Compression of Biological Networks using a
Genetic Algorithm with Localized Merge

Sheridan Houghten, Angelo Romualdo®, Tyler K. Collins', Joseph Alexander Brown*
fDepartment of Computer Science, Brock University, Ontario, Canada
*Artifical Intelligence in Games Development Lab, Innopolis University, Innopolis, Russia
shoughten @brocku.ca, arl4rk@brocku.ca, tk11br@brocku.ca, j.brown@innopolis.ru

Abstract—Network graphs appear in a number of impor-
tant biological data problems, recording information relating
to protein-protein interactions, gene regulation, transcription
regulation and much more. These graphs are of such a significant
size that they are impossible for a human to understand.
Furthermore, the ever-expanding quantity of such information
means that there are storage issues. To help address these
issues, it is common for applications to compress nodes to form
supernodes of similarly connected components. In previous graph
compression studies it was noted that such supernodes often
contain points from disparate parts of the graph. This study
aims to correct this flaw by only allowing merges to occur
within a local neighbourhood rather than across the entire graph.
This restriction was found to not only produce more meaningful
compressions, but also to reduce the overall distortion created by
the compression for two out of three biological networks studied.

I. INTRODUCTION

Many problems in bioinformatics require the analysis of
huge amounts of data that is stored in the form of a network
and indeed such data is of increasing interest for many bioin-
formatics researchers. Mathematically, networks are generally
referred to as graphs and in this paper we use the two terms
interchangeably.

There are many types of biological networks [3]. Protein-
protein interaction networks record information on interactions
between proteins and have a strong impact on various genetic
diseases [17], [7]. Others include gene regulatory networks and
transcription regulatory networks. The analysis of information
in biological networks is difficult as they generally have a
complex structure and are very large in size. Various statistical
and topological information as to the nature of a given network
may help to provide some insight [2].

One approach to help analyze information in large networks
is compression, which helps to solve the associated storage
issues. In addition, an appropriate compression may help to
simplify the structure and thereby also simplify the analysis.

Graph compression is known to be a special instance of the
Set Partitioning Problem, making the problem of compression
against a known compression ratio NP-Complete [10]. Deter-
ministic algorithms that will provably compress graphs to an
optimum are known, but have an exponential run-time.

A. Graphs and Compression

A graph consists of a set of nodes and a set of edges, where
each edge connects two nodes. A node is incident with an
edge if it is one of the two nodes that the edge connects. Two

nodes are adjacent if they are incident with the same edge;
such nodes are neighbours of each other. The degree of a node
is the number of edges with which it is incident. Information
on the edges of a graph, i.e. its adjacency information, is most
commonly represented by an adjacency matrix or an adjacency
list. A path between two nodes is a sequence of edges that
connect them; the distance between two nodes is the length
of the shortest path between them.

Graphs may be weighted, in which case every edge has
an associated weight, or unweighted, in which case all edges
are assumed to have the same weight. Graphs may also be
directed, in which case edges may only be traversed in one
direction similar to a one-way street, or undirected, in which
case all edges may be traversed in both directions.

The size of a graph is its number of edges while its order
is its number of nodes. Both of these measures have an
impact on the difficulty of using and analyzing the graph.
Whether a graph is dense (has many edges relative to the
number of nodes) or sparse (has relatively few edges) has
an impact on both representation and which algorithms work
well, and going further a myriad of other topological features
and measures also have an effect. A complex network is one
that is considered to have non-trivial topological features, and
many biological networks fall under this category.

There are many different forms of graph compression
schemes [4]. Many algorithms have been proposed for the
problem of summarizing such networks in a logical manner
(see, for example, [16] [20]). The graph compression algorithm
Slashburn [11] permutes graphs into a form that can be more
easily compressed. It relies on the recursive removal of “hub”
nodes (highly-connected internal nodes) to be stored in their
own stand-alone structure, as these are expensive to store
in the adjacency matrix. The authors note that Slashburn is
most effective on graphs that contain multiple hubs which are
recursively connected to larger hubs.

In a hierarchical approach to compression (e.g. [15], [18])
the graph is compressed by merging sets of nodes into
supernodes and edges into superedges. It is this approach
which is used in the current study, by means of a genetic
algorithm (GA) that identifies which nodes should be merged
according to a fitness function that measures the distortion
created by the merges. Only undirected and unweighted graphs
are considered, although the methodology may be adapted for
directed and/or weighted graphs.

.g @ .* \ ©
Fig. 1. Merge between nodes b and ¢ produce the supernode b,c. After

the resulting graph is decompressed there is a new edge between a and c,
highlighted by dashed lines; this is a fake edge.

Fig. 2. Merge between nodes b and c¢ produce the supernode b, c. After
the resulting graph is decompressed there is a new edge between b and d,
highlighted by dashed lines; this is a fake edge.

When graph G is compressed to produce G’ and then
subsequently decompressed to produce G”, a lossless com-
pression method will have G = G”. In contrast, with a lossy
compression method G is only an approximation of G.

Although lossy methods do not recover the original graph
exactly, they may be able to obtain a better compression ratio
than lossless methods. In addition, it has been noted that lossy
methods might help to eliminate “noise” in graphs and thereby
simplify the task of researchers analyzing them [14]. The im-
plication for biological graphs is that lossy methods may filter
out less significant or noisy data, thereby helping researchers
to identify important components and relationships.

Consider the merge of nodes n; and no in the original graph
G to form node ns in compressed graph G’. Then in G’:
ng replaces n; and no; there is an edge (ng,u) for every
edge (n1,u) in G; and there is an edge (ns,v) for every edge
(ng,v) in G. If both ny and ny have edges incident with the
same other node v = v in G then when G’ is decompressed
to form G” these same edges are in G”, just as they are
in G. However when u # v then there will be additional
edges, (n1,v) and (ng,u), in G” that were not in the original
graph G. In addition, conceptually all nodes that are merged
together are seen as a single unit and this forms a clique
when decompressed into G”, so that if (n1, ng) was not in the
original graph G then it is now an edge in G”. All additional
edges that appear in G” but not G are called “fake edges” [6].
Examples of fake edges are shown in Figures 1, 2 and 3. In
each of these figures the original graph G is on the left, the
compressed graph G’ is in the centre, and the decompressed
graph G” is on the right.

In the case of a lossless compression, the number of fake
edges is zero. In the current study the GA has a fitness function
based on the number of fake edges, but it does not directly
attempt to find a lossless compression.

B. Goals and Motivation

The current study is motivated by previous work in [6],
in which compression of biological networks was examined

f @ f
®© @ T o-o-d

Fig. 3. Merges between nodes b, ¢, and d produce the supernode b, ¢, d. After
the resulting graph is decompressed b, ¢ and d form a clique; the edges in
this clique are fake edges and are highlighted by dashed lines.

with two different approaches using genetic algorithms (see
Section II). In the first, a single-objective GA was used that
merged nodes based on a similarity measure of the edges that
those nodes had in common. In the second, a single-objective
GA was used that tracked only the number of fake edges that
would be created by merging nodes; these fake edges are as
defined in Section I-A.

This second approach was flexible and was also extended
to a multi-objective GA that allowed it to be used to establish
a balance between the number of fake edges created while
maximizing compression. However, it was noted that by
concentrating solely on the number of fake edges created by
a merge, sometimes nodes were selected for merge despite
having very little in common with one another. For example,
in an extreme case, two nodes could be a greater distance apart
than any other pair of nodes in the graph, but if each were
incident with only a single edge then merging those nodes
would create a very small number of fake edges. This type of
merge not only seems unnatural, but it also takes away from
any meaning that one might read from the graph.

Essentially, nodes that are nearby are deemed to have
a much stronger relationship than those that are far apart.
Merging nodes that are far apart from one another in the
original graph G creates a situation in which they are now
seen as a unit in the compressed graph G’, and indeed when
G’ is decompressed to form G’ these nodes share an edge.
This implies a strong relationship that is not based on the
original data.

This problematic situation is addressed in the current study
by only allowing nodes to be merged if they are within a
specified distance of one another. Although this significantly
complicates calculations, taking this into account helps to
ensure that the compression is more true to the original data.

C. Organization of Paper

The remainder of this paper is organized as follows. Section
II describes the methodology used, including full details on the
genetic algorithm. Section III describes the three biological
networks examined in the current study. Section IV provides
the results of the study, and Section V provides conclusions
and describes possible future work.

II. METHODOLOGY

Genetic Algorithms (GAs) were developed primarily by
Holland [9]. GAs are population based Evolutionary Algo-
rithms in which a set of candidate solutions known as chro-

mosomes are examined for their ability to solve the problem
via a fitness evaluation. Those with a higher fitness evaluation
score are more likely to move on and be subjected to variation
operators such as crossover and mutation. Crossover applies
a binary operator taking two chromosomes and the notion
of breeding them together to produce children. Mutation is a
unary operation which makes a small change to a chromosome.
After a number of generations in which the population of
chromosomes is subjected to fitness evaluation and variation
operators, the population will move towards higher fitness
areas of the search space.

The current study uses a single-objective genetic algorithm
for which, similarly to [6], fitness is based upon the notion of
fake edges. However, two nodes are considered for merge only
if they are within a given distance of each other. Furthermore,
a more appropriate count of fake edges is used. See Section
II-F for full details on fitness. The approach is applied to three
biological networks, as specified in Section III.

A. Representation

Following the representation in [6], the graph is represented
using an adjacency list and each individual node is represented
by a unique integer value between 0 and N, — 1, where the
original graph has NN, nodes.

The compression ratio C' of a graph measures the proportion
by which the number of nodes in the original graph is reduced
by compression. It is calculated as C' = 1 — %—:, where N,
is as defined above and NN. is the number of nodes in the
compressed graph. In fact the desired compression ratio is
given as an input parameter. Therefore given N, and C, the
number of nodes in the compressed graph is calculated as
N.=N,x(1-0C).

The compressed graph is created from the original graph
using a sequence of N, — N, merges. Each individual merge
is represented by two integer values: the root, which is the
index of the first node to be merged, and the offset, which is
a positive integer used to calculate the index ¢ of the second
node to be merged as ¢ = (root + offset) mod N,. The use of
offset is to ensure a node is not merged with itself, and hence
this must be a positive value.

The chromosome consists of two one-dimensional arrays of
length N, — N,., where corresponding indices in the arrays
each store the root and offset for a single merge as specified
above. For example, to compress a graph with 100 nodes by a
compression ratio of 5% requires 5 merges, with the resulting
graph having 95 nodes. In this case, the chromosome consists
of two arrays each of length 5. See Figure 4 for an example
chromosome. In the given example the following pairs of
nodes will be merged: 22 with (22 + 21) mod 100 = 43, 12
with (12 + 94) mod 100 = 6, 24 with (24 + 12) mod 100 =
36, 71 with (71 + 19) mod 100 = 90, and 20 with (20 + 7)
mod 100 = 27.

B. Initial Population

Each chromosome in the population is a sequence of merges
which must be local in that both nodes to be merged are within

root 22 112|124 |71 | 20
offset | 21 |94 | 12 | 19| 7

Fig. 4. Example Chromosome

root 22 | 12|82 | 71 | 20
offset | 21 [94 |78 | 19 | 7

Fig. 5. Result of Mutation

a specified distance of each other. For each of the N, — N,
merges, the first node is chosen randomly and its index is
stored in the root. Next, a breadth-first search is performed
from that node to find all other nodes within the specified
distance; once these are found, one is chosen at random and
the offset is set accordingly.

C. Selection

Tournament selection is used for selection of the two
parents. For each parent, a separate tournament selection
process occurs: k chromosomes are chosen at random from
the population and evaluated, and then the best selected for
reproduction as a parent. These parents are then subjected
to crossover and mutation based on the settings to create
two child chromosomes. This process repeats to create all
chromosomes for the next generation.

D. Mutation

Mutation is applied simultaneously to both arrays of the
chromosome. Single-point mutation is used, which has the
effect of changing a single merge. The mutation point is a
random value j between 1 and N, — N, the size of the
chromosome. The entry at index j of the root array is changed
to a random value between 0 and N, — 1.

In the previous study [6] the entry at the chosen mutation
point in the offset array was simply changed to a random
value between 1 and N,. This could result in some merges
of nodes that were far apart in the original graph, and is a
situation avoided during mutation in the current study. As
when generating the initial population (see Section II-B), once
the first node has been chosen, the other node is chosen
randomly from among all other nodes within the specified
distance.

Figure 5 shows the result of single-point mutation in the
3rd entry of the chromosome from Figure 4. The result of this
mutation is that the third merge is now between nodes 52 and
(52 4+ 78) mod 100 = 30, while all others stay the same.

E. Crossover

Crossover is applied to both arrays of the chromosome
simultaneously. Two-point crossover is used, with the first
crossover point being a random value between 1 and N, — N,
the size of the chromosome, and the second point being a
random value between the first crossover point and N, — N,.
Figure 7 shows the result of crossover on the pair of chromo-
somes from Figure 6, with the third and fourth entries both
being exchanged between the two chromosomes.

root A |22 |12 | 52| 71|20
offset A | 21 | 94 | 78 | 19| 7

root B 76 | 22| 82 | 15 | 12
offset B | 12 | 57 | 84 | 25 | 79

Fig. 6. Before Crossover

root A |22 12|82 | 15|20
offset A | 21 | 94 | 84 | 25 | 7

root B 76 | 22|52 |71 | 12
offset B | 12 | 57 | 78 | 19 | 79

Fig. 7. After Crossover, with original chromosome A shown in bold

It is to be noted that a sequence of merges may create a
situation in which two nodes will be merged despite being at
a distance higher than allowed, because they have distance less
than or equal to the allowed threshold for some intermediate
node. For example, suppose that node a is distance 10 from
node b and distance 20 from node ¢, while node b is distance
10 from node c. If the maximum distance allowed is 10, then
a and b are allowed to merge into supernode ab, which has
distance 10 from c. Node ab may be subsequently merged with
c to form supernode abc. Crossover may cause this sequence
of merges to change so that ab is in one chromosome and ac
is in another, despite the fact that ¢ and c are at a greater
distance than allowed. In the current study this situation is not
addressed because it is seen as relatively rare, however future
versions should possibly take this into consideration.

F. Fitness Function

The fitness function was initially developed in [19] and [6].
This fitness function counts fake edges, which are those which
do not appear in the original graph G but which do appear in
G", where G” is produced by first compressing G to produce
G’ and then decompressing G’. See Figures 1, 2 and 3 for
examples.

The fitness, which should be minimized, is simply a count
of the number of fake edges created as a result of compression
followed by decompression. The number of fake edges overall
is calculated by tallying the number of fake edges contributed
by each individual merge.

As described in Section I-A, when nodes n; and ns in
original graph G are merged to form node ngs in compressed
graph G’ then for every edge (ni,u) in G there is an edge
(n3,u) in G’ and for every edge (ng,v) in G there is an
edge (ns,v) in G’. This process creates fake edges (n1,v)
and (ng,u) when G’ is decompressed to form G” unless they
already existed in G. Also, G” will contain the edge (n1,n2),
which is also a fake edge if it did not already exist in G.

In the previous studies [19], [6], the number of fake edges
contributed by merging nodes n; and ns simply considered
the exclusive-or of the neighbours of n; and ns. This did not
always take into account fake edges from previous merges that
may have created nq or ng as an intermediate step.

Therefore in the current study we use a more accurate
count that essentially considers each set of nodes that have
been merged together to have created a unit that, when
decompressed, forms a clique. Within that clique, any edges
that were not in the original graph are fake edges. Also, any
node which has an edge to any of the nodes in this clique will
now have an edge to every node in the clique, and all such
extra edges are also fake edges.

III. DATASETS

Compression is of significant importance for biological
networks not only because they are usually very large in size,
but also because compression may help in their analysis: when
the GA chooses to merge nodes, it perceives those nodes
as “similar” because they are relatively close to one another
and create few fake edges when merged. This perception of
similarity may indicate some possible biological relationship
that should be further examined.

In this study we concentrate on the compression of biolog-
ical networks, however the methods may be applied to any
large graph. We use the same biological networks as in [6],
all of which are briefly described below.

A. Yeast transcriptional regulatory network

The first dataset is the yeast transcriptional regulatory
network [12]. No modifications were made to this dataset.
This network contains 690 nodes and 1083 edges, and is the
smallest of the networks examined.

B. E. coli

The second dataset is the gene regulatory network of
Escherichia coli (E. coli) [12]. It was cleaned of all duplicate
links (nodes indicating both activation and inhibition) and all
unknown links, with 5 in total removed. After cleaning, the
final graph consists of 1123 nodes and 2108 edges.

C. Protein-protein interactions

The final dataset, from Figeys, contains human protein-
protein interactions [5]. No modifications were made to this
dataset. The largest of the three networks examined, it contains
2239 nodes and 6452 edges.

IV. RESULTS

This section examines the performance on the datasets
specified in Section III. All test cases listed in Table I were
applied to the problem of compressing each of the three given
biological networks. The high distance test case is intended
primarily as a “sanity check”, as for the type of data being
considered it should result in almost all nodes being allowed
to merge with almost all others; for example, the Figeys dataset
described in Section III-C is known to have a diameter of 10 in
its main cluster [8], meaning that any two nodes in this cluster
are at a distance of at most 10 from each other. The medium
and low distance test cases each examine compression ratios
of 10%, 20% and 25%; these are designed to provide some
preliminary insight as to useful values for maximum distance
across different compression ratios.

TABLE I
TEST CASES APPLIED TO ALL DATASETS

[Compression Ratio | Maximum Distance

0.25 10
0.10
0.20
0.25
0.10
0.20
0.25

[Type
High Distance
Medium Distance

Low Distance

LI LI W[| n| i

TABLE I
EXPERIMENTAL PARAMETERS FOR THE GENETIC ALGORITHM

[Parameter [Value |
Mutation Rate 10%
Crossover Rate 90%
Generations 500
Population Size 100
Tournament Size 5
Number of Elites 1
Number of Runs 5

The experimental parameters for the GA are summarized in
Table II. All of these were determined empirically, and were
applied to all test cases for all datasets. The authors recognize
the small number of runs performed for each test case and
each dataset. This was necessary due to time constraints: the
process of finding local nodes to merge is a bottleneck as it
requires a breadth-first search, which is a slow process that is
repeated a very large number of times. This process is a target
for future improvements, as described in Section V. For the
purpose of this study, it was deemed important to consider a
range of compression ratios and distances.

A. Yeast transcriptional regulatory network

Table III lists the global best fitness obtained for each of
the test cases for the yeast transcriptional regulatory network
described in Section III-A, along with the average for the best
fitness found in each of the runs. Recall that the fitness is a
count of the total number of fake edges created.

This network prior to any compression is shown in Figure
8 and the same network after a compression of 10% using
maximum distance 3 is shown in Figure 9. These visualizations
were both created using GraphStream [1]. In comparing these

TABLE III
RESULTS FOR ALL TEST CASES — YEAST

[Type | Cmp. Ratio [Merges [Max. Dist. | GIb. Best [Avg. Best |
High 0.25 172 10 492 507
Med. 0.10 69 5 75 83

0.20 138 5 275 306
0.25 172 5 455 466
Low 0.10 69 3 60 61
0.20 138 3 161 172
0.25 172 3 262 267

TABLE IV
RESULTS FOR ALL TEST CASES — E.COLI

[Type | Cmp. Ratio | Merges | Max. Dist. | GIb. Best [Avg. Best |
High 0.25 280 10 867 887
Med. 0.10 112 5 173 182

0.20 224 5 591 600
0.25 280 5 882 891
Low 0.10 112 3 114 120
0.20 224 3 412 425
0.25 280 3 654 666
TABLE V

RESULTS FOR ALL TEST CASES — PROTEIN-PROTEIN INTERACTIONS

[Type | Cmp. Ratio | Merges [Max. Dist. | GIb. Best [Avg. Best |
High 0.25 559 10 3074 3137
Med. 0.10 223 5 683 689

0.20 447 5 2092 2108
0.25 559 5 3159 3246
Low 0.10 223 3 636 690
0.20 447 3 2637 2720
0.25 559 3 4295 4505

visualizations it can be seen that the GA has performed many
merges of nodes inside the small “satellite” clusters that are not
part of the main cluster in the original graph: these consist of
2-5 nodes in Figure 8 and create either zero or very few fake
edges when merged into a single node in Figure 9. Although
less easy to see, other merges tend to occur in sections of the
graph that consist of a “hub” node surrounded by “spokes”.
Again, this is sensible from the point of view of minimizing
fake edges, however equally importantly they are also sensible
from the point of view of identifying units that work closely
together in a biological sense. Without requiring only local
merges, the GA struggles to identify such locations and tends
to have worse fitness. This can be seen when comparing 25%
compression across high distance, medium distance and low
distance: for this particular network, the fitness is actually
better when the maximum distance between nodes is lower.

B. E. coli

Table IV lists the global best fitness obtained for each of
the test cases for the E.coli network described in Section
III-B, along with the average for the best fitness found in
each of the runs. As can be seen in this table, there is a
similar trend in that when the maximum distance is lower
the fitness is better, however it is not as pronounced: while
the fitness for maximum distance 3 is always better than the
fitness for maximum distance 5 at the same compression ratio,
the fitness for maximum distance 10 is almost identical to that
for maximum distance 5 at 25% compression. The E.coli graph
is similar in structure to the yeast graph, in that there is one
main cluster with a number of satellite clusters; however, the
satellites are larger on average, so that when merging their
nodes more fake edges are created.

AN

L8

Fig. 8. Yeast transcriptional regulatory network prior to compression. Note the presence of one large main cluster along with several small “satellites”.

C. Protein-protein interactions

Table V lists the global best fitness obtained for each of
the test cases for the protein-protein interactions network
described in Section III-C, along with the average for the
best fitness found in each of the runs. In comparison to the
other graphs studied, this is a very dense network with a large
highly-connected main cluster and relatively few satellites.
This table shows the effect this graph structure has on fitness:
although at 10% compression the best fitness improves slightly
from maximum distance 5 to maximum distance 3, for all other
compression ratios the fitness is worse when the maximum
distance is lower. At 10% compression the GA is able to obtain
a number of low-cost merges from satellites and other sparse
areas of the graph, however after this point it would create
fewer fake edges by merging nodes that are further away,
despite the fact these may be less sensible from a biological
point of view (trying to extract “meaning” from the graph).

D. Comparison to Earlier Study

These results have improved on earlier work [6] for all three
networks. Using a compression ratio of 25%, the previous
study obtained a global best of 644 fake edges for yeast,
1149 for E.coli and 4217 for protein-protein interactions.
Furthermore, as mentioned in Section II-F, the earlier study
did not always account for fake edges from intermediate
steps. This means that numbers from the earlier study would
generally be slightly higher if using the current calculation.

V. CONCLUSION AND FUTURE WORK

The results of this study demonstrate that by only allowing
merges to occur between nodes within a specified distance
of each other, more sensible merges are created. In partic-
ular, nodes that are nearby are much more likely to work
closely together in the biological network, so that when the
compression combines them into a unit, this unit is much
more likely to be meaningful from a biological perspective.

Fig. 9. Yeast transcriptional regulatory network after 10% compression with maximum distance 3. Only the “root” node is shown in a merged node. Note
the concentration on merging the nodes in small connected components that are “satellites” and not in the main cluster.

In addition, such merges in general reduce the overall number
of fake edges created during compression, with the exception
of the highly-connected protein-protein interactions network.
A smaller number of fake edges created by a compression
can be seen as that compression creating less distortion of the
original graph.

Appropriate values for the maximum distance parameter
are key to the success of such a scheme. The current study
considered values of 3 and 5 for maximum distance for a
range of compression ratios, as well as a value of 10 for a
single compression ratio. The concept of allowing only local
merges should be further explored to determine the best values
for maximum distance, noting that the best value will tend to
differ from one graph to another. For example, it would be
worthwhile to consider various metrics such as graph diameter
(the greatest distance between any pair of vertices) to help
select a value for maximum distance. The value may also

depend on the level of compression that is desired.

The three biological networks analyzed in the current study
were chosen primarily due to their use in earlier work [6].
However, in comparison to some other biological networks,
they are still relatively small. For example, the datasets avail-
able from the Stanford Biomedical Network Dataset Collection
[13] range in size from a few hundred nodes to an extreme of
over a billion nodes, and also vary in terms of other topological
features. As was seen in the current study, the structure of
the graph significantly affects the success of the compression.
Therefore, future work should include an examination of a
wider range of biological networks. Additionally, it would be
worthwhile to include support for directed and/or weighted
graphs. Also, although the methodology has been usefully
applied to three types of biological networks, it can also be
applied to others with different features, including those not
in the biological domain.

Recall that although one of the goals of compression is
simply a reduction in size, another goal is to potentially use
the compression to provide information about the data stored
in the graph: if nodes are combined during a merge then what
might one gain from thinking of them as a unit? With respect
to biological networks, the compression could be inspected
to determine if it is possible to interpret any information
from the merges. As noted in Section I-A, the fact that the
compression is lossy may actually help researchers to elimi-
nate “noisy” data in the graph and thereby more easily find
meaningful components and relationships. Comparison of this
methodology to various graph clustering methods, specifically
for the purpose of extracting meaningful information from the
networks, would be a worthwhile endeavour.

It is useful to reflect upon the implications of requiring
only local merges while trying to find a compression that
minimizes the total number of fake edges. The first fitness
measure described in [6] chooses to merge nodes based on a
definition of similarity that includes consideration of whether
the nodes have a neighbour in common. Requiring nodes to
be within a given maximum distance of one another will tend
to often select nodes with a neighbour in common as they are
at most distance two from each other; however, it is a more
general and flexible requirement as it also allows other nearby
nodes to be selected for merge. It is worthwhile investigating
modifying the requirement slightly, so that closer nodes are
chosen with a higher probability than those that are further
away but still within the specified maximum distance.

Another implication of attempting to minimize the number
of fake edges is that there is a tendency for nodes to be selected
if they have a relatively low degree in the original graph, as
such nodes do not have many edges which could contribute to
the creation of fake edges. In other words, the sparse areas of
the graph are more likely to be selected for compression than
the more dense areas, which is an idea employed directly by
Slashburn [11].

Despite the benefits of the methodology as described above,
there is a significant issue with respect to time requirements.
In its current form, the methodology requires that a breadth-
first search be performed each time that all local nodes need
to be identified as possible merge candidates. This operation
occurs many times during evolution and is very expensive.
It should be noted that this operation is highly dependent on
the maximum distance, as when maximum distance is smaller
the breadth-first search to find all nodes within that range will
consider a far smaller number of nodes before stopping. There
are many options to explore that can identify such nodes in
a more efficient manner, including, for example, randomized
search or some level of precomputation.

Finally, it will be important to complete a greater number
of runs, not only for the test cases used in the current study
but also for other settings.

ACKNOWLEDGEMENTS

This research was funded in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

The authors would like to acknowledge the assistance of Avi
Ma’ayan in providing information on the biological datasets
and their sources.

REFERENCES

[1] GraphStream: A Dynamic Graph Library.
project.org/.

[2] Yassen Assenov, Fidel Ramirez, Sven-Eric Schelhorn, Thomas Lengauer,
and Mario Albrecht. Computing topological parameters of biological
networks. Bioinformatics, 24(2):282-284, 2007.

[3] Albert-Ldszl6 Barabasi, Natali Gulbahce, and Joseph Loscalzo. Network
medicine: a network-based approach to human disease. Nature reviews
genetics, 12(1):56, 2011.

[4] M. Besta and T. Hoefler. Survey and taxonomy of lossless graph
compression and space-efficient graph representations. arXiv preprint
arXiv:1806.01799, 2018.

[5] Daniel J B Clarke, Maxim V Kuleshov, Brian M Schilder, Denis
Torre, Mary E Duffy, Alexandra B Keenan, Alexander Lachmann,
Axel S Feldmann, Gregory W Gundersen, Moshe C Silverstein, et al.
expression2kinases (x2k) web: linking expression signatures to upstream
cell signaling networks. Nucleic acids research, 46(W1):W171-W179,
2018.

[6] T.K. Collins, A. Zakirov, J.A. Brown, and S. Houghten. Single-objective
and multi-objective genetic algorithms for compression of biological
networks. In 2017 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pages 1-8, 2017.

[71 Ashkan Entezari Heravi, Koosha Tahmasebipour, and Sheridan
Houghten. Evolutionary computation for disease gene association. In
2015 IEEE Conference on Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB), pages 1-8. IEEE, 2015.

[8] Human Protein: Figeys. http://konect.uni-koblenz.de/networks/maayan-
figeys.

[9] J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press,

Cambridge, MA, USA, 1992.

Robin Lamarche-Perrin, Lionel Tabourier, and Fabien Tarissan.

Information-theoretic Compression of Weighted Graphs. In Poster

session of the MSR-INRIA Join Center Workshop on Networks: Learning,

Information and Complexity, 2016.

Yongsub Lim, U. Kang, and Christos Faloutsos. Slashburn: Graph

compression and mining beyond caveman communities. [EEE Trans.

Knowl. Data Eng., 26(12):3077-3089, 2014.

Avi Ma’ayan, Guillermo A. Cecchi, John Wagner, A. Ravi Rao, Ravi

Iyengar, and Gustavo Stolovitzky. Ordered cyclic motifs contribute to

dynamic stability in biological and engineered networks. Proceedings

of the National Academy of Sciences, 105(49):19235-19240, 2008.

Sagar Maheshwari Marinka Zitnik, Rok Sosi¢ and Jure Leskovec.

BioSNAP Datasets: Stanford biomedical network dataset collection.

http://snap.stanford.edu/biodata, August 2018.

H. Maserrat and J. Pei. Community preserving lossy compression of

social networks. In 2012 IEEE 12th International Conference on Data

Mining, pages 509-518, Dec 2012.

Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph

Summarization with Bounded Error. In SIGMOD, pages 419-432, 2008.

Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and

Hongyan Li. Efficient Topological OLAP on Information Networks.

In DASFAA, pages 389—403, 2011.

Nahid Safari-Alighiarloo, Mohammad Taghizadeh, Mostafa Rezaei-

Tavirani, Bahram Goliaei, and Ali Asghar Peyvandi. Protein-protein

interaction networks (ppi) and complex diseases. Gastroenterology and

Hepatology from bed to bench, 7(1):17, 2014.

Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka.

Compression of weighted graphs. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data

mining, pages 965-973, 2011.

A.N. Zakirov and J.A. Brown. NSGA-II for biological graph compres-

sion. Advanced Studies in Biology, 9(1):1-7, 2017.

Feida Zhu, Zequn Zhang, and Qiang Qu. A direct mining approach to

efficient constrained graph pattern discovery. In SIGMOD, pages 821-

832, 2013.

http://graphstream-

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

