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ABSTRACT
A chiral analog of transient absorption spectroscopy, transient circular dichroism (TCD) spectroscopy is an emerging time-resolved method.
Both spectroscopic methods can probe the electronic transitions of a sample, and TCD is additionally sensitive to the dynamic aspects of
chirality, such as those induced by molecular excitons. Here, we develop a theoretical description of TCD for electronic multi-level mod-
els in which the pump pulse is linearly polarized and probe pulse is alternately left- and right-circularly polarized. We derive effective
response functions analogous to those often used to describe other four-wave mixing methods and then simulate and analyze TCD spec-
tra for three representative multi-level electronic model systems. We elaborate on the presence and detection of the spectral signatures of
electronic coherences.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0119626

I. INTRODUCTION

Transient circular dichroism (TCD) spectroscopy is an emerg-
ing time-resolved spectroscopic technique—analogous to transient
absorption (TA) spectroscopy—that aims to resolve macromolec-
ular structural evolution and the dynamics of molecular exci-
tons, among other processes. Multiple groups have developed fast
and ultrafast TCD spectrometers for performing laboratory mea-
surements of the dynamics of photodissociation of molecular enan-
tiomers,1 photo-initiated molecular ring-opening reactions,2 pep-
tide and protein structural changes,3–6 excited states in molecules,7–9

electronic and structural relaxation of molecular macromolecules
and nanostructures,10–12 energy transfer in photosynthetic pro-
teins,13 exciton states in inorganic halide perovskites,14 and exci-
tons and phonons in polymers.15,16 Interestingly, the analysis and
interpretation of the measured spectra in these studies used either a
phenomenological treatment of the measured signal or no underly-
ing model at all, even though other groups have developed and pre-
sented microscopic, quantum-mechanical theoretical descriptions

of TCD and related time-resolved chiral spectroscopic techniques.
For example, in a 2003 pioneering report, Cho adapted the response-
function formalism to study chiral nonlinear-optical signals and
focused on the case of a circularly polarized pump pulse and linearly
polarized probe.17 Abramavicius and Mukamel used the nonlin-
ear exciton equations method to calculate the second-order and
third-order nonlinear-optical responses of anharmonic oscillators to
model peptides.18,19 More recently, Holdaway et al. used a theoret-
ical doorway–window approach to study exciton-coherence signals
generated in simulations of TCD measurements.20 Very few TCD
studies have analyzed and interpreted measured spectra using an
underlying microscopic theory.21

One possible reason for the separation between theory and
measurement is the lack of simulations based on model systems.
Therefore, here we present a theoretical description of third-
order TCD spectroscopy for the common laboratory conditions
of a linearly polarized pump and circularly polarized probe using
the adapted response-function approach.22 We use the theoreti-
cal method to simulate TCD spectra for a variety of multi-level
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electronic model systems, which are foundational models for spec-
troscopic simulations because electronic states contribute the largest
amounts of energy to many types of samples.22–24 In addition, a
multi-level electronic model is an ideal starting point to describe a
molecular aggregate, where electronic coupling between or among
chromophores leads to delocalized excitation states commonly
known as excitons.25,26 Exemplar samples include natural bio-
logical pigment–protein complexes and synthetic DNA-templated
aggregates.27–29 A steady-state CD spectrum is an incisive probe of
the chirality induced by electronic coupling in these types of molec-
ular aggregate samples, and our theory and simulations reveal the
information contained in TCD spectra can yield insights about the
dynamics induced by these couplings.

Developing a microscopic theoretical description of the TCD
spectra of molecular aggregates is challenging for at least four rea-
sons. First, CD signals do not fall within the ubiquitous electric
dipole approximation; the magnetic dipole and electric quadrupole
interactions must be included.30 These interactions pose a chal-
lenge for nonlinear-optical spectroscopy methods, where the electric
dipole approximation is invoked in nearly all instances.22,31 As a
simplification, we do assume that the intrinsic magnetic dipole and
the intrinsic electric quadrupole of each molecule are zero. The sec-
ond complication is that CD techniques require polarized optical
signals, and therefore the theoretical analysis must track the full
vector representing the optical polarization of each beam. In con-
trast, one can often obtain significant insight into TA spectroscopy
signals even when the vectors are replaced with scalars. Track-
ing the full vectors rather than scalars approximately triples the
number of terms. The third complication is that TCD is a difference-
spectroscopy technique, where signals arise due to incomplete
cancellation between two polarization cases. This approximately
doubles the number of terms required to model a given signal com-
pared to conventional TA spectroscopy. The final complication is
that the signals require a potentially complicated basis transfor-
mation between the molecular sites and the delocalized electronic
states of the aggregate sample. Accomplishing this transformation
correctly required algebraic manipulations using the strict rules
of tensor-sum methodology. In Sec. II, we satisfy these compli-
cations to develop the general expressions by adapting the famil-
iar response-function formalism. The general expressions generate
some physical insights. Then, in Sec. III, we generate further insights
using simulations of representative model multi-level electronic
systems.

II. THEORETICAL RESULTS AND DISCUSSION
In this section, we first derive the source term for the signal

field tracking both the macroscopic polarization and magnetization
fields. We then develop the perturbation theory of the density opera-
tor for the electromagnetic perturbation. Using these results, we then
work out the first-order and third-order responses both generally
and specifically for molecular aggregates.

A. Source term of signal field
The interaction between the electromagnetic field and the sam-

ple requires us to account for the radiation caused by the macro-
scopic magnetization dipole (M) and the symmetric rank-2 tensor

for the macroscopic polarization quadrupole (Q), in addition to the
conventional polarization dipole (P) of the material. (To avoid con-
fusion with multiple meanings of variables i and k, we reserve the
variables {a, b, c} as generic indices of the three spatial coordinates,
{x, y, z}.) When all of these terms are included in Maxwell’s equa-
tions, the wave equation for the ath component of the electric field
becomes32–34

∇
2Ea −

1
c2

∂2Ea

∂t2 =
4π
c2

∂2Pa

∂t2 −
1
3

4π
c2∑

b

∂

∂xb

∂2Qab

∂t2

+
4π
c2∑

b,c
ϵabc

∂

∂xb
(
∂Mc

∂t
), (1)

where c is the speed of light, we have assumed a transverse electric
field (E) with∇ ⋅ E = 0, and the notation x1,2,3 in the partial deriva-
tives indices the set {x, y, z}. We choose to work with the traceless
quadrupole moment,33,34

∑a Qaa = 0. We can write the polarization
dipole and quadrupole and magnetization dipole, respectively, as

P(r, t) = Ps(t) exp(ik′s ⋅ r − iωst), (2a)

Q(r, t) = Q
s
(t) exp(ik′s ⋅ r − iωst), (2b)

M(r, t) =Ms(t) exp(ik′s ⋅ r − iωst), (2c)

where Ps(t), Q
s
(t), and Ms(t) represent the time-dependent enve-

lope functions and where the frequency ωs and wavevector k′s
are determined by sums of plus or minus the frequencies and
wavevectors of the incident fields that created the polarization and
magnetization,

k′s = ∑
n
± kn, (3a)

ωs = ∑
n
± ωn. (3b)

These are the phase-matching relationships that ensure both energy
and momentum are conserved.

The detected signal field takes the form

E(r, t) = E sig(r, t) exp(iks ⋅ r − iωst) + c.c., (4)

where the signal wavevector (ks) is not necessarily equal to the
polarization and magnetization wavevector. We insert these forms of
the polarization, magnetization, and signal fields into the wave equa-
tion, Eq. (1), and then we assume that the propagation is entirely in
the z-direction through a thin, weakly absorbing sample of length
l. Finally, we invoke the slowly varying envelope approximation to
yield

E sig,a(z, t) =
2πωsl

nc

⎛

⎝
iPs,a(t) +

1
3∑b

k′s,bQs,ab(t)

−
i

ωs
∑
b,c

ϵabck
′

s,bMs,c(t)
⎞

⎠
sinc(

Δkl
2
)eiΔkl/2, (5)
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where n is the index of refraction of the signal in the medium and
Δk = ∣k′s − ks∣ is the phase-matching condition. We can then expand
the standard relationship Esig ∝ iP to include the polarization
quadrupole and magnetization dipole,

E sig,a ∝ i
⎛

⎝
Pa −

i
3∑b

kbQab −
1
ω∑b,c

εabckbMc
⎞

⎠
, (6)

where ω and k are the signal frequency and wavevector,
respectively.

CD spectroscopy relies on the subtraction of two intensity-
level measurements, and therefore it is important to clarify that
for heterodyne detection, one interferes the signal field, Esig, with
a relatively intense reference field, Eref. Here, we assume that
the reference and signal fields have the same handedness, such
that

I = ∣E ref + E sig∣
2. (7)

As in conventional TA spectroscopy, we will subtract a control mea-
surement of Iref to cancel the ∣E ref∣

2 term, and we will assume that
∣E sig∣

2 is weak. Using the form of the signal field from Eq. (6), the
measurement becomes

I − I ref ≈ −2 Im{∑
a
(E∗ref, aPa −

i
3∑b

E∗ref, akbQab + B∗ref, aMa)}, (8)

where we have used some vector identities and the relationship
between the electric and magnetic fields in an electromagnetic wave
in the last step.

B. Perturbation theory of density operator
Having identified the contributions to the source term, we must

describe their microscopic origins in the molecular response. To
begin, we assume the total Hamiltonian is partitioned into a time-
independent component, Ĥ0, and an electromagnetic perturbation,
V̂(t), given by

V̂(t) = ∑
a
(−μ̂aEa(t) −

1
3∑b

q̂ab
∂Eb(t)
∂xa

− m̂aBa(t)), (9)

where μ̂, q̂ , and m̂ are the electric dipole, electric quadrupole,
and magnetic dipole operators, respectively, and E and B are
the electric and magnetic fields carried by a laser beam. The
quadrupole operator can take one of several forms; hence, we
chose to define the matrix elements of q̂ for a molecule con-

sisting of N charges with charge q(p) located at positions
r(p) as

q̂ab =
1
2

N

∑
p

q(p)(3r(p)a r(p)b − (r(p))
2
δab). (10)

We assume ρ0 = ρ(−∞) is given by a thermal distribution of
the eigenstates of Ĥ0. For electronic spectroscopy, it is generally
accurate to assume that all molecules are in the ground electronic
states, ρ0 = ρgg . Following convention,22 we expand the density
operator in orders of the perturbation such that

ρ ≡ ρ(0) + ρ(1) + ρ(2) + ⋅ ⋅ ⋅ , (11)

where ρ(n) represents the nth-order contribution. In the interac-
tion picture, we define the density operator and the perturbation,
respectively, as

ρI = Û†
0ρÛ0, (12a)

V̂ I = Û†
0V̂Û0, (12b)

where Û0 is the time-evolution operator given by Û0(t, t0)

= e−iĤ 0(t−t0)/
̵h. Each order of the density operator is given by

ρ(n)I (t) = (−
i
h̵
)

n

∫

∞

0
dτn∫

∞

0
dτn−1 ⋅ ⋅ ⋅ ∫

∞

0
dτ1

× [V̂ I(t − τn), [V̂ I(t − τn − τn−1),

× [⋅ ⋅ ⋅ , [V̂ I(t − τn − τn−1 − ⋅ ⋅ ⋅ − τ1), ρ0] ⋅ ⋅ ⋅ ]]], (13)

where the τn are the interaction time intervals given by
τn = tn+1 − tn.

This density operator can be used to calculate the sig-
nal field using the perturbative contributions to the polarization
dipole, P(t), polarization quadrupole matrix elements, Qab(t), and
magnetization dipole, M(t), which can be written as

P(n)(t) = ⟨μ̂(t)⟩ = Tr[μ̂I(t) ρ(n)I (t)], (14a)

Q(n)ab (t) = ⟨q̂ab(t)⟩ = Tr[q̂I,ab(t)ρ
(n)
I (t)], (14b)

M(n)(t) = ⟨m̂(t)⟩ = Tr[m̂I(t) ρ(n)I (t)]. (14c)

In Sections II C and II D, we use the above expressions to
address the first-order and third-order responses for molecular
aggregate systems. Pedagogically, the first-order case is a useful mid-
point that assists in developing and comprehending the third-order
case, where the number of terms is larger.

C. First-order response
To calculate the first-order response of a molecular aggregate,

we need the first-order density operator,

ρ(1)I (t) = (−
i
h̵
)∫

∞

0
dτ1[V̂ I(t − τ1), ρ0]. (15)

Similar to the conventional analysis,22 we insert the perturba-
tion expression and find that the polarization dipole elements are
given by
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P(1)a (t) = (
i
h̵
)∫

∞

0
dτ1(Tr[μ̂a(τ1)[∑

b
μ̂b(0)Eb(t − τ1), ρ0]]

+
1
3

Tr[μ̂a(τ1)[∑
b

q̂ab
∂Eb(t − τ1)

∂xa
, ρ0]]

+ Tr[μ̂a(τ1)[∑
b

m̂b(0)Bb(t − τ1), ρ0]]), (16)

the polarization quadrupole matrix elements are given by

Q(1)ab (t) = (
i
h̵
)∫

∞

0
dτ1Tr[q̂ab(τ1)[∑

b
μ̂b(0)Eb(t − τ1), ρ0]], (17)

and the magnetization dipole vector is given by

M(1)(t) = (
i
h̵
)∫

∞

0
dτ1Tr[m̂(τ1)[μ̂(0) ⋅ E(t − τ1), ρ0]]. (18)

We have suppressed the interaction-picture notation subscripts, and
in Eqs. (17) and (18),we have ignored any term having more than
one combined interaction with the electric quadrupole or magnetic
dipole because they will produce a signal that is much weaker than
the retained terms.

We next assess the polarization components of the fields. We
use Jones vectors to describe the polarization states of the fields.
Although not necessary at first order, we elaborate on the field com-
ponents and the phase-matching conditions because this level of
detail will be required at third order. Each semi-impulsive field can
be decomposed into its time envelope, polarization, wavevector, and
frequency components as

EL/R
0 (t, T, r) = E0(t − T)ϵL/R,+e+i(k⋅r−ω0t)

+ E∗0 (t − T)ϵL/R,−e−i(k⋅r−ω0t), (19)

where ϵL/R,± are unit vectors that identify the positive and negative-
momentum electric-field polarization for left- (L) and right- (R)
circularly polarized fields and where the parameter T accounts for
the relative delay between laser pulses necessary in the third-order
calculations. In the first-order calculations, we are free to choose
T = 0. We refer to each component by the sign of the momen-
tum contribution.23 The phase-matching condition for absorption
is k(1)sig = k0, which means that we must select the same momentum
components for the input and signal fields. The complex conjugate
symbol (∗) indicates to use the negative-wavevector component of
the indicated field. While the field amplitudes, E0, are real-valued
and therefore the conjugate symbol seems unnecessary, we found it
helpful to retain the symbol as a bookkeeping reminder of the sign of
the wavevector component and also acknowledge that there could be
a phase difference.

We assume the fields propagate in the z-direction so that the
polarization vectors are given by

ϵL,∓
= ϵR,±

=
1
√

2
(ϵx ± iϵy), (20)

where ϵx/y are unit polarization vectors in the x and y direc-
tion, respectively. The resulting magnetic fields (B = 1

ω k × E) are
given by

BL/R
0 (t, T, r) =

∣k∣
ω
(E0(t − T)bL/R,+e+i(k⋅r−ω0t)

+ E∗0 (t − T)𝜚L/R,−e−i(k⋅r−ω0t)
), (21)

with unit vectors

𝜚L,∓
= 𝜚R,±

=
k
∣k∣
× ϵL,∓

=
1
√

2
(∓iϵx + ϵy), (22)

where k = ∣k∣ϵz .
The time-dependent polarization dipole, polarization

quadrupole, and magnetization dipole elements due to a left- or
right-circularly polarized incident field can then be written as,
respectively,

P(1),L/Ra (t) = (
i
h̵
)∫

∞

0
dτ1E0(t − τ1)e−iω0(t−τ1)

×∑
bc
(Tr[μ̂a(τ1)[ϵL/R,+

b μ̂b(0), ρ0]]

+
i
3

Tr[μ̂a(τ1)[kbϵL/R,+
c q̂bc(0), ρ0]]

+
∣k∣
ω

Tr[μ̂a(τ1)[𝜚L/R,+
b m̂b(0), ρ0]]), (23)

Q(1),L/Rab (t) = (
i
h̵
)∫

∞

0
dτ1E0(t − τ1)e−iω0(t−τ1)

×∑
c

Tr[q̂ab(τ1)[ϵL/R,+
c μ̂c(0), ρ0]], (24)

and

M(1),L/Ra (t) = (
i
h̵
)∫

∞

0
dτ1E0(t − τ1)e−iω0(t−τ1)

×∑
b

Tr[m̂a(τ1)[ϵL/R,+
b μ̂b(0), ρ0]], (25)

where the spatial dependence is omitted.
A steady-state CD measurement is given by the difference of

intensity-level measurements having left- (L) and right- (R) circu-
larly polarized fields, measured in the frequency domain. Therefore,
the signal is given by

σ(1)CD (ω) = (I
L
(ω) − IL

ref(ω)) − (I
R
(ω) − IR

ref(ω))

≈ Re{EL∗
0 (ω) ⋅ E

(1),L
sig (ω) − ER∗

0 (ω) ⋅ E
(1),R
sig (ω)}, (26)

where EL,R
0 is the incident light in each measurement and we have

applied a Fourier transformation from time variable t to detection
frequency variable ω to the input and signal fields as

EL/R∗
0 (ω) = ∫

+∞

−∞

dt e−iωtE∗0 (t)ϵ
L/R,−e+iω0t

= E∗0 ϵL/R,− (27)
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and

E(1),L/Rsig,a (ω) = ∫
+∞

−∞

dt e−iωtE(1),L/Rsig,a (t)

∝ i∫
+∞

−∞

dt e−iωt⎛

⎝
P(1),L/Ra (t) −

i
3∑b

kbQ(1),L/Rab (t) −
1
ω∑b,c

εabckbM(1),L/Rc (t)
⎞

⎠

= −
1
h̵∫

∞

0
dτ1∫

+∞

−∞

dte−iωtE0(t − τ1)e−iω0(t−τ1)(∑
bc
(Tr[μ̂a(τ1)[ϵL/R,+

b μ̂b(0), ρ0]]

+
i
3

sign(k1)Tr[μ̂a(τ1)[kbϵL/R,+
c q̂bc(0), ρ0]] +

∣k∣
ω

Tr[μ̂a(τ1)[𝜚L/R,+
b m̂b(0), ρ0]])

−
i
3

sign(k2)kb Tr[q̂ab(τ1)[ϵL/R,+
c μ̂c(0), ρ0]] −

1
ω

εabckb Tr[m̂c(τ1)[ϵL/R,+
d μ̂d(0), ρ0]]). (28)

We follow convention and assume that all fields are spectrally white and can therefore be represented by δ-functions in the time domain.22,23,31

This yields

E(1),L/Rsig (ω) = −
1
h̵

E0∫

∞

0
dτ1e−iωτ1(Tr[μ̂(τ1)[ϵL/R,+

⋅ μ̂(0), ρ0]] +
k
ω
(Tr[μ̂(τ1)[bL/R,+

⋅ m̂(0), ρ0]]

− Tr[
k
k
× m̂(τ1)[ϵL/R,+

⋅ μ̂(0), ρ0]]) +
i
3
(Tr[μ̂(τ1)[k ⋅ q̂(0) ⋅ ϵL/R,+, ρ0]] + Tr[q̂(τ1) ⋅ k[ϵL/R,+

⋅ μ̂(0), ρ0]])). (29)

The first-order CD signal for a fixed molecular orientation can then be written as

σ(1)CD (ω) = −
1
h̵
∣E0∣

2 Im{∫
∞

0
dτ1e−iωτ1(Tr[ϵy ⋅ μ̂(τ1)[ϵx ⋅ μ̂(0), ρ0]] − Tr[ϵx ⋅ μ̂(τ1)[ϵy ⋅ μ̂(0), ρ0]]

+
∣k∣
ω
(Tr[ϵx ⋅ μ̂(τ1)[ϵx ⋅ m̂(0), ρ0]] + Tr[ϵy ⋅ μ̂(τ1)[ϵy ⋅ m̂(0), ρ0]]

− Tr[ϵx ⋅ m̂(τ1)[ϵx ⋅ μ̂(0), ρ0]] − Tr[ϵy ⋅ m̂(τ1)[ϵy ⋅ μ̂(0), ρ0]])

+
i∣k∣
3
(Tr[ϵy ⋅ μ̂(τ1)[ϵz ⋅ q̂(0) ⋅ ϵx, ρ0]] − Tr[ϵx ⋅ μ̂(τ1)[ϵz ⋅ q̂(0) ⋅ ϵy, ρ0]]

+ Tr[ϵy ⋅ q̂(τ1) ⋅ ϵz[ϵx ⋅ μ̂(0), ρ0]] − Tr[ϵx ⋅ q̂(τ1) ⋅ ϵz[ϵy ⋅ μ̂(0), ρ0]]))}. (30)

In the case of a sample composed of a large number of arbitrarily oriented chromophores, the signal must be averaged over all molecular
orientations. It is convenient to do the averaging in a coordinate system fixed in the molecular frame and averaging over all orientations of
the lab frame. Using the orbit symbol ( ) to indicate a coordinate-independent orientational average, we need to compute

(31)

where, for example, ϵx
a represents the projection of the unit vec-

tor ϵx in the lab frame onto the ath axis of the molecular frame
and we have assumed that the molecular frame is fixed so that
we can remove the operators from the orientational average. The
general results for the orientational averages of these tensors are
established.33 For the second-rank tensor,33 the general result is

where δ is the Kronecker delta and i and j are
any of {x, y, z} in the lab frame. For the third rank tensor,33 the

general result is where {i, j, k} are cyclic per-

mutations of {x, y, z} and for {i, j} ∈ {x, y, z}. This
yields

(32)

where we have assumed the vector operators can be separated
into their constituent orientational and operator components:
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μ̂(0) = μ̂(0)n(0) or m̂(0) = m̂(0)η(0), where ns and ηs corre-
spond to electric dipole or magnetic dipole orientations, respec-
tively. Electric quadrupole contributions average to zero because the
quadrupole moment is symmetric, giving∑bcεabcq̂bc = 0.

There is insight to be gleaned from an analysis of Eq. (32).
First, unlike the analogous steady-state absorption signal,22 which
contains a single commutator involving two electric dipole inter-
actions, the steady-state CD signal contains two commutators that
each involve one magnetic dipole interaction and one electric dipole
interaction. Second, each commutator can be cast into the response-
function formalism.22 For example, we can label the terms arising
from the expansion of the commutators as

(33a)

(33b)

where we use the † symbol to denote raising operators. We incor-
porate the dot product of the dipole orientations into the response
functions and use the subscript “CD” and the orientational-average
notation to distinguish these effective response functions from the
more traditional tensor response functions. Although we do not
do so, identifying the response functions would allow one to draw
double-sided Feynman diagrams akin to those commonly used in
nonlinear-optical spectroscopy by making one adjustment, which
is to track each interaction as a magnetic or an electric dipole.
Holdaway et al. present such diagrams.20

To make a strong connection to literature22,31 and to set up the
labeling scheme required at third order, we write the orientationally
averaged first-order CD signal as

(34)
where, using H.c. to indicate Hermitian conjugate, we can define

(35a)

(35b)

In this work, we consider a molecular aggregate sample
composed of multiple molecules each having at least two elec-
tronic states, and we evaluate the two first-order response func-
tions individually. Working in the delocalized excitation basis
{∣G⟩, ∣E1⟩, . . . , ∣En⟩}, we evaluate the trace, set ρ0 = ∣G⟩⟨G∣, and insert
a complete set of states to yield

(36)
Next, we use the result of Appendix A to convert the magnetic dipole
operator and orientation vector into its equivalent electric dipole
operator and orientation vector. This yields

(37)

where we have used the fact that μ̂ †
= μ̂ because the electric dipole

operator is real-valued and where we have used the vector identity
a ⋅ (b × c) = b ⋅ (c × a). We then make the time dependence explicit
and use an identify derived in Appendix B to transform the matrix
elements and the orientation vectors from the delocalized excitation
basis to the site basis. This yields

(38)

where Ωa,b = ωa,b − iγa,b is the complex frequency containing
phenomenological dephasing γa,b for the optical coherence between
delocalized excitation states ∣Ea⟩ and ∣Eb⟩. Here, Roman characters
index the delocalized states and Greek characters index the sites.
The constraint α ≠ β on the sums over these two indices is a
reminder that when α = β, the cross product of orientation vectors
will be zero.

A similar analysis for the second response function yields

(39)
where the only notable distinction is that there were two sign
changes that resulted in no net change to the sign.

Subtracting the two response functions and simplifying yields

(40)
where Rαβ = Rα − Rβ. We can then insert this result into Eq. (34) to
derive the general linear CD result for molecular aggregates,

(41)

This expression yields multiple physical insights. (1) The CD spec-
trum will have a Lorentzian peak at each delocalized excitation
frequency, ωj,G. (2) The sign and amplitude of each peak is given by
the coefficients of the linear combination of sites that give rise to the
specific delocalized excitation state, the c j

α/β terms. (3) Also affecting
the sign and amplitude of the peaks are the relative distance and ori-
entation of the dipoles Rαβ ⋅ (nβ × nα). These are independent of the
specific delocalized excitation state. (4) The matrix elements indi-
cate an excitation event on site α and a de-excitation event on site β,
which can occur only when the two sites are coupled. The coupling
is contained in the coefficients c j

α/β.

D. Third-order response
Following the methodology of the first-order case, we next

introduce the appropriate perturbative contribution to the density
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operator and field polarization and magnetization contributions to
the signal under the appropriate laboratory conditions. There are
three significant modifications from the first-order signal calcula-
tion. First, the third-order signal is subject in the phase-matching
condition of the pump–probe geometry, k(3)sig = k pump − k pump + k0,
where the probe field is indicated by k0 because it also serves as
the reference. A second key difference from the first-order case is
that the pump fields are not necessarily circularly polarized. Prior
works have shown that any linear polarized pump pulse is adequate
for a time-resolved third-order CD measurement that uses circu-
larly polarized probe pulses.35 Third, the electric quadrupole terms
do not average to zero in general for isotropic samples in third-
order experiments as they do in first-order experiments. The electric
quadrupole contribution is dependent on the relative angle between
the pump and probe beams; Cho showed17 that it is suppressed for a
crossing angle of θ∠ = arctan( 1

√

2
) ≈ 35.26○. We assume a circularly

polarized probe pulse propagating along the z axis and a horizon-
tally polarized pump pulse that crosses the z axis at angle θ∠ in the
(x, z)-plane and assume again the semi-impulse limit,

E pu(t, T, r) = δ(t + T)ϵH
(E pue+i(k pu ⋅r−ω put)

+ E∗pue−i(k pu ⋅r−ω put)
),

(42a)

B pu(t, T, r) =
∣k pu∣

ω pu
δ(t + T)𝜚H

(E pue+i(k pu ⋅r−ω put)
+ E∗pue−i(k pu ⋅r−ω put)

),

(42b)

E pr(t, r) = δ(t)(ϵL/R,+E pre+i(k pr ⋅r−ω prt)
+ ϵL/R,−E∗pre

−i(k pr ⋅r−ω prt)
),

(42c)

and

B pr(t, r) =
∣k pr∣

ω pr
δ(t)(𝜚L/R,+E pre+i(k pr ⋅r−ω prt)

+ 𝜚L/R,−E∗pre
−i(k pr ⋅r−ω prt)

),

(42d)

where kpu = k(sin θ∠ϵx + cos θ∠ϵz), the H polarization unit vectors
are given by ϵH

= cos θ∠ϵx − sin θ∠ϵz , and 𝜚H
= k

k × ϵH
= ϵy. We

choose to have the probe propagate along the z axis with kpr = kprϵz
so that the polarization vectors for the pump match the prior defini-
tions. We assume that the pump pulse envelope peaks at t = −T and
the probe at t = 0.

1. General third-order response
We consider the general third-order response in which we

include electric dipoles and quadrupoles and magnetic dipoles. In
this case, we need the third-order density operator,

ρ(3)I (t) = (−
i
h̵
)

3

∫

∞

0
dτ3∫

∞

0
dτ2∫

∞

0
dτ1

× [V̂ I(t− τ3), [V̂ I(t− τ3 − τ2), [V̂ I(t− τ3 − τ2 − τ1), ρ0]]].
(43)

We insert the perturbation and find that the polarization and
magnetization are, respectively,

P(3)(t) = (
i
h̵
)

3

∫

∞

0
dτ3∫

∞

0
dτ2∫

∞

0
dτ1 Tr[[[[μ̂(τ3 + τ2 + τ1),

× μ̂(τ2 + τ1) ⋅ E3(t − τ3) + m̂(τ2 + τ1) ⋅ B3(t − τ3) +
1
3∑ab

q̂ab(τ2 + τ1)
∂E3,b(t − τ3)

∂xa
],

× μ̂(τ1) ⋅ E2(t − τ3 − τ2) + m̂(τ1) ⋅ B2(t − τ3 − τ2) +
1
3∑ab

q̂ab(τ1)
∂E2,b(t − τ3 − τ2)

∂xa
],

× μ̂(0) ⋅ E1(t − τ3 − τ2 − τ1) + m̂(0) ⋅ B1(t − τ3 − τ2 − τ1) +
1
3∑ab

q̂ab(0)
∂E1,b(t − τ3 − τ2 − τ1)

∂xa
]ρ0], (44a)

and

M(3)(t) = (
i
h̵
)

3

∫

∞

0
dτ3∫

∞

0
dτ2∫

∞

0
dτ1 Tr[[[[m̂(τ3 + τ2 + τ1),

× μ̂(τ2 + τ1) ⋅ E3(t − τ3) + m̂(τ2 + τ1) ⋅ B3(t − τ3) +
1
3∑ab

q̂ab(τ2 + τ1)
∂E3,b(t − τ3)

∂xa
],

× μ̂(τ1) ⋅ E2(t − τ3 − τ2) + m̂(τ1) ⋅ B2(t − τ3 − τ2) +
1
3∑ab

q̂ab(τ1)
∂E2,b(t − τ3 − τ2)

∂xa
],

× μ̂(0) ⋅ E1(t − τ3 − τ2 − τ1) + m̂(0) ⋅ B1(t − τ3 − τ2 − τ1) +
1
3∑ab

q̂ab(0)
∂E1,b(t − τ3 − τ2 − τ1)

∂xa
]ρ0], (44b)

and the elements of the polarization quadrupole are
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Q(3)ab (t) = (
i
h̵
)

3

∫

∞

0
dτ3∫

∞

0
dτ2∫

∞

0
dτ1 Tr[[[[q̂ab(τ3 + τ2 + τ1),

× μ̂(τ2 + τ1) ⋅ E3(t − τ3) + m̂(τ2 + τ1) ⋅ B3(t − τ3) +
1
3∑cd

q̂cd(τ2 + τ1)
∂E3,c(t − τ3)

∂xd
],

× μ̂(τ1) ⋅ E2(t − τ3 − τ2) + m̂(τ1) ⋅ B2(t − τ3 − τ2) +
1
3∑ab

q̂cd(τ1)
∂E2,c(t − τ3 − τ2)

∂xd
],

× μ̂(0) ⋅ E1(t − τ3 − τ2 − τ1) + m̂(0) ⋅ B1(t − τ3 − τ2 − τ1) +
1
3∑ab

q̂cd(0)
∂E1,c(t − τ3 − τ2 − τ1)

∂xd
]ρ0]. (44c)

These are the nonlinear versions of Eqs. (16)–(18), respectively.
Each term can arise from an interaction with the electric dipole,
electric quadrupole, or magnetic dipole of the molecule. The terms
can be grouped according to the field interactions. Terms having
zero or one interactions with either the magnetic dipole or electric
quadrupole will dominate the response, and therefore we neglect
terms having two or more magnetic dipole or electric quadrupole
interactions from the remainder of the work. The terms that survive
this approximation are

P(3)(t) ≈ P(3)μμμ(t) + P(3)μμm(t) + P(3)μmμ(t) + P(3)mμμ(t)

+ P(3)μμq(t) + P(3)μqμ(t) + P(3)qμμ(t), (45a)

M(3)(t) ≈M(3)μμμ(t), (45b)

and

Q(3)ab (t) ≈ Q(3)ab,μμμ(t), (45c)

where the subscripts indicate from right to left the time-ordered
sequence of interaction. For example,

P(3)μμm(t) = (
i
h̵
)

3

∫

∞

0
dτ3∫

∞

0
dτ2∫

∞

0
dτ1

× Tr [[[[μ̂(τ3 + τ2 + τ1), μ̂(τ2 + τ1) ⋅ E3(t − τ3)],
× μ̂(τ1) ⋅ E2(t− τ3 − τ2)], m̂(0) ⋅ B1(t − τ3 − τ2 − τ1)]ρ0].

(46)

In general, all of these terms can contribute. However, after sub-
tracting the right-circularly polarized signal from the left-circularly
polarized signal, P(3)μμμ(t)will cancel for an isotropic sample. Further-
more, the specific choice of geometry described above17 eliminates
contributions from P(3)qμμ(t) and Q(3)ab,μμμ(t) after orientational aver-
aging. This leaves six contributions to the signal, each with eight
response functions. After evaluating the τ integrals for the semi-
impulsive fields, the time-dependent polarization and magnetization
terms can be written as

P(3)μμm(t) = (
i
h̵
)

3
(
∣k pu∣

ω pu
)E pr∣E pu∣

2Θ(t)Θ(T)Tr[[[[μ̂(t + T), μ̂(T) ⋅ ϵL/R,+
], μ̂(0) ⋅ ϵH

], m̂(0) ⋅ 𝜚H
]ρ0], (47a)

P(3)μmμ(t) = (
i
h̵
)

3
(
∣k pu∣

ω pu
)E pr∣E pu∣

2Θ(t)Θ(T)Tr[[[[μ̂(t + T), μ̂(T) ⋅ ϵL/R,+
], m̂(0) ⋅ 𝜚H

], μ̂(0) ⋅ ϵH
]ρ0], (47b)

P(3)mμμ(t) = (
i
h̵
)

3
(
∣k pr∣

ω pr
)E pr∣E pu∣

2Θ(t)Θ(T)Tr[[[[μ̂(t + T), m̂(T) ⋅ 𝜚L/R,+
], μ̂(0) ⋅ ϵH

], μ̂(0) ⋅ ϵH
]ρ0], (47c)

P(3)μμq(t) = sign(k1)
i
3
(

i
h̵
)

3
E pr∣E pu∣

2Θ(t)Θ(T)∑
ab

Tr[[[[μ̂(t + T), μ̂(T) ⋅ ϵL/R,+
], μ̂(0) ⋅ ϵH

], q̂ab(0)ϵ
H
b k pu,a]ρ0], (47d)

P(3)μqμ(t) = sign(k2)
i
3
(

i
h̵
)

3
E pr∣E pu∣

2Θ(t)Θ(T)∑
ab

Tr[[[[μ̂(t + T), μ̂(T) ⋅ ϵL/R,+
], q̂ab(0)ϵ

H
b k pu,a], μ̂(0) ⋅ ϵH

]ρ0], (47e)

and

M(3),L/Rμμμ (t) = (
i
h̵
)

3
E pr∣E pu∣

2Θ(t)Θ(T) Tr[[[[m̂(t + T), μ̂(T) ⋅ ϵL/R,+
], μ̂(0) ⋅ ϵH

], μ̂(0) ⋅ ϵH
]ρ0], (48)
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where the spatial dependence is omitted. These expressions assume
that—under the rotating-wave approximation—the pump will
contribute one positive-momentum interaction and one negative-
momentum interaction. The sign(k1(2)) tracks the sign of the
momentum of the quadrupole moment interaction with the field.
These expressions also assume a positive-momentum interaction
with the pump field and a negative-momentum reference field.

Analogous to the first-order CD signal, the third-order CD
signal is given in the frequency domain by

σ(3)CD (ω) ≈ Re{EL∗
pr (ω) ⋅ E

(3),L
sig (ω) − ER∗

pr (ω) ⋅ E
(3),R
sig (ω)}, (49)

where EL,R∗
pr (ω) = E∗prϵL/R,− as in the first-order case, and we can

write the ath component of the third-order signal as

E(3),L/Rsig,a (ω) = ∫
+∞

−∞

dte+iωtE(3),L/Rsig,a (t)

∝ i∫
+∞

−∞

dte+iωt⎛

⎝
P(3),L/Ra (t) −

i
3∑b

Q(3),L/Rab (t)k pr, b −
1

ω pr
∑
b,c

εabck pr,bM(3),L/Rc (t)
⎞

⎠
. (50)

For bookkeeping, we sort the contributions to the total CD
spectrum by the order of the interactions with a fourth label
to identify the interaction leading to the emission of the signal
field,

σ(3)CD (ω) ≈ σ(3)μμμm(ω) + σ(3)μμmμ(ω) + σ(3)μmμμ(ω) + σ(3)mμμμ(ω)

+ σ(3)μμμq(ω) + σ(3)μμqμ(ω) + σ(3)μqμμ(ω) + σ(3)qμμμ(ω), (51)

where the subscripts again identify from right to left the sequence
of interactions. For the third-order calculation, none of these contri-
butions can be neglected in general. The choice to work at the sup-
pression angle does suppress the last two in an isotropic medium,17

.
We consider the terms individually, first expanding into tensor-

sum notation to ease the orientational averaging. For example,

σ(3)μμμm(ω) ∝ Re{EL∗
pr (ω) ⋅ iP

(3),L
μμm (ω) − ER∗

pr (ω) ⋅ iP
(3),R
μμm (ω)},

= Re{i(
i
h̵
)

3
(
∣k pu∣

ω pu
)∣E pr∣

2
∣E pu∣

2Θ(T)∫
+∞

0
dte+iωt

(Tr[[[[μ̂(t + T) ⋅ ϵL,−, μ̂(T) ⋅ ϵL,+
], μ̂(0) ⋅ ϵH

], m̂(0) ⋅ 𝜚H
]ρ0]

− Tr[[[[μ̂(t + T) ⋅ ϵR,−, μ̂(T) ⋅ ϵR,+
], μ̂(0) ⋅ ϵH

], m̂(0) ⋅ 𝜚H
]ρ0])}

=
1
h̵3 (
∣k pu∣

ω pu
)∣E pr∣

2
∣E pu∣

2Θ(T)Re
⎧⎪⎪
⎨
⎪⎪⎩
∫

+∞

0
dte+iωt

∑
a,b,c,d
(ϵL,−

a ϵL,+
b ϵH

c 𝜚H
d − ϵR,−

a ϵR,+
b ϵH

c 𝜚H
d )

× Tr[[[[μ̂a(t + T), μ̂b(T)], μ̂c(0)], m̂d(0)]ρ0]}, (52)

where a, b, c, d again reference indices corresponding to the {x, y, z} components of the vectors. However, the summed results are
valid in any Cartesian coordinate system, and therefore we may choose those to represent a coordinate system {x′, y′, z′} fixed in the
molecular frame and average over all orientations of the {x, y, z} lab frame. This is convenient because the laser polarization and propagation
vectors are perpendicular to each other. The orientational averaged contribution of this term to the CD signal in an isotropic sample becomes

(53)

where we used the fourth-rank tensor orientational average,33,36

(54)
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The Kronecker δ-functions arising from the polarizations create dot products between the dipole operators, which are straightforward
to evaluate when considering individual response functions.

The remaining terms work out similarly, assuming the pump and probe cross at the suppression angle, where cos θ∠ =
√

2
3 . Terms

involving the quadrupole moment require the fifth-rank tensor isotropic average.33 The final results for an isotropic sample assuming the
pump and probe cross at θ∠ are

(55a)

(55b)

(55c)

(55d)

(55e)

and

(55f)

Each of the six orientationally averaged TCD signal contribu-
tions in Eq. (55) has 6 unique response functions (plus 6 Hermitian
conjugate response functions) for a total of 36 unique response
functions. We do expand the nested commutators and define ten-
sor response functions for each of the 36 contributions to the total
signal. We define R1 → R6 to consistently represent the same type
of pathway labeled SE (stimulated emission), GSB (ground state
bleach), and ESA (excited-state absorption) and Reph (rephasing)
or NR (nonrephasing) next to each response function.31 The total
signal will include the Hermitian conjugate terms that appear at
negative signal frequencies. Appendix C contains the full list of
36 response functions. These response functions naturally sepa-
rate into nine groups of four. For each of SE, GSB, and ESA type,
there are three unique contributions: One has a magnetic dipole
interaction with the pump pulse, one has a magnetic dipole inter-
action during the probe pulse and signal emission, and one has an

electric quadrupole interaction with the pump pulse. In general,
it would also be necessary to consider electric quadrupole interac-
tions during the probe, but they are suppressed by the choice of
geometry.

Each response function can be evaluated in a manner analogous
to the first-order case, albeit with more terms. For example, consider
the rephasing stimulated-emission term

R(3),abcd
1,μmμμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂c(0)ρ0μ̂d(0)m̂b(T)]

= (−
i
h̵
)

3

∑
j,j ′
∑

α,β,γ,δ
μα,aμ†

γ,cμδ,dm†
β,bc j ′

α c j,∗
β c j ′ ,∗

γ c j
δ

× e−iΩj ′ ,G(t+T)e+iΩ∗j,GT , (56)

which yields a contribution to the total CD signal of

(57)

where we use μ†
α = ⟨eα∣μ̂†

α∣gα⟩ to represent the transition dipole moments.

J. Chem. Phys. 157, 154101 (2022); doi: 10.1063/5.0119626 157, 154101-10

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

We assume the coefficients and electric dipole matrix elements are real and incorporate the model from Appendix A to write the signal
contribution expression in terms of the magnitude of the matrix elements and a sum over the dipole orientations,

(58)

where we have introduced a phenomenological population decay rate (Γ) during the pump–probe delay time.

2. Summary of terms

After many mathematical manipulations, we are left with only five nonzero expressions. There are two for stimulated emission,

(59)

(60)

one for ground-state bleach,

(61)

two for excited-state absorption,

(62)

and

(63)

These five expressions are all that is required to simulate a TCD spectrum for a multi-level electronic system, and they are the primary result
of this work.
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While deriving these expressions, several key steps generated
physical insights. (1) For terms in which the pump pulse contributed
the magnetic dipole moment or electric quadrupole moment inter-
action, the rephasing and nonrephasing contributions have a relative
sign change. For the magnetic dipole, this happens because the
swap from rephasing to nonrephasing flips m↔ m†. For the
electric quadrupole interaction, this happens because the sign of
the momentum of the electric field involved in the interaction flips.
This cancels all terms that leave the density matrix in a population
after the pump pulse interactions. The implication is that terms that
include a coherence (∣Ej ′⟩⟨Ej∣) during the delay time do not cancel,
and therefore these terms are a key to revealing the contribution of
coherences in TCD signals. Furthermore, our model assumes that
each site is a two-level electronic system with no vibrational modes,
and therefore the coherences are purely electronic, cannot be created
on the ground state, and the GSB contributions with a magnetic
dipole or electric quadrupole interaction during the pump pulse will
sum to zero, leaving seven nonzero terms. (2) In stark contrast, terms
in which the probe pulse contributed the magnetic dipole inter-
action yield both population and coherence terms. (3) We reduce
the initial seven nonzero terms to five by summing SE and ESA
contributions that involve a magnetic dipole or electric quadrupole
interaction during the pump pulse. Separately, these terms retain
a dependence on the choice of origin in the molecular frame, but
the summed contribution depends only on relative positions of the
molecular sites in an aggregate. (4) The ESA terms required an addi-
tional transformation between matrix elements in the delocalized
exciton basis and the site basis that involve transitions to the doubly
excited delocalized exciton states, ∣Fk⟩. We derive this relationship in
Appendix B. This means that the ESA signals—if they can be unam-
biguously distinguished in the TCD spectrum—could be exquisitely
sensitive to the properties of the doubly excited delocalized exciton
states.

III. SIMULATION RESULTS AND DISCUSSION
Although the general equations derived in Sec. II provided

some meaningful physical insights, simulations of multi-level elec-
tronic systems can generate more intuition regarding CD and TCD
signals arising from molecular aggregates. In this section, we detail
features of spectra simulated for a homodimer, homotrimer, and
homotetramer. We use Eqs. (41) and (59)–(63) to simulate steady-
state CD and TCD spectra, respectively. To produce the maximum
number of peaks having nonzero amplitude, we evaluate a consis-
tent set of arbitrarily located and oriented vectors. Table I lists the
dipole coordinates and Fig. 1 displays their geometric arrangement
in a Cartesian coordinate system.

TABLE I. Dipole coordinates and orientations used in simulations.

(μx, μy, μz) (Rx, Ry, Rz)

μα (1, 0, 0) (0, 0, −0.5)
μβ (0.432, 0.864, 0.259) (1, −0.5, 0.5)
μγ (−0.477, −0.191, −0.858) (0, 1, 0)
μδ (−0.577, 0.577, 0.577) (−0.5, 0, 0.5)

FIG. 1. The four arbitrarily placed and oriented vectors used in simulations.

Studies of homodimers have generated a significant amount
of intuition about spectroscopic signals arising from molecular
aggregates.28 In this model, the transition dipoles of a pair of
two-level systems are coupled, and this coupling yields two delo-
calized excitation states, having energies above and below the site
energies. The Hamiltonian is given by

Ĥ = ∑
ι

Eι∣ι⟩⟨ι∣ +∑
ι≠κ

Jι,κ∣ι⟩⟨κ∣, (64)

where we have partitioned the diagonal elements, Eι, from the
off-diagonal elements, J ι,κ, and where sums over ι and κ run over
the set of {α, β, γ, δ} as appropriate for each aggregate. The diagonal
elements are the site energies and the off-diagonal elements are the
site–site couplings. We compute the site–site coupling using the
expression

Jαβ = καβ
∣μα∣∣μβ∣

∣Rαβ∣
3 , (65)

where Rαβ = Rα − Rβ and καβ = (μα ⋅ μβ) − 3(μα ⋅ Rαβ)(μβ ⋅ Rαβ),

which is appropriate in the dipole–dipole approximation.26,28,37 We
invoke this approximation in our simulations, and, further, we
compute the two-exciton couplings in a similar manner. For
example, the coupling between two-exciton states ∣α, β⟩ and ∣α, γ⟩
is Jβγ.

In the simulations, each site has a frequency of 500 THz and
a transition-dipole magnitude of 1 a.u. Table II lists the resulting
exciton and two-exciton frequencies for each aggregate. In all steady-
state CD simulations, we set ∣k∣∣E0∣

2
= 3h. In all TCD simulations, we

set ∣k pr∣∣E pr∣
2
∣E pu∣

2
= h̵3, and we use a population lifetime of 30 ps, a

coherence dephasing time of 250 fs, and a linewidth of 8 THz. The
linewidth is a phenomenological value that could be replaced with a
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TABLE II. Frequencies of exciton and two-exciton states in each aggregate.

Aggregate Exciton frequencies (THz) Two-exciton frequencies (THz)

(α, β) dimer {496, 504} {1000}
(α, β, γ) trimer {480, 504, 516} {980, 1004, 1016}
(α, β, γ, δ) tetramer {471, 492, 505, 532} {964, 983, 994, 1001, 1011, 1047}

microscopic model of electronic–vibrational interactions.22,26 While
one might expect that the coherence dephasing time should be the
same as the linewidth,38 here we found that doubling the dephasing
time to 250 fs was helpful to make each simulated coherence signal
distinguishable. Finally, in all simulations we scale each coupling
value by an arbitrary factor of 40 to resolve the transitions more
clearly. From Table I, the dimer simulation uses sites α and β, the
trimer simulation includes also site γ, and the tetramer simulation
uses all four sites. In the dimer simulation, the relative angle between
dipoles is about 65○. All simulations used a frequency step of 0.5 THz
and a time step of 2.5 fs, which required about one second of compu-
tation time on a personal computer using scripts written in Python
and appropriate libraries.

The simulated spectra in Fig. 2 contain several notable features.
First, the steady-state CD and TCD spectra show the same number of
main peaks for each system: The dimer simulations have two peaks,
the trimer simulations have three main peaks, and the tetramer
simulations have four main peaks. The number of one-exciton states
in both simulations is N, the number of sites, and the number of
two-exciton states, N2x, used in the TCD simulations is given by
N2x = (

N
2 ) = N(N − 1)/2. Although the number of main peaks is

conserved between the steady-state CD and TCD spectra for a given
system, their relative signs are not. This is not unexpected because
comparing Eq. (41) to Eqs. (59)–(63) reveals a number of mathe-
matical components of the signal expressions that could lead to a
sign change. For example, the terms that account for the relative
orientation of the dipoles are distinct.

Second, in the dimer simulation, the rightmost panel shows
that the peaks oscillate at about four cycles in 0.5 ps; in other
words, the oscillation frequency appears to be about 8 THz. This
frequency corresponds to the difference between the exciton eigen-
frequencies, 496 and 504 THz. Due to interference effects between
overlapping peaks of opposing signs, the peak maxima are shifted
slightly to 493 and 505 THz when the linewidth is broad. The dis-
tinction between exciton eigenfrequencies and the peak maxima is
observable in the steady-state CD spectrum of the dimer, where the
peak maxima in the broadband simulation are further apart than
the peak maxima in the narrowband simulation. At first glance, the
quantum beats arising from the exciton–exciton coherences at the
two peaks appear to have a π phase shift. However, the rightmost
panels in Fig. 2 are normalized, which means the negative-amplitude
(blue) trace was divided by a factor of −1. Hence, our TCD
simulations are consistent with transient absorption spectroscopy, in
which quantum beats arising from exciton–exciton coherences will
oscillate with the same phase.23,39 Holdaway et al. examined several
relative phase differences for coherent oscillations using a distinct
theoretical treatment for a vibronic dimer system.20 These phase
shifts may help distinguish electronic coherences from vibrational

or vibronic coherences in future studies. To make an additional
connection to literature, the TCD measurement by Trifonov et al.
conducted on merocyanine dye helical aggregates showed dimer-
like steady–steady CD and TCD spectra. However, those authors did
not display the early time, <1-ps, dynamics, and hence we cannot
compare to any coherent oscillations in that spectra. The trimer and
tetramer TCD simulations in Fig. 2 contain analogous, albeit more
complicated, TCD spectra and coherent dynamics. In these systems,
the number of transitions and number of possible exciton–exciton
coherences increase significantly. These coherences generate a linear
combination of oscillation frequencies that lead to highly structured
time-domain dynamics.

Third, the effects of the two-exciton states appear to be weak
relative to the transitions involving only one-exciton states. In
fact, there are no signatures of two-excitons in the dimer simula-
tions because there is only a single two-exciton state and—because
we neglect biexciton interaction contributions26—its frequency is
exactly double that of the site energy. This means there is perfect
destructive interference between the possible pathways that involve
the two-exciton state. In the trimer and tetramer simulations,
however, the simulations reveal small shoulders and extra peaks that
arise from transitions involving the two-exciton states. The peak
at about 450 THz in the tetramer TCD simulation is one of the
more visible peaks involving a two-exciton transition. The lowest-
frequency one-exciton peak is at 471 THz in this simulation. The
peak at 450 THz therefore must involve a two-exciton state, and
we observe that it also contains oscillating quantum beats due to
exciton–exciton coherences.

One advantage of a theoretical model that is unavailable to
laboratory measurements is the ability to decompose the total signal
into its constituent components for further study. In the left panels
of Fig. 3, we present the five components of the total TCD signal
for the dimer case, wherein each panel is individually normalized
so that weak components are visible. The color bar bounds indicate
the relative normalization values. The SE1, SE2, GSB, ESA1, and
ESA2 contributions arise from Eqs. (59)–(63), respectively. For the
dimer, the SE1, GSB, and ESA1 terms contain no coherent oscilla-
tions. Instead, these pathways are dominated by signals arising from
population decays. These three pathways all have the same overall
amplitude, and the largely two-peak structure of the total signal
shown in Fig. 2 mainly arises from these three pathways. In contrast,
the SE2 and ESA2 terms contain no population decays and only have
coherent oscillations. These coherences have an intriguing phase
profile, and there is a relative phase shift of π between the two
pathways. These two pathways are weaker, at ∼16% and 63% ampli-
tude relative to the three other pathways. A primary conclusion
from these separated components of the signal is that—in stark con-
trast to transient absorption spectroscopy where there is a difference
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FIG. 2. Simulation results for dimer (top row), trimer (middle row), and tetramer (bottom row). Steady-state CD spectra are shown in the left column. Dashed lines indicate
simulations using γ = 0.2 THz to highlight the exciton eigenfrequencies. The middle column contains the full TCD simulated spectra, which are individually normalized. The
rightmost column contains normalized dynamics of the brightest positive (red) and negative (blue) amplitude peaks.

in relative sign—there is no clear way to distinguish excited-state
absorption pathways from bleach or stimulated-emission pathways
in TCD spectroscopy measurements of dimers.

Finally, we examine the separate components of the TCD signal
for the case of the trimer. The right panels of Fig. 3 show these
simulated signals. Like the dimer case, the GSB signal remains strong
(normalized amplitude of 1), and its dynamics are dominated by
population decays. The SE1 and ESA1 signals also contain popu-
lation decay pathways but also now contain coherences, and their
relative amplitudes are only 26% and 20% of the GSB amplitude,
respectively. This is distinct from the dimer case wherein these two
signals had no coherences and had the same amplitude as the GSB
signal. The coherences contained in the SE1 and ESA1 signals are
relatively uncomplicated; the one-exciton eigenfrequencies are 480,
504, and 516 THz, meaning the highest possible frequency is about
36 THz. By contrast, the SE2 and ESA2 signals contain coherences
that appear to be of higher frequencies. However, the two-exciton

eigenfrequencies are 980, 1004, and 1016 THz, and hence the highest
possible frequency is also 36 THz. Indeed, the complicated peak
pattern arises from interference effects due to sign changes among
the coherences. A Fourier transform analysis (not shown) supported
this conclusion. Like the dimer case, the SE1 and ESA2 signals at
13% and 29%, respectively, are weaker than the other signals. In the
case of the trimer, transitions involving the two-exciton states are no
longer automatically suppressed due to destructive interference as
in the dimer case. Instead, the ESA1 and ESA2 components contain
signals that extend to nearly 550 THz, arising from the difference
between the two-exciton state having a frequency of 1016 THz and
the one-exciton state having a frequency of 480 THz. These signals
do not appear in the SE1, SE2, and GSB components. Hence, for
trimers and higher-order aggregates, it may be possible to distin-
guish excited-state absorption signals in TCD spectra by identifying
peaks that appear at frequencies higher or lower than any peak
present in the steady-state CD or absorption spectra.
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FIG. 3. Components of the dimer (left)
and trimer (right) TCD signal. The signals
have relative maximum absolute value
amplitudes as indicated by the color
bars.
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IV. CONCLUSIONS
Transient circular dichroism spectroscopy is a chiral analog to

the ubiquitous method of transient absorption spectroscopy. This
nascent method is slowly developing on both the measurement
and theoretical fronts. Here, we have developed effective response
functions for steady-state CD and TCD signals. This required
including an electromagnetic perturbation that incorporated the
magnetic dipole and the electrical quadrupole moments, applying
orientational averaging, and accounting for the full vector fields
rather than scalars. We used the effective response functions to
simulate spectra for an arbitrary electronic dimer, trimer, and
tetramer. These are multi-level electronic models of molecular
aggregate samples. The simulations revealed several key spectral
signatures regarding the peak structure and their dynamics for
analysis of coherences and excited-state absorption components.

We anticipate that—because achiral molecules produce no
CD or TCD signals—TCD will be a more incisive probe of the
excited-state dynamics of molecular aggregates, which can be mix-
tures of chiral and achiral species.40 This method may be useful
for interpreting measurements of natural molecular aggregates such
as biological pigment–protein complexes, and better resolve the
excitonic structure of such systems. Future work could transcend
the static-dipole approximation and lead to interesting studies of
the dynamics of excimers.41 The theoretical methods presented
here could be expanded and adapted to simulate chiral coherent
multidimensional spectra as well. Another interesting avenue to
explore is adding line shape theory to include the effects on
the electronic spectra of intramolecular and intermolecular vibra-
tional modes.42,43 This would be an important advance because
the pigment–pigment and pigment–vibration interactions are of
approximately equal strength in some natural biological molecular
aggregates.
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APPENDIX A: RELATION BETWEEN MAGNETIC
DIPOLE, ELECTRIC QUADRUPOLE, AND ELECTRIC
DIPOLE MOMENTS
1. Magnetic dipole

A key step in the derivations of the CD signals is to trans-
form a magnetic dipole operator into a more useful form, one that
involves an electric dipole operator. Previous authors have derived
or used a quantum-mechanical relation between the two dipole
operators.42–44 Here, we add breadth by providing an accessible
derivation using only classical physics.

We model a molecule as a rigid one-dimensional rod of length
d and assume that the charge density ρ(r, t) and current den-
sity J(r, t) in the rod oscillate at some frequency ω and define
time-independent charge ρ(r) and current J(r) densities as

ρ(r, t) = ρ(r)e−iωt , (A1a)

J(r, t) = J(r)e−iωt. (A1b)

Without loss of generality, in Fig. 4, we assume the current flows lin-
early in the y direction, displaced from the origin by R0 = (x0, y0, z0),
where x0 = y0 = 0, and that the current density—which has some

FIG. 4. Illustration of the rigid rod representing the electric (μ) dipole of a
molecule. For a single dipole, we have the freedom to place the origin such that
the electric dipole is oriented exactly along the y direction displaced up the z axis
with x0 = y0 = 0. One can envision the electric dipole to be tangent to a current
loop in the (y, z) plane, dashed ellipse, and the magnetic field (B) created by the
current. Using the right-hand rule, this yields a magnetic dipole (m) exactly along
the negative x direction.
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distribution along the length of the rod—is bound at the ends and
has zero width in the other two dimensions. The spatial distribution
of the current density has the form

J(r) = J0(y − y0)δ(x − x0)δ(z − z0)̂, (A2)

where J0(y − y0) is any distribution that is bound at ±d/2 and zero
at the end points, and where we denote r = xı̂ + y̂ + zk̂. The charge
density and current density can be related through the continuity
equation

ρ(r) =
1
iω
∇ ⋅ J(r) =

1
iω

∂J0(y − y0)

∂y
δ(x − x0)δ(z − z0). (A3)

The electric dipole moment is given by μ = ∫ rρ(r)d3r. For
this example, the x and z components integrate to zero and the y
component is given by

μy = ∫

+∞

−∞

y
1
iω

∂J0(y − y0)

∂y
δ(x − x0)δ(z − z0)d3r

= −
1
iω ∫

J0(y − y0)dy, (A4)

where the factor of i indicates a phase shift. The magnetic dipole
moment is given by

m =
1
2 ∫

r × Jd3r =
1
2
(x0k̂ − z0 ı̂)∫ J0(y − y0)dy. (A5)

Finally, comparing Eqs. (A4) and (A5) and defining μ = μ̂ yields

m = −
iω
2

R0 × μ. (A6)

The relationship derived in this last step arose from an extrapola-
tion of the example for the conditions indicated in Fig. 4. However,
for a single dipole, we should have the freedom to place and orient
the dipole in any location relative to the origin. Therefore, Eq. (A6)
should be general for all orientations and locations, and indeed it is
equivalent to previous results.44

We can use the classical result in Eq. (A6) to generate the
corresponding dipole operators,

m̂ = m̂η = −
iω
2

μ̂(R0 × n), (A7)

using the orientation vectors η and n defined in Sec. II.

2. Electric quadrupole
In this work, electric quadrupole interactions with the pump

pulse can contribute to the TCD signal, and therefore we use a
model to relate the electric quadrupole operator to the electric dipole
operator and a displacement. This model is appropriate for
molecules with zero net charge and a nonzero electric dipole
moment. Similar to the magnetic dipole moment, the electric
quadrupole moment is dependent on the choice of origin. We
begin with the definition of the electric quadrupole moment in two
coordinate systems where the origin of the r′ coordinate system is

FIG. 5. Illustration of field lines from (left) an electric (μ) dipole and (right) an
origin independent electrical quadrupole (q

ab
) displaced by R0 arbitrarily along

the x axis. While generally the fields are distinct, the two moments produce similar
fields at the origin.

shifted by R0 from the origin of the r coordinate system such that
r(p)

′

= r(p) − R0 as shown in Fig. 5, giving

q̂′ab =
1
2

N

∑
p

q(p)(3r̂(p)
′

a r̂(p)
′

b − (r̂ (p)
′

)
2
δab)

= q̂ab −
3
2
(μ̂aR0,b + μ̂bR0,a) + μ̂ ⋅ R0δab, (A8)

where we have assumed that the net charge on each molecule is zero
and used the definition of the electric dipole moment. For rod-like
molecules with a nonzero electric dipole, a center of dipole exists
where the quadrupole moment is zero.33 We choose the origin of the
r′ coordinate system to sit at that this point, so that the quadrupole
moment can be found in the r coordinate system in terms of the
dipole operator and the displacement,

q̂ab =
3
2
(μ̂aR0,b + μ̂bR0,a) − μ̂ ⋅ R0δab. (A9)

3. Coordinate system independence
While the electric quadrupole moment and magnetic dipole

moment are both dependent on the choice of coordinate system,
the radiated signal field must be independent of the arbitrary choice
of origin in the molecular frame. To this order in the multipole
expansion, the Hamiltonian describing the laser–molecule inter-
action includes both the electric quadrupole and magnetic dipole
interactions. When both contributions are summed, the resulting
Hamiltonian is independent of the choice of coordinate system up
to a term that results from the phase of the laser field. In the calcu-
lated signals, this contributes a dependence only on relative positions
of the molecular sites in an aggregate. Therefore, all final measurable
contributions are independent of the choice of molecular origin. We
confirmed this by performing additional simulations to those shown
in Sec. III with a common origin offset and found that the signals
were identical regardless of the choice of origin.

APPENDIX B: SITE AND DELOCALIZED EXCITATION
BASIS TRANSFORMATIONS

In this work, we treat each molecule—known as a site—as
a two-level electronic system including its ground state, ∣g⟩, and
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its excited state, ∣e⟩. The electric transition-dipole operator for site
ι is given by μ̂ι = μι∣e⟩⟨g∣ + μι∣g⟩⟨e∣, and the total electric transition-
dipole operator in the site basis is given by the tensor sum45,46 of the
electric transition-dipole operator for each site,

μ̂ site =
η
⊕
ι=1

μ̂ι = μ̂1 ⊕ μ̂2 ⊕ ⋅ ⋅ ⋅ ⊕ μ̂η =

η

∑
ι

μ̂ι ⊗
η
⊗
κ≠ι

1̂κ. (B1)

Because this notation may be unfamiliar, we explicitly write the
three-site system operator,

μ̂ site = μ̂1 ⊗ 1̂2 ⊗ 1̂3 + 1̂1 ⊗ μ̂2 ⊗ 1̂3 + 1̂1 ⊗ 1̂2 ⊗ μ̂3. (B2)

The tensor-sum notation allows us to construct a Hilbert space
that includes all possible permutations of the states of the sites.
This notation—where state vectors are an ordered direct-product
basis indicating the state of each site, for example ∣e1⟩ ⊗ ∣g2⟩

= ∣e; g⟩—becomes unwieldy for larger aggregates. Therefore, we
will also work in the delocalized excitation basis, often known
as the exciton basis. The delocalized basis state vectors are
{∣G⟩, ∣E1⟩, . . . , ∣En⟩, ∣F1⟩, . . . , ∣Fk⟩}. The electric dipole operator, the
ground state, and the delocalized excitation states can be written in
the site basis, respectively, as

μ̂ deloc = T̂ −1μ̂ siteT̂ = T̂ −1 η
⊕

α=1
μ̂αT̂, (B3a)

T̂∣G⟩ = ∣ g; g; . . . ; g⟩⟨ g; g; . . . ; g∣ =
η
⊗

κ=1
∣gκ⟩, (B3b)

T̂∣Ej⟩ = c j
1∣e1; g2; g3; . . . ; gη⟩ + c j

2∣g1; e2; g3; . . . ; gη⟩ + ⋅ ⋅ ⋅

+ c j
η∣g1; g2; g3; . . . ; eη⟩

= ∑
γ

c j
γ(∣eγ⟩ ⊗

η
⊗

κ≠γ
∣gκ⟩), (B3c)

T̂∣Fk⟩ = ∑
γ<ϵ

ck
γ,ϵ(∣eγ⟩ ⊗ ∣eϵ⟩ ⊗

η
⊗

δ≠{γ,ϵ}
∣gδ⟩), (B3d)

where we used lowercase Greek symbols to index sites 1 through
η. The interpretation of the single-excitation expression is that
the jth delocalized excitation state is a linear combination of the

site-basis states for which only the γth site is excited, weighted by the
coefficients c j

γ. The inequality in the last expression accounts for the
fact that any individual two-level system cannot be doubly excited
and that the permutation of the two excitations is irrelevant.

Given these definitions, the matrix elements in the delocalized
excitation basis can be written as

⟨G∣μ̂ deloc∣Ej⟩ =
n
⊗

γ=1
⟨gγ∣

n
⊕

α=1
μ̂α∑

ζ
c j

ζ(∣eζ⟩ ⊗
n
⊗

k≠ζ
∣gk⟩)

= ∑
α

c j
α⟨gα∣μ̂α∣eα⟩ (B4)

in the site basis. To arrive at the last line, we used ⟨gi∣μ̂i∣gi⟩ = 0. The
tensor-sum notation can accommodate coupling among an arbitrary
number of sites having arbitrary numbers of excited states.

Analysis of excited-state absorption pathways involve matrix
elements such as ⟨Fk∣μ̂∣Ej⟩, which can be written in the site basis as

⟨Fk∣μ̂∣Ej⟩ = ⟨Fk∣T̂
−1 n
⊕

α=1
μ̂αT̂∣Ej⟩

= (⟨Fk∣T̂
−1
)

n
⊕

α=1
μ̂α(T̂∣Ej⟩)

=
⎛

⎝
∑
γ,ϵ

ck,∗
γ<ϵ(⟨eγ∣ ⊗ ⟨eϵ∣ ⊗

η
⊗

δ≠{γ,ϵ}
⟨gδ ∣)

⎞

⎠

×

η

∑
ι

μ̂ι ⊗
η
⊗
β≠ι

1̂β
⎛

⎝
∑

ζ
c j

ζ(∣eζ⟩ ⊗
η
⊗

κ≠ζ
∣gκ⟩)

⎞

⎠
. (B5)

We next identify that only certain combinations of bras, operators,
and kets will be nonzero. The bra will always have two sites in the
excited state, whereas the ket will only have one site in the excited
state. The index of the site that remains in the excited state has
complete freedom. The index of the site that transitioned from the
excited state to the ground state needs to match the index of the
transition-dipole operator, thereby linking the ζ and γ indices as well
as the ι and ϵ indices, or vice versa. Hence, instead of 4 free indices,
there are really only 2. Importantly, because we assume the sites are
two-level systems, γ ≠ ϵ. Simplification yields

⟨Fk∣μ̂∣Ej⟩ = ∑
γ<ϵ

ck,∗
γ,ϵ c j

γ(⟨eγ∣ ⊗ ⟨eϵ∣ ⊗
η
⊗

δ≠{γ,ϵ}
⟨gδ ∣)μ̂ϵ ⊗

η
⊗

β≠ϵ
1̂β(∣eγ⟩ ⊗

η
⊗

κ≠γ
∣gκ⟩)

+∑
γ<ϵ

ck,∗
γ,ϵ c j

ϵ(⟨eγ∣ ⊗ ⟨eϵ∣ ⊗
η
⊗

δ≠{γ,ϵ}
⟨gδ ∣)μ̂γ ⊗

η
⊗

β≠γ
1̂β(∣eϵ⟩ ⊗

η
⊗

κ≠ϵ
∣gκ⟩)

= ∑
γ<ϵ

ck,∗
γ,ϵ c j

γ(⟨eγ∣ ⊗ ⟨eϵ∣)1̂γ ⊗ μ̂ϵ(∣eγ⟩ ⊗ ∣gϵ⟩) +∑
γ<ϵ

ck,∗
γ,ϵ c j

ϵ(⟨eγ∣ ⊗ ⟨eϵ∣)μ̂γ ⊗ 1̂ϵ(∣gγ⟩ ⊗ ∣eϵ⟩)

= ∑
γ<ϵ

ck,∗
γ,ϵ (c

j
γ⟨eϵ∣μ̂ϵ∣gϵ⟩ + c j

ϵ⟨eγ∣μ̂γ∣gγ⟩), (B6)

where, in the second step, to aid the eye, we removed all notation for the sites that remained in the ground state, and then in the
third step, we suppressed the notation for the site that remained in the excited state. Because of the permutation symmetry of the doubly
excited states, ci,j = cj,i, and hence the expression can be reduced to

⟨Fk∣μ̂∣Ej⟩ = ∑
γ≠ϵ

ck,∗
γ,ϵ c j

γ⟨eϵ∣μ̂ϵ∣gϵ⟩. (B7)
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APPENDIX C: THIRD-ORDER RESPONSE FUNCTIONS

In this appendix, we list all of the third-order response functions for TCD. The first set involves those arising from an interaction between
the probe field and the magnetic dipole,

R(3),abcd
1,μmμμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂c(0)ρ0μ̂d(0)m̂b(T)] SE, Reph, (C1a)

R(3),abcd
2,μmμμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)m̂b(T)ρ0μ̂d(0)μ̂c(0)] GSB, Reph, (C1b)

R(3),abcd
3,μmμμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)m̂b(T)μ̂c(0)ρ0μ̂d(0)] ESA, Reph, (C1c)

R(3),abcd
4,μmμμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂d(0)ρ0μ̂c(0)m̂b(T)] SE,NR, (C1d)

R(3),abcd
5,μmμμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)m̂b(T)μ̂c(0)μ̂d(0)ρ0] GSB, NR, (C1e)

R(3),abcd
6,μmμμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)m̂b(T)μ̂d(0)ρ0μ̂c(0)] ESA, NR, (C1f)

R(3),abcd
1,mμμμ (t; T) = (−

i
h̵
)

3
Tr[m̂a(t + T)μ̂c(0)ρ0μ̂d(0)μ̂b(T)] SE, Reph, (C1g)

R(3),abcd
2,mμμμ (t; T) = (−

i
h̵
)

3
Tr[m̂a(t + T)μ̂b(T)ρ0μ̂d(0)μ̂c(0)] GSB, Reph, (C1h)

R(3),abcd
3,mμμμ (t; T) = −(−

i
h̵
)

3
Tr[m̂a(t + T)μ̂b(T)μ̂c(0)ρ0μ̂d(0)] ESA, Reph, (C1i)

R(3),abcd
4,mμμμ (t; T) = (−

i
h̵
)

3
Tr[m̂a(t + T)μ̂d(0)ρ0μ̂c(0)μ̂b(T)] SE,NR, (C1j)

R(3),abcd
5,mμμμ (t; T) = (−

i
h̵
)

3
Tr[m̂a(t + T)μ̂b(T)μ̂c(0)μ̂d(0)ρ0] GSB, NR, (C1k)

R(3),abcd
6,mμμμ (t; T) = −(−

i
h̵
)

3
Tr[m̂a(t + T)μ̂b(T)μ̂d(0)ρ0μ̂c(0)] ESA, NR. (C1l)

The second set contains terms that involve an interaction between the pump field and the magnetic dipole,

R(3),abcd
1,μμμm (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂c(0)ρ0m̂d(0)μ̂b(T)] SE, Reph, (C2a)

R(3),abcd
2,μμμm (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)ρ0m̂d(0)μ̂c(0)] GSB, Reph, (C2b)

R(3),abcd
3,μμμm (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)μ̂c(0)ρ0m̂d(0)] ESA, Reph, (C2c)

R(3),abcd
4,μμμm (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)m̂d(0)ρ0μ̂c(0)μ̂b(T)] SE,NR, (C2d)

R(3),abcd
5,μμμm (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)μ̂c(0)m̂d(0)ρ0] GSB, NR, (C2e)

R(3),abcd
6,μμμm (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)m̂d(0)ρ0μ̂c(0)] ESA, NR, (C2f)

R(3),abcd
1,μμmμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)m̂c(0)ρ0μ̂d(0)μ̂b(T)] SE, Reph, (C2g)

R(3),abcd
2,μμmμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)ρ0μ̂d(0)m̂c(0)] GSB, Reph, (C2h)

R(3),abcd
3,μμmμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)m̂c(0)ρ0μ̂d(0)] ESA, Reph, (C2i)

R(3),abcd
4,μμmμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂d(0)ρ0m̂c(0)μ̂b(T)] SE,NR, (C2j)
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R(3),abcd
5,μμmμ (t; T) = (−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)m̂c(0)μ̂d(0)ρ0] GSB, NR, (C2k)

R(3),abcd
6,μμmμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)μ̂d(0)ρ0m̂c(0)] ESA, NR. (C2l)

The third set contains terms arising from an interaction between the pump field and the electric quadrupole,

R(3),abcde
1,μμμq (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂c(0)ρ0q̂de(0)μ̂b(T)] SE, Reph, (C3a)

R(3),abcde
2,μμμq (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)ρ0q̂de(0)μ̂c(0)] GSB, Reph, (C3b)

R(3),abcde
3,μμμq (t; T) = +(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)μ̂c(0)ρ0q̂de(0)] ESA, Reph, (C3c)

R(3),abcde
4,μμμq (t; T) = +(−

i
h̵
)

3
Tr[μ̂a(t + T)q̂de(0)ρ0μ̂c(0)μ̂b(T)] SE,NR, (C3d)

R(3),abcde
5,μμμq (t; T) = +(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)μ̂c(0)q̂de(0)ρ0] GSB, NR, (C3e)

R(3),abcde
6,μμμq (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)q̂de(0)ρ0μ̂c(0)] ESA, NR, (C3f)

R(3),abcde
1,μμqμ (t; T) = +(−

i
h̵
)

3
Tr[μ̂a(t + T)q̂cd(0)ρ0μ̂e(0)μ̂b(T)] SE, Reph, (C3g)

R(3),abcde
2,μμqμ (t; T) = +(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)ρ0μ̂e(0)q̂cd(0)] GSB, Reph, (C3h)

R(3),abcde
3,μμqμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)q̂cd(0)ρ0μ̂e(0)] ESA, Reph, (C3i)

R(3),abcde
4,μμqμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂e(0)ρ0q̂cd(0)μ̂b(T)] SE, NR, (C3j)

R(3),abcde
5,μμqμ (t; T) = −(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)q̂cd(0)μ̂e(0)ρ0] GSB, NR, (C3k)

R(3),abcde
6,μμqμ (t; T) = +(−

i
h̵
)

3
Tr[μ̂a(t + T)μ̂b(T)μ̂e(0)ρ0q̂cd(0)] ESA, NR. (C3l)
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