high topographic relief
(Bayona et al., 2011, 2012; Kennan & Pindell, 2009; Pardo-Trujillo et al., 2020; Villagémez & Spikings, 2013;
Zapata et al., 2021). Even though estimates of crustal thickness based on geochemical proxies have noticeable
uncertainties (see Section 4.2) and values exceeding 60 km can be abnormally high for Andean-type orogens (S.
M. Kay et al., 1991, 2010), we consider that the collision of the Caribbean Plate is a tectonic scenario consist-
ent with the development of a thick continental crust. Sixty-nine percent of the Paleocene-early Eocene detrital
zircons analyzed provide crustal thickness estimates between 60 and 90 km. Although the precision of these
estimates remains contentious, they agree with a significant (>20 km) crustal thickening during the collision of
the Caribbean Plate previously proposed based on geochemical and isotopic data of Late Cretaceous and Pale-
ocene plutons (George et al., 2021; Jaramillo et al., 2017; Ledn et al., 2021).

Detrital zircon geochemistry indicates that after 62 Ma the PECMA was characterized by an increase in the
input of subducted sediments, bimodal magmatism, and the coexistence of medium and thick continental crust.
The oblique convergence between northwestern South America and the Caribbean Plate margin (Kennan &
Pindell, 2009; Montes et al., 2019; Pindell & Kennan, 2009) may account for the magma heterogeneity observed
between 62 and 50 Ma. Strike-slip tectonics promoted by oblique convergence was likely to result in coeval
transpression and transtension along the continental margin. In this scenario, transtensional settings facilitated
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Figure 9. Schematic model of the potential tectonic process that controlled the evolution of the Paleocene-early Eocene
continental magmatic arc (PECMA) between 62 and 50 Ma. This figure shows how a magmatic arc developed on a previously
thickened continental margin dominated by strike-slip tectonics can be characterized by magmas fractionated at different
depths and hot magmas produced by crustal dripping.

the emplacement of juvenile cold and hot magmas under a thin continental crust (McKay et al., 2018; Miller
et al., 2003) while transpression maintained the thick continental crust inherited from the collision and promoted
high magma differentiation (Figure 9).

Strike-slip tectonics during the Eocene have been previously proposed as a potential driver for the arc shut-off
(Bayona et al., 2012; Bustamante et al., 2017; Montes et al., 2019). Additional evidence for strike-slip controls
has been observed in the dextrally controlled intrusion of several granitoids crystallized between 58 and 50 Ma
(Bustamante et al., 2021; Salazar et al., 2016). Although a significant part of the Paleogene magmatic record
was lost by erosion or may be hidden in the crust below, older Jurassic, and Cretaceous arc plutons found in
the Central Cordillera have field expressions that are volumetrically larger than the ones from the PECMA
(Bustamante et al., 2016; Gémez et al., 2015), and maybe related to lower magmatic productivity between the
Paleocene and the early Eocene. This apparent reduction of the magma volumes can be interpreted as evidence of
oblique convergence (Sheldrake et al., 2020).

Our data can be partly explained by oblique convergence and strike-slip tectonics. During transtension magmas are
formed under a locally thinned continental crust as a consequence of mantle decompression (Kohut et al., 2006;
Waldbaum, 1971) and in this extensional setting, water-rich mantle reservoirs produce cold magmas (<800°C)
while drier reservoirs generate hotter melts (>800°C) (Holtz & Johannes, 1994; Miller et al., 2003).

The occurrence of hot magmas formed under a thick continental crust inferred from our data (Figures 8a and 8b)
is not fully explained by strike-slip tectonics. We suggest that in addition to strike-slip tectonics, lithospheric
sinking may have driven mantle upwelling and melting favoring the generation of hot magmas under thick crustal
domains (R. W. Kay & Kay, 1993). This process can take place at local and regional scales producing delamina-
tion and dripping, respectively, and is associated with the development of a thickened crust that is susceptible to
becoming detached (see reviews in Beall et al., 2017; Ducea et al., 2021).

Orogen-scale changes in crustal thickness (up to 40 km) have been documented in several orogens such as the
Himalayas, the Central Andes, and Baja California, as a result of major collisional events, crust delamination, and
continental extension, respectively (Chen et al., 2020; Priestley et al., 2019; Schmitz et al., 2021). We propose
that the combination of a prior thickened crust, local crustal extension, and lithospheric dripping in a scenario of
strike-slip tectonics may be responsible for the coexistence of normal and thick continental crust between 62 and
50 Ma in the Northern Andes.
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7. Conclusions

1. Detrital zircon age distribution suggests that after the accretion of the Caribbean Plate at 72 Ma, the continen-
tal arc magmatism was reestablished under a thickened (>55 km) mixed oceanic-continental crust at least by
66 Ma, earlier than previously proposed (62 Ma).

2. Geochemical signatures of detrital zircons show the existence of both high- and low-pressure fractionation of
hot and cold mantle-derived magmas.

3. Oblique tectonics is a plausible mechanism to explain the development of a thinned continental crust that
coexisted with a prior thickened crust. Additionally, the presence of zircons crystallized in hot magmas and
formed in a thick continental crust may be the record of mantle upwelling related to local crustal sinking
(dripping) along the continental margin.

4. Strike-slip deformation combined with local crustal sinking (dripping) tectonics is a plausible mechanism
to explain the observed variations in crustal architecture associated with local magmatic differentiation in
contrasting crustal architectures between 62 and 55 Ma.
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