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Abstract—The dropping cost of sequencing human DNA has allowed for fast development of several projects around the world
generating huge amounts of DNA sequencing data. This deluge of data has run up against limited storage space, a problem that
researchers are trying to solve through compression techniques.
In this study we address the compression of SAM files, the standard output files for DNA alignment. We specifically study lossy
compression techniques used for quality values reported in the SAM file and analyze the impact of such lossy techniques on the
CRAM format. We present a series of experiments using a data set corresponding to individual NA12878 with three different fold
coverages. We introduce a new lossy model, dynamic binning, and compare its performance to other lossy techniques, namely Illumina
binning, LEON and QVZ. We analyze the compression ratio when using CRAM and also study the impact of the lossy techniques on
SNP calling. Our results show that lossy techniques allow a better CRAM compression ratio. Furthermore, we show that SNP calling
performance is not negatively affected and may even be boosted.

Index Terms—Compression, next-generation sequencing, quality values, SNP calling performance.
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1 INTRODUCTION

I T is expected that by the year 2025 two billion human
genomes will be sequenced [33]. This deluge of data

represents a huge challenge in terms of storage space. To
help address this issue, researchers have studied several
compression techniques for such data, varying from gen-
eral text compression techniques to specialized models that
exploit particular properties of DNA strands.

Next-Generation Sequencing (NGS) technologies include
base-calling algorithms that infer the actual nucleotide infor-
mation and then assign a measure of uncertainty (quality
score) to each base call. These vary depending on the se-
quencing system. Following base-calling and alignment, the
next step is SNP calling, or variant calling, which determines
where polymorphisms exist or where there is a difference
from a reference sequence. This is then followed by genotype
calling, which determines the genotype for each individual
and is closely related to the position of a SNP or variant that
has already been called.

Our main target for this study is the quality values
reported in FASTQ files, the standard format for storing
the output of high-throughput sequencing instruments, as
well as SAM files, the standard format for storing read
alignments against reference sequences. These quality val-
ues report a score per base associated with the nucleotide
sequence and represent the probability of an error in base
calling. The alphabet used for quality scores consists of some
40 characters, presenting another barrier for achieving good
compression.

A compression algorithm takes input X and generates a
representation Xc that requires fewer bits. The inverse pro-
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cess operates on the compressed representation Xc to gen-
erate the reconstruction, Y [32]. Data compression schemes
are lossless if Y = X or lossy if Y is only an approximation
for X ; in the case of lossy compression, it is not expected
that the original data can be recovered exactly.

Recently, new lossy models of compression for quality
values have been studied, e.g. LEON [3], QVZ [24] and
Illumina binning [19]. In this study, we analyze these three,
and also introduce new ideas for adjusting quality scores
using dynamic binning.

Our analysis is related to the CRAM format, which
compresses SAM/BAM files to achieve 40-50% space saving
over BAM, which in turn achieves 50-80% space saving over
SAM. An objective of this format is to replace BAM and
become the standard compression model for sequencing
data.

We will study the impact of the lossy models in CRAM.
When using lossy compression one must study the effect of
the loss of information on subsequent tasks performed with
compressed data. Hence, with respect to lossy compression
of quality values, we will study the effect of the compression
on SNP calling. Some recent results [39] suggest SNP calling
performance is not negatively affected and can even be
boosted.

The remainder of this paper is structured as follows.
Section 2 provides an overview of data compression in
genomics, as well as information on the formats considered
(SAM, BAM and CRAM). Section 3 presents the method-
ology, and includes information on the datasets, the per-
formance metrics, the new dynamic binning technique, and
the process followed to apply each of the lossy compression
techniques to the CRAM format. Sections 4, 5 and 6 present
the results and analysis for each of the three datasets consid-
ered. Section 7 presents conclusions and discusses possible
next steps.
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2 DATA COMPRESSION IN GENOMICS

The first approaches for compression of sequencing data
were based on text compression techniques adapted to
exploit obvious properties of DNA sequences such as the
4-letter alphabet, regularities and presence of palindromes
[15]. All these techniques essentially used a combination
of two different methods: dictionary based, in which most
repetitive subsequences are identified and encoded with a
representation of smaller size, and statistical based, in which
a prediction model is established which assigns probabilities
to each base based on the data and then uses an encoding
scheme that will perform more efficiently based on the
probability distribution.

With advances from NGS technologies, new challenges
also emerged for compression of its output data because
these technologies, along with the sequence or read itself,
also report additional metadata needed for downstream
DNA analysis. This metadata uses a larger alphabet than the
4-letter alphabet that had been considered for sequencing
data compression until that time. We first introduce the data
formats which are the target for compression, and then give
an overview of the research that has been developed.

2.1 Data Formats
2.1.1 FASTQ Format [8]
This has become the standard format for storing output
of high-throughput sequencing instruments. It stores the
nucleotide sequence and its corresponding quality scores,
each encoded with a single ASCII character.

2.1.2 Sequence Alignment/Map format (SAM) [31]
This is a generic format for storing read alignments against
reference sequences, developed with the main purpose of
allowing DNA analysis and the exchange of information
from various sequencing platforms. BAM format, the binary
version of SAM, is designed to compress reasonably well.
These two formats are industry standards for reporting
alignment/mapping information. Also all the important
tools for analysis of high-throughput sequencing data re-
quire these formats as the input, including for example
GATK [25] and Samtools [22].

2.2 DNA Sequence Compression
Although compression of the DNA sequences themselves
is not the target of the current study, for completeness
we provide a brief overview in this section. Since DNA
strings contain only four possible symbols (A, C, G, T) many
repetitions are expected, and this property has been broadly
exploited for DNA sequencing compression techniques.

Reference-based methods first choose a reference sequence
and then only encode the differences between it and the se-
quence to be compressed. For good performance the choice
of the reference is important, and in some cases a set of
possible references is allowed [2], [4], [11]. Other approaches
focus only on output of NGS technologies, e.g. Fastqz [6] for
FASTQ format and mzip [17] for SAM format.

De novo or reference-free compression is performed with-
out an external reference genome, instead exploiting similar-
ities between the reads themselves. Most commonly these

techniques use a context-model to predict the bases and
then an arithmetic encoder, or they will re-order reads
to maximize similarities for consecutive reads allowing a
better compression with standard methods. According to
[3], read re-ordering methods are the ones that achieve a
better compression ratio. Compressors of this type include
BEETL [20], ORCOM [13], MINCE [28], and LEON [3].

2.3 Random Access and CRAM Format

Although compression mainly focuses on the issue of stor-
age and distribution of big data, it is also possible to make
more practical the step of analyzing the data, by applying
particular compression techniques for specific files. This
allows access to part of the file, from its compressed version,
without going through the entire decompression process.
For achieving random access compression, generally the in-
put is split into blocks and different compression algorithms
may even be applied to different blocks within the same file.

Today, BAM [31] is the standard compression model
with random access property, achieving compressions of 50-
80% of the original SAM file and allowing accessible and
practical analysis of sequencing data using the compressed
file. However, this compression ratio is not sustainable in
the long run due to the huge growth in sequencing data.
Because of this, researchers have explored new options.

One of the best is CRAM [9], which is based on [17]
and compresses SAM/BAM files achieving 40-50% space
saving over BAM. It is now supported for the main tools for
analysis of sequencing data and also big initiatives such as
the 1000 genomes project have their data available for public
use stored in this format. After aligning the sequence data
to a reference, CRAM stores only the data that is different
rather than the entire genome. Also, different compression
algorithms are used for each data type such as sequence
names, genetic sequences and quality values [10].

2.4 Quality Values

The base calling process performed for NGS technologies to
determine the bases of a DNA string is prone to errors. To
report the probability of base calling mistakes, sequencers
generate a quality score for each nucleotide in the read,
indicating the level of confidence of a particular read base.
The higher the score, the lower the probability that the base
at that position has been incorrectly called. Usually the qual-
ity values are represented in a file with a printable ASCII
alphabet [33:73] or [64:104]. The importance of maintaining
quality scores as part of the data relies on the fact that they
are directly used in next-generation sequencing analysis,
such as Single Nucleotide Polymorphism(SNP) detection
[12]. Quality scores comprise a significant percentage of se-
quencing data and are a bottle neck for compression because
the alphabet required to represent them is larger – about
40 characters – than that required for the read sequence.
Compression algorithms designed for the sequence itself
will thus not perform as well when applied to quality
values, and so specific algorithms must be provided that
take into account the properties and information from the
quality scores.
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TABLE 1
Quality Score Bins for Illumina Binning

Quality Score Bins Mapped Quality Score
N(no call) N(no call)

2-9 6
10-19 15
20-24 22
25-29 27
30-34 33
35-39 37
≥ 40 40

2.5 Lossy Compression of Quality Values

Lossy compression techniques are not suitable for the DNA
sequences themselves, as losing or changing a single base
has a big impact on the possible encoded protein. However
researchers have applied lossy compression techniques to
the quality values, which represent almost half of the total
data in the output file. There are several examples of quality
values compression using lossy techniques, e.g. [7], [3], [38],
[24], and [26].

When lossy compression is applied to any type of data,
it is important to see the effect of the lost data on any other
output derived from the compressed data. Any lossy tech-
nique in this field must consider the effects on downstream
analysis, SNP calling. In [26] it is suggested that quality
values data is noisy, and their analysis showed that losing
precision in quality scores was actually beneficial for SNP
calling.

A number of lossy techniques have been proposed for
compression of quality values. In [7] a lossy technique is
proposed in which quality values are separated into blocks
of variable size, with each block having one representative
value. Two main options are used, P-block which is con-
trolled by parameter p and which uses Mean Manhattan
Distance, and R-block which has a maximum ratio r and
makes use of varying levels of precision depending on
whether the quality score is higher or lower.

Concurrently, Illumina [19] suggested what is now
known as Illumina binning [19], which reduces the resolution
of quality scores by using at most 8 levels of quality, as
shown in Table 1. QualComp [26] allows users to specify
the number of bits per quality score prior to compression.
Quality Values Zip (QVZ) [24] models the quality score
sequence as a Markov chain of order one, while LEON [3]
builds a de Bruijn Graph of the most recurrent k-mers in the
sequences, with each read encoded as a path in the graph;
for quality score compression all quality values above a
threshold are truncated and also all positions covered by
at least a certain number of recurrent k-mers are replaced by
one representative based on quality value.

A recently-proposed technique is CALQ [37], which
specifically considers downstream analysis in its decisions,
making use of alignment information to determine an ac-
ceptable level of distortion of the quality values to ensure
downstream analysis is not negatively affected. Another re-
cent technique is Crumble [5], which uses various heuristics
to identify which quality values are necessary based on
whether the lack of those values will have a negative effect
on variant calling.

2.6 Comparison and Discussion

Lossy compression of quality values is a recently explored
area, with the first ideas presented in 2011 [17]. When
comparing lossy compression techniques, many factors are
involved and there is a trade off between compression ratio
and other measures, e.g. distortion rate, impact on down-
stream analysis, speed or memory requirements. Many dif-
ferent metrics are used to measure distortion rate, see e.g.
[7], [24] and [26]. Impact on downstream analysis (SNP
calling) is normally presented using F-score which considers
both precision and recall measures; see Section 3.4.

Qualcomp [26] focusses its comparisons and perfor-
mance measurement on rate distortion metric, in particular
mean square error. They study SNP calling but we note
that they consider as ground truth the data resulting from
variant calling performed with the original quality values.
The running time is longer than their comparators [16],
[6] but they achieve better compression ratio minimizing
mean square error with little compromise in SNP calling. In
comparison, [7] used fidelity measures and outperformed
Qualcomp considering Max : Min Distance as the measure;
they also based their SNP analysis considering variant call-
ing with original quality values and did not report data for
running time and memory storage.

In [24] the performance of QVZ is compared to [26] and
[7], outperforming both for all three choices of distortion
metric. A later paper [27] presents an exhaustive analysis
on the effect of lossy compression of quality values using
QVZ on variant calling. This analysis used two different
benchmarks, one by Genome in a Bottle and adapted by
the National Institute of Standardizations and Technology,
and the other by Illumina as part of the Platinum Genomes
project. They also included Illumina binning in their com-
parison. Not only is storage space reduced, but they also
show that SNP calling is not negatively affected. Moreover,
they confirm with their experiments that smoothing quality
values can improve SNP calling performance.

LEON [3] is based on a probabilistic de Bruijn graph
designed originally for compression of the sequence; the
graph is then also used to perform a lossy transformation
of quality values. We must keep this in mind because
the graph has high memory requirements. Their analysis
showed better performance by LEON for compression ratio,
compression time and decompression time compared to [6],
[16], [28]. They also presented SNP calling analysis consider-
ing the benchmarks provided by 1000 genomes project and
also showed that using lossy techniques on quality values
can improve SNP calling.

2.7 Objectives of this Study

In this work we address the compression of SAM files,
the standard output for DNA alignment. Specifically, we
consider lossy compression techniques for quality values
reported in SAM.

There are multiple objectives for this work. We introduce
a new lossy model, dynamic binning. Our first objective is
to analyze its performance in comparison to three of the
most promising lossy techniques: QVZ [24], LEON [3], and
Illumina binning [19].
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A second objective is to analyze the performance of each
of these different approaches when using CRAM, which
is becoming a standard in place of BAM. Because we are
analysing lossy techniques, we study not only the compres-
sion ratio, but also the impact of using such methods on the
SNP calling performance.

To address these objectives we use 3 datasets of varying
coverage as well as 2 different callers, thereby assisting us
in observing trends. Following previous studies such as [27]
we concentrate our analysis on chromosomes 11 and 20,
however results for the complete genome are also presented
for one of the datasets.

3 METHODOLOGY

In this section we present the toolkits, software and data
sets used for our research. We also present the metrics
for evaluating SNP calling performance, and explain the
experimental process followed in our work.

3.1 Other File Types and Toolkits
3.1.1 Variant Call Format (VCF) [36]
This is a text file format for storing gene sequence variations,
and is the output of variant calling performed by GATK
tools or Samtools. It includes a quality score for each alter-
native allele it lists.

3.1.2 Genome Analysis Toolkit (GATK) [25]
This is a collection of command-line tools for analyz-
ing high-throughput sequencing data in formats such as
SAM/BAM/CRAM and VCF with a primary focus on
variant discovery and genotyping. We follow GATK Best
Practices [12], [35], which aims to maximize the technical
correctness of the data. The first steps start from the raw
reads indicating how to do the mapping to a reference
genome, marking duplicates with Picard tools (see subsec-
tion 3.1.5) and performing a base quality score recalibration.
Once the data has been pre-processed it is ready to continue
with the variant discovery process. In this second part the
process considers the fact that some of the variation might
be caused by mapping and sequencing artifacts. Finding a
good trade-off between sensitivity (minimizing false neg-
atives) and specificity (minimizing false positives) can be
very difficult, and can also be dependent on the project.
Instead, the process maximizes sensitivity but also reports
a variant quality score recalibration (VQSR) which further
allows the user to customize specificity for each project.

3.1.3 Samtools [22]
This is a suite of programs for interacting with sequencing
data in SAM/BAM/CRAM formats, allowing one to work
directly with a compressed BAM/CRAM file. We also use
this toolkit for SNP calling via the mpileup command, which
calculates genotype likelihoods supported by aligned reads
and does SNP calling based on those likelihoods. We use
Bcftools, another module, to handle VCF files.

3.1.4 HTSlib
This is a C library for manipulating file formats (e.g.
SAM/CRAM/VCF). It is used to study high-throughput
sequencing data and is the core library used by Samtools.

3.1.5 Picard [29]
This is a set of command line tools for manipulating high-
throughput sequencing data. We use it for marking dupli-
cate reads as part of the GATK Best Practices.

3.1.6 Burrows-Wheeler Aligner (BWA) [21]
This is software for mapping low-divergent sequences
against a large reference genome. When using this to per-
form alignments we used reference genome GRCh37 (avail-
able at [14]), the reference genome used in phase 1 and phase
3 of 1000 Genomes Project.

3.2 Datasets For SNP Calling

To analyze the impact of lossy compression models for qual-
ity values we use datasets from 1000 Genomes project public
repository [1], all corresponding to Homo Sapiens individual
NA12878, the daughter in one of the trios sequenced from
Utah residents of northern and western European ancestry
(CEU). We used NA12878 because it is the only one for
which a well analyzed ground truth set of variants has been
developed and publicly released.

We first consider a complete process experiment, using
the read dataset SRR622461 for individual NA12878 with
5x coverage, performing alignment on this raw dataset
using BWA [21] and then extracting chromosomes 11 and
20. We then perform experiments with the whole genome,
using low coverage alignment (6x). Finally, we consider high
coverage alignment (50x) but for chromosomes 11 and 20
only.

3.3 Quality Benchmarks for SNP Calling

To measure how lossy models affect SNP calling, we must
set the baseline that will serve as a reference when com-
paring the performance of lossless compression against the
different lossy models. For this purpose we use two ground
truth sets of variants developed and refined specifically for
individual NA12878.

The first of these was released by the Genome in a
Bottle consortium (GIAB) [40], and has been adapted by
the National Institute of Standardizations and Technology
(NIST). They integrated and arbitrated between 14 data
sets from five sequencing technologies, seven read mappers
and three different variant callers, resulting in a set of
variants allowing for high-confidence SNP calling without
depending on specific caller or sequencing technologies.

The second gold standard we used is the one released
by Illumina as part of the Platinum Genomes project [30]. It
includes a set of high-confidence variant calls for individual
NA12878.

3.4 SNP Calling Performance Metrics

We will evaluate how different lossy models for quality
values affect SNP calling. We consider this problem as a
binary classifier for the variants, identifying a variant in the
resulting VCF file as True Positive (TP) when it is also part
of the ground truth and False Positive (FP) when it can not
be found in the ground truth. False Negatives (FN) are the
variants in the ground truth that cannot be found in the
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TABLE 2
Quality Score Bins for Dynamic Binning

Quality Score Bins Mapped Quality Score
1-10 c1, H(c1) ≥ H(c) ∀c ∈ [1, 10]
11-20 c2, H(c2) ≥ H(c) ∀c ∈ [11, 20]
21-30 c3, H(c3) ≥ H(c) ∀c ∈ [21, 30]
31-40 c4, H(c4) ≥ H(c) ∀c ∈ [31, 40]
41-256 c5, H(c5) ≥ H(c) ∀c ∈ [41, 256]

resulting VCF file. The performance will be evaluated by
the following:

1) Sensitivity measures the proportion of correctly
identified positives: Sensitivity = TP

TP+FN
2) Precision measures the proportion of identified pos-

itives that are true: Precision = TP
TP+FP

3) F-score considers both precision and sensitivity. It
can be interpreted as a weighted average and is
computed as: F-score = 2× Sensitivity×Precision

Sensitivity+Precision

Sensitivity is also known as the true positive rate, while
the false positive rate is calculated as FP

FP+TN .
When analyzing results given by these metrics note that

a perfect sensitivity score of 1.0 indicates that all variants
from the ground truth were correctly identified but does
not indicate how many irrelevant variants were also called
as positive. Meanwhile, a precision score of 1.0 means all
obtained variants are relevant but indicates nothing about
the set of possible positive variants. Generally there is a
trade-off between these two metrics and depending on the
case one may prefer to increase one of them by decreasing
the other. Because of this, F-score, which combines both
metrics, gives us a better overall evaluation.

The Receiver Operating Characteristic (ROC) Curve is used
to visualize the performance of a binary classifier while
varying a threshold. It is the result of plotting the true
positive rate against the false positive rate with different
thresholds.

When evaluating variant calling performance with sensi-
tivity, precision and F-score, we considered all variants in an
output VCF file to be correct. Using ROC as metric, we vary
the quality threshold and consider variants in an output
VCF file to be correct only if they are above the threshold.

This metric, specific to variant calling performance, was
introduced in [39]. Following their design, when comparing
different sets of variants we take their union as the domain.
This rescaling is done to address the fact that the true
negative rate of correctly called variants is so much larger,
as most of the genome is variant, and so it could cause
misleading results. A result of this rescaling is that ROC
curves between different plots are not comparable as they
have different domains. For our analysis we also look at the
area under the curve (AUC), which gives the probability
that the binary classifier will rank a random positive case
higher than a random negative case. The closer AUC is to 1,
the better.

3.5 Dynamic Binning
To explore new ideas for reducing the alphabet used for
quality values, we developed dynamic binning. As in Illu-
mina binning, this method splits the alphabet into bins.

However, while Illumina binning uses 8 bins, dynamic
binning uses 5 bins and each bin is represented by the
value which has the most occurrences in that bin. We apply
this method block-wise: the file is split into blocks and for
each block the 5-binning depends on its histogram. In our
experiment we used blocks of 1000 reads, an empirically
selected parameter.

For a given block, let H denote the histogram of the
quality values: i.e. for character c, H(c) is the number of
occurrences of c in the block. The 5-binning for each block
is performed according to Table 2 where for each bin its
representative value ci satisfies H(ci) ≥ H(c) for all values
c in the range covered by the bin. In such a way each entry
within a given bin is represented by the most common entry
within that bin. Figure 1 shows an example of a histogram
for chromosome 20, 5x coverage, with representative values
of each bin shown in red.

Note that different blocks within the file will likely have
different histograms, as frequencies of quality values are
likely to change from one block to another. As a result, the
representative values for the bins are expected to vary from
one part of the file to another. Although dynamic binning
was inspired by Illumina binning, it therefore allows for a
more accurate representation of the quality values within
each block as quality values vary across the file. Note that
the ranges covered by the bins do not vary across the file,
although this is a possible avenue for future research (see
Section 7).

Although the number of bins used by dynamic binning
is smaller than Illumina’s traditional set of 8 bins, it will be
shown in Sections 4–6 that the use of dynamic rather than
fixed values means that dynamic binning is very competi-
tive in terms of downstream analysis while also improving
the compression ratio.

3.6 Process
We study how CRAM compression can be improved by
modifying quality values with four different techniques: our
new technique dynamic binning, as well as QVZ [24], LEON
[3], and Illumina binning [19]. We also analyze how the use
of these lossy techniques impacts SNP calling.

To perform CRAM compression we need as input a SAM
file with the quality values modified by each of the tech-
niques to analyze. The general work flow has the following
steps:

1) We first align the reads to reference genome
GRCh37. The output is a SAM file that we call the
original or raw SAM, with quality values called the
original or raw quality scores.

2) We next create a SAM file for each of the lossy
models, with the quality scores updated according
to each model, and then convert each SAM file to
CRAM format (v3.0) using Samtools.

• For dynamic binning: compute the histogram
for each block and create a dictionary of rep-
resentative values for each bin per block, then
apply the transformation to quality values
according to the dictionary.

• For Illumina binning: modify the code in htslib
so when converting the BAM file to CRAM
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Fig. 1. Quality values histogram, chromosome 20. Red values are the representatives of each bin.

it transforms each quality value according to
Table 1.

• For LEON: create a temporal FASTQ file with
the reads and quality values extracted from
the original SAM. Run LEON algorithm with
this created file, then decompress the output
and create the new SAM file with the modi-
fied quality values.

• QVZ: Extract the quality values from the orig-
inal SAM file. Once the quality values are
processed decompress the output and create
a SAM file with the new scores. In our experi-
ments, for QVZ the ratio was set to 0.8 and we
used default values for all other parameters.

3) We compare the compression ratio, as well as the
impact of each of the techniques on SNP calling
performance, following Best Practices [12], [35] to
improve the data. We perform the variant calling
with two different tools (Samtools and GATK) and
compare sensitivity, precision and F-score for each
of the lossy models. In this step, from Samtools
we use samtools mpileup pipeline and from GATK
toolkit we perform variant calling with Haplotype
Caller command.

4 RESULTS AND ANALYSIS – COMPLETE PRO-
CESS EXPERIMENT (5X COVERAGE)
This section examines the dataset of reads SRR622461, cor-
responding to individual NA12878 with 5x fold coverage.
From performing the alignment with BWA we obtained a
SAM file of size 49GB, from which we extracted chromo-
somes 11 (2.3GB) and 20 (1.0GB). For each of these we
applied the four lossy techniques to the quality values,
converted each output to SAM and then converted the
resulting file to CRAM.

4.1 Compression Ratio

Table 3 shows a summary of file sizes for each of the lossy
models as well as the raw SAM file. This table contains SAM
and CRAM file size to analyse the compression ratio, which
is included in the last row of each section.

TABLE 3
5x Fold Coverage: File Size (rounded to closest MB) and Compression

Ratio

Raw Illumina QVZ LEON Dynamic bin
Chromosome 11

SAM 2357 2357 2357 2357 2357
BAM 452 363 445 310 341
CRAM 168 102 159 73 87
Compression 13.99 23.17 14.80 32.31 27.00

Chromosome 20
SAM 1037 1037 1037 1037 1037
BAM 206 165 196 137 155
CRAM 77 47 70 32 40
Compression 13.40 22.24 14.75 32.04 26.09

Notice that the CRAM format by itself already performs
a very good compression, as displayed in the Raw column.
Without adjusting quality values at all, the SAM file is over
13 times larger than the CRAM file for both chromosomes.

All of the lossy techniques had a favorable impact on
compression ratio. For both chromosomes LEON had the
best impact on compression ratio, followed by dynamic
binning. Both of these lossy techniques roughly doubled
the compression in comparison to the raw data; for chro-
mosome 11 the compression ratio is 13.99 for the raw data,
32.31 for LEON and 27.00 for dynamic binning, while for
chromosome 20 the compression ratio is 13.40 for the raw
data, 32.04 for LEON and 26.09 for dynamic binning.

Table 3 also includes BAM file size to appreciate how
the lossy models for quality scores also have an impact on
the BAM format. As can be seen in this table, all lossy tech-
niques improved BAM file size, although the improvement
is much more significant for CRAM. For example, in chro-
mosome 11 the raw BAM file is 452MB in size and applying
LEON reduces the BAM file size to 310MB, or roughly 70%
of the raw BAM size; in comparison, applying LEON to the
corresponding raw CRAM file (168MB) produces a file that
is less than half its size (73MB).

4.2 Variant Calling Performance
We now consider the impact of the loss of information on
variant calling performance.

When we transform the quality scores, variant calling
results may be influenced by these transformations. To
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TABLE 4
5x Fold Coverage: Variant (SNP) Calling Performance with Illumina

Ground Truth

GATK Samtools
Sens. Prec. F-Score Sens. Prec. F-Score

Chromosome 11
Raw 0.7201 0.9600 0.8229 0.7476 0.9488 0.8363
Illumina 0.7228 0.9605 0.8249 0.7550 0.9472 0.8402
QVZ 0.7200 0.9601 0.8229 0.7476 0.9487 0.8362
LEON 0.7165 0.9598 0.8205 0.7486 0.9429 0.8346
Dyn. bin 0.7206 0.9587 0.8228 0.7483 0.9455 0.8354

Chromosome 20
Raw 0.6763 0.8683 0.7604 0.7063 0.8614 0.7762
Illumina 0.6787 0.8688 0.7621 0.7139 0.8606 0.7804
QVZ 0.6514 0.8644 0.7430 0.6770 0.8578 0.7567
LEON 0.6481 0.8629 0.7402 0.6780 0.8508 0.7546
Dyn. bin 0.6775 0.8670 0.7606 0.7072 0.8586 0.7756

measure and evaluate these possible changes we performed
variant calling with the raw quality values and also with
each of the lossy models under study. We then computed
sensitivity, precision and F-score to evaluate variant call-
ing performance against two separate ground truth sets
of variants, as shown in Table 4. This table contains the
results obtained for two different callers, GATK and Sam-
tools, to demonstrate that the results do not depend on
the caller. This table shows the result of the experiment
using the Illumina ground truth. For further details on the
same experiment with GIAB-NIST ground truth see [34].
The relative results (for different callers and different lossy
techniques) are very similar for both ground truths.

Our main metric for evaluation is F-score because it com-
bines both sensitivity and precision. Otherwise the trade-
off between sensitivity and precision may not allow us to
conclude anything important. For example, for chromosome
11, LEON outperforms raw quality values in sensitivity but
it is the opposite for precision. From this we can not argue
one is better than the other, but F-score shows that although
both are very close, for raw quality values F-score is slightly
higher.

This table demonstrates that even though the compres-
sion ratio is considerably better when applying any of
the lossy techniques, the overall F-score does not change
drastically. In fact, in some cases variant calling performance
is even slightly improved when lossy techniques are used.
For example, for chromosome 20 with the GATK caller, the
F-scores for dynamic binning (0.7606) and Illumina binning
(0.7621) are both slightly better than that of the raw quality
values (0.7604).

4.3 ROC Curve Analysis

We plotted ROC curves to study the behaviour of each lossy
technique when varying the threshold at which to consider
a variant correctly called. Figure 2 displays the ROC curve
for chromosome 11, based on Illumina ground truth with
Samtools caller. At each point the raw quality values curve
is always overlapped or dominated by at least one other
technique. This confirms again that changing quality values
with any of these techniques does not negatively affect vari-
ant calling performance. The same curve for chromosome
20 displays similar results.

TABLE 5
AUC, 5x fold coverage

Chr. Caller Raw Illumina QVZ LEON Dyn. bin
11 GATK 0.5149 0.5395 0.5173 0.5223 0.5105
11 Samtools 0.6766 0.6800 0.6766 0.6664 0.6724
20 GATK 0.5007 0.5094 0.5012 0.5033 0.4983
20 Samtools 0.5965 0.6020 0.5967 0.5902 0.5958

Table 5 presents, for both chromosomes, the area under
the curve (AUC) as a metric for each technique and for
each caller. In all cases, all lossy techniques, as well as raw
quality values, have very similar AUC, with both Illumina
and QVZ having higher AUC than for raw quality values.
Nonetheless, it is important to mention that the AUC results
are all very close to 0.5 and therefore it can be argued that
the classification is not necessarily good. This is completely
reasonable because from a data set with only 5x fold cover-
age it is not expected to have high accuracy, not even for the
alignment and therefore neither for the variants. In Section 6
we show the same results for high coverage (50x) and there
we can notice the differences.

5 RESULTS AND ANALYSIS – WHOLE GENOME
EXPERIMENT (6X COVERAGE)
In this section of experiments we used the low coverage (6x)
alignment provided by 1000 Genomes Project [1] as a 16.2GB
BAM file for the whole genome, containing the alignment
performed with BWA. This data set also corresponds to
the individual NA12878. As in the earlier experiments,
we apply the four lossy techniques to each SAM file and
analyze their behaviour when converted to CRAM format,
including the compression ratio and any possible impact on
variant calling performance. However in this case we run
the experiment with the first 22 chromosomes to get better
insights with no bias to any specific chromosome. Because of
storage constraints and to have greater control of the results,
the experiments were performed for each chromosome sep-
arately. In this paper we present a summary of the results for
all of these chromosomes, with the full results available in
[34]. For comparison purposes in this paper we concentrate
our analysis on results for the chromosomes used in the
other experiments, namely chromosomes 11 and 20.

5.1 Compression Ratio
Table 6 summarizes the CRAM compression ratios for all
22 chromosomes. As shown in this table, similar results are
seen across all chromosomes. The total size of the SAM files
for all of these chromosomes is 66.11GB. After converting
to CRAM, the total file size is 7.68GB for the raw quality
values, giving a compression ratio of 8.61. After applying
each of the lossy techniques and then converting to CRAM,
the total file sizes are 4.31GB for Illumina (ratio = 15.34),
7.49GB for QVZ (ratio = 8.83), 2.58GB for LEON (ratio =
25.62), and 3.61GB for dynamic binning (ratio = 18.31).

Table 7 summarizes file sizes for chromosomes 11 and
20 in greater detail, showing SAM, BAM and CRAM sizes
along with the compression ratio. The results show that
every lossy technique improves compression in the BAM
file for these chromosomes in comparison to the raw data.
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Fig. 2. ROC, chromosome 11 (5x fold coverage). True positive and false positive rates are as defined in Section 3.4 and relate to SNP calling only.

TABLE 6
6x Fold Coverage: CRAM Compression Ratio for Each Chromosome

Chromosome Raw Illumina QVZ LEON Dynamic bin
1 8.57 15.98 8.75 25.31 18.03
2 8.64 16.33 8.83 26.13 18.44
3 8.68 16.53 8.86 26.61 18.67
4 8.70 16.69 8.88 27.00 18.84
5 8.67 16.50 8.86 26.54 18.62
6 8.66 8.85 8.85 26.49 18.60
7 8.60 16.12 8.79 25.62 18.19
8 8.65 16.38 8.84 26.27 18.50
9 8.55 15.89 8.74 25.02 17.88
10 8.61 16.08 8.79 25.42 18.16
11 8.33 15.51 9.30 24.60 19.08
12 8.64 16.25 8.82 25.90 18.36
13 8.71 16.67 8.89 26.88 18.84
14 8.63 16.23 8.82 25.79 18.33
15 8.56 15.87 8.74 25.02 17.92
16 8.44 15.29 8.65 23.80 17.22
17 8.45 15.19 8.61 23.29 17.16
18 8.66 16.45 8.84 26.33 18.59
19 8.33 14.56 8.49 21.76 16.43
20 8.55 15.76 8.72 24.51 17.82
21 8.57 15.97 8.75 25.07 17.99
22 8.37 14.75 8.53 22.00 16.63

TABLE 7
6x Fold Coverage: File Size (rounded to closest MB) and Compression

Ratio for Chromosomes 11 and 20

Raw Illumina QVZ LEON Dynamic bin
Chromosome 11

SAM 3324 3324 3324 3324 3324
BAM 705 477 664 351 421
CRAM 399 214 357 135 174
Compression 8.33 15.51 9.30 24.60 19.08

Chromosome 20
SAM 1409 1409 1409 1409 1409
BAM 300 205 298 154 190
CRAM 165 89 162 58 79
Compression 8.55 15.76 8.72 24.51 17.82

For CRAM, the compression ratio is always significantly
better for Illumina, LEON and dynamic binning; for QVZ,
the compression ratio is better but not significantly so.

5.2 Variant Calling Performance

Table 8 shows sensitivity, precision and F-score for variant
calling performance of two different callers (GATK and
Samtools), considering Illumina ground truth, for chromo-
somes 11 and 20.



ACM/IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 9

TABLE 8
6x Fold Coverage: Variant (SNP) Calling Performance with Illumina

Ground Truth for Chromosomes 11 and 20

GATK Samtools
Sens. Prec. F-Score Sens. Prec. F-Score

Chromosome 11
Raw 0.7137 0.9857 0.8279 0.7388 0.9810 0.8429
Illumina 0.7124 0.9881 0.8279 0.7414 0.9806 0.8444
QVZ 0.7135 0.9814 0.8263 0.7340 0.9780 0.8386
LEON 0.7109 0.9859 0.8261 0.7511 0.9742 0.8482
Dyn. bin 0.7125 0.9860 0.8273 0.7354 0.9811 0.8406

Chromosome 20
Raw 0.6687 0.9805 0.7952 0.6963 0.9710 0.8110
Illumina 0.6662 0.9827 0.7941 0.7010 0.9710 0.8142
QVZ 0.6687 0.9755 0.7935 0.6918 0.9680 0.8069
LEON 0.6657 0.9804 0.7930 0.7038 0.9659 0.8142
Dyn. bin 0.6673 0.9808 0.7942 0.6930 0.9717 0.8090

TABLE 9
6x Fold Coverage: Variant (SNP) Calling Performance with NIST-GIAB

Ground Truth for Chromosomes 11 and 20

GATK Samtools
Sens. Prec. F-Score Sens. Prec. F-Score

Chromosome 11
Raw 0.7624 0.7523 0.7573 0.7866 0.7461 0.7658
Illumina 0.7615 0.7546 0.7580 0.7891 0.7355 0.7667
QVZ 0.7618 0.7486 0.7551 0.7817 0.7441 0.7624
LEON 0.7595 0.7525 0.7559 0.7983 0.7397 0.7679
Dyn. bin 0.7612 0.7526 0.7569 0.7831 0.7464 0.7643

Chromosome 20
Raw 0.7267 0.8464 0.7820 0.7534 0.8347 0.7920
Illumina 0.7243 0.8487 0.7816 0.7585 0.8345 0.7947
QVZ 0.7264 0.8418 0.7798 0.7490 0.8326 0.7886
LEON 0.7235 0.8466 0.7802 0.7602 0.8289 0.7931
Dyn. bin 0.7251 0.8466 0.7811 0.7501 0.8356 0.7906

Table 9 shows sensitivity, precision and F-score for vari-
ant calling performance of GATK and Samtools callers,
considering the NIST-GIAB ground truth, again for chro-
mosomes 11 and 20.

These tables show that for both callers and both ground
truths, F-score with raw quality values differs very little
from those of all lossy models, with some actually seeing
a slight improvement in F-score. This is also the case for all
22 chromosomes; see full details in [34].

5.3 ROC Curve Analysis
The ROC curves for each of the lossy techniques and for raw
quality scores, using Samtools caller and Illumina ground
truth, are available in [34]. Similar to the 5x coverage exper-
iments, they show that Illumina binning outperforms raw
quality values; LEON is also visibly above at critical points.
In general variant calling performance is not negatively
affected and in some cases even improved.

The values for area under the curve (AUC) for these plots
are presented in Table 10. In this table it is more evident that

TABLE 10
AUC, 6x fold coverage

Chr. Caller Raw Illumina QVZ LEON Dyn. bin
11 GATK 0.6990 0.7492 0.6991 0.7120 0.6923
11 Samtools 0.8257 0.8320 0.8262 0.8273 0.8200
20 GATK 0.6880 0.7195 0.6890 0.7005 0.6857
20 Samtools 0.7988 0.8068 0.7991 0.8028 0.7950

TABLE 11
High (50x) Coverage: File Size (rounded to closest MB) and

Compression Ratio

Raw Illumina QVZ LEON Dynamic bin
Chromosome 11

SAM 44741 44741 44741 44741 44741
BAM 10669 8830 10531 7883 8680
CRAM 6685 5297 6527 4726 5191
Compression 6.69 8.44 6.85 9.46 8.61

Chromosome 20
SAM 19978 19978 19978 19978 19978
BAM 4763 3952 4703 3530 3881
CRAM 2983 2370 2913 2116 2321
Compression 6.69 8.42 6.85 9.44 8.60

all values are close, and furthermore that Illumina, LEON
and QVZ slightly outperform the case with the raw quality
values.

In comparison with the 5x fold coverage experiments,
observe that with this data set (6x) we obtain better accuracy
for variant calling. This is not surprising because with
higher coverage, we are more likely to have the correct in-
formation about each base and therefore to find the variants.

6 RESULTS AND ANALYSIS – 50X COVERAGE

As in the previous experiments, the chromosomes analyzed
are from individual NA12878. The alignment performed
with BWA is provided by 1000 Genomes project [1] and the
coverage is 50x. The BAM file for this data set is 254GB,
therefore due to storage constraints all experiments were
performed on chromosomes 11 and 20 only. As seen in
the experiment performed with the whole genome with
6x coverage, the behaviour in all other chromosomes is
expected to be similar in terms of compression ratio. The
SAM files are 44.7GB for chromosome 11 and 20.0GB for
chromosome 20.

6.1 Compression Ratio
Table 11 summarizes the sizes of the files as well as the
compression ratio. In both chromosomes the compression
ratio results are similar. LEON obtains the best compression
ratio, followed by dynamic binning and Illumina binning,
with QVZ last. Although we obtain an improvement in
compression for all of the lossy models studied, note that
in this experiment, the compression ratio is lower than that
obtained with lower coverage. Roughly, the compression
ratio for high coverage is half that obtained with 6x coverage
and this property holds for the file with raw quality values
as well as for the files for the lossy models. Also note that
for each technique, as well as for the raw file, the pair of
compression ratio values belonging to each chromosome
are very similar and we would expect this in every chro-
mosome.

6.2 Variant Calling Performance
To analyze the impact of adjusted quality values on the
variant calling process see Table 12, which summarizes sen-
sitivity, precision and F-score for each lossy model as well
as for the original (raw) quality values. Scores are reported
for each caller, GATK and Samtools. For the results in this
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TABLE 12
Variant (SNP) calling performance with Illumina ground truth,

chromosome 11 (50x fold coverage)

GATK Samtools
Sens. Prec. F-Score Sens. Prec. F-Score

Chromosome 11
Raw 0.9778 0.9669 0.9723 0.9785 0.9590 0.9686
Illumina 0.9752 0.9718 0.9735 0.9791 0.9588 0.9688
QVZ 0.9778 0.9668 0.9723 0.9781 0.9592 0.9685
LEON 0.9776 0.9634 0.9704 0.9815 0.9512 0.9661
Dyn. bin 0.9777 0.9668 0.9722 0.9783 0.9580 0.9680

Chromosome 20
Raw 0.9549 0.9586 0.9568 0.9577 0.9469 0.9523
Illumina 0.9513 0.9653 0.9582 0.9586 0.9469 0.9527
QVZ 0.9550 0.9587 0.9569 0.9581 0.9465 0.9522
LEON 0.9547 0.9549 0.9548 0.9622 0.9369 0.9494
Dyn. bin 0.9548 0.9586 0.9567 0.9579 0.9459 0.9518

table we considered Illumina ground truth. For details on
the same experiments with GIAB-NIST ground truth, and
also the actual numbers of true positives, false positives and
false negatives, see [34]. Again, for both ground truths, both
callers, and both chromosomes the relative results of the
different lossy models are very similar.

The F-scores provide evidence that in general the variant
calling performance is not affected by any of the lossy tech-
niques. There are two facts to highlight. Firstly, according
to the F-score measure, the variant calling performance is
improved when applying Illumina binning to the quality
scores. Secondly, when the LEON model is applied to the
quality values, the F-score obtained is the lowest one, for
both chromosomes and both callers. It is important to men-
tion this because the LEON model reports a considerably
better compression ratio than the other techniques. We can
see this as evidence of the trade-off between compression
ratio and variant calling performance.

6.3 ROC Curve Analysis

Consider Figure 3, the ROC curve for Illumina ground truth
and Samtools caller for chromosome 11. Note that with high
coverage the variant calling performance is much better
than that with lower coverage: for false positive rate around
0.2, true positive rate is already above 0.8.

As for comparing the curves for each of the lossy tech-
niques versus that for the original quality values, observe
that before all curves converge the curve for LEON (green)
is below the one for raw quality values (red). Also, the curve
for Illumina (blue) is above the one for the raw quality
values, confirming the slight improvement previously noted
in the F-score for Illumina binning. The curves for both QVZ
and dynamic binning mostly overlap that for raw quality
values. We consider this a good result because it implies
that variant calling performance is not negatively affected
even though both achieved a better compression ratio than
that for the original quality scores.

To summarize the information from ROC curves, we
consider the AUC as another metric for the variant calling
performance. Table 13 reports AUC values for both callers,
GATK and Samtools. By comparing the AUC for each
technique we notice that there is no indication that lossy
models negatively affect the variant calling performance as

TABLE 13
AUC, 50x fold coverage

Chr. Caller Raw Illumina QVZ LEON Dyn. bin
11 GATK 0.8205 0.8439 0.8192 0.8250 0.8191
11 Samtools 0.8792 0.8804 0.8797 0.8713 0.8797
20 GATK 0.7858 0.8129 0.7878 0.7946 0.7865
20 Samtools 0.8952 0.8988 0.8954 0.8926 0.8954

all of them are either greater than the AUC with raw quality
values or very close.

7 CONCLUSIONS AND FUTURE WORK

We introduced a new lossy technique for quality scores,
dynamic binning, and studied it along with three other
techniques: Illumina binning, QVZ, and LEON. In particular
we analyzed the effect of each of these on the CRAM
compression format. We examined not only the compression
ratio, but also the effect on variant calling performance.

According to the three experiments presented, all using
different coverage data sets, the four lossy techniques all im-
prove the compression ratio. Nonetheless, it is worthwhile
noting that the compression ratio is lower when coverage
is higher. As coverage increases, reads are still easily com-
pressed as there is a great deal of redundancy; however,
this is not the case for the quality scores. As a result, less
compression is possible. However, more information also
implies better variant calling performance, as confirmed by
F-score and AUC. For example, for chromosome 20 the com-
pression ratio for raw quality values varies from 13.40 (5x
coverage) to 8.55 (6x coverage) to 6.69 (50x coverage). And
for each lossy model, the compression ratio varies similarly.
Meanwhile, the corresponding F-score for Samtools caller
varies from 0.7762 (5x coverage) to 0.8110 (6x coverage) to
0.9523 (50x coverage).

It is also worthwhile noting that the lossy compression
methods improve the compression ratio of the CRAM files
by a greater percentage than they improve the compression
ratio of the BAM files. Again, this effect is reduced as the
coverage increases. However, since the CRAM format is
already a significant compression compared to BAM, this
provides further motivation for using the CRAM format.

In terms of compression ratio, LEON gives the best
results, more than doubling the compression ratio obtained
with raw quality values for 5x coverage and 6x coverage.
Dynamic binning also doubles or nearly doubles the com-
pression ratio obtained by the raw quality values for these
coverages. As for 50x coverage, all lossy techniques improve
upon the compression ratio obtained by the raw quality
values, but not as markedly. For example, LEON has the
best compression ratio but improves from only 6.69 to 9.44
for chromosome 11 and 6.69 to 9.46 for chromosome 20.

However, with respect to variant calling performance,
LEON reports a lower F-score than all other techniques,
across all coverages, chromosomes and callers considered,
with the sole exception of 6x coverage and Samtools caller.

Both dynamic binning and Illumina binning improved
the compression ratio without compromising variant call-
ing performance. In general dynamic binning obtained a
better compression ratio than Illumina binning. Although
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Fig. 3. ROC, chromosome 11 (50x fold coverage). True positive and false positive rates are as defined in Section 3.4 and relate to SNP calling only.

with dynamic binning the improvement of variant calling
performance did occur in some cases, Illumina binning was
more consistent in boosting variant calling performance as
measured by F-score.

In all experiments QVZ showed the lowest compression
ratio of all and was only slightly above the compression
ratio obtained with the raw quality values, although the
variant calling performance remained very close.

In comparing the techniques, there is an interplay be-
tween several different aspects. It is important to consider
how much compression may help in different situations
and also the effect of different parameters for each of the
techniques. One important aspect is the actual datasets
being examined: as noted above, as coverage increases there
is typically lower compression possible in the quality values
(due to relatively lower redundancy in comparison to the
reads) but also some datasets contain other tags that take
up significant space. As another example, QVZ may be
at a disadvantage in comparison to the other methods for
CRAM compression as it may still have a high number of
quality scores present. Also, due to the nature of CRAM
compression, the frequency with which values are repeated
has a direct effect on the level of compression achievable.
Dynamic binning uses 5 bins, so in general the decreased
alphabet is easier to compress, however with larger files
there are more blocks and so more opportunities for bins
in different blocks to have different representatives, making
compression harder. Notice that the difference in relative
compression ratios between the different methods decreases
as coverage increases. On a related note, depending on
the sequencing technology used, the number of quality
values used may vary significantly which in turn impacts
the compression achievable. For example, Illumina’s newer
technology [18] uses a greatly reduced number of quality
scores. In short, the type of data has a definite impact on the

TABLE 14
F-score comparison for no quality values. Chromosome 20, ground

truth Illumina and Samtools caller.

5x 6x 50x
Raw 0.7762 0.8237 0.9523
No quality values 0.7180 0.7682 0.8796

relative success of the various techniques. All of the current
techniques for compression of quality values, including
those discussed in this study, may help to provide insight
on how to assign scores to be used in newer technologies.

This study has shown that by adjusting quality values
the compression ratio can be improved without compro-
mising SNP calling performance. Consider Table 14, which
gives the F-scores achieved for constant quality values and
for raw quality values: we see that when setting all quality
values to a constant value the F-score drops significantly,
indicating that the information provided by the quality
scores is still necessary for good SNP calling performance.

Nowadays many approaches for compression of next-
generation DNA sequencing data output are being studied.
Lossy techniques can be very useful in this area, as it has
been shown that variant calling performance is the same or
sometimes even better when adjusting the quality values.

There remain several studies to continue improving
these techniques. The noise that quality values present in
their distribution needs to be well understood by making
further analysis of quality values behaviour and statistics.

As future work, it would be useful to consider other
types of mutations such as indels. It would also be instruc-
tive to examine the performance of the various techniques
on different datasets. One such newer dataset is Syndip [23].
As with the datasets used in this project [30][40], Syndip was
constructed via a consensus of multiple callers to reduce
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bias; also, its developers aimed to avoid possible additional
bias that may be present in earlier datasets due to the same
algorithms being used for both construction and testing.

Instead of a single standard lossy technique, it may be
preferable to develop several options which the user can
select depending on the project, as we observed different
behaviours in our experiments by varying only fold cov-
erage. Many other factors can vary including for example
sequencing technology, which as noted above can have a
significant impact. As new methods and technologies are
developed, further comparisons will need to be performed
to evaluate which methods are best in which circumstances,
and to help develop new ideas.

For the exploratory idea we developed with dynamic
binning, there are several other paths to continue study-
ing. This includes further consideration of the number of
bins, the ranges covered by each bin, and the lengths
of the blocks. The reduced number of bins used in Illu-
mina’s newer technology [18] should be taken into account
while addressing these considerations, although as noted
in Section 3.5 we also see that dynamic binning allows for
more accurate quality values and therefore is one means
of helping to inform decisions about binning in the various
technologies. We note also the similarity of dynamic binning
to P-block and R-block [7], which are also flexible but which
use variable blocks. Although in the current definition of
dynamic binning all blocks are fixed, such flexibility could
also be incorporated into dynamic binning, along with con-
sideration of various probabilities.
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