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Abstract—Parkinson’s disease is a neurodegenerative disease
that affects close to 10 million with various symptoms including
tremors and changes in gait. Observing differences or changes in
an individual’s manifestations of gait may provide a mechanism
to identify Parkinson’s disease and understand specific changes.

In this study, timeseries data from both Control subjects
and Parkinson’s disease patients was modelled with symbolic
regression and extreme gradient boosting.

Model effectiveness was analyzed along with the differences
in the models between modelling strategies, between Control
subjects and Parkinson’s disease patients, and between normal
walking and walking while under a cognitive load. Both modelling
strategies were found to effective. The symbolic regression models
were more easily interpreted, while extreme gradient boosting
had higher overall accuracy. Interpretation of the models iden-
tified certain characteristics that distinguished Control subjects
from Parkinson’s disease patients and normal walking conditions
from walking while under a cognitive load.

Index Terms—Cognitive Load; Gait; Genetic Programming;
Parkinson’s Disease; Symbolic Regression; Time series; XGBoost.

I. INTRODUCTION

Parkinson’s disease (PD) affects approximately 10 million
people globally with neurodegenerative effects [3]. Symptoms
including tremors, depression, hallucinations, cognitive de-
cline, falls, and changes in gait [17]. Gait has been used as
a primary diagnosis factor as the disease affects the rhythm,
speed, and stride [4], [5], [10], [18], [23].

There are problems with gait being used as a diagnostic
tool, namely symptom similarity with other disorders [16],
[6], [2], [15] and the creation and maintenance of a clear data-
driven record. Observational diaries, while a popular method
to record symptom frequency and effects, are subjective,
inconsistent, and error prone; objective recording methods
should be preferred for data collection and monitoring [11].

The cognitive load that a person is under during the act
of walking can affect how an individual walks (however,
some mental actions, such as singing, have been found to PD
symptoms that affect gait [8]). The data set used in this study
reflects subjects under a cognitive load, and therefore is more
reflective of gait outside of a laboratory setting [23].

This study builds upon previous work studying different
modelling techniques for PD patient gait data [13], [14]. In
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this study the focus is on two of the more effective and ex-
plainable modelling techniques, namely, Symbolic Regression
and Extreme Gradient Boosting. These are explainable both in
terms of how the models are generated and the explainability
of the resulting models. As in previous work, we compare
the models generated for Control subjects and PD patients.
However, unlike previous work, we also include a comparison
of models generated from data recorded from subjects walking
normally and while under a cognitive load. As a result, a
deeper analysis into model effectiveness is performed along
with a much deeper analysis of model feature importance.

Details on the data used in this study are presented in
Section II and a summary of the algorithms and methodology
can be found in Section III. A summary of the effectiveness
of the generated models, an analysis of feature importance
within the models, and the differences between Control and
PD patients and normal and cognitive load walking models
are presented in Section IV. Section V discusses the main
conclusions and presents possible future directions for the
long-term project.

II. DATA

Data was obtained from PhysioNet, an open access collec-
tion of various physiologic data [7]. We use data from the Gait
in Parkinson’s Disease project [9], which contains data from
a collection of studies on PD gait [23], [10], [4], [5].

For all studies, ground force throughout the foot was mea-
sures in Newtons with an Ultraflex Computer Dyno Graphy
device with 8 sensors placed under each foot (refer to Figure 1
for the approximate sensor locations). Subjects were instructed
to walk at a self-selected pace on level ground and data was
recorded for 2min at a frequency of 100Hz for a total of
12,000 time points per recording.

For this particular study we focus on the data from Yogev et
al. [23] as it is the only project from PhysioNet that contains
two recordings for some subjects — one recording of a subject
walking normally, and a second recording of a subject walking
while under a cognitive load (a serial-7s subtraction task').
Of the data recorded from this study that we obtained, there
are a total of six Control subjects (2 male, 4 female) and 21
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Fig. 1. Positions of the force sensors/devices placed on the soles of the
subject’s feet. Sensors/devices labeled with L are on the left foot and those
with an R are on the right foot [13].

PD patients (17 male, 4 female) that performed both walking
experiments (27 unique subjects and 54 total recordings).

It should be noted that some issues arise from this dataset as
a result of the uneven number of male and female subjects and
the small number of Control subjects. Throughout the paper
we are careful to emphasize the constraints imposed by the
dataset and its impact on statistical significance. Despite the
limitations, we demonstrate the effectiveness of our pipeline
and observe several trends. When additional data is available,
further analysis can be performed which may be used to
confirm and expand upon trends seen in the current data.

A. Preprocessing

Minimal preprocessing was done to the data. All data was
z-score normalized (standard score) to make model general-
ization easier as the data may not have been scaled in any
meaningful way. Each recording included aggregate values
from all sensors on each foot, which were removed from
the data before modelling. Lastly, each 2min recording was
divided into five equal parts of 24s (2,400 time points). This
was done to reduce modelling runtimes and to provide unseen
data for simple testing. One subject’s recording was slightly
less than 2min, however their data was still divided into five
equal parts that came out to less than 24s each.

After all preprocessing, a total of 270 sets of data were
produced (27 subjects total, two experiments per subject, five
sets for each).

B. Data Terminology

Within this work we refer to different levels/resolutions of
data with specific names. For each subject, we divided the
recordings into five sets. We also refer to the normal walking
and walking while under a cognitive load as the experiment
sets. We use the word cohort to refer to a collection of
the same type of subjects (Control subjects or PD patients),
regardless of their experiment set. Table I summarizes how

TABLE I
EXPLANATION OF COHORT AND EXPERIMENT SETS

Label
Control x Normal

Meaning

Control subjects walking under
normal conditions

Control subjects walking under
cognitive load

Control x Cog

PD x Normal PD patients walking under
normal conditions
PD x Cog PD patients walking under

normal conditions

each cohort’s experiment sets are labelled throughout this
paper.
ITII. ALGORITHMS AND METHODOLOGY

Since we are performing regression analysis, we are looking
to find some function § = f(X), where § is some predictor
for a dependent variable y. In our case, we use sensor Rg
(very front of the right foot) as our dependent variable and all
other sensors are the independent variables (X). The choice
of Rg was arbitrary.

Although we are generating a predictor, it should be noted
that the motivation for this regression analysis is not truly
prediction, but to build a temporarily independent symbolic
model that describes how the sensors relate to one another as
their values change. The resulting models can then be analyzed
to gain insight about the underlying system. If the generated
models are representative of the underlying system, then they
should also be effective predictors. But it is to be noted that
the true goal of the study is to generate models that will enable
understanding of the system. Further, we use the error between
the predicted and expected values as our measure of model
accuracy. Overall this difference may seem subtle, but the
difference is emphasized to frame the motivation for creating
these models.

Unlike previous work [13], [14], we do not include a
comparison to Ordinary Least Squares (OLS) and Least Ab-
solute Shrinkage and Selection Operator (LASSO) regression.
Although these regression techniques are capable of producing
high-quality results that are the easiest to understand, we
excluded them as they performed the worst of all modelling
techniques in previous work and were limited to only linear
models. Further, although Artificial Neural Network models
were generated for this phase of the project, they were
excluded from the analysis here since they not only performed
worse than XGBoost but also are much less explainable than
both SR and XGBoost. The authors suspect this is a conse-
quence of the minimal amount of data currently available.

A. Genetic Programming Implementation

A custom built Genetic Programming (GP) system was used
for Symbolic Regression (SR) [12]. The system was based
on one designed by Schmidt er al. [22], which incorporates
improvements for SR. These improvements include an acyclic



TABLE II
GP SYSTEM PARAMETERS.
Elitism 1 (Single top candidate solution)
Population 101
Subpopulations 7
Generations 100,000 (1,000 per migration)
Migrations 100
Crossover 80%
Mutation 10% (x2 chances)
Fitness Metric Mean Squared Error: 157 (5; — v;)?
Language +, — %, /, exp, abs, sin, cos, tan
Max # Graph Nodes 64
Predictors 10
Predictor Pop. Size 10% of whole dataset
Trainers 8

graph representation [19] and fitness predictors [21], [20].
Briefly, the acyclic graph representation is useful for SR as
it provides a lightweight encoding, scales well, avoids bloat,
and allows the search to reuse subexpressions. The fitness pre-
dictors reduce the cost of fitness evaluation by approximating
the local search gradient by fitting to a small subset of data.
Further, the subset changes through evolution which provides
a mechanism to prevent overfitting and to focus the search on
areas that need more improvement. For more information on
these improvements, please see their respective sources.

The settings used for the GP system are the same as those
used in previous work [13], [14]. These settings can be found
in Table II. These values were determined empirically over
multiple studies on modelling human gait. One point crossover
and single point mutation were used as the genetic operators.
Given the stochastic nature of GP, 50 models were generated
for each set of data from each subject. This was done to
improve the likelihood of generating more high-quality models
(although, nearly all models generated were effective), to allow
for an analysis of feature importance (see Section IV-B), and to
improve the statistical analysis. From the 50 resulting models
for each set, no significant model selection strategy was done
other than the naive approach of simply selecting the model
with the lowest fraining error.

B. Extreme Gradient Boosting

XGBoost is a popular machine learning algorithm that
generates an ensemble of gradient boosted decision trees [1].
We use the Python implementation provided by Chen er al.
[1] in this work. The algorithm scales reasonably well and
can produce models quickly, especially when compared to
SR. Although the models generated by XGBoost are not as
interpretable as a closed form mathematical expression like
those generated by SR, one can still analyze the resulting
XGBoost models relatively easily.

The same XGBoost settings used in the previous work
studying PD patient gait were used here [14]. Each model
was created with 200 trees (estimators), a learning rate of
0.05, training ratio of 0.75 (subsample), a subsample ratio
of features used when building trees of 1 (colsample), and

a maximum tree depth of 5. These values were determined
empirically and produced high-quality results.

Since each regression of XGBoost would typically produce
the same model, only one model was generated for each set
of data for a total of 270 models.

IV. RESULTS AND DISCUSSION
A. Model Quality

Table III presents summary statistics of the model effective-
ness on various groupings of data. The groupings correspond
to median model effectiveness when applied to the data the
models were fit to (Training), unseen data from the same
subject (Testing), all data from the same cohort and experiment
set (Cohort), and all data from the same cohort, but alternative
experiment set (Other) — for example, if models were fit to
Control subjects walking normally, then for Other, the errors
are those obtained when applying those models to data from
Control subjects walking while under a cognitive load. Since
the number of samples for the Control subjects was small, and
we do not assume normality, we use median and interquartile
range. The table includes a p-Value obtained by a Mann-
Whitney U test comparing the distribution of errors obtained
for the Cohort set against the Other set.

Figure 2 shows a collection of p-Value matrices comparing
the distributions of error values obtained from the different
cohorts, experiment sets, and modelling algorithms over the
various groupings of data (Training, Testing, Cohort, and
Other) presented in Table III; each matrix corresponds to a
single row from Table 2. All p-Values were obtained with a
Mann-Whitney U test.

The first and most obvious observation is that, regardless
of the modelling strategy, as the generality of the groupings
increases (Training to Testing to Cohort), the error values
also increase. Given the amount of increase there are signs
of overfitting the training data, however this is not atypical
in terms of expectations and the error values on all sets are
reasonable.

Table III shows that the XGBoost models performed much
better than the models generated with SR. When referring to
the p-Values in Figure 2 it can be seen that there is always
a significant difference between the SR and XGBoost model
performances, with the exception of SR models on Control
x Normal versus XGBoost models on Control x Cog. It is
noteworthy that in all other cases the XGBoost models on
the PD x Cog data performed significantly better than the
SR models on the more consistent Control x Normal data. In
other words, XGBoost performed so well that it was capable
of fitting data from the more inconsistent PD x Cog data better
than SR fit the most consistent data, namely Control x Normal.

In a number of cases the SR models fit the PD data better
(for both normal walking and cognitive load) than the Control
subjects. This is not what one would expect since PD data
should be more inconsistent, however the authors suspect this
is a consequence of the small sample size of Control subjects.
Further, this phenomenon is less noticeable for the XGBoost
models and as the number of samples in the groupings being



TABLE III

MEDIAN MEAN ABSOLUTE ERROR VALUES WITH INTERQUARTILE RANGE FOR THE FOUR EXPERIMENT SETS.

| SR | SR (Cog) | XGBoost | XGBoost (Cog) |

Control  Train 0.125 (£ 0.016) 0.120 (&£ 0.035) 0.024 (£ 0.006) 0.021 (£ 0.013)
Test 0.138 (£ 0.036) 0.149 (£ 0.064) 0.080 (£ 0.028) 0.091 (£ 0.063)
Cohort 0.344 (£ 0.267) 0.407 (£ 0.250) 0.293 (£ 0.166) 0.360 (£ 0.168)
Other 0373 (£ 0.203) 0.403 (£ 0.265) 0.340 (£ 0.157) 0.330 (£ 0.177)
p-Value 1.0143 % 102 1.512 % 101 3.504 % 10— 13 1.354 % 10— %

PD Train 0.111 (£ 0.044) | 0.112 (£ 0.033) | 0.023 (£ 0.006) | 0.023 (£ 0.007)
Test 0.137 (£ 0.062) 0.136 (£ 0.048) 0.082 (£ 0.039) 0.073 (£ 0.028)
Cohort 0.357 (£ 0.196) 0.392 (£ 0.210) 0.324 (£ 0.149) 0.345 (£ 0.161)
Other 0.385 (£ 0.199) 0.380 (&£ 0.209) 0.337 (£ 0.162) 0.342 (£ 0.153)
p-Value 1.446—3° 9.078 x 10— 13 1.619 % 1024V 1.648 « 10— 2
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Fig. 2. Matrices of probability values obtained with a Mann-Whitney U test comparing the distributions of error values for various collections of data.

analyzed increases (for example, there are more Cohort data
points than Training data points).

One particularly interesting observation from Table III is
that if one takes models fit to subjects walking normally,
either Control or PD patients, regardless of the modelling
algorithm, they performed significantly worse when applied
to data recorded from the same subjects when walking while
under a cognitive load. This is reasonable as one would expect
the data recorded while subjects were under a cognitive load
to be more inconsistent, which would lead to more errors.

Conversely, if one takes models fit to subjects when walking
while under a cognitive load, either Control or PD patients,
regardless of modelling strategy, they perform better when
applied to data recorded from the same subjects when walking

normally. These improvements were significant in all cases
except for the SR models of Control x Cog data (p-Value
of 0.15). The improved results are still far off the error
values obtained when using models fit to normal walking data,
however these results suggest that even the models fit to the
less consistent cognitive load data are still high quality and
can fit the less noisy normal walking data.

When focusing on Figure 2 we can see that there is
effectively no difference between the training errors of the
normal walking and cognitive load data regardless of mod-
elling strategy and whether they were Control or PD patients.
This is reasonable since all modelling strategies are known to
be effective and there is no consideration for generalizability



for the training results.

For the PD data there was similarity between the distribution
of testing errors obtained for normal walking and cognitive
load data for the SR models.

As already discussed for the Cohort grouping, there was a
similarity between the errors obtained by the SR models for
the Control x Normal data and the XGBoost models for the
Control x Cog data. In most cases the XGBoost models fit
the less consistent cognitive load data significantly better than
SR was able to fit the more consistent Control x Normal data.
This demonstrates how effective XGBoost is with this data.

For the Other grouping there were similarities between the
distributions of the XBoost models’ errors for both sets of
data on both the Control and PD data. Again, this shows how
effective XGBoost is at fitting the data and generalizing well
to unseen data that was recorded under different parameters
(normal walking vs. cognitive load walking).

Figure 3 presents the median MAE values obtained when
a given subject’s model (column) was applied to data from a
specific subject (row). Note the relationships between Figure 3
and Table III: The Test row from Table III corresponds to the
diagonals in Figure 3, the Cohort row corresponds to the four
segments along the diagonal, and the Other row corresponds
to the adjacent segment vertically. For example, the top left
square labelled Con vs. Con is the Cohort group, and the cell
immediately below (Con (Cog) vs. Con) is when the models
fit Control x Normal data were applied to Control x Cog data
(Other row).

Figure 3 provides a proxy view of subject data similarity.
For example, if a model fit to a specific subject is capable
of fitting data from a different subject reasonably well (and
vice versa), then perhaps physical manifestations of walking
are similar for those two subjects. Despite the fact that these
models are proxies, there are a number of observations within
Figure 3 that match expectations.

Although there is a small sample size for Control subjects,
there is a clear difference in the error values between Control
subjects’ and PD patient data, regardless of experiment set
(normal or cognitive load). The four top left squares, corre-
sponding to the Control subject models applied to Control
subject data, are much darker (smaller error values) than the
top right four rectangles (PD patient models applied to Control
data) and the bottom left four rectangles (Control subject
models applied to PD patient data). This similarly applies to
the four bottom right squares, that correspond to PD patient
models applied to PD patient data.

In Figure 3, one can also observe, for both Control and PD
data with both modelling techniques, the diagonals having low
error values (when models fit to a specific subject were applied
to data from the same subject) regardless of the experiment
set. For example, observe the low error values for the case
when models fit to PD x Normal data were applied to PD
x Cog data. Table IV presents a comparison of the errors
obtained when models were applied to data from the same
cohort to the errors obtained when models were applied to
data from the same subject, but while performing the different

experiment set (normal walking vs. cognitive load). In other
words, this compares a whole segment of the error matrix to
the diagonal of the neighbouring segment. In all cases, models
were better able to fit the data from the same subject on the
other experiment set than models were able to fit data from
all subjects within the same experiment set.

B. Model Feature Analysis

Figure 4 shows heatmaps of information that can be used
as a proxy for feature importance within the models. The
top heatmap corresponds to the percentage of times a given
feature appeared within all SR models generated for each of
the subjects. Given the stochastic nature of GP, and the fact
that all final models generated are of high-quality, if a given
feature appears more often, then it is likely more important.
The bottom heatmap shows the F-scores for each feature in
all XGBoost models. F-score — the number of times a given
feature was split on within the XGBoost model — can be used
as a measure of feature importance for our purposes.

Despite having two heatmaps of different proxies for feature
importance, there are similarities within Figure 4. The most
notable similarity is that sensors R4 — R7 (also Ryg if including
the dependant variable) appear to be important for both
modelling strategies. A similar observation can be made for
sensors Ly — L3, although to a lesser extent. For the most
part, sensors Ly — Lg and Ry — Rs do not appear to be
as important for both the resulting SR and XGBoost models.
When referring to Figure 1, the sensor locations of R4 — Rg
and L; — L3 correspond to the front of the right foot and the
back of the left foot respectfully. As noted in previous work
studying a different set of ground force data [13], [14], given
the physical manifestation of walking, it would make sense
that these portions of the feet would be related to one another
as they would be in contact with the ground at the same time.
Since Rg was the sensor being regressed to, all sensors that
were activated at the same time as Rg would be more likely
to be included in the models and considered important.

Although the authors have no explanation for it, an inter-
esting difference between the heatmaps of the models is the
inclusion of R; in the XGBoost models, but not in the SR.

Figures 5 and 6 show similar information for the feature
importance measures. Figure 5 presents the average percentage
of times a given feature (sensor) appeared in all models
generated by SR for the experiment set. Figure 6 is similar, but
is the average F-scores for the XGBoost models. Figures 5 and
6 also include p-values obtained with a Mann-Whitney U test
comparing the distributions of feature importance measures
between different experiment sets. For the p-value matrices
(right side of both figures), the first column compares Control
x Normal subjects to Control x Cog subjects. The second
column is similar to the first, but for PD patients. The third
compares the features for Control x Normal with PD X
Normal. The fourth compares Control x Cog and PD x Cog.

Again, the authors emphasize the small sample size of
Control subjects. Although we do an analysis using the small
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Fig. 3. Matrices showing the median mean absolute error values when a given model (column) is applied to data from a specific subject (row) for both
the models generated with SR and XGBoost. The median was calculated over the five models and data segments for each subject. The colour of the labels
represents subject sex (blue for male and red or female). Each row and column are divided into four parts: the first (left most) is the case when Control
subjects walking normally, the second is for Control subjects walking while under a cognitive load, the third is for PD patients walking normally, and the
fourth (right most) is for PD patients walking while under a cognitive load. Control subjects are ordered by subject number and PD patients are ordered based
on their UPDRS rating in ascending order. Error values were capped at 0.75 for viewing purposes; any value of 0.75 (bright yellow) should be interpreted as
a poor fit and not necessarily 0.75.

TABLE IV
COMPARISON OF COHORT ERRORS TO THE ERRORS OBTAINED WHEN APPLYING DATA FROM THE SAME SUBJECT TO MODELS FIT TO THE DIFFERENT
EXPERIMENT SET (DIAGONAL IN ADJACENT SEGMENTS IN FIGURE 3). PROBABILITY VALUE WAS OBTAINED WITH A MANN-WHITNEY U TEST.

[ SR [ XGBoost
| Cohort Median  Other Diagonal Median | p-Value | Cohort Median  Other Diagonal Median | p-Value |
Control ~ Normal 0.344 0.182 4.052 % 10~ 2° 0.293 0.153 1.014 %« 10— 12
Cognitive Load 0.407 0.187 9.678 x 10—2° 0.360 0.126 4.889 % 1028
PD Normal 0.357 0.183 2.988 x 10~ 173 0.324 0.166 3.950 % 10 171
Cognitive Load 0.392 0.183 5.433 x 10180 0.345 0.146 1.467 * 10~212

sample size, more subjects are needed in order to make better
conclusions.

The average matrices reinforce what was observed above
when discussing Figure 4, including the unexplained appear-
ance of R; within the XGBoost models, but they also highlight
important differences between the different experiment sets.
When focusing on the SR models (Figure 5), immediately
it becomes obvious that L; becomes less important when
Control subjects change from walking normally to walking
while under a cognitive load. Similarly, in the PD models,
regardless of experiment set (normal walking or cognitive
load) L, is less important when compared to Control subjects.
In general, it seems that the very back and outside back of
the left foot becomes less important in the PD models versus
Control, but the inside of the back part of the left foot becomes
more important. Perhaps the PD patients are less likely to put

much pressure on their left heel compared to Control subjects.
PD subjects also seem to significantly change how the pressure
is distributed through the front of the right foot (i.e. more
importance at the very front of the foot) when they walk while
under a cognitive load versus normal walking.

Many differences can also be seen in the XGBoost models
(Figure 6), however most of these changes are between Control
and PD. Although there are a few significant changes in the
feature importance while the subjects transitioned from normal
to cognitive load walking, mostly the less important features
changed (L4 — Lg and R1 — R3). Perhaps the most interesting
change is that the front of the right foot became less important
when subjects changed from normal to cognitive load walking;
this was also seen in the SR models but the changes were not
significant. Unlike the SR models, there was no real change to
the back of the left foot. Many more significant differences can
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heatmap shows the percentage of times a given feature appeared in all symbolic regression models generated for a given set of data. Note that Rg is always
included in these models are it is the dependant variable (left hand side of the equation). The bottom heatmap presents the F-scores for all models generated
with XGBoost. Note that Rg is not recorded, but is still the dependant variable (left hand side of the equation).

be seen when focusing on the differences between the Control
and PD patient feature importance. Although some of these
can be seen in the SR models (e.g. changes in importance of
left heel), many more differences were found by the XGBoost
models. This suggests that the XGBoost models are much
better at distilling the differences in the physical manifestation
of walking between Control subjects and PD patients, and SR
emphasizes the differences between normal and cognitive load
walking.

V. CONCLUSIONS AND FUTURE WORK

This study has demonstrated that both SR and XGBoost
are successful in identifying features that are important to
discover gait changes for PD diagnoses. The models produced
by SR are more explainable than those produced by XGBoost,
however XGBoost has higher overall accuracy and are still
interpretable. In general, these two methodologies are in
agreement with each other in terms of the most important
features, i.e. identifying the front and back of the foot as being
of high importance. There was also an indication that that there
was a difference between the pressure placed on outside of
the foot vs the inside of the foot, for PD patients vs Control
subjects.

Two different means of measuring feature importance were
used, namely average feature count for SR and average F-score
for XGBoost. Despite this, the two methodologies largely sup-
port each others’ conclusions. Feature importance significantly

differed between the Control x Normal, Control x Cog, PD X
Normal, and PD x Cog experiment sets.

Currently the largest limitation of this project is the minimal
data to which researchers have access. More data is required
to increase the statistical significance of the results and to
confirm conclusions.

It would also be interesting to analyze other types of data,
such as wearable technology, to expand upon the results of the
current study.

A deeper analysis into the models should be performed to
gain the full benefit of the closed form mathematical expres-
sions generated by SR. For example, the nonlinear models
generated (SR, XGBoost, and ANNs) greatly outperform the
linear models (OLS and LASSO) developed in previous work
[13], [14]. The SR models may be analyzed to identify specific
nonlinearities that arise that cannot be found in linear models.
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