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Abstract: This pilot study aimed to explore a method for characterization of the electromyogram 

frequency spectrum during a sustained exertion task, performed by the upper limb. Methods: Nine 

participants underwent an isometric localized muscle fatigue protocol on an isokinetic 

dynamometer until exhaustion, while monitored with surface electromyography (sEMG) of the 

shoulder’s external rotators. Firstly, three methods of signal energy analysis based on primer 

frequency contributors were compared to the energy of the entire spectrum. Secondly, the chosen 

method of analysis was used to characterize the signal energy at beginning (T1), in the middle (T2) 

and at the end (T3) of the fatigue protocol and compared to the torque output and the shift in the 

median frequencies during the trial. Results: There were statistically significant differences between 

T1 and T3 for signal energy (p < 0.007) and for central frequency of the interval (p = 0.003). Moreover, 

the isometric peak torque was also different between T1 and T3 (p < 0.001). Overall, there were no 

differences between the signal energy enclosed in the 40 primer frequency contributors and the 

analysis of the full spectrum energy; consequently, it was the method of choice. The reported fatigue 

and the decrease in the produced muscle torque was consistent with fatigue-induced alterations in 

the electromyogram frequency spectrum. In conclusion, the developed protocol has potential to be 

considered as an easy-to-use method for EMG-based analysis of isometric muscle exertion until 

fatigue. Thus, the novelty of the proposed method is to explore, in muscle fatigue, the use of only 

the main contributors in the frequency domain of the EMG spectrum, avoiding surplus information, 

that may not represent muscle functioning. However, further studies are needed to investigate the 

stability of the present findings in a more comprehensive sample. 
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1. Introduction 

Sustained exertion associated with physical loads incurred during occupational 

tasks, namely repetitive high velocity motion, has been associated with a variety of soft 

tissue disorders [1,2]. Fatigue onset is deemed as a valid measure of injury risk [2,3]. 

Muscle fatigue is a complex, multifactorial process. The causes of fatigue are classified as 

(i) central (including brain and spinal cord mechanisms) and (ii) peripheral, 

neuromuscular, or localized (including peripheral nerve, neuromuscular junction, 

sarcolemma, excitation-contraction coupling, energy supply, and force generation 

mechanisms) [4]. Localized muscle fatigue affects motor control, proprioception, and 

postural stability [5–10]. Neuromuscular, peripheral, or localized fatigue is an acute 

activity-induced reduction in the force/power of a muscle [11]. Thus, an increase in muscle 

maximum voluntary contraction (MVC) is expected when the muscle is recovering, 

depending on the oxidative metabolism in working muscles [12]. Moreover, muscle 

fatigue represents a reduction in the contractile efficiency of the muscle fibers, due to 

storage of lactic acid, among other mechanisms, that builds up during anaerobic 

respiration after vigorous exercise. 

Fatigue researchers have developed different methodologies to study fatigue based 

on motion, electroencephalogram, photoplethysmogram, electrocardiogram, galvanic 

skin response, electromyogram, skin temperature, eye movement, and respiratory data 

acquired by wearable devices available on the market [13]. Specifically, muscle fatigue is 

an objective sign of the inability to maintain a certain level of physical effort, which can 

be studied, for example, by isometric strength test, while muscle biopsy and muscle 

imaging provide information on the underlining causes [14]. However, these are time-

consuming and expensive testing procedures. Conversely, surface electromyography 

(sEMG) is a feasible alternative and the technique of choice worldwide to study muscle 

fatigue [14,15]. 

sEMG is a biosignal depicting the neuromuscular activity that is obtained on the skin 

surface and can be measured by the amplitude of the signal (e.g., variance, mean-absolute 

value, root mean square) or its frequency (e.g., Fourier spectrum, mean/median 

frequency) [16]. sEMG is the sum of the electrical activity of each Motor Unit Action 

Potentials (MUAPs). Moreover, the shapes and firing rates of MUAPs provide important 

insights for the diagnosis of neuromuscular disorders [17]. 

During increasing levels of voluntary contraction, an increase was noted in the 

muscle conduction velocity (the velocity at which muscle fibers transmit action potentials 

prior to muscle contraction), mean and median frequency. Moreover, the increase of the 

initial value of spectral parameters with increasing levels of voluntary contractions is 

attributed to the recruitment of motor units consisting of progressively larger fibers with 

progressively higher conduction velocity [18]. Conversely, during constant force 

sustained isometric contractions, these variables decrease [18], and this phenomenon may 

be due to fatigue. 

It is expected that as the muscles fatigue, marked changes will be detected by the 

sEMG, namely a slow-down of motor unit action potentials and the synchronization of 

motor units by the central nervous system. The slowing of motor unit action potentials 

leads to a decrease of muscle fiber conduction velocity, which is reflected in the EMG 

frequency domain as a shift of the EMG signal towards lower frequencies [19]. A decrease 

in the median frequency in the power spectral density has been reported as strongly 

related to the onset of peripheral muscle fatigue [20,21], although not without criticism, 

and other methods have also been reported to monitor peripherical fatigue [19,22]; 

however, these studies looked at only the median frequency, without the contribution of 

the signal energy, which could represent a bias on the study of muscle biosignal. 

Additionally, data processing procedures may largely influence analysis and 

interpretation of EMG spectral characteristics, and so, standardization of methods is 

needed, and with this work, we intend to develop a novel, standard, and easy to apply 

method for the study of the signal energy during a local fatigue task. Furthermore, 
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available evidence proposes the use of the entire energy of the EMG spectrum to study 

the muscle functioning in the frequency domain, including irrelevant EMG information. 

However, this surplus information may not necessarily represent muscle functioning. 

Thus, the novelty of the proposed method is to explore the use of only the main 

contributors in the frequency domain of the EMG spectrum. For this, the following 

research questions were considered: Which method of energy sampling best represents 

the total energy of the EMG spectrum? Is the method of choice representative of the 

fatigue mechanism? Furthermore, the aim of this work was to explore a method for 

characterization of the electromyogram frequency spectrum, during a sustained exertion 

upper limb task, which enables the use of only the main contributors in the frequency 

domain of the EMG spectrum. It is hypothesized that the energy from the main 

contributors of the power spectral density of the electromyogram will be representative 

of the full spectrum energy; furthermore, the energy of these main representatives of the 

spectrum could be used to study the mechanisms of localized muscle fatigue, avoiding 

surplus spectral information that may not be representative of the true muscle physiology. 

2. Materials and Methods 

2.1. Participants 

Nine healthy, non-overweight, young volunteer university students (4 females and 5 

males), with no history of upper limb musculoskeletal lesions, were recruited for the 

study. Median (±Interquartile range) characteristics were age 22 ± 3 years; height 168 ± 7 

cm; body mass 58.4 ± 14 kg; body mass index (BMI) 20.62 ± 2.39 kg∙m−2. 

A body mass index cut off value of 24.9 kg m−2 was used for the exclusion of 

overweight participants, since fat tissue acts like a low-pass filter [23]. The protocol also 

included several clinical tests to address the existence of pathological conditions or pain 

and ligamentous laxity, since these might influence the outcome [24,25]. Pregnant 

participants and participants with history of shoulder pathology, shoulder surgery or 

neurological disorders were also excluded from the study. The present study obtained 

ethical clearance from the Faculty of Health and Social Science Research Ethics and 

Governance Committee—ID FREGC-10-035.R1. 

2.2. Data Collection 

The participants were tested in a climate-controlled (21–23 °C) laboratory at the same 

time of day (±2 h) to minimize the effects of diurnal biological variation. The participants 

were instructed to arrive at the laboratory in a rested and fully hydrated state, at least 3 h 

postprandial, and they were asked not to perform any strenuous activity during the day 

prior to the test. 

Height (in m) was measured with the participants standing upright and barefoot 

against a stadiometer (Seca, Hamburg, Deutschland). Body mass (in kg) was measured by 

a portable electronic weighting scale (Tanita, Tokyo, Japan). BMI was calculated as the 

ratio between body mass and body height (kg m−2). 

Handedness was assessed using the Dutch Handedness Questionnaire, which 

contains 16 questions designed to assess hand preference during specific activities. There 

are three possible answers for each activity, “left hand”, “right hand” and “any of them”. 

The result is obtained by adding the 16 answers, “left handedness” corresponds to a score 

of 0, “right handedness” to a score of 2 and “ambidextrous” to a score of 1. The total score 

can vary from 0 to 32. Participants with a score of 4 or less are “strongly left-handed”, 

participants with a score of 28 or more are “strongly right-handed” and participants with 

a score between 5 and 27 are included in the “ambidextrous” group [26]. 

Participant’s skin over the dominant infraspinatus muscle was cleansed and the 

Ag/Cl standard electrodes were placed over the muscle belly of the dominant 

infraspinatus muscle, according to Criswell [27], with a bipolar configuration and an IED 

of 20 mm. The electromyographic biosignal was measured using a bipolar, 12-bit 



Int. J. Environ. Res. Public Health 2022, 19, 13270 4 of 11 
 

 

equipment (Biosignalsplux) at a sampling frequency of 1 kHz, using the acquisition soft-

ware opensignals (Plux, Lisbon, Portugal). 

Participants were placed in a sitting position and securely strapped into the isokinetic 

chair (System 4 Pro®, Biodex, New York, NY, USA). Extraneous movement of the upper 

body was limited by two cross-shoulder harnesses and an abdominal belt. Participants 

were positioned with 90° of shoulder abduction, 90° of elbow flexion and 0° of shoulder 

rotation, as previously reported [28–34]. The choice of the scapular plane enables a more 

functional approach of the movement, and the literature supports the choice of 40° ante-

rior to the coronal or frontal plane [35–37]. The joint angles were measured using a uni-

versal baseline plastic goniometer. 

The warm-up consisted of five submaximal isometric contractions of 5 s, followed by 

3 min of rest. The participants were then asked to perform one maximal isometric volun-

tary contraction (MIVC) of the shoulder external rotators until exhaustion while a strong 

verbal encouragement was provided by the researcher. The experimental protocol was 

consistent with the process of carrying out training until muscle failure, defined as the 

inability to sustain an isometric contraction while maintaining proper form. This criterion 

was enhanced by verbal report of exhaustion. Reaching the end, the participants percep-

tion of exertion was assessed using the Borg Scale. The Borg Rating of Perceived Exertion 

(RPE) is based on the physical sensations a person experiences during physical activity, 

including increased heart rate, increased respiration or breathing rate, increased sweating 

and muscle fatigue. Although this is a subjective measure, the exertion rating, based on a 

6 to 20 rating scale, may provide an adequate estimate of the actual heart rate during 

physical activity [38]. 

2.3. Data Processing 

The corresponding EMG time frames on the isokinetic data were used for peak 

torque analysis of three moments (1 s at the beginning, 1 s in the middle and 1 s in the 

end) of the exhaustive protocol. EMG processing was computed on MATLAB® R2022A. 

The signal was initially filtered with a Notch Filter of 50 Hz, due to the DC power line. 

Afterward, it was detrended and transformed into Volts. 

The entire frequency domain was computed via Fast Fourier Transformation (FFT). 

The FFT transformed the time domain signal into a frequency domain representation of 

that signal, and consequently, it was created a description of the distribution of the energy 

in the signal as a function of frequency. This was displayed as a plot of frequency (x-axis) 

against energy (y-axis) called a power spectral density graph (Figure 1). 
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Figure 1. Examples of fast Fourier transformation (FFT) analysis of three participants in different 

time frames (in the beginning, T1, in the middle, T2, and in the end of the trial, T3), displayed as a 

plot of frequency in Hz (x-axis) against signal energy (y-axis). 

The FFT spectrum was then further evaluated choosing the 10, 20, 30 and 40 primer 

frequency contributors, representing the main energy at each of the specified groups of 

frequencies in the spectrum. 

Each of the samples (10, 20, 30 and 40 primer frequency contributors) were compared 

to the energy of the entire frequency spectrum. 

To evaluate the signal energy, the following equation was computed [39,40]: 

∑
�

�
 �� 

� ∆�  (1)

where Ak represents the frequency amplitude of a given frequency and ∆t the time frame 

of analysis, (1 s). Equation (1) was computed for each participant. 

The central frequency of each interval (10, 20, 30 and 40 primer frequency contribu-

tors—abbreviated to P) was computed using the expression: 

��� �������� ����

�
   (2)

where “min freq” represents the minimum frequency in the given interval and “max freq” 

represents the maximum value of frequency in the given interval. 

The chosen method of analysis was used to characterize the signal energy and the 

central frequency at the beginning (T1—first second), in the middle (T2—one second in 

the middle of the signal) and at the end (T3—last second) of the exhaustive protocol. 

2.4. Statistical Analysis 

The data were tested for distribution using the Shapiro–Wilk test and were found to 

be not normally distributed. Consequently, the non-parametric test of Friedman’s two-

way analysis of variance by ranks was employed to compare between the different type 

of analysis based on the prime frequency contributors of the EMG density spectrum; fur-

thermore, it was also used to compare the variables between moments. Pairwise compar-

isons were performed, with a Bonferroni correction for multiple comparisons. For con-

sistency, the median value and interquartile range was reported. Effect sizes were calcu-

lated based on Kendall W statistics for Friedman’s test [41]. A priori level of significance 

was set at p < 0.05 for all comparisons. The data were analyzed using both the Microsoft® 

Excel® for Microsoft 365 (v. 2206) and IBM SPSS Statistics 28.0 

3. Results 

Table 1 shows the median and interquartile range for the results of the Borg scale and 

the time until reported fatigue. Data analysis suggests an apparent interindividual homo-

geneity of both time and demand, in terms of perceived exertion, of the protocol. 

Table 1. Median and interquartile range (IR) values of the time until reported fatigue and the Borg 

scale of perceived exertion. 

 Median IR 

Borg Scale 15.00 2.00 

Time until reported fatigue [s] 75.28 7.55 

To test which of the primer frequency contributors would better represent the energy 

of the full spectrum, the median of the energy of each of the four methods were compared 

to the full spectrum (Table 2). Table 2 compares the signal energy using four methods 

(10P, 20P, 30P or 40P) of primer frequency contributors and the signal energy of the full 

spectrum. Signal energy was statistically significantly different between the different 

methods of processing χ2(4) = 108.00, p < 0.001, effect size of 1.00. According to the pairwise 
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comparison, the only representative that was not different from the full spectrum was the 

40 primer frequency contributors. Corresponding to this finding, all the subsequent anal-

yses will take into consideration the 40 primer frequency contributors’ method. 

Table 2. Comparison of the signal energy using four methods (10P, 20P, 30P or 40P) of primer fre-

quency contributors and the signal energy of the full spectrum. 

Method of Analysis Median Interquartile Range 

10P energy 1.06 × 10−6 1.52 × 10−6 

20P energy 1.63 × 10−6 2.46 × 10−6 

30P energy 2.07 × 10−6 3.17 × 10−6 

40P energy 2.34 × 10−6 3.69 × 10−6 

Full spectrum energy 3.5 × 10−6 6.7 × 10−6 

 p < 0.001 *  

* Represents significance. 

The following figures represent the signal energy across time (Figure 2) and central 

frequency across time (Figure 3). 

Signal energy was statistically significantly different across the different time points 

(T1, T2 and T3) χ2(2) = 9.56, p = 0.008, effect size of 0.53. Pairwise comparisons were per-

formed, with a Bonferroni correction for multiple comparisons. Pairwise comparison only 

identified differences between the first and the last (p = 0.007) time frame (beginning and 

ending of the fatigue protocol). 

The computed central frequency is also statistically significantly different between 

time frames χ2(2) = 10.75, p = 0.005, effect size of 0.67; thus, differences in the pairwise com-

parison only identified differences between the first and the last time frame (p = 0.003). 

The isometric peak torque (Figure 4) was also statistically significantly different be-

tween time frames χ2(2) = 16.22, p < 0.001, effect size of 0.90, with significant statistical dif-

ferences between the first and the last time frame (p < 0.001). 

 

Figure 2. Signal energy at the beginning of acquisition (T1), in the middle (T2) and during the re-

ported fatigue (T3). The circle represent a value above the 3rd quartile + 1.5xinterquartile range, 

while the star represent the 3rd quartile + 3xinterquartile range. 
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Figure 3. Central frequencies in Hz, at the beginning of acquisition (T1), in the middle (T2) and 

during the reported fatigue (T3). 

 

Figure 4. Isometric peak torque, in N.m, at the beginning of the measurement protocol (T1), in the 

middle (T2) and during the reported fatigue (T3). 

4. Discussion 

The present study explored a method for characterization of the electromyogram fre-

quency spectrum, during a sustained exertion upper limb task, which enables the use of 

only the main contributors in the frequency domain of the sEMG spectrum. 

Based on the classical document of Enoka and Duchateau [42], the authors put in 

perspective the use of the two-domain fatigue concept, in which fatigue is defined as a 

disabling symptom where physical and cognitive function is limited by interactions be-

tween performance fatigability and perceived fatigability, and as a symptom, fatigue 

could only be measured by self-report, as in the present study, and quantified either as a 

trait characteristic or a state variable. Furthermore, the authors claim that because of such 
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a definition, the word fatigue should not be preceded by an adjective (e.g., central, mental, 

muscle, peripheral and supraspinal) to suggest the locus of the changes responsible for an 

observed level of fatigue. Rather, mechanistic studies should be performed with validated 

experimental models to identify the changes responsible for the reported fatigue. In this 

sense, one validated method of fatigue analysis is the surface electromyogram, which rep-

resents the recording of the electrical activity of the muscle and is the interferential sum 

of tissue-filtered motor unit action potentials, and embodies a pattern characterizing the 

general state of the muscle examined [43]. Moreover, peripheral fatigue, which in the clas-

sical sense is the type of fatigue under investigation, may occur either at the neuromuscu-

lar junction and cell membrane (excitation), the calcium release mechanism (activation) or 

at the sliding filaments (contractile processes) [44]. A progressive spectral compression of 

the EMG signal towards lower frequencies has been suggested to be related to peripheral 

fatigue during sustained contractions [45]. Thus, muscle fatigue has traditionally been 

studied by means of the mean power frequency (MPF) [21,44] and the results from the 

present study seem to show the same data tendency. Furthermore, while the change in 

the frequency domain of the electromyogram has been explored in the literature, during 

fatigue, it is important to understand the changes at spectral energy level and use only the 

representative energy of the acting muscle, avoiding surplus information that may not be 

representative of the true muscle signal. 

In terms of general description of the results, the task was classified by the partici-

pants as hard [38] and the participants were able to maintain the effort for 75.28 s. Besides 

studying the mean power frequency, which showed a tendency towards lower frequen-

cies, with statistically significant differences between the beginning and the end of the 

protocol, the present study also analyzed the spectral energy during the fatiguing proto-

col. For this, a method of study was developed to better understand the mechanism of 

fatigue at the spectral level of energy. Since there was no statistically significant difference 

between the signal energy of the 40 primer frequency contributors of the signal and the 

full energy spectrum, the energy of the 40 primers contributors was chosen to study the 

muscular signal energy using the spectral analysis of the electromyogram. 

Furthermore, the method of reported fatigue induced statistically significant differ-

ences in the signal’s energy, the central frequency, and the peak torque, namely between 

the beginning of the acquisition and the timeframe of reported fatigue, suggesting that the 

protocol of isometric fatigue induced a statistically significant reduction not only at the 

level of the spectral energy, but also at the level of torque production. This peripheric or 

neuromuscular fatigue can under certain conditions be reflected in a decreased perfor-

mance, and many investigators use this as a definition for fatigue [46], and the present 

results also show this data tendency toward lower force production with fatigue. Further-

more, this decline in maximal voluntary contraction (MVC) is a classic index of muscle 

fatigue [42]. 

As suggested in the taxonomy proposed by Kluger and Krupp [47], the concept of 

fatigue should acknowledge its two attributes: (1) performance fatigability—the decline 

in an objective measure of performance over a discrete period of time; (2) perceived fa-

tigability—changes in the sensations that regulate the integrity of the performer. The pre-

sent study took these concepts into consideration, aiming to identify the ability of the pro-

posed method to detect muscular changes associated with fatiguing mechanisms. 

However, spectral analyses of EMG data may provide a more in-depth assessment 

of changes in muscle dynamics occurring across different exercise intensities than more 

traditional, amplitude-derived methods; while somewhat controversial, results derived 

from spectral analysis have been associated with a variety of factors including fiber type 

(i.e., Type I vs. II), conduction velocity and muscular fatigue [48]. Lately, the published 

literature has a tendency towards using the wavelet transformation of the EMG data 

[48,49], which converts a signal from the time-domain to the time-frequency domain, such 

that for each point in time, there is a decomposition of the signal around that point in time 

into its constituent frequencies. Nevertheless, the spectral signal energy is not under 
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consideration, and for this, the present study tries to overcome this limitation in the avail-

able literature. 

The application of the present protocol to a sample of normal subjects allowed the 

analysis on the applicability of the method, and the results were consistent with the liter-

ature. Nevertheless, this is a preliminary pilot study that analyzed the applicability of the 

present method in a limited sample of only nine subjects. While taking into account the 

changes not only in the EMG signal, namely in the energy of the power spectral density 

and the shift toward lower frequencies, the present study also included a torque output, 

to understand the implications of such a change in the function of the muscle. However, 

it is acknowledged that further analysis of the present findings could add to the present 

evidence, namely including other methods of analysis such as the Bland and Altman sta-

tistics for the agreement between methods analysis and intraclass correlations reporting. 

Nevertheless, this analysis should be performed in future studies with larger samples. 

5. Conclusions 

Overall, there were no differences between the signal energy enclosed in the 40 pri-

mer frequency contributors and the analysis of the full spectrum energy. Consequently, 

the 40 primer frequency contributors’ method for the study of EMG signal energy was the 

method of choice to study the mechanism of local fatigue in the upper limb task. The re-

ported fatigue and the decrease in the produced muscle torque was consistent with fa-

tigue-induced alterations in the electromyogram frequency spectrum and spectral signal 

energy. In conclusion, the developed protocol has potential to be considered as an easy-

to-use method for EMG-based analysis of isometric muscle exertion until fatigue; how-

ever, the limited number of subjects included in the present study induces the need to 

further investigate the stability of the present findings in a more comprehensive and var-

iable sample of healthy subjects. 
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