Evolving the Curve
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Abstract—Evolutionary algorithms are used to generate per-
sonal contact networks, modelling human populations, that are
most likely to match a given epidemic profile. The Susceptible-
Infected-Removed (SIR) model is used and also expanded upon
to allow for an extended period of infection, termed the SIIR
model. The networks generated for each of these models are
thoroughly evaluated for their ability to match nine different
epidemic profiles. The addition of the SIIR model showed that
the model of infection has an impact on the networks generated.
For the SIR and SIIR models, these differences were relatively
minor in most cases.

I. INTRODUCTION

This paper focuses on the ability to generate personal
contact networks, representing physical connections between
community members, which satisfy the data about the number
of infections per time period. A personal contact network is
the foundation of an epidemic model in which an epidemic
spreads along the links of the network. This study compares
two models of disease spread, in preparation for incorporat-
ing an asymptomatic state to match the behavior of SARS-
Covid-2. The approach of employing a generative solution
to a test problem is known as graph induction which has a
variety of applications [8], [10], [13]. The representation used
within this paper is known as the Local THADS-N generative
representation; the metric used to evaluate the performance of
a network is epidemic profile matching, introduced in [5]. The
representation is described in detail in Section III.

A. Organization of Paper

The remainder of this paper is organized as follows. Section
II provides background information on graphs and epidemics.
Section III describes the representation. Section IV gives the
experimental design and discusses parameter settings. Section
V presents and discusses results. Section VI presents conclu-
sions and identifies possible directions for future research.

II. BACKGROUND
A. Graph Theory

The personal contact network used in this work is imple-
mented as a combinatorial graph. Individuals are the vertices
of the graph and the connections between individuals edges.
The terms network and graph are used interchangeably within
this paper. A graph G is defined be specifying a set of vertices
V and edges F, denoted G(V, E). An edge is represented as
an unordered pair of vertices {p, ¢}. Only undirected graphs
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are used: infection can pass in either direction. A path from
vertex p to vertex ¢ on graph G is a sequence of edges from
E which connect p and q. The distance from p to q is the
length of the shortest path which connects p and q.

B. The Models of Infection Used

The Susceptible-Infected-Removed (SIR) model of infection
[11] provides a simple model for the simulation of epidemics.
In this model the population is divided into three mutually
exclusive groups: those still able to be infected by the epidemic
are susceptible, those that currently have the epidemic are
infected, and those that were previously infected are removed
(due to immunity or death). An epidemic begins by choosing
one individual within the population to be infected. The
epidemic then spreads probabilistically along edges of the
network. An individual has a probability « of being infected by
each adjacent infected population member, with the probabil-
ities evaluated independently. In the SIR model, the epidemic
disease lasts a single time step within an infected individual.
The current study also allows for the infected stage to last two
time steps, which we term SIIR; conceptually, this relates to
a situation in which an individual is contagious for a longer
length of time, thereby providing them an additional timestep
in which they can infect others. This paper compares graphs
evolved to match epidemic profiles with the SIR and SIIR
models to assess the degree of influence the model has on the
graph that arises. Another reason the SIIR model was chosen
was in preparation for incorporating the SEIR model in which
Exposed individuals have contracted the disease yet are not
infectious; this is akin to the incubation period of a virus.

C. Profile Matching (PM) Problem

Introduced in [5], epidemic profile matching begins with
defined epidemic behavior on a human population to determine
if networks likely to permit similar behavior can be generated.
An epidemic profile is specified by the number of individuals
infected at each time step of an epidemic simulation. There is
no evidence to suggest that a particular network is ideal for
any given epidemic profile, therefore the goal of the epidemic
profile matching (PM) problem is to find networks likely to
generate behavior resembling the profile. The nine profiles
used to test this problem, from [5], are shown in Fig. 1. These
profiles were chosen to allow for comparison to previous work
as well as to provide a range of potential epidemic behaviour.
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Fig. 1. Epidemic profiles representing time step vs. number of infected individuals during that time step.

Fig. 2. Initial graph with 128 vertices on which to apply the string of edge
operations. Each vertex has two edges to the two preceding nodes as well as
two edges to the two proceeding nodes in the ring.

III. THE LocAL THADS-N REPRESENTATION

The Local THADS-N representation is a generative repre-
sentation that creates networks from a starting network through
a series of editing commands that modify the connections
in the network. These are called edge-editing operations. A
generative solution is chosen because it permits the inclusion
of domain information, e.g. a reasonable number of edges,
in the initial graph. Use of a generative representation also
permits search of the space of graphs with a simple linear
structure, the list of editing commands. Examples of other
generative representations are given in [8], [10], [13]. Evidence
of the effectiveness of generative solutions appears in [12]. The
initial graph used in this study, to which edits are applied,
is shown in Fig. 2. This graph was chosen because earlier
research [3], [5] has demonstrated that graphs having vertices
with degree 4-5 are desirable for the test problems. Other work
on network evolution appears in [1]-[4], [6].

A. Edge Operations

Given a graph G(V, E) and the vertices p, ¢, r, and s from
the set V' the existing operations are defined below. Strings
of these operations make up the chromosomes used in the
evolutionary algorithm defined in Section IV-A

« Toggle(p, ¢): If edge {p, ¢} is in E then remove {p, q}

from E, otherwise add {p, ¢} to E.
» Local Toggle(p, ¢, r): If edge {p, ¢} and {¢,r} are in F
then Toggle(p, 7).



Local Toggle(B,F,A)

Local Add(D,E,F)

Local Delete(A,F,B)

Fig. 3. Examples of operators included in the Local THADS-N representation.
The figure shows eight of the nine operations being applied sequentially to
an initial six cycle graph. The operations are applied in reading order such
that the final graph is the result of applying all eight operations. The null
operation is omitted as it does not change the graph.

o Hop(p, g, r): If edge {p, q} and {q,r} are in E and edge
{p,r} is not in E then remove edge {p, ¢} from E and
add edge {p,r} to E.

e Add(p, ¢): If {p,q} is not in E then add {p,q} to E,
otherwise do nothing.

o Local Add(p, g, r): If edge {p,q} and {q,r} are in F
then Add(p, r).

o Delete(p, ¢): If {p, ¢} is in E then remove {p,q} from
E, otherwise do nothing.

o Local Delete(p, g, r): If edge {p,q} and {q,r} are in F
then Delete(p, r).

o Swap(p, ¢, r, s): If {p,q} and {r, s} are the only edges
between p, ¢, r and s then remove {p, ¢} and {r, s} from
E and add {p, s} and {g,r} to E.

e Null(): Do nothing.

IV. EXPERIMENTAL DESIGN
A. Evolutionary Computation

A steady state evolutionary algorithm [15] is used to gen-
erate the solutions, which are strings of edge operations.
All variables with respect to system design were determined
empirically.

A population of 1000 chromosomes is used, each of which
contains a string of 256 Local THADS-N edge operations.
A given string of operations applied to the initial 128-vertex
graph in Fig. 2 produces a candidate solution to the test
problem. The chromosomes are initially generated at random

based upon the probabilities provided to each of the oper-
ations via the program parameters. The chromosomes then
undergo 40,000 mating events with output every 400 events.
Each mating event consists of a round of tournament selec-
tion, crossover and mutation. Tournament selection selects 7
chromosomes at random from the population, evaluates their
fitness and replaces the two chromosomes with the worst
fitness by copies of the two chromosomes with the best
fitness. These two copies then undergo two-point crossover,
and mutation occurs on 1-3 of the operations within that
chromosome, replacing them with new commands chosen by
the same probability distribution. The choice of 1-3 mutations
is randomly determined with each choice being equiprobable.
Finally, fitness is recalculated for the children. After evolution
the candidate solution with the best fitness from the whole
population is saved. The process is repeated 30 times for each
parameter setting (PS), and the entire procedure is repeated on
each of the nine epidemic profiles in Fig. 1.

In order to determine which solutions should be favoured for
evolution the profile matching fitness is calculated by simulat-
ing epidemics on the personal contact networks from [16]. In
each epidemic the vertex with the lowest index, patient zero,
is marked infected and the epidemic is permitted to spread
along edges from vertex to vertex. These epidemics have
probability & = 50% of spreading to susceptible individuals
via edges in the graph; each of these probabilities is calculated
independently. It is important to note that this fitness measure
does not indicate the absolute quality of a network. Instead,
it measures the relative quality of a network, permitting
successive candidate solutions to converge to networks which
are more likely to create epidemics satisfying the problem.

This fitness function determines a solution’s fitness by
simulating 50 epidemics. It compares the number of infected
individuals at each time step of each epidemic with the
expected number of infected individuals in the profile to
be matched, to calculate the sum squared error (SSE) of
a solution. The 50 SSE measurements are then sorted in
increasing order Fy < Es < ... < FE,. This ordering is
used to determine the fitness of a graph G in the form of a
linearly wbgighted sum of the measurements according to fit(G)
= Z?:l 7

As the ZSSEs are sorted, this allows for the fitness function
to be most impacted by those simulated epidemics which
most accurately resemble the known epidemic profile being
considered. In order to provide a fitness value for a network
which can be compared to other networks the fitness is
calculated, without weighting, after execution.

B. An Entropic Pseudometric for Comparing Graphs

One of the major hypotheses under test in this study is
that, within the same epidemic profile, changing the model
of disease spread will cause the graph induction system to
produce substantially different graphs. To document this, we
need a way to compare graphs that is not obfuscated by
the many irrelevant variations in structure. A pseudometric
that has these qualities is the Column-Entropy distance(CE-



TABLE I
THE SETS OF LOCAL THADS-N EDGE OPERATION PROBABILITIES FROM [9] FOR CONSTRUCTING SOLUTIONS USING THE EVOLUTIONARY ALGORITHM
DESCRIBED IN SECTION IV-A

Experiment Toggle Hop Add | Delete Swap | L-Toggle | L-Add | L-Delete Null
PS1 0.2528 | 0.0142 | 0.0087 | 0.2138 | 0.0021 0.2267 | 0.2228 0.0079 | 0.0509
PS2 0.0056 | 0.0016 | 0.0133 | 0.0032 | 0.0272 0.0177 | 0.8115 0.0214 | 0.0985
PS3 0.2713 | 0.0041 | 0.0133 | 0.0129 | 0.0311 0.0446 | 0.5675 0.0068 | 0.0484
PS4 0.0044 | 0.0419 | 0.0082 | 0.0149 | 0.0135 0.3141 | 0.5054 0.0366 | 0.0611
PS5 0.0090 | 0.0002 | 0.3233 | 0.0183 | 0.0020 0.0128 | 0.4968 0.0249 | 0.1128
PS6 0.4925 | 0.0061 | 0.0120 | 0.0517 | 0.0083 0.0052 | 0.2846 0.0127 | 0.1268
PS7 0.0197 | 0.0795 | 0.7238 | 0.0001 | 0.0481 0.0175 | 0.0393 0.0038 | 0.0684
PS8 0.0084 | 0.0159 | 0.0323 | 0.0172 | 0.0021 0.0046 | 0.4702 0.3775 | 0.0718
distance) [14]. Computation is based on the simulated dif- TABLE II

fusion of a collection of different gasses, one per vertex,
with absorption of all gasses present taking place at a low
rate at each vertex. This process converges rapidly as gas is
added arithmetically but decays exponentially via absorption.
The result is a matrix, with rows indexed by vertices and
columns indexed by gasses, giving the amount of each gas
at each vertex. Columns are normalized to sum to one and
then the entropy of each column is computed, yielding an
entropy vector for the network. The entropy associated with
a column represents the evenness of distribution of other
nodes as destinations of random walks beginning at the node
indexing the column. Entropies are then sorted into decreasing
order to create sorted entropy vector for a network. The
CE-distance between two networks is the Euclidean distance
between their sorted entropy vectors. The sorting step is a
fast method of approximating correspondence between nodes
in the two networks. A more detailed explanation of this,
and other pseudometrics on networks, appears in [14]. A
pseudometric is a distance measure with the property that two
dissimilar objects can be at distance zero from one another —
something that did not occur in practice in this study, meaning
that the CE-distance is functionally a metric in this study.

V. RESULTS AND DISCUSSION

Taking the network with best (lowest) fitness from each run
of the evolutionary algorithm results in 30 graphs for each
(parameter setting, profile) pair. These were used to generate
box and whisker plots of the profile matching fitness on the
nine profiles using the SIIR model of infection, shown in
Figure 4. Additionally, results from previous work using the
SIR model of infection are included [9] to investigate the
impact of increasing the infectious period of an epidemic.
It is clear that the fitness values achieved remain consistent
between the SIR and SIIR epidemic models. The confidence
intervals achieved by both models overlap, with the parameter
settings having similar impacts on performance regardless of
the model chosen. This demonstrates that the addition of the
SIIR model does not have a tangible impact on the overall
fitness of the networks generated. However, although the
fitness values are similar other differences can exist within the
networks, which will be investigated in the following sections.

THE PARAMETER SETTING WITH THE LOWEST (BEST) MEAN FITNESS
ACROSS 30 RUNS FOR EACH PROFILE AND MODEL OF INFECTION USED.

Profile | SIR Best | SIR Mean | SIIR Best | SIIR Mean
1 PS3 7.7314 PS2 7.7023
2 PS3 9.8480 PS3 9.8514
3 PS3 8.7472 PS3 8.7454
4 PS3 7.7277 PS3 7.7803
5 PS2 9.6765 PS2 9.5650
6 PS2 8.5336 PS2 8.4512
7 PS2 9.9484 PS2 9.8524
8 PS7 7.1829 PS7 7.1637
9 PS2 7.3203 PS2 7.3143

A. Graph Visualizations

To investigate the impact of the SIIR model on the networks
generated, visualizations of the graphs were created. The
network with best (lowest) fitness from the parameter setting
with the lowest mean fitness is chosen from each of the
epidemic models studied. See Table II for the parameter
settings and mean fitness corresponding to the visualizations
being compared. To aid in analyzing the differences between
networks the nodes were coloured as follows: patient zero is
red, nodes 1-31 are cyan, nodes 32-63 are orange, nodes 64-95
are yellow, and nodes 96-127 are green. Visuals for profiles
2, 4, and 6 are provided respectively in Figures 5, 6, and 7.

Looking at these visualizations there seem to be clear dif-
ferences between the networks on the two models of infection.
For profile 2 the SIR model results in significant intermixing of
the four node colours throughout the network. The SIR model
also retains a lot of the chain in the initial network from Figure
2, most notably with the green nodes at the top left and cyan
nodes at the bottom right. In contrast the SIIR model results in
much less intermingling of the four colours with four distinct
clusters remaining intact in the evolved network while much
of the chain structure is lost.

The retained chain structure is a feature of both networks
generated on profile 4 in Figure 6, although the location of
the chain within the resultant network is different between
models. The SIR model contains distinct chains in the blue
and orange nodes, while the SIIR model features chains in
the yellow and orange nodes. Flipping one of the networks
reveals that the overall structure of the network is similar,
with the non-chain section of the network resembling a large
well connected cluster of all node colours and patient zero.
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Fig. 4. Box and whisker plots of the profile matching fitness achieved on 30 runs of the evolutionary algorithm using the SIR and SIIR epidemic models.

The eight columns correspond to the eight parameter settings with the left box
each column.

The networks generated using profile 6 in Figure 7 feature
large sections of the initial structure of the network. The SIR
model is made almost entirely of the chain structures with most
of the orange, yellow and green nodes being part of the chain.
The SIIR network also has large sections of the chain retained
for green, blue, and orange nodes, although less notably than in
the SIR model. Also, the SIIR model allows for more mingling
between nodes of different colours than the SIR model.

The differences between networks generated using different
models of infection are similar for the remaining profiles,
although the changes are not as stark as for the networks from
the above profiles. A more thorough investigation is necessary
to gain insight into the patterns that exist on the plethora of
networks generated in this study.

B. An Entropic Pseudometric for Comparing Graphs

The final structure of the networks generated can fluctuate
based on the various parameter settings, profiles and epidemic
models used within the study. Therefore the column entropy
distance is computed in a pair-wise manner to determine the

plotting the fitness using the SIR model, and the right the SIIR model within

distance between any pair of networks. The network used to
compute this value for any given system configuration is the
network which achieved the best fitness across the runs. These
values were used to generate heat maps of the column entropy
distance between and within the two epidemic models; see
Figure 8. Dark blue represents a difference of zero while bright
yellow indicates a high distance.

The first heat map compares the 72 networks generated
using the SIR model with the 72 generated using the SIIR
model. Different patterns emerge across system configurations.
The top-left quadrant demonstrates that the networks are
somewhat impacted by the epidemic model being used, with
some cells being darker blue and others approaching the
median value. In contrast the center, specifically comparing
profile 5 to 7 across models, features networks with minimal
column entropy distance. Furthermore, profile 8 and 9 are the
brightest rows/columns revealing the large variability between
the networks realized under the two models. Most notably,
profile 9 under SIR results in networks furthest from those
generated using SIIR on profile 8, with this section of the



(b) SIIR on Profile 2

Fig. 5. The visualization of the graph with lowest fitness on profile 2 generated
under the specified model of infection. See Table II for parameter setting and
fitness values.
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(b) SIIR on Profile 4

Fig. 6. The visualization of the graph with lowest fitness on profile 4 generated
under the specified model of infection. See Table II for parameter setting and
fitness values.

(b) SIIR on Profile 6

Fig. 7. The visualization of the graph with lowest fitness on profile 6 generated
under the specified model of infection. See Table II for parameter setting and
fitness values.

map being brightest.

The second heat map compares networks generated using
the SIR model with themselves, and the third map does this
for the SIIR model. The patterns from the first heat map
are largely apparent in these maps as well with only slight
variations. This provides evidence that the networks generated
are dominated by the profile and to a lesser degree the param-
eter setting being used to select edge operations. Therefore,
the variable having the least impact is in fact the model of
infection chosen, although small variations exist between the
maps. Under the SIR model the top-left quadrant demonstrates
less variability between networks from settings on profiles 1-
4. The center of the map is noticeably brighter than the first
figure, meaning that the distance between networks generated
within the SIR environment actually differ more than those
between the models, an unexpected result.

The final heat map is the brightest of the three. This means
that the networks created using the SIIR epidemic actually
differ more from each other than from those generated using
the SIR model. Once again the most significant variations
exist for the networks created using profile 8 and 9. These
profiles are comprised of epidemic curves that are heavily



weighted towards the start of an outbreak. This would favour
sporadic epidemic behaviour in which the outcome of the
epidemic depends heavily on where and how quickly the virus
spreads in the first few time steps. This likely contributes to the
variability between networks observed in the heat map. The
rows and columns that are coloured almost entirely yellow
and green in profile 5 and 7 under PS7 are due to the
reliance on the add operation within that parameter setting.
This causes the epidemics to quickly spread and infect the
entirety of a population early on. However, these profiles
feature a significant portion of their infections later in the
outbreak so the fitness is impacted significantly, leading to
the large column entropy distance.

C. SIR on SIIR, etc. Epidemic Profiles

The final method of comparison between the epidemic
models involves the epidemic profiles or epidemic curve that
result from simulating an epidemic. The network with the
lowest mean fitness, across all parameter settings, is used
for each epidemic model. This provides two networks per
epidemic profile. On each of the networks 500 SIR and 500
SIIR epidemics are simulated; the SIR and SIIR epidemic with
lowest fitness for each model is then plotted against the profile
being evolved to. This plot is available for profile 1 in Figure
9. The networks generated using the SIR model result in
curves which most closely resemble the profile being evolved
to, irrespective of the type of epidemic being actualized.
Although, the network that came from the SIIR model results
in two epidemics which overshoot the epidemic curve but in
a similar manner. The SIIR epidemic provides a steeper and
taller curve than the SIR epidemic’s more jagged and delayed
peak. This is likely because the increased infection length
allows for greater and faster spread of the epidemic.

VI. CONCLUSIONS AND FUTURE WORK

The addition of the SIIR model of infection was hypothe-
sized to result in differences in the networks generated using
the system described above. This addition did provide evidence
that the model of infection has an impact on the networks
generated though the differences are minor in the majority of
cases. The algorithm was able to adapt to the SIIR model by
matching the fitness achieved by the SIR model in all cases.
The visualizations of the networks generated demonstrate that
differences in structure are present based on the model used.
This structure allows for two different epidemic models to
generate the same epidemic curve on their respective network,
as shown in Figure 9. Lastly, the column entropy distance heat
maps revealed that the profile, parameter setting, as well as the
epidemic model all contribute to the networks generated and
fitness achieved, although the profile and parameter setting
cause the majority of the fluctuation when compared to the
model of infection being deployed.

A key limitation of this system is the size of the personal
contact networks that can be generated before evolution be-
comes too costly to be practical. Networks with 128 nodes
can model small communities while simulating an epidemic

Column Entropy Distance Between Epidemic Models
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Fig. 8. Heatmaps of column entropy distance between graphs generated using
the specified epidemic profile and model of infection. Each profile consists
of eight vectors representing results from each of the parameter settings on
that profile.
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Fig. 9. Number of infected individuals per time step for simulated epidemics
on networks generated using the evolutionary algorithm from Section III-A
using profile 1. The network with lowest mean fitness evolved using each
epidemic model of infection was used to simulate 500 SIR and 500 SIIR
epidemics. The epidemic with best fitness is shown.

between communities as part of a personal contact network
resembling a city, province, or country. This would also allow
for smoother epidemic curves as the network would more
closely resemble real world networks with physical and social
distance between members of the population, a situation that is
not possible with 128 nodes. Moreover, the epidemic curves
released by public health professionals often feature rolling
averages to handle sporadic epidemic behaviour that changes
day-by-day. Larger networks, permitting longer epidemics,
would allow for smoother epidemic curves than those realized
within this study.

The inclusion of the SIIR model is the first of many pos-
sibilities when it comes to exploring more complex epidemic
models. A further increase to the length of infectability, such
as in [7], along with the inclusion of a presymptomatic or
asymptomatic state to the model are also possible. More re-
search should be conducted into potential patterns between the
ability of a parameter setting to generate successful networks
within various epidemic environments. This relates closely
to the continued goal of reducing the complexity of the
evolutionary algorithm utilized within this paper to allow for
better scalability.

Other modifications could include expansions to the epi-
demic models used here. For example, the graphs could
use directed edges, or the probability of infection could be
modelled by using weighted edges. Future work would also
benefit from exploring different values for o or replacing a
single value with a probability distribution to better resemble
real-world virus infectability. Additionally, exploring different
initial graphs and their impact on performance could provide
new insights and increase the robustness of the software.
The personal contact networks from particular countries or
communities will undoubtedly have some variation and the
software will need to handle this variation. Furthermore, the

representation can be applied to new graph-evolution problems
which may solve problems in new and interesting domains.
Lastly, this model could be tested against real-world data
sets from SARS-Covid-2, historical epidemics or outbreaks
on campuses, in hospitals or between communities for which
data has been recorded and is available. Endless possibilities
exist for the expansion of this generative representation.
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