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A B S T R A C T   

Height is a key variable for forest management. However, tree height measurements are expensive and time- 
consuming, requiring more effort to measure in the forest than diameter breast height measurements. Indeed, 
height-diameter (h-d) models are increasingly used to overcome the difficulty in measuring tree heights. 
Therefore, more accurate h-d models are increasingly needed. The mixed-effects modeling approach is a main-
stream method to estimate h-d models. This technique was used to model the h-d relationship in the first 24 years 
of growth of sweet chestnut (Castanea sativa Mill.) high-forest stands for timber production. A dataset of 10,868 
h-d observations and 57 plots of local-inventory data were considered individually. Simple mixed-effects models 
considering a grouping structure in the data (plot-level) were obtained, and generalized mixed-effects models 
were developed by expanding the fixed structure of simple mixed-effects models with stand-level variables. 
Several alternative model forms were tested in terms of accuracy, applicability and measurement effort. Different 
alternatives for calibrated predictions of tree height at plot level were analyzed, and considerations on the trade- 
off between easy-to-use equations in the field practice and high-accuracy equations for forest inventory were 
tested. The selected Richards M1a generalized mixed-effects model simultaneously provides fixed and random 
parameters to estimate the chestnut tree height from tree diameter and stand-level variables using the same 
model. The analysis showed that the inclusion of dominant height and dominant diameter as predictors improved 
the accuracy of the Richards model. The Draudt method was one of the best approaches to improve tree-level 
height prediction accuracy using mixed-effects. The applied approach is quite feasible in 100–500 m2 plots. 
The use of these models and the suggested calibration process will significantly reduce the effort and costs of 
fieldwork teams to measure heights for forest management planning while ensuring high accuracy. This effort is 
greater the greater the forest density and, therefore, greater for young stands than for adult stands.   

1. Introduction 

The sweet chestnut (Castanea sativa Mill.) is one of the most impor-
tant broadleaf Mediterranean species found either in natural or semi- 
natural forests accompanied by other plant and animal species or 
forming traditional orchards, often with centennial trees (Patrício et al., 
2020). 

In Portugal, the sweet chestnut (henceforth, chestnut) can be found 
in inland mountain areas, mostly in the North and Center of the country. 
The species covers an area larger than 48,000 ha (ha) (ICNF, 2019), 
including both orchards and forest woodlands (high-forest and coppice). 
The area covered has been progressively increasing more expressively 

since the 1990 s, under the Community Support Frameworks that have 
served as the primary funding sources for afforestation. A considerable 
number of recent plantations (almost 10,000 ha in the Bragança region, 
NE Portugal, between 1994 and 2000) have been established with the 
purpose of being managed as high-forest stands for high-quality timber 
production. Furthermore, when combined with nonwood forest prod-
ucts (provisioning services) and other ecosystems services such as 
regulating and supporting, timber production can become a profitable 
investment for forest owners in mountain areas. These stands promote 
the forest compartment, reduce the risk of wildfires, increase the di-
versity of the forest mosaic and habitats and improve landscape aes-
thetics (Patrício and Nunes, 2017), thus fulfilling the recommendations 
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of the Portuguese National Forest Strategy (ENF, 2015) concerning the 
specialization of Portuguese forest territories. In this way, chestnut 
stands play an important role in the Integrated Areas of Landscape 
Management (IALM), provided for in law DL-n◦28-A/2020 of 26th of 
June, which aims to provide an integrated territorial approach to 
respond to the need for landscape planning and management at a scale 
that promotes resilience to fire, the valorization of natural capital and 
the rural economy. 

Young chestnut high-forest stands for high-quality timber production 
are mostly found on afforested abandoned agricultural lands (afforested 
farmland) belonging to private landowners. Applied research is needed 
to provide a timely response on ways to drive and define silvicultural 
management models suitable for this type of stand to obtain valuable 
timber and complementary forest-based products based on sustainabil-
ity criteria while promoting biological and landscape diversity. 

The development of simple and accurate models that allow forest 
managers to determine with reliability the height of the trees in a stand 
from diameter data is a prime objective in forest management. Knowl-
edge of the breast-height diameter (d) and the total tree height (h) is 
fundamental for developing growth and yield models in forest stands 
(Calama and Montero, 2004) and implementing models of forestry 
management (Bourgeois, 1992; Monteiro and Patrício, 1996; Bourgeois 
et al., 2004). The tree height is often needed to estimate tree volume and 
describe stands and their development over time (Curtis, 1967). 
Measuring d is simpler, more accurate, and cheaper than measuring h. 
For this reason, many forest inventories save time and effort by pre-
dicting tree heights using height-diameter (h-d) models instead of direct 
measurements (Mehtätalo et al., 2015). 

Height-diameter models can be of two types: simple if the model does 
not contain stand-level predictors in addition to d and generalized if 
stand-level predictors are included (Mehtätalo et al., 2015; Bronisz and 
Mehtätalo, 2020). The h-d datasets are often characterized by a grouped 
structure. The mixed-effects modeling approach is a mainstream method 
employed to analyze these forestry data types (Bronisz and Mehtätalo, 
2020). Mixed models estimate both fixed and random parameters 
simultaneously for the same model. Introducing random parameters into 
the model, specific for every sampling unit, enables us to model the 
variability detected for given phenomena among different locations 
after defining a common fixed functional structure (Lindstrom and 
Bates, 1990; Pinheiro and Bates, 2000). 

In this study, the mixed-effects modeling approach was applied to the 
h-d relationship in the first 24 years of growth of chestnut high-forest 
stands for timber production in a multifunctional forestry approach. 
An update of the data from young stands used in Patrício (2006) to 
develop a generalized h-d equation was used. The updated dataset fills 
the information gap on heights in the 7–15 m range, which was lacking. 
Plot-specific and marginal predictions of tree heights are compared. 
Different alternatives for calibrated predictions of tree height at plot 
level are analyzed. Obtaining easy-to-use and high-precision equations 
for processing the forest inventory information is our goal. We also 
present considerations on the trade-off between these objectives in the 
field practice. 

The present study also sought to provide h-d growth models for forest 
managers. These tools, suitable for juvenile phase and first stages of 
maturity of high-forest chestnut stands, will be available and can be used 
to monitor height growth and, according to the growth phase, proceed 
with the implementation of the respective forestry management model, 
whose application is based on the height, namely the mean or dominant 
height, as a reference for thinning applications and other tending op-
erations, instead of the age. 

2. Materials and methods 

2.1. Data 

Data used in this study were collected in the region of Bragança, NE 

Portugal, in permanent sample plots established in high-forest stands of 
private landowners (afforested abandoned agricultural lands) (Fig. 1). In 
2002, 15 plots with an area of 3,000 m2 each were set up in very young 
chestnut stands ranging from 3 to 7 years of age. The referred plot area is 
justified to ensure an adequate number of adult trees per hectare after 
ending the prescribed silvicultural management plan to produce mainly 
high-quality timber. In each plot, all trees were measured for the 
diameter at breast height d (1.3 m above ground) (if applicable) and 
total height h. Additional measurements of these plots were made in 
2008, 2011 and 2019, so the dataset contains information about stand 
growth dynamics in the 3–24 years age interval. These stands were not 
thinned during this period. The reduction of density observed was due to 
plant failure in the early years of plantation. Plot coordinates, altitude, 
slope, soil and climatic information are described in Patrício (2006). 
This dataset fills the information gap on heights in the 7–15 m range, 
which was lacking in the database when a generalized h-d equation was 
developed for the species. Data collected in a research trial established 
in 1981 to study the dynamics of sweet chestnut and Douglas fir in 
different mixtures were also used. This trial is described in Luís and 
Monteiro (1998). Measurements of d and h in all the trees were available 
for each of three plots with pure chestnut (area of 512 m2). This dataset 
contained information on the stands dynamics in the 7–19 years age 
interval (measurements in 1988, 1992, 1996, 1998 and 2000). 

The shape of the h-d relationship is not different between sites 
(Fig. 1), as observed in previous studies (Patrício, 2006), but there are 
differences in site index reflected in dominant height growth. The sta-
tistical summary of both tree and stand variables in the total dataset is 
presented in Table 1. 

2.2. Modeling h-d relationship 

2.2.1. Functions selected 
Several functions have been proposed and compared to describe the 

relationship between tree height and tree diameter (e.g., Huang et al., 
1992; Huang et al., 2000). We selected some nonlinear functions from 
the list presented in HD models of R-package lmfor (Mehtätalo et al., 
2015). These functions were named according to Huang et al. (1992) 
and Zeide (1993), and we adopted the same names (Table 2). In Table 2, 
HD1 to HD5 are two-parameter equations, and HD6 to HD8 are three- 
parameter equations. 

2.2.2. Modeling approach 
The modeling procedures were done in the R-environment (R Core 

Team, 2019; RStudio team, 2019), basically using the nlme package 
(Pinheiro et al., 2019). The dataset contained 10,868 observations, and 
for model fitting, each combination of local-inventory date (57 combi-
nations that we called plots) was considered individually as in Gómez- 
García et al. (2015). Models were fit as simple fixed-effects to each plot 
in an initial exploratory data analysis. The next step consisted of fitting 
simple mixed-effects models considering a grouping structure in the data 
(plot-level) and selecting the best performing models. Furthermore, 
generalized mixed-effects models were developed by expanding the 
fixed structure of the simple mixed-effects models with stand-level 
variables. Generalized fixed-effects models not considering hierarchy 
in the data were also obtained. 

2.2.3. Simple fixed-effects models 
The function groupedData from R-package nlme was used to create 

the grouping structure (trees inside plots). This function creates an ob-
ject of groupedData class with extra options for data analysis, especially 
graphical (Pinheiro and Bates, 2000). With function nlsList, the h- 
d models in Table 2 were individually fit to each plot by nonlinear or-
dinary least squares, which provided a perspective of the variability of 
the models’ coefficients among plots. Moreover, an indication for 
possible initial values of fixed parameters when fitting mixed-effects 
models was obtained. Also, a first visual inspection about possible 
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heteroscedastic model errors was performed. 

2.2.4. Simple mixed-effects models 
Closely following the notation of Mehtätalo et al. (2015), consider 

the height of tree j on plot i as hij, and the corresponding tree diameter at 
breast height as dij, where i is the plot index in our case. The mixed- 
effects model for plot i is defined as, 

hij = f
(
dij, βi

)
eij (1)  

where f(dij; βi) is the systematic part of the model, and eij is the unex-
plained residual error. If the model form is correct and parameters are 
known, f(dij; βi) provides a conditional mean E(hij|dij) on the plot. The 
systematic part can be either linear or nonlinear with respect to βi. The 
vector βi includes parameters of the mean function for plot i (in our case, 
two or three parameters). The systematic part can vary between sample 

plots through the inclusion of random effects. Thus, the simple mixed- 
effects model can be expressed as: 

βi = B+ bi (2)  

where B represents the parameters for a typical plot in the whole pop-
ulation of plots, and plot effects bi express the difference in the param-
eters of plot i from the typical plot. The plot effects are assumed to have a 
common multivariate normal distribution, i.e., bi ~ N(0, D) where D is a 
variance-covariance matrix of random effects for all values of i. The 
residual errors are assumed to be independent and normally distributed 
with zero mean and common constant variance (eij ~ N(0, σ2)). 

When fitting nonlinear mixed models with function nlme of R-pack-
age nlme, we must declare the random parameters as one of the argu-
ments. All parameters were initially assumed random, with a general 
positive definite variance –covariance structure for the random effects. 

Fig. 1. Geographic location of the study area.  

Table 1 
Statistical summary of tree and stand variables in the total dataset.  

Tree and stand variables (n◦ of trees =
10868, n◦ of plots = 57) 

Mean Minimum Maximum SD 

d (cm) 8.1 0.3 28.3 4.8 
h (m) 6.4 1.3 18.9 3.3 
Age (years) 11.9 3 24 5.0 
N (trees ha− 1) 1006 220 1357 210 
dg (cm) 8.9 1.5 19.1 4.0 
hg (m) 6.8 2.1 15.7 3.3 
G (m2 ha− 1) 6.9 0.1 23.0 6.1 
ddom (cm) 12.2 2.3 24.1 5.3 
hdom (m) 7.6 2.5 15.6 3.4 
SI(45) 24.9 15 30 2.8 

d: tree diameter (1.3 m above ground); h: tree height; N: number of trees per 
hectare; dg: quadratic mean diameter; hg: height of the tree with d = dg; G: basal 
area per hectare; ddom: dominant diameter; hdom: dominant height calculated 
according to Assmann (1970) - the average diameter and height of the 100 
thickest trees per hectare, respectively); SI(45): site index for the base-age 45 
years. SD is the standard deviation. 

Table 2 
Mathematical functions selected for modeling the h-d relationship in young 
chestnut trees.  

Id Function Name Equation 

HD1 Curtis h = 1.3 + β0(d/(1 + d) )β1 

HD2 Naslund 
h = 1.3 +

d2

(β0 + β1d)2 

HD3 Meyer h = 1.3 + β0
(
1 − e− β1d)

HD4 Michailoff h = 1.3 + β0e− β1d− 1 

HD5 Wykoff 
h = 1.3 + exp

(
β0 +

β1
d + 1

)

HD6 Logistic h = 1.3 +
β0

1 + β1e− β2d 

HD7 Richards h = 1.3 + β0
(
1 − e− β1d)β2 

HD8 Weibull h = 1.3 + β0

(
1 − e− β1dβ2

)

h: tree height (m); d: tree diameter (1.3 m above ground) (cm); β0, β1, β2: pa-
rameters to be estimated. 
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If the models did not converge, which only occurred with three- 
parameter models, all the possible alternatives with two and one 
random effects were analyzed, selecting the best one. This step was 
based on the Akaike (AIC) and the Bayesian (BIC) information criteria 
(Sakamoto et al., 1986; Schwarz, 1978) and the standard deviation 
values and confidence intervals of random-effects estimates. 

Other statistics, including the mean of the residuals (Mres), the 
standard deviation of the residuals (Sres), quadratic total error (QTE), 
obtained as the sum of squared Mres and the variance of residuals (Vres), 
and the root mean square error (RMSE) were computed to compare 
model performance and select the best options besides AIC and BIC. A 
goodness-of-fit index similar to the adjusted R-square (R2

adj) was also 
computed. 

Because heteroscedasticity in the residuals was observed in all the 
models, we applied a power-type variance function with tree diameter as 
a predictor, such that var(eij) = σ2 |wij| 2δ, where wij = dij (Mehtätalo 
et al., 2015; Bronisz and Mehtätalo, 2020). 

The best models were chosen among the two groups of simple 
nonlinear base models in the selection procedure, with two and three 
parameters, respectively. The choice between models was based mainly 
on the AIC and BIC values of the fits with the maximum likelihood (ML) 
method. However, the final estimates of the model parameters were 
obtained with the restricted maximum likelihood (REML) method as it 
produces unbiased estimates of the variance components (Littell et al., 
2006). 

2.2.5. Generalized mixed-effects models 
The random effects in a mixed-effects model represent deviations of 

the individual parameters from the fixed effects. In some applications, 
these deviations arise from unexplained intergroup variation but, 
frequently, they can be at least partially explained by differences in 
covariate values among groups (Pinheiro and Bates, 2000). The 
parameter vector B in expression (2) was expanded with covariates 
(plot-specific predictors xi) to develop generalized mixed-effects models, 
such that βi now becomes, 

βi = B(xi; γ)+ bi (3)  

where γ is a vector of parameters that are estimated in model fitting. The 
function B(xi; γ) is assumed to be of the linear form x’i γ (Mehtätalo et al. 
(2015) notation). The assumptions on the residual errors and random 
effects are the same as for the simple models. 

According to Pinheiro and Bates (2000) recommendations, plots of 
the estimated random effects of the simple mixed-effects models versus 
stand-level covariates were used, and the respective correlations were 
assessed to identify interesting patterns (e.g., Adame et al., 2008; 
Mehtätalo et al., 2015; Bronisz and Mehtätalo, 2020). Conditional F- 
tests for the significance of the terms in the fixed-effect specification 
were used. If needed, non-nested models were compared using AIC and 
BIC. 

2.2.6. Plot-specific predictions with mixed-effects models 
With mixed-effects models, two types of predictions are possible. A 

fixed-effect prediction is obtained by evaluating the random effects at 
their expected value, i.e., when bi = 0. It provides the plot-specific h- 
d curve for a typical plot of the modeling dataset. Such predictions may 
be useful for a sample plot with no sample tree heights available to 
predict the plot effects, but one wants to produce a realistic plot-specific 
h-d curve (Mehtätalo et al., 2015). Improved plot-specific prediction is 
provided by random-effect prediction, where random effects predictions 
for the plot in question are used. Of particular interest is when we need 
to predict height for a new plot not included in the fitting dataset, and 
only a sample of trees was measured. With mixed-effects models, cali-
brated responses in new plots can be obtained even with a small sample 
size (e.g., Paulo et al., 2011; Mehtätalo et al., 2015; Sirkiä et al., 2015). 

We used an approach involving a linearization of the model by a first- 

order Taylor approximation at the current estimated best linear unbi-
ased predictor (EBLUP) of the random effects to localize the model at the 
plot level (Lindstrom and Bates, 1990). The random-effects bi was esti-
mated using, 

b̂ i = D̂ZẤ
i

(
Zi D̂ZẤ

i +R̂i
)− 1

[yi − f (xi, B̂, b̂i)+Zi b̂ i ] (4)  

where f(.) is a nonlinear function, B̂ is the vector of estimates of fixed 
parameters, D̂ is the estimate of the matrix of variance-covariance of 
random effects at the plot level, R̂i is an estimate of the error matrix, Zi 

includes the partial derivatives of f with respect to bi. Since ̂bi appears on 
both sides of the equation, the process must be solved iteratively 
(Lindstrom and Bates, 1990). We adapted the R code provided in Arias- 
Rodil et al. (2015) to our situation. After obtaining b̂i, the function can 
be localized at the plot level by adding the random effects to the cor-
responding fixed parameters. 

Even one measured sample tree per plot is enough for the prediction 
of bi, although increasing the number of sample trees improves the ac-
curacy of the resulting prediction (Mehtätalo et al., 2015). Several 
strategies have been tested for selecting a sample of trees for calibration 
of h-d mixed-effects models (e.g., Crecente-Campo et al., 2010; Gómez- 
García et al., 2015). We explored three alternatives. The first consisted 
of applying the Draudt method (Laar and Akça, 2007) to select, in each 
diameter class (5 cm amplitude), one tree in each nine (i.e., 1st, 10th, 
19th, …) in the 3,000 m2 plots and one tree in each five (i.e., 1st, 6th, 
11th, …) in the 512 m2 plots. Data in each plot was previously ordered 
by d, ascendingly. The second alternative selected trees corresponding to 
the diameter distribution quartiles (25, 50 and 75 percentiles). Finally, 
the third alternative selected trees corresponding to the diameter dis-
tribution deciles (10, 20, …, 90 percentiles). 

3. Results and discussion 

3.1. Simple fixed-effects and mixed-effects models 

In the nonlinear least-squares fitting using the nlsList function, the 
two-parameter models presented significant coefficients and converged 
in all the plots. With three-parameter models, convergence did not occur 
in some of the plots, probably because data amplitude in these plots was 
not sufficiently large for a good fit. In an initial observation of simple 
statistics as the mean and standard deviation of the residuals, we 
observed that Naslund (Näslund, 1937) and Wykoff (Wykoff et al., 1982) 
among models with two parameters and Richards (Richards, 1959) from 
the group of models with three parameters presented the lowest values. 

Concerning the simple mixed-effects models fitted with the ML 
method in nlme and applying the power-type variance function, Wykoff 
was the best performer in the two-parameter group, based on AIC, BIC, 
and the other computed statistics (model selected as superior in the 

Table 3 
Statistics for mixed-effects models fitted with ML method of nlme and applying 
the power-type variance function.  

Models R2
adj Mres SDres AIC BIC QTE 

Curtis  0.939  0.020  0.820 23,760 23,811  0.672 
Naslund  0.940  0.011  0.815 23,568 23,619  0.664 
Meyer  0.940  0.007  0.815 23,551 23,602  0.664 
Michailoff  0.938  0.027  0.826 24,063 24,114  0.682 
Wykoff  0.940  0.012  0.814 23,526 23,577  0.663  

Logístic  0.938  0.006  0.807 24,501 24,560  0.682 
Richards  0.941  0.003  0.808 23,413 23,471  0.653 
Weibull  0.941  0.005  0.812 23,394 23,452  0.646 

R2
adj: goodness-of-fit index; Mres: mean of the residues; SDres: standard devia-

tion of the residues; AIC: Akaike information criterion; BIC: Bayesian informa-
tion criterion; QTE: quadratic total error. 
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highest number of statistics) (Table 3). In this group, Meyer and Naslund 
models presented a very similar behavior to the Wykoff model. Indeed, 
this similitude of performance was observed in the same analysis but not 
considering the correction for heteroscedasticity. 

In the three-parameter model group, despite the performance of the 
Weibull function in Table 3, some inconsistencies were observed in this 
model concerning the parameters considered as random effects and 
between the ML fit and the final REML fit. These discrepancies were not 
observed with the Richards model, which was very consistent and thus 
was the selected one. 

The best models presented R2
adj values of 0.94, and all the fitted 

models could explain more than 93% of the variability in the response 
variable. All the parameters in the two-parameter models were 
expanded with random effects. However, three-parameter models only 
converged for the solutions with one or two parameters as random ef-
fects. Thus, in the Richards model, random effects were considered for 
parameters β0 and β2, as shown in Table 2. Temesgen et al. (2008) also 
considered random effects in these same parameters of Richards model 
(representing asymptotic height and curvature, respectively). 

The expressions for the selected simple mixed-effects models in their 
respective groups are as follows: 

Wykoff M1 : h = 1.3+ exp
(

(β0 + b1)+
(β1 + b2)

d + 1

)

(5)  

Richards M1 : h = 1.3+(β0 + b1)
(
1 − e− β1d)(β2+b2) (6)  

where b1 and b2 are the random effects and β0, β1, and β2 are the pa-
rameters of the fixed structure. The values of the parameters are pre-
sented in Table 4 according Dias (2020). 

3.2. Generalized mixed-effects models 

When plotting random effects (b1 and b2) of models (5) and (6) 
against stand-level variables and analyzing correlations, it was verified 
that the dominant height (hdom) was the plot-specific variable most 
correlated (positive linear) with b1 in both the Wykoff M1 and Richards 
M1 models. Moderate correlations between some stand variables with b2 
were observed for the Richards M1 model, and no correlation with any 
particular stand variable was found in the Wykoff M1 model. The 
generalized mixed-effects models resulting from expanding the fixed 
structure of models (5) and (6) with plot-specific variables were, 

Wykoff M1a : h = 1.3+ exp
(

(β0 + b1 + β01hdom)+
(β1 + b2)

d + 1

)

(7)  

Richards M1ah=1.3+(β0+b1+β01hdom+β02ddom)
(
1 − e− β1d)(β2+b2+β21G)

(8)  

where hdom is the dominant height (m), ddom is the dominant diameter 
(cm) and G is the basal area (m2 ha− 1). Parameter estimates resulting 
from the REML fit are presented in Table 5. 

The random effects in the models described by equations (7) and (8) 
were tested to ensure they remained significant after expanding the 
fixed structure. An example of plot-specific prediction patterns of tree 
height using these models is shown in Fig. 2. 

As observed in Fig. 2, there does not seem to be an appreciable dif-
ferentiation in behavior. The AIC and BIC values of the nlme fitting by 
the ML method were lower in the Richards M1a model. Therefore, we 
decided to utilize this model for further analyses. 

3.3. Plot-specific and marginal predictions of tree height 

The estimates of random effects in the generalized mixed-effects 
Richards M1a model are a product of the fitting procedure and were 
estimated with measurements of d and h in all the trees from each plot. 
These values can be extracted with the ranef function of R-package nlme. 
Thus, plot-specific height predictions in the fit dataset using these esti-
mates of random effects should be a reference for comparisons with plot- 
specific predictions using estimates of random effects obtained with only 
a sample of trees of the same plot (selection by “Draudt”, “Quartile” and 
“Decile” methods). Next, simple statistics, namely the mean of the errors 
(ME), the mean of the absolute value of the errors (MAE), the variance of 
the errors (VE), the variance of the absolute value of the errors (VAE) 
and root mean square error (RMSE), based on the model errors 
(observed minus predicted tree heights) were computed (Table 6). 

Generalized fixed-effects models were also fit to the dataset, and the 
error metrics described above were computed (Table 6), using the values 
obtained for the mixed-effects Richards M1a model as the reference. We 
tested variations of the Michailoff, Stofels and Van Soest, and Prodan 
models proposed by Soares and Tomé (2002). Moreover, variations of 
the Prodan model displayed suitable results for the chestnut high-forest 
system (Patrício, 2006) and a modification of the Michailoff model for 
the chestnut coppice system (Patrício et al., 2020). 

From our analysis, we arrived at the variation of the Prodan model 
presented below and whose parameters were obtained by generalized 
nonlinear least squares using the gnls function of R-package nlme,  

Table 4 
Estimates of parameters in the Wykoff and Richards simple mixed-effects 
models.  

Wykoff M1 Richards M1 

Parameters Values Standard 
error 

Parameters Values Standard 
error 

β0 1,985  0.050 β0 7.711  0.367 
β1 − 4.745  0.108 β1 0.103  0.006 
sd(b1) 0.372  β2 0.897  0.028 
sd (b2) 0.734  sd(b1) 2.396  
r (b1, b2) − 0.380  sd (b2) 0.152  
σ2 0.1962  r (b1, b2) − 0.271  
δ 0.675  σ2 0.1972  

AIC 23,533  δ 0.671  
BIC 23,584  AIC 23,428     

BIC 23,486  

β0, β1, β2, β2: fixed parameters; sd (b1) and sd (b2): standard deviation of random 
effects; r: correlation of random effects; σ2: residual variance; δ: parameter of 
power-type variance; AIC and BIC values are from the REML fit of the models. 

Table 5 
Estimates of parameters in the Wykoff and Richards models with the inclusion of 
covariates.  

Wykoff M1a Richards M1a 

Parameters Values Standard 
error 

Parameters Values Standard 
error 

β0 1.281 0.027 β0 3.299 0.286 
β01 0.107 0.003 β01 1.305 0.056 
β1 − 4.756 0.101 β02 − 0.371 0.035 
sd(b1) 0.080  β1 0.094 0.004 
sd (b2) 0.685  β2 0.957 0.026 
r (b1, b2) − 0.599  β21 − 0.017 0.003 
σ2 0.1972  sd(b1) 0.590  
δ 0.672  sd (b2) 0.118  
AIC 23,364  r (b1, b2) 0.852  
BIC 23,423  σ2 0.1982     

δ 0.666     
AIC 23,199     
BIC 23,280  

β0, β01, β02, β2 and β21: fixed parameters; sd (b1) and sd (b2): standard deviation 
of random effects; r: correlation of random effects; σ2: residual variance; δ: 
parameter of power-type variance; AIC and BIC values are from the ML fit of the 
models. 
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Fig. 2. Plot-specific prediction patterns of the Wykoff M1a (solid line) and Richards M1a (dashed line) models.  

Table 6 
Error metrics of nonlinear generalized fixed and mixed-effects models for different calibration methods (using a fit dataset).  

Models ME MAE VE VAE RMSE 

(T6-A) Generalized fixed-effects models 
Richards fixed 0.0016 0.6064 0.7031 0.3354 0.8390 
Prodan fixed 0.0054 0.6108 0.7246 0.3515 0.8514  

(T6-B) Generalized mixed-effects models 
Richards M1a 0.0012 0.5807 0.6528 0.3156 0.8081 
Richards M1b 0.0026 0.5807 0.6533 0.3161 0.8084 
Richards M1 0.0027 0.5806 0.6533 0.3161 0.8085  

(T6-C) Generalized fixed-effects models developed in previous research 
High-forest 1 (*) 0.0739 0.6584 0.8326 0.4046 0.9155 
High-forest 2 (*) 0.0639 0.6560 0.8369 0.4107 0.9172 
Coppice (*) − 0.0593 0.6460 0.7719 0.3581 0.8807  

(T6-D) Calibration using the Draudt method 
Richards M1a − 0.0016 0.5925 0.6728 0.3216 0.8206 
Richards M1b − 0.0082 0.5957 0.6833 0.3284 0.8268 
Richards M1 ¡0.0076 0.5959 0.6834 0.3284 0.8267  

(T6-E) Calibration using the Quartile method 
Richards M1a − 0.0170 0.5997 0.6926 0.3333 0.8326 
Richards M1b − 0.1374 0.6644 0.8307 0.4081 0.9219 
Richards M1 0.1761 0.6358 0.7796 0.4063 0.9006  

(T6-F) Calibration using the Decile method 
Richards M1a − 0.0606 0.6055 0.6991 0.3361 0.8385 
Richards M1b − 0.1997 0.6749 0.8211 0.4055 0.9281 
Richards M1 0.0350 0.6236 0.7627 0.3750 0.8743 

(*): These models can be found in Patrício (2006) or Patrício et al. (2020). 
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where stand-level variables were described before (RMSE = 0.851; R2
adj 

= 0.934). 
The fixed structure of the Richards M1a model was also fit with gnls 

to obtain the nonlinear generalized fixed model (RMSE = 0.839; R2
adj =

0.936),   

Mehtätalo et al. (2015) refer the particular situation when plot- 
specific aggregates of diameter (e.g., d, dg, G) correlate with random 
effects of the simple mixed-effects model. This situation is interesting 

because if generalized mixed-effects models are adequately developed 
with their fixed structure expanded with covariates of this type, no 
additional information is required compared to the simple fixed-effects 
models. As shown in Fig. 3, random effects of the Richards M1 model 
correlated with the quadratic mean diameter (dg) (Fig. 3). Thus, an 
additional generalized mixed-effects model was considered to obtain 
calibrated (plot-specific) predictions of tree height (Table 7), 

Richards M1b : h = 1.3+(β0 + b1 + β01dg)
(
1 − e− β1d)(β2+b2+β21dg) (11) 

In Table 6, we can observe that the most accurate plot-specific pre-
dictions of tree height are obtained, as expected, with the random effects 
of generalized mixed-effects models estimated with measurements of all 
trees within the plot. The lowest values of the error metrics are thus in 
section T6-B of Table 6. These metrics are slightly worse for the cali-
brated responses obtained with the Draudt method; however, the results 
are promising (section T6-D). As applied, the Draudt method selected 
about 30 trees, on average, in the 3,000 m2 plots and about 10 trees in 
the 512 m2 plots. Measuring the height of 30 sample trees for calibration 
requires considerable effort in terms of costs and time. If dominant 
height (hdom) is necessary, additional measurements are needed, as in 
the Richards M1a model, and the effort needed will increase. However, 

since this variable is of interest, it is usually obtained in forest in-
ventories (including NFI) and applied research to characterize the 
rhythm of stand growth and productivity. In 500 m2 plots, frequently 
used in forest inventory in Portugal, calibration using trees selected by 
the Draudt method requires less effort than larger plots, becoming a 

more attractive alternative. If hdom (and ddom) is not available or not 
necessary, the Richards M1b model is very useful for improved plot- 
specific height predictions. Notably, its behavior does not seem infe-
rior to the Richards M1a model (Fig. 4). 

Huang et al. (2009) found that the inclusion of appropriate subject- 

Fig. 3. Correlation of random effects of Richards M1 model (b1 and b2 in Eq. (6)) with the quadratic mean diameter (dg) at plot-level.  

Table 7 
Estimates of parameters in Richards M1b model.  

Richards M1b 

Parameters Values Standard error 

β0 4.186  0.524 
β01 0.461  0.052 
β1 0.101  0.006 
β2 1.047  0.039 
β21 − 0.021  0.005 
sd (b1) 1.482  
sd (b2) 0.119  
r (b1, b2) 0.335  
σ2 0.1972  

δ 0.670   

AIC 23,368  
BIC 23,441  

β0, β01, β02, β2 and β21: fixed parameters; sd (b1) and sd (b2): standard devi-
ation of random effects; r: correlation of random effects; σ2: residual variance; δ: 
parameter of power-type variance; AIC and BIC values are from the REML fit of 
the models. 

Prodan fixed : h = 1.3+(hdom − 1.3)(1+ 0.9499 − 0.0299G)hdom(1/d− 1/ddom))
− 1 (9)   

Richardsfixed : h = 1.3+
(

2.1784+1.2431hdom − 0.2879ddom)
(
1 − e− 0.1110d)(0.9408− 0.0093G) (10)   
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specific random parameters in the base of height-diameter models 
(Richards and Logistic) already allowed the plot level variations related 
to many known and unknown factors such as topography, soil type, 
nutrient status, genetics, climate, silvicultural regime, environment, and 
others to be accounted for without actually requiring that they be 
identified or measured. The results of their study have important prac-
tical implications because they demonstrate that the efforts, time, and 
costs associated with collecting additional variables may not be neces-
sary. So, we calibrated the simple mixed-effects model (Eq. (6) or 
Richards M1 in Table 4), and the results are also presented in Table 6. It 
was observed that the performance of M1 is very similar to the perfor-
mance of Richards M1a and M1b models. 

In the other calibration methods tested (sections T6-E and T6-F), 
plot-specific predictions showed less accuracy than in the Draudt 
method, with RMSE values increasing towards the RMSE of the fixed- 
effect prediction of the mixed-effects model. The parameters in the 
fixed structure of the Richards M1a and Richards M1b models can be 
used to obtain plot-specific predictions of tree height when estimates of 
the random effects for the plot are not available. 

The generalized fixed-effects models (section T6-A) fit by nonlinear 
least-squares present error metrics, including RMSE, close to the ones in 
the calibration methods, mainly the “Quartile” and “Decile” methods. 
These models include stand-level variables such as hdom, ddom and G, 
which can capture some of the variations in the response variable be-
tween different plots. These models assume that plots with similar 
values of stand-level predictors also have similar h-d curves (Mehtätalo 
et al., 2015). They predict the mean height of trees with given diameter 
and plot-specific predictors in the population of trees (marginal pre-
diction or population-averaged prediction). These models do not group 
the observations into sample plots (Mehtätalo et al., 2015). In this sense, 
it is easy for a forest manager or a landowner to use this type of model in 
forestry practice. If used as a reference, they can provide valuable in-
formation to support silvicultural management model applications 

based on height growth (Bourgeois, 1992; Monteiro and Patrício, 1996; 
Álvarez et al., 2000; Bourgeois et al., 2004; Patrício et al., 2020), namely 
the thinning cycle. 

In section T6-C of Table 6, error metrics are presented for generalized 
fixed models developed in previous studies on chestnut high-forest and 
coppice systems (Patrício, 2006; Patrício et al., 2020). The coppice 
model was developed for the first 24 years of growth, as expected, we 
observed a slightly faster increase in the early ages of the coppice since 
these trees already have a developed root system. However, the differ-
ence is not very marked. 

Yuancai and Parresol (2001) considered the Bertalanffy-Richards 
model (Richards, 1959) one the most flexible and versatile functions 
available for modeling the h-d relationship. However, no particular 
function has been identified as superior (Mehtätalo, 2004, Mehtätalo 
et al., 2015) for this task, and mixed models based on two-parameter 
equations have been reported to adequately fit the h-d relationship, 
reducing the number of parameters (e.g., Bronisz and Mehtätalo, 2020). 

A generalized mixed-effects model was developed to estimate tree 
height from tree diameter and stand-level variables (Richards M1a). The 
model is based on the Richards (1959) three-parameter h-d equation: 

h = 1.3+
(

3.299+ b1+1.305hdom − 0.371ddom)
(
1 − e− 0.094d)(0.957+b2 − 0.017G)

Similar studies using Richards function are found in literature (e.g. 
Temesgen et al., 2008; Huang et al., 2009). 

Two types of plot-specific predictions are possible with such a model: 
an improved calibrated response if additional tree height measurements 
are available to estimate random effects and a prediction with random 
effects (b1 and b2) set at its expected value bi = 0, using only the pa-
rameters in the fixed structure. If hdom (and ddom) are not available, an 
alternative mixed-effects model can be used, identified as the Richards 
M1b model (eq. (11)). 

From the calibration methods tested, the Draudt method yielded 

Fig. 4. Plot-specific prediction patterns of the Richards M1b (solid line) and Richards M1a (dashed line) models.  
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more accurate predictions. The way it was applied is feasible in 
100–500 m2 plots, but in 3,000 m2 plots, the effort in the measurements 
could be appreciable in young stands with high density. However, 500 
m2 or less is the most frequent situation in forest inventory in Portugal. It 
should also be pointed out that we conducted an exercise using only 15 
plots of the 57 considered to compare the Draudt method with the other 
three methods: trees corresponding to the quartiles of the d distribution, 
as before, plus minimum (mind) and maximum (maxd) diameter trees; 
trees with a diameter equal to the center of 5 cm d classes plus mind and 
maxd; the same trees as before plus the trees with a diameter equal to the 
upper and lower limits of 5 cm d classes. The exercise was performed 
with the Richards M1b model. It was concluded that the Draudt method 
was the most accurate, closely followed by the third referred method. 
Bronisz and Mehtätalo (2020) detected gains in predictive power when 
selecting trees from the extrema of the diameter range to estimate the 
random effects. 

The chestnut has always played an important role in the rural 
economy of the most disadvantaged populations in the inland regions of 
Portugal. Chestnut is a timber-producing utilized for the most diverse 
purposes. However, its timber can only be considered of quality when 
the silviculture is properly followed up with appropriate techniques, 
from its installation until the end of the rotation, which may be more or 
less long, depending on the objective (Monteiro and Patrício, 2007; 
Patrício et al., 2020). 

Reference silvicultural management models are available with pre-
scriptions to guide managers and landowners to produce high-quality 
wood in the contexts of sustainability and multifunctional landscape 
(Bourgeois, 1992; Monteiro and Patrício, 1996; Álvarez et al., 2000; 
Bourgeois et al., 2004; Patrício et al., 2020), as the Integrated Areas of 
Landscape Management (IALM), provided for in law DL-n◦28-A/2020 of 
26th of June, aiming at a multifunctional and resilient landscape, new 
economic activities and remuneration for ecosystem services. In these 
management models the knowledge of tree height, and thus the avail-
ability of h-d models, is very important to adequately apply tending 
operations such as pruning and thinning. 

4. Conclusions 

The h-d mixed-effects model developed in this paper (Richards M1a) 
is the best h-d model for describing the first 24 years of growth of high- 
forest chestnut stands in afforested abandoned agricultural lands in 
Portugal. 

Alternatively, when hdom is not available, the Richards M1b model is 
suggested since it is possible to estimate tree height based on plot- 
specific aggregates of diameter, which are easier to obtain with an 
adequate level of precision. Similar precision can be obtained using the 
simple mixed-effects model (Richards M1) with similar effort. 

The generalized fixed-effects models (section T6-A) fit by nonlinear 
least-squares present error metrics close to the ones in the calibration 
methods. They predicted the mean tree height with given diameter and 
plot-specific predictors in the population of trees. If used as a reference, 
they can provide useful information to support silvicultural manage-
ment model application, such as pruning and thinning cycles, based on 
height growth. 

The results of this study display that when the purpose of the h- 
d model is prediction and calibration data are not available, fixed-effect 
(with no random parameters) or mixed-effect (random parameters bi =

0) models should be used. However, when calibration is performed, the 
Draudt method is one of the best approaches to improve the height 
prediction accuracy at the tree level using mixed-effects. This approach 
helps the user make the best selection in the random-effects calculation 
for practical applications and scenarios. 

The use of these models and the suggested calibration process will 
significantly reduce the effort and costs of field work teams to measure 
heights for forest management planning while ensuring high accuracy. 
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desenvolvimento (Eds.), Árvores e Florestas de Portugal, Vol. 5, Do Castanheiro ao 
Teixo, Lisboa, pp 51-78 (in Portuguese). 
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