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Build a Sporadic Group in Your Basement
Paul E. Becker, Martin Derka, Sheridan Houghten,

and Jennifer Ulrich

Abstract. All simple finite groups are classified as members of specific families. With one
exception, these families are infinite collections of groups sharing similar structures. The ex-
ceptional family of sporadic groups contains exactly twenty-six members. The five Mathieu
groups are the most accessible of these sporadic cases. In this article, we explore connections
between Mathieu groups and error-correcting communication codes. These connections per-
mit simple, visual representations of the three largest Mathieu groups: M24, M23, and M22.
Along the way, we provide a brief, non-technical introduction to the field of coding theory.

1. INTRODUCTION In 1873, Emile Mathieu published a description of a 5-
transitive group of permutations on 24 symbols. A simple group with 244,823,040
elements, it is now generally known as M24 – the largest of the five Mathieu groups.

In 1951, Ralph Stanton described Mathieu’s groups as follows:
“. . . with but five exceptions, all known simple groups fall into infinite families; these

five unusual simple groups were discovered by Mathieu and, after occasioning some
discussion, were relegated to the position, which they still hold, of freakish groups
without known relatives.”[23, p. 164]

The timing of Stanton’s comment was most unfortunate. In the new field of binary
communication theory, the “freakish” group M24 was about to become a star. Claude
Shannon’s famous paper, “A Mathematical Theory of Communications,” had explored
the theoretical limits of communication in real-world systems just three years earlier.
Marcel Golay responded with a uniquely useful communication scheme, in which 212

symbols were represented by easily distinguished binary vectors of length 23. A parity
check digit was soon added, and the extended binary Golay code became the most
important example in the theory of error-correcting codes. The automorphism group
of this structure is M24 [14, p. 251].

We may update Stanton’s statement in light of the complete classification of finite
groups. Simple groups are groups whose only normal subgroups are trivial. All finite
groups may be constructed with simple groups as their component parts. The clas-
sification theorem states that almost all finite simple groups may be sorted into four
general types. These types are the cyclic groups of prime-power order, the alternating
groups, the projective unimodular groups, and the groups of Lie type. There are ex-
actly twenty-six groups which defy this classification, and are collectively called the
sporadic groups [21, p. 269]. The Mathieu groups are the most accessible of these
sporadic cases.

Stanton’s interest in Mathieu’s group was based on early work in classifying simple
groups. He cited a text from the year 1901:
“Dickson has shown that there are infinitely many group orders g with the property

that there exists two simple groups of order g, the lowest such value of g is 20,160.”[23,
p. 164]
Stanton then proved that M24 is unique, if not “freakish.”

Lemma 1. The only simple group of order 244, 823, 040 is the Mathieu group M24.
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Mathieu’s original construction of M24 utilized three apparently arbitrary permuta-
tions a, b, c [9, p. 209] where:

a = (1, 2, 3, . . . , 23)

b = (3, 17, 10, 7, 9)(5, 4, 13, 14, 19)(11, 12, 23, 8, 18)(21, 16, 15, 20, 22)

c = (1, 24)(2, 23)(3, 12)(4, 16)(5, 18)(6, 10)(7, 20) . . .

. . . (8, 14)(9, 21)(11, 17)(13, 22)(19, 15).

Searching for alternative constructions of the Mathieu groups has become some-
thing of a cottage industry. R. T. Curtis, who presented M24 as a group of actions on
the faces of an icosatetrahedron, commented:

“Mathieu himself constructed the groups by ‘gluing together’ copies of linear frac-
tional groups in a very clever but hardly ‘natural’ manner.” [5, p. 423]

This article offers a construction for three of the Mathieu groups which is “natu-
ral” in a practical sense. We tie Golay’s extremely practical communication code to
Mathieu’s intellectual oddities. Along the way, we provide the following: some back-
ground in coding theory; two simple constructions of Golay’s error-correcting code; a
correlation of those constructions which produces the sporadic group M24; and a clear
visual description of M24. Finally, we build two more of Mathieu’s groups as stabilizer
subgroups within M24. We hope to show that the Mathieu groups have a fascinating
structure which goes far beyond their original definitions.

2. ERROR CORRECTING CODES Shannon’s 1948 paper [22] introduced a
mathematical model for the transmission of digital information. His basic model in-
corporated a finite set of possible signals, a sender, a receiver, and a communication
channel connecting them. He assumed the channel’s properties are known, includ-
ing the types (and probabilities) of errors which the channel introduces. We will be
concerned with symmetric binary channels, where the primary issue is random substi-
tution errors. In such channels, any digit 1 may be replaced by a 0 with a fixed (small)
probability p. Any 0 may likewise be replaced by a 1 with the same probability. For
convenience, we denote the field of binary numbers as F.

Formally, a binary code with length n is a set of vectors chosen from Fn , where
each vector represents a corresponding signal. The vectors are called codewords or
simply words. Used in this sense, the term “code” has nothing to do with secrecy.
Error-correcting codes contain enough redundancy that (limited) random errors can
be detected and corrected. A code is linear, with dimension k if it forms a subspace
of dimension k within Fn. Immensely useful examples of linear error-correcting codes
were introduced by Hamming and Golay soon after Shannon’s publication; these codes
are discussed below.

A short linear code As an introductory example, consider the code:

S = {[0, 0, 0, 0], [1, 1, 1, 1], [1, 0, 1, 0], [0, 1, 0, 1]}.

This set of vectors forms a subspace of F4 with dimension 2, so S is linear with length
n = 4 and dimension k = 2. To satisfy tradition, we stack a basis for a linear code and
call it a generator matrix. Code S is the rowspace of generator matrix M , below:

M =
[

1 0 1 0
0 1 0 1

]
.
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We could, of course, choose a different basis for S; generator matrices are not unique.
Linear codes are classified by length, dimension, and a third parameter: minimum

distance. The distance between two codewords is the number of positions in which
they differ. For example, d([1, 0, 1, 0], [1, 1, 1, 1]) = 2. The minimum distance of a
code is the smallest distance between two distinct codewords; the minimum distance
of example S is d = 2. The support of a codeword x̂, written supp(x̂), is the set of
nonzero coordinates in the word. The weight of x̂ is d(x̂, 0̂) = |supp(x̂)|, the num-
ber of ones it contains. For linear codes, minimum distance and minimum weight are
equal. Ordering parameters as (n, k, d), we describe example S as a (4, 2, 2) code.

Self-dual codes Orthogonality is an important concept in coding theory. The ordinary
dot-product of vectors (mod 2) is an inner product on Fn. We say vectors x̂ and ŷ
in Fn are orthogonal if x̂ · ŷ = 0; orthogonal vectors meet (share ones) in an even
number of positions. For a linear code C , the set C⊥ = {x̂ : x̂ · ĉ = 0 ∀ĉ ∈ C} also
forms a subspace of Fn , the dual code of C . A code is self-dual if C = C⊥; our
example, S, is self-dual.

Lemma 2. The words of a binary self-dual code C are easily recognized; they are
exactly those vectors in Fn which are orthogonal to all rows of any chosen generator
matrix for C .

Our communication channel permits substitution errors during transmission; re-
ceived vectors may not even be words in the code. Nearest-neighbor decoding attempts
to correct such errors by treating a received vector x̂ as a codeword ĉ which minimizes
d(x̂, ĉ). Code S is unsuitable for such use; the vector [0, 0, 0, 1] has two nearest neigh-
bors, [0, 0, 0, 0] and [0, 1, 0, 1].

A linear error-correcting code Nearest neighbor decoding allows reliable correc-
tion of b d−1

2 c errors per codeword. With minimum distance d = 2, our example S
is zero error-correcting. We can increase the minimum distance by lengthening the
codewords. Code T extends S to a (6, 2, 2) linear code with minimum distance 3:

T = {[0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1]}.

If the vector x̂ = [0, 0, 0, 1, 0, 0] is received, we now assume x̂ represents the
unique nearest neighbor [0, 0, 0, 0, 0, 0] in T . Code T is one error-correcting, but is
no longer self-dual. It is also quite inefficient, requiring 6 digits to represent only 4
distinct signals. Error-correcting codes exist which are both self-dual and efficient; the
Hamming and Golay codes (below) are famous examples.

The automorphism group of a code A (linear binary) code C is equivalent to an-
other code D if C can be obtained from D via a permutation of the coordinates of all
codewords. Formally, coordinate permutations form distance-preserving vector-space
homomorphisms on Fn

; as such, they map (n, k, d) codes to (n, k, d) codes. Recall
that code S is generated by

M =
[

1 0 1 0
0 1 0 1

]
.

Exchanging the second and third coordinates in code S produces an equivalent code,
generated by the matrix [

1 1 0 0
0 0 1 1

]
.
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It is common to select a single, standard code from any set of equivalent codes. In
this article we approach equivalence a little differently. Equivalent codes represent the
same information and structure, expressed as different subspaces of Fn . We view two
equivalent codes as two models for that underlying structure. Different models reveal
different properties of the structure.

An automorphism of a code is a coordinate permutation which preserves the orig-
inal code (as a set of vectors). In matrix terms, automorphisms transform generator
matrices into new generator matrices for the same code. The automorphisms of a code
C form a group under composition, denoted by Aut (C).

The group Aut (S) consists of those permutations which either fix or exchange
[1, 0, 1, 0] and [0, 1, 0, 1]. (The codewords [0, 0, 0, 0] and [1, 1, 1, 1] will be fixed by
every permutation.) The identity permutation, fixing every column, is in Aut (S).Auto-
morphisms which fix the last column must also fix the second, and those fixing the third
column also fix the first. These rules describe the automorphisms (1, 3) and (2, 4).
Some automorphisms fix no columns: (1, 3)(2, 4) fixes both words, while (1, 2, 3, 4),
(1, 4, 3, 2), (1, 4)(2, 3), and (1, 2)(3, 4) exchange them. Two generators are sufficient
to produce the 8 elements of Aut (S); specifically, Aut (S) = 〈(1, 2, 3, 4), (1, 3)〉.

The Hamming code and its automorphisms While Shannon was introducing a the-
ory of digital communication, one of his colleagues at Bell Telephone Laboratories
was developing an extremely practical error-correcting code [2]. Hamming proposed
a binary linear code which could correct a single substitution error in any codeword
[13].

Hamming’s code can be built in simple stages from our code S. Define the blocks:

I =
[

1 0
0 1

]
; I =

[
0 1
1 0

]
; and J =

[
1 1
1 1

]
.

Substitute these blocks into the generator matrix M[
1 0 1 0
0 1 0 1

]
−→

[
I 0 I J
0 I J I

]
,

obtaining a commonly used generator matrix:

N =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
In modern terminology, the rowspace of N forms a self-dual (8,4,4) code, denoted

H . The code is doubly-even, as all codewords have weights which are multiples of 4.
We call this the block-substitution model of the extended Hamming code. (The reason
for calling it “extended” will be explained soon.)

The automorphism group, Aut (H), is surprisingly large, with 1344 elements. Some
of these automorphisms are apparent from the generator matrix N . Simply cycling the
rows of N reflects the automorphism ε = (1, 2, 3, 4)(5, 6, 7, 8). A normal subgroup
of eight elements can be “lifted” from automorphisms of the underlying code S. For
example, if we apply the permutation (1, 3)(2, 4) to the blocks which built N , we
obtain an automorphism of H : (1, 5)(2, 6)(3, 7)(4, 8).

A code automorphism need not preserve any particular generator matrix. The per-
mutation η = (1, 2, 3, 4, 6, 8, 5) is an automorphism of code H, but distorts matrix N .
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To explain η, and to develop the full group Aut (H), we consider another model of the
same code.

The set of quadratic residues (mod 7) is the set of numbers q such that the equation
x2
≡ q (mod 7) has a solution. This set, {1, 2, 4}, is used to construct the quadratic

residue model of Hamming’s code. Create a binary vector of length 7 by placing ones
in positions 1, 2, and 4. “Extend” the vector by placing an extra one in an eighth
position; this parity-check position ensures the code will be even. Produce consecutive
rows of a matrix by applying the coordinate permutation θ = (1, 2, 3, 4, 5, 6, 7)(8).
The resulting matrix

P =

1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1


generates a code, V, with dimension 4. (Further applications of θ result in vectors
which are linear combinations of rows in P. Thus, θ is an automorphism of V .)

To verify V is equivalent to the block-constructed code H, we only need to find a
permutation ω which embeds H into V .

Equivalence of the two models If a mapping ω takes the code H into the the code
V, it cannot be unique. (For any δ ∈ Aut (V ), the composition δ · ω will achieve the
same goal.) We should have some flexibility in constructing ω. In particular, we will
suppose that ω fixes the first four coordinates of H . (This is something of a gamble,
but it turns out to be an acceptable restriction.)

We rely on a well-known combinatorial structure associated with the Hamming
code. In combinatorics, a t − (v, k, λ) design is a collection of k−subsets called
“blocks,” chosen from a set of v elements called “varieties.” Each t−subset of vari-
eties occurs in exactly λ blocks.

Any chosen model, C, of the Hamming code contains a design. The coordinates
{1, 2, . . . , 8} are the varieties, while the supports of (nonzero) minimum-weight words
form the blocks. Specifically, {supp(x̂) : x̂ ∈ C, d(x̂, 0̂) = 4} is a 3− (8, 4, 1) design,
which is unique up to permutation of coordinates [15, pp. 103-104]. In other words,
every 3-tuple of nonzero coordinates defines a unique minimum-weight vector in the
Hamming code.

We construct ω : H → V by assuming both codes are models of the Hamming
code. We match minimum-weight vectors between the codes, using three nonzero co-
ordinates to determine unique pairings. Vectors in a pair each have a fourth non-zero
position. Comparison of these positions describes the action of ω on a single coordi-
nate. If the resulting map takes H into V, then we will know that our assumption was
correct.

We work with the matrices N and P, which generate H and V , respectively. Sup-
pose that ω fixes the first 4 coordinates of H . We use these 4 coordinates to pair vectors
in row(N ) with vectors in row(P). As an example, the sum of the second, third, and
fourth rows of N is [0, 1, 1, 1, 1, 0, 0, 0]. This is mapped to the exactly one vector,
the sum of the second and fourth rows in P: [0, 1, 1, 1, 0, 0, 1, 0]. We conclude that ω
maps coordinate 5 to coordinate 7. Three similar pairings appear below:

ω : [1, 1, 0, 1, 0, 0, 1, 0]→ [1, 1, 0, 1, 0, 0, 0, 1],

ω : [1, 1, 1, 0, 0, 0, 0, 1]→ [1, 1, 1, 0, 0, 1, 0, 0],

ω : [1, 0, 1, 1, 0, 1, 0, 0]→ [1, 0, 1, 1, 1, 0, 0, 0].
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From these pairings, we conclude ω maps coordinate 5 to coordinate 7, coordinate
7 to coordinate 8, coordinate 8 to coordinate 6, and coordinate 6 back to coordinate
5. Our permutation must be ω = (5, 7, 8, 6). Code V is self-dual, ω takes row(N )
into row(P), and our two codes have the same dimension. From Lemma 2, we may
conclude ω(H) = V . Codes H and V are equivalent models of Hamming’s code.

The permutation θ = (1, 2, 3, 4, 5, 6, 7)(8), used to create the quadratic residue
model, is an automorphism of that model. We claimed, above, that the block-
substitution model also admitted an automorphism η of order 7. The composition
ω−1
· θ · ω maps words in the block-substitution model to words in the quadratic

residue model, applies θ to those words, then maps the results back. The automor-
phism η is simply θ translated into the block-substitution model:

η = ω−1
· θ · ω

= (1, 2, 3, 4, 6, 8, 5).

Our two models of the extended Hamming code reveal distinct features of its in-
ternal structure. Think of the models as x-rays taken from two different viewpoints.
These two views, expressed as automorphisms η and ε = (1, 2, 3, 4)(5, 6, 7, 8), are
sufficient to describe the entire group Aut (H). Formally, Aut (H) = 〈ε, η〉, a group
with 1344 elements.

3. THE EXTENDED GOLAY CODE AND M24 Hamming’s work was paral-
leled in an incredibly brief article by Golay [11], which introduced a multiple-error-
correcting code of length 23. The code was later extended with a twenty-fourth (parity
check) column, producing a (24, 12, 8) three-error correcting code.

The extended binary Golay code has been extensively used in deep-space communi-
cations. In particular, it was used by the Voyager mission to encode color photographs
of Jupiter and Saturn [16]. This code has many astonishing properties.

Theorem 1 (Pless [20]). Let C be a linear binary (24, 12, d) code. Then the following
statements are equivalent:

1. the minimum weight of C is d = 8;
2. C is equivalent to the Golay code.

Theorem 2 (Huffman, Pless [14]). The full automorphism group of the extended bi-
nary Golay code is isomorphic to M24.

Lemma 3. Let M be the set of minimum-weight words in a model of the extended
Golay code. The set {supp(x̂) : x̂ ∈ M} forms a 5 − (24, 8, 1) design. Furthermore,
this design is unique up to permutation of coordinates [20].

The design described in Lemma 3 is named after Witt, who showed it to be unique
long before the Golay code was created [26]. The proof of Theorem 1 was based on
this lemma.

The primary goal of this article is to construct the automorphism group M24 by cor-
relating two simple models of the Golay code. The first is essentially Golay’s original
model, based on quadratic residues mod 23. We develop the second via further substi-
tutions into the block-substitution Hamming code. These models provide two different
glimpses into the automorphism group M24 – different enough to construct the group.
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Constructing the extended Golay code (I) The quadratic residue model of the ex-
tended Golay code begins with the set {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} – the quadratic
residues (mod 23). A binary vector of length 23 is created with ones in these posi-
tions; an additional 1 appears in position 24. Consecutive rows of a generator matrix,
Q, are produced using the coordinate permutation

σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)(24),

as follows

Q =



11110101100110010100000 1
01111010110011001010000 1
00111101011001100101000 1
00011110101100110010100 1
00001111010110011001010 1
00000111101011001100101 1
10000011110101100110010 1
01000001111010110011001 1
10100000111101011001100 1
01010000011110101100110 1
00101000001111010110011 1
10010100000111101011001 1



.

The rowspace of Q forms a self-dual code, with length 24, dimension 12, and mini-
mum weight 8. This is Golay’s original construction; we will call this model R.

The twelve rows of the generator matrix Q were produced by repeated applications
of the permutation σ. Note that further applications of σ produce vectors which are
linear combinations of those twelve rows. Therefore, we make the following trivial
(but useful) observation about R.

Lemma 4. The permutation

σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)(24)

is an automorphism of the quadratic residue model of the extended Golay code.

Constructing the extended Golay code (II) We now propose an alternative model of
Golay’s code, based on an interesting fact. As a vector space, the extended Golay code
is equivalent to a direct sum of three copies of Hamming’s code.

We build Golay’s code in stages from the generator matrix, M, of our trivial self-
dual code S. Recall that the block-substitution model of Hamming’s code came from
substitutions into M :

M =
[

1 0 1 0
0 1 0 1

]
,

H =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
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Perform similar substitutions into matrix H , using 3× 3 blocks:

I =

1 0 0
0 1 0
0 0 1

 ; I =

0 1 1
1 0 1
1 1 0

 ; J =

1 1 1
1 1 1
1 1 1

 ;
to create the matrix G, below.

G =


I 0 0 0 I I I J
0 I 0 0 J I I I
0 0 I 0 I J I I
0 0 0 I I I J I

 .
In expanded form, we have:

G =



100 000 000 000 011 100 100 111
010 000 000 000 101 010 010 111
001 000 000 000 110 001 001 111

000 100 000 000 111 011 100 100
000 010 000 000 111 101 010 010
000 001 000 000 111 110 001 001

000 000 100 000 100 111 011 100
000 000 010 000 010 111 101 010
000 000 001 000 001 111 110 001

000 000 000 100 100 100 111 011
000 000 000 010 010 010 111 101
000 000 000 001 001 001 111 110



.

The matrix G generates a self-orthogonal code, B,with dimension 12 and minimum
distance d = 8 [7]. By Theorem 1, we are justified in calling this the block-substitution
model of Golay’s code. Again, we make a relatively trivial observation.

Lemma 5. The permutation ρ = (1, 2, 3)(4, 5, 6) . . . (22, 23, 24) is an automorphism
of the block-substitution model of the extended Golay code.

Theoretically, our models of Golay’s code must be equivalent. Unfortunately, this
is not enough; we will need a specific equivalence map.

Equivalence of the Golay models We wish to link the block-constructed model of
Golay’s code to the quadratic residue model. Symbolically, we are seeking a permuta-
tion of coordinates χ : B → R.

In section 2, we derived an equivalence mapping between two models of the Ham-
ming code. A embedded combinatorial design allowed unique matchings of codewords
with their images. Our current situation is very similar. Readers wishing to avoid a
detailed derivation of the mapping χ should feel free to skip ahead. Our narrative con-
tinues with Lemma 6, on page 10.

Lemma 3 provides a 5− (24, 8, 1) design embedded in the Golay code. The words
of weight 8 contain a basis for the Golay code [19], and they are uniquely determined
by five nonzero coordinates. We use fixed 5-tuples to match words ŵ ∈ B with their
images χ(ŵ) ∈ R, then reverse-engineer χ from those pairings.
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Mathieu’s 1873 publication showed that his new group was 5-transitive. For
ordered 5-tuples x = (x1, x2, x3, x4, x5) and y = (y1, y2, y3, y4, y5) chosen from
{1, 2, . . . , 24}, there is some element of M24 taking x to y.

Since B and R are models of the Golay code, we know Aut (B) ∼= Aut (R) ∼= M24,
and at least one equivalence map κ : B → R exists. For any α ∈ Aut (B) and β ∈
Aut (R), the composition χ = β · κ · α is also an equivalence map. Whatever permu-
tation is represented by κ · α, the 5-transitivity of M24 guarantees a choice of β so that
χ fixes coordinates 1 through 5.

Although our models were constructed very differently, they are not disjoint.
The intersection code, B ∩ R, has dimension 2, and is generated by 1̂ and ẑ =
[0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1]. It seems reasonable to
assume that χ fixes B ∩ R in general, and ẑ in particular.

The 5-transitivity of Aut (R) guarantees the existence of some χ fixing coordinates
1 through 5. We can do better, as Aut (B) is also 5-transitive. A total of ten fixed
coordinates should be possible, although we cannot promise they will be consecutive.

Our assumption that χ fixes ẑ ∈ B ∩ R effectively partitions the set of coordinates.
The nonzero coordinates in supp(ẑ) cannot be interchanged with those where ẑ con-
tains zeros. Assuming that χ has at least five fixed points allows a finer partition. We
define three subsets of {1, 2, . . . , 24}; our mapping χ may permute coordinates within
these sets, but not between them. Let F be the set of fixed points for χ. Let C be the
set of coordinates, not fixed by χ, where ẑ is nonzero: C = supp(ẑ) \ F. Finally let
D be the remaining coordinates: D = C \ F .

We are expecting to identify ten fixed points, but we only know five of them at this
time. For the moment, we can only say:

F ⊇ {1, 2, 3, 4, 5},

C ⊆ {6, 9, 10, 15, 16, 17, 20, 21, 23, 24},

D ⊆ {7, 8, 11, 12, 13, 14, 18, 19, 22}.

Codes B and R contain unique words of weight 8 starting with five consecutive
ones. Matching these words starts the process of determining χ :

χ : [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1]

→ [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0].

We find that χ : {18, 21, 24} → {16, 18, 21}. Now 18 /∈ C, so 18 is not mapped to
16 or 21. We now know 18 ∈ F, leaving χ : {21, 24} → {16, 21}. We are expecting
additional fixed points, so we guess that 21 is fixed, and χ : 24→ 16.

We now have seven fixed coordinates: F ⊇ {1, 2, 3, 4, 5, 18, 21}. As this collection
grows, we are able to identify more matchings. We concentrate on words whose sup-
port meets our (rapidly shrinking) set C in only one coordinate. Each code has sixteen
words satisfying this requirement and intersecting our known subset of F in exactly
four coordinates. As paired 5-tuples give unique matchings, paired 4-tuples yield two
choices. In the example below, nonzero coordinates falling in C are highlighted. The
pair of vectors

b̂1 = [0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

and

b̂2 = [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0]
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in B map to the pair of images

r̂1 = [0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]

and

r̂2 = [0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1].

We conclude χ : {9, 16} → {10, 24}. Eight similar pairings yield four distinct facts:

χ : {9, 16} → {10, 24},

χ : {10, 15} → {6, 9},

χ : {6, 17} → {17, 20},

χ : {20, 23} → {15, 23}.

Again, we expect considerable flexibility in choosing χ. We already know 24 is
mapped to 16; it appears that 16 could be mapped back to 24. A similar situation is
possible with 9 and 10. Since we have no information about 17, perhaps it is fixed. We
now know χ maps 15 to 6 and 6 to 20. Coordinate 20 is either mapped to 23 or back to
15. Choosing the first case, we have several closed cycles in χ : (6, 20, 23, 15); (9, 10);
and (16, 24).

The action of χ on C is determined. Our collection of established fixed points now
contains eight elements. It is large enough to uniquely determine numerous vectors
whose supports meet D in only one point. Matching these vectors between the codes,
we can predict the action of χ on coordinates in D. The actions of χ on F , C , and D
are then determined, yielding a potential equivalence map.

Lemma 6. The permutation

χ = (6, 20, 23, 15)(7, 12, 11, 8, 22, 19)(9, 10)(16, 24)

is an equivalence map from the block-constructed model (B) to the quadratic-residue
model (R) of the extended Golay code. It fixes the intersection of those two codes.

Proof. As we are working with self-dual codes, Lemma 2 makes it easy to check that
χ maps B into R. The dimensions of the two codes are equal, so they are equivalent
via χ .

Building the sporadic group M24 We now have two automorphisms arising from
different models of the extended Golay code. The permutation σ cycles the coordinates
1, 2, . . . , 23; it is an automorphism of the quadratic residue model. The permutation
ρ is an automorphism of the block-substitution model; it partitions the coordinates
1, 2, . . . , 24 into consecutive 3-cycles. We also have the map χ, which links the two
models.

Conjugation by χ transforms σ into an automorphism of the block-substitution
model; specifically, we define τ = χ−1

· σ · χ. The group generated by ρ and τ is
simple, with 244,823,040 elements; these facts were verified with the software pack-
age GAP [10]. By Lemma 1, the group must be isomorphic to M24. Alternatively, we
could argue that 〈ρ, τ 〉 is a subgroup of the automorphism group of Golay’s code. As
its order matches the order of M24, Theorem 2 confirms that the groups are isomorphic.
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Theorem 3. The permutations

τ = χ−1
· σ · χ

= (1, 2, 3, 4, 5, 15, 19, 11, 10, 9, 12, 7, 13, 14, 23, 24, 17, 18, 22, 6, 21, 8, 20)(16)

and

ρ = (1, 2, 3)(4, 5, 6) . . . (22, 23, 24)

generate the sporadic group M24.

4. VISUALIZING THE MATHIEU GROUPS We claim this construction of M24
is the simplest possible. As M24 is not cyclic, it requires at least two generators. Our
generators are obvious from the models they are based on, and those models are easily
constructed from rather simple ideas. Perhaps more importantly, this construction of
M24 is easy to represent visually.

We represent M24 as a permutation group on a collection of 24 beads. Place 23 of
these beads in a ring, with the remaining bead in the center. Label the beaded ring, in
order, with the numbers appearing in permutation τ. Reserve the number 16 to label
the center bead.

20 1 2
3

4

5

15

19

11

10

9

12
713

14

23

24

17

18

22

6

21

8

16

Figure 1. The permutation τ

Figure 1 shows the permutation τ, which fixes bead 16. Figure 2 shows the per-
mutation ρ, which moves beads on triangles. It is easy to see why M24 is so large.
The eight triangles comprising ρ display eight very different behaviors with respect
to our ring of beads. There is little, if any, correspondence between τ and ρ, allowing
seemingly endless variety in combinations of the two permutations.

The groups M23 and M22 We have constructed M24, the largest member of the Math-
ieu family consisting of M24,M23,M22,M12, and M11. What can we say about its
relatives?

The Mathieu groups were introduced in two articles by Emile Mathieu. The first
article, in 1861, dealt primarily with M12, a 5-transitive group of permutations on 12
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8

11

10

12

15

13
14

17

18
16

20

19

21

23

24

22

Figure 2. Disjoint cycles comprising the permutation ρ

coordinates [17]. The second article, twelve years later, dealt with the much larger
group M24 [18]. Other authors showed, circa 1900, that these were simple groups [9,
p. 209]. In other words, the Mathieu groups were the first sporadic groups. Aside from
the full symmetric and alternating groups, Sn and An, these are the only 4- and 5-
transitive groups [9, p. 177].

Mathieu’s 1873 article introduced a 4-transitive permutation group on 23 coordi-
nates, now known as M23. That 4-transitive group required two generators, a and b,
appearing on page 2 of this article. He then extended M23 by adding a third generator,
c, forming the 5-transitive M24. This definition was not entirely convincing in its time;
at least one paper was published denying the existence of M24. The group’s nature was
firmly established in 1938, when Witt constructed M24 as the permutation group of the
combinatorial design bearing his name [24, p. 191].

The two groups M23 and M22 are usually described as stabilizer subgroups within
M24. Their subscripts refer to the number of permuted coordinates. The larger of these,
M23, is generated by stabilizing any single coordinate in {1, 2, . . . , 24}. It has |M24|

24
elements [9, p. 177].

Using our beaded-ring description of M24, construction of M23 is easy. Recall that
M24
∼= 〈ρ, τ 〉. Permutation τ already fixes the bead in the center of our ring, number

16. We replace ρ, which does not fix bead 16, by f = ρ · τ · ρ. This new permutation
moves bead 16 onto position 17 of the ring, rotates it to the position previously held
by bead 18, and then cycles it back to the center. We summarize this computationally:

f (16) = [ρ · τ · ρ](16)
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= [ρ · τ ](17)

= [ρ](18)

= 16.

The automorphisms τ and f generate the full stabilizer of bead 16; this is the Mathieu
group M23

∼= 〈τ, ρ · τ · ρ〉 = 〈τ, f 〉.
The group M22 is usually defined as the stabilizer, within M23, of any additional

coordinate from {1, 2, . . . , 24}. It is simple, 3-transitive on 22 points, and has |M24|
24·23

elements [9, p. 177].
To construct M22 from M23, we start with the generator f. Note that f fixes both

beads 16 and 1. We replace τ by an permutation which fixes these same beads. This
new permutation uses τ−1 to rotate bead 1 a few positions counter-clockwise, then
bounces bead 1 back to its original position by applying combinations of f and τ. It is
mildly entertaining to verify that g = τ · f −1

· τ · f · τ−8 performs this strange task.
The Mathieu group M22 is isomorphic to 〈 f, g〉.

One might ask how far this production of sporadic stabilizer subgroups can con-
tinue. The sequence is interrupted by the stabilizer of three coordinates, which is iso-
morphic to a projective linear group [24, p. 190]. With a little extra care, however, we
can move on to a sporadic stabilizer of 12 coordinates.

The remaining Mathieu groups Mathieu’s first article introduced M12 and M11 as
multiply-transitive permutation groups acting on 12 and 11 coordinates, respectively.
Their constructions were very similar to the constructions for M24 and M23. The
smaller group, M11, was generated by two permutations. The larger group required
a third generator [9, p. 209]. A more modern description would say that M11 is the
stabilizer subgroup, within M12, of a single coordinate.

Both groups are isomorphic to subgroups of M24. Specifically, if ŵ is any weight-12
word in Golay’s code, then the subgroup stabilizing supp(ŵ) is isomorphic to M12 [9,
p. 206]. Stabilizing any thirteenth coordinate would produce M11.

To construct M12, we could return to the vector ẑ ∈ B ∩ R. The subgroup of per-
mutations in Aut (B) fixing supp(ẑ) is isomorphic to M12. After computing M12, we
could derive M11 by fixing one more coordinate. Modeling this process with the ring-
of-beads imagery might be difficult.

All members of the Mathieu family exist as subgroups within M24. This was first
proven by Frobenius, and apparently was not known by Mathieu himself [24, p. 190].
Oddly, M12 cannot be directly constructed the way we constructed M24. Our approach
for M24 relied on a quadratic residue code of length 23; no such code exists for length
11.

5. CONCLUSION There is an extensive literature on connections between the
Mathieu groups and geometry, combinatorics, and coding theory. Numerous con-
structions of the Mathieu groups have been developed, each justified as “simple” and
“natural.”

The constructions of M24, M23, and M22 presented above are simple and natural in
the following senses. The set of generators for each group is as small as possible. The
generators are easily derived from two models of an important error-correcting code.
Finally, the generators are easy to visualize as permutations on a beaded ring.

Although its derivation relied on very simple ideas, the mapping χ which links
the two models may seem less natural. Perhaps we could do better. Recall that the
automorphism groups Aut (B) and Aut (R) are very, very large. For any α ∈ Aut (B)
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and any β ∈ Aut (R), the map β · χ · α also links the two models. Among the many
millions of valid choices for β · χ · α, there may be one which is obvious in hindsight.
Perhaps this simple construction of M24 could be made just a little more “natural.”
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