

AIMS Agriculture and Food, 8(1): 1–24. DOI: 10.3934/agrfood.2023001 Received: 09 June 2022 Revised: 15 September 2022 Accepted: 13 November 2022 Published: 02 December 2022

http://www.aimspress.com/journal/agriculture

Research article

Validation of a rapid test to dose SO₂ in vinegar

Irene Dini^{1,*}, Antonello Senatore², Daniele Coppola² and Andrea Mancusi³

- ¹ Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Napoli 80131, Italy
- ² Laboratory for Product Analysis of Chamber of Commerce, Corso Meridionale Napoli 80143, Italy
- ³ Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy
- * Correspondence: Email: irdini@unina.it; Tel: +39081678537.

Abstract: Sulfur dioxide is generally used in wine and vinegar production. It is employed to decrease the bacteria' growth, improve the wines' aroma (since it supports the extraction of polyphenols during maceration), protect the wines from chemical oxidation and the musts from chemical and enzymatic oxidation (blocking free radicals and oxidase enzymes such as tyrosinase and laccase). The composition and storage conditions (i.e., pH, temperature, and alcohol levels) affect oenological results. In various countries, competent authorities have imposed legal limits since it can have toxic effects on humans. It is crucial to dose SO₂ levels to allow vinegar production and compliance with legal limits. The iodometric titration named "Ripper test" is the legal method used to dose it in vinegar. In this work, an automatized colorimetric test was validated using the international guidelines ISO/IEC (2017) to allow its use instead of the Ripper test. The test reliability was verified on white, red, and balsamic vinegar with low or high SO₂ content. The automatized test showed linearity, precision, and reproducibility similar to the Ripper test, but the accuracy parameter was not respected for the vinegar with a low concentration of SO₂. Therefore, the automatized colorimetric test can be helpful to dose SO₂ in vinegar with high concentrations of SO₂.

Keywords: sulfur dioxide; automatized test validation; food analysis; vinegar analysis; SO₂ dosage; validation of food analytical method

1. Introduction

Sulfur dioxide (SO₂) is a colorless gas, pungent, toxic, and suffocating [1]. It is obtained by burning sulfur and pyrites. It becomes liquid below 10 °C [2]. The use of sulfur dioxide in food processing is very complex [3]. It is used as an antiseptic to inhibit the development of microorganisms. It is more effective against bacteria than against yeasts. Its effect is directly proportional to the dose of use and inversely proportional to the level of contamination [4]. It is employed as an antioxidant compound. It can protect wines from chemical oxidation blocking oxygen and protect musts before fermentation, inhibiting the action of oxidase enzymes (tyrosinase and laccase). The SO₂ protects the aroma of wines and favors the extraction of intracellular components such as anthocyanins and polyphenols when added to grapes before maceration [5]. The dosages of SO₂ in wines and vinegar vary depending on the composition and storage conditions. A low pH, high temperature, and high alcohol content increase the active sulfur molecule fraction. A high salt concentration decreases the concentration of molecular sulfur dioxide [6]. The SO₂ in vinegar production is limited since sulfur dioxide can have toxic effects on humans and damage the wine, interfering with the aromatic baggage and causing the attenuation of the aromas. The World Health Organization has included sulfur dioxide among the preservatives (E220) and indicated the dose of 0.7 mg/kg of body weight as a dose allowable daily [7]. In addition to the toxic effect, sulfur dioxide also can have an allergenic action, so since November 2005, with the entry into force in Europe of the EC Directive no.89/2003 ("allergens directive"), it has become mandatory to report the presence of sulfites and sulfur dioxide in wine and in any other food, when the concentration exceeds 10 mg/L or 10 mg/kg, expressed as SO₂ [8]. Currently, national and community legislation sets legal limits on the presence of sulfites in wines and vinegar. European legislation sets maximum limits of 160 mg/L for reds and 210 mg/L for whites, with exceptions that allow the Member State to raise the maximum value of 40 mg/L in unfavorable years. The European limit (160 mg/L) must be observed for red wines in Italy, while the more restrictive national limit (200 mg/L) applies to whites. Higher values apply to sweet wines [9]. The Ripper test is the official method used to determine SO₂. It consists of directly titrating the vinegar with iodine using starch as an indicator [10]. This test is cheap, but its sensibility can be affected by iodine which can interfere with ascorbic acid, and it can be performed only by experienced personnel. Some new methods have been proposed to speed up the work in the laboratory [3,11], which require validation processes before they can be used in legal analyses. The development of analytical methods in food control, particularly in the case of legislative compliance valuation, needs the demonstration that they are "appropriate for purpose" through method validation [12]. The critical aspect is to confirm method applicability by providing test reliability and suitability in complex food matrices [13–19]. This work aims to validate an automated colorimetric test to dose sulfur dioxide in vinegar.

2. Materials and methods

2.1. Reagents

EnzytecTM liquid SO₂ Cod. E28600 was purchased from R-Biopharm AG (Darmstadt, Germany). The distilled water was obtained from Sigma-Aldrich (Milan, Italy). The sulphuric acid solution (25%) was prepared from the concentrated acid (Sigma-Aldrich). EDTA, potassium iodide, potassium iodate, hydrogen peroxide, and starch were acquired from Merck. Co. (Darmstadt, Germany). Iodine was

provided by Acros Organics (Geel, Belgium).

2.2. Samples preparation

Three commercial vinegar types were tested: white, red, and balsamic wine vinegar.

2.3. Apparatus

The analyzer iCubio iMagic M9, fully automatized, was used to detect the total SO₂ content in vinegar. The apparatus pipette reagents and samples into the cuvette, allow the incubation at a controlled temperature, read absorbance at the specific wavelength, and calculate the concentration of the SO₂ by a calibration curve. The parameter used in automated photometric systems were: temperature 20 to 37 °C; wavelengths 340 nm (\pm 5 nm); optical path 1 cm; reaction 10 min (20–25 °C) or 5 min (37 °C).

2.4. Determination of total SO₂ content

The method reported in the kit instruction (EnzytecTM liquid SO₂) was respected. The kit contained: Buffer: two vials \geq 100 mL; Chromogen: two vials \geq 25 mL and Calibrator (SO₂ = 150 mg/L): one vial \geq 3.5 mL.

The first step consisted of preparing Reagent 1 by mixing 2000 μ L of reagent (Buffer) together with 2000 μ L calibrator solution and 2000 μ L of the sample, after three minutes, the absorbance was read. Successively, Reagent 2 was obtained by mixing 500 μ L of reagent (chromogen) together with 500 μ L calibrator solution and 500 μ L of sample. After 20 minutes (25 °C), the absorbance was read.

Enzytec fluid Acid combination Standard (ID-No 5460, 3×3 mL) was used to calibrate the automated photometric systems.

2.5. Reference procedure to determine SO₂ content

The "Ripper" method was performed according to the Portuguese regulation (IPQ 1987), based on a procedure from the Organisation Internationale de la Vigne et du Vin [20]. Vinegar (10.00 mL) was put into an Erlenmeyer flask (V = 500mL), an aliquot of 1% w/v starch indicator (5.00 mL), and a sodium hydrogen carbonate were added. After ten minutes, 5.00 mL of 33% (v/v) sulfuric acid was added, and the solution was immediately titrated with an 0.25 mmol·L⁻¹ iodine solution to a blue endpoint (color stable for 20 seconds).

2.6. Automatized method validation process

Linearity was determined by performing three replicates of calibration curves of highconcentration red, white and balsamic wine vinegar (19, 38, 75, 150 mg/L) and low-concentration balsamic wine vinegar (1.88, 3.75, 7.50, 15 mg/L).

Method precision was evaluated by conducting ten analyses on the same sample and verifying normality by Shapiro-Wilk [21] and the anomalous data from the Huber test [22].

The LLOQ (signal/noise ratio \ge 10) and LLOD (lowest concentrations of SO₂ that were

detectable in all replicates but not necessarily quantified and distinguished from zero) defined method sensitivity. The LLOQ dilution factor gives the lower end of the measuring range.

Dilution factor
$$= \frac{read \ concentration*100}{weight* \ rate}$$
 (1)

The upper end of the measuring range was given by the last point of the calibration curve line. Reproducibility and repeatability were detected to validate method precision:

$$Reproducibility = \frac{Standard \ deviation \ of \ analyzed \ samples}{Standard \ deviation \ of \ reference \ samples}$$
(2)

Uncertainties (type A and B) were measured following as reported by Dini et al. [23,24] and the EURACHEM/CITAC guide [12].

Type A uncertainties were estimated from 10 repeated readings of the same sample.

$$U_{\text{Type A}} = \sqrt{\frac{variance}{\text{Degrees of freedom}}}$$
(3)

Type B uncertainties considered were:

The uncertainties related to standard preparation (U(mr)); uncertainties related to the calibration curve (U(ct)), uncertainties related to balances (U(bt)), uncertainties related to accuracy (due to burette use) (U(m)), uncertainties related to accuracy (due to 50 mL pipette use) (U(p))

U(mr) was found from each standards' analysis certificate. U(ct) was appraised for standard at three concentrations in triplicate. U(bt) was decided considering a certificate of repeatability (0.000029 g), calibration (0.00060 g), and stability (0.000032 g). U(m) was evaluated from a certificate of calibration (0.1 mL) and repeatability (0.0010 mL). The U(p) was found from a certificate of calibration (0.028 mL), variation in volume based on temperature (0.0003 mL), and repeatability (0.001 mL). The method accuracy was found.

Accuracy =
$$\frac{|\bar{x}_{Offic} - \bar{x}|}{\sqrt{S_r^2 + U_{Official}^2}} \le t_p$$
(4)

 $|\bar{X}_{Offic}$ =official method value \bar{X}_x =media repeatability values S_r^2 =standard deviation²

 $U_{Official}^2$ = reference material uncertainty²

2.7. Statistical Analysis

The statistical analyses were performed by Statistica software Version 7.0 (StatSoft, Inc. USA).

3. Results and discussion

In commodity laboratories, automated equipment often substitutes the official methods. The automated analyzers do not require specialized personnel, improve safety, reduce the analysis time, and decrease the cost of analyses. This work validated a colorimetric method, performed by an

automated analyzer, to determine NaCl levels in canned tomatoes using the international guidelines ISO/IEC (2017) [25]. According to international guidelines, the primary validation process explains a method's operative limits and performance not adequately characterized. In this case, the validation process was necessary to establish the commercial test's validity when applied to the assay of SO₂ in vinegar. The vinegar is a complex matrix, and the presence of interferents can negatively affect the results reliability. The objective was achieved by comparing the results obtained by the colorimetric method to those obtained by the Volhard test, considered a reference method (Ministerial Decree 03/02/1989–SO GU SG n 168 20/07/1989 Met 33). The parameters evaluated were working range (linearity range, LOQ, LOD, measuring range), recovery, precision, accuracy, and measurement uncertainty (associated with the analytical data). Statistical analyses were used to estimate validation qualities against fixed acceptance criteria.

3.1. The working range

The working range defines the impact of the sample preparation (i.e., dilutions) and the analytical procedure on the reliability of the results. The procedure's suitability for the intended use is confirmed by a linear relationship between analyte concentration and response.

3.2. Method linearity

The method linearity was evaluated by regression coefficient determination (Figure 1, Table S1). The ANOVA test estimated the distribution of residuals (procedure errors) across the calibration curve (Figure 2, Table S2).

High-concentration of red, white, and balsamic wine kinds Low-concentration balsamic wine vinegar (mg/L) of vinegar (mg/L)

Figure 1. Calibration curves.

1.00

2.00

1,00

0.00

1.00

2,00

3,00

Absolute residuals

Standardized residuals

Studentized residuals

0.30

0.20

0.40

Residual distributions in low-concentration balsamic wine vinegar

Standardized residuals

Studentized residuals

Figure 2. Residual distributions in wine vinegar.

The regression coefficient close to 1 of the calibration curve and the normal residual distribution evaluated by ANOVA confirmed the method's linearity.

3.3. Method sensitivity

The method detection limit was tested by repeated analysis of blank samples. LLOD and LLOQ were derived from the regression curve (Table 1).

	LLOD (mg/L)	LLOQ (mg/L)	Measuring range (mg/L)
Low-concentration	1.38	4.03	$4.03 \leq$ Measuring range ≤ 15
balsamic wine vinegar			
Low-concentration red and	2.72	6.06	$6.06 \le$ Measuring range ≤ 150
white and high			
concentration balsamic			
wine kinds of vinegar			

Table 1. LLOD, LOOQ & measuring range of tested samples.

The test's measuring range, able to determine the concentrations of SO₂ admissible in vinegar by law, demonstrated the method's selectivity.

3.4. Method precision

Test precision serves to establish the effect of impurities on the dosage. Test precision was evaluated by estimating the repeatability and reproducibility of the test. The repeatability should be assessed by employing a minimum of 9 tests covering the range of the procedure. In this work, ten spectrophotometric analyses were carried out on the same sample of each type of vinegar to determine the repeatability of the two methods. The Shapiro-Wilk test was employed to prove the continuous variables' normal distribution, and the Huber test to evaluate the random errors (outliers) that deviate from a normal distribution.

The higher repeatability limit for the tested method than the Ripper test, the data normally distributed studied by Shapiro–Wilk, and the absence of outliers measured by the Huber test (Tables 2–6) demonstrated the compliance between the two methods.

The method reproducibility was reported in Table 7.

3.5. Accuracy test

Accuracy measures the agreement of a measurement with a reference value. It was obtained by comparing the measured results with an expected value. In this work, accuracy was determined by making ten analyses with both methods (official and colorimetric). The relative deviation % was calculated to evaluate the error (Tables 8–11).

Spect	cophotometric method		
	Sample		
1	15.440	Data number (n)	10
2	14.570	Media (Xm)	15.258
3	15.260	Variance (s_r^2)	0.7317066667
4	14.990	Standard deviation (s_r)	0.855398543
5	15.270	t Student ($v = n - 1$: $n = 0.95$)	2.262157163
6	15.140	Coefficient of variation ratio $(CV_r\%)$	5.606229798
7	13.930	Minimum (min)	13.93
8	16.750	Maximum (max)	16.75
9	14.680	Range	2.82
10	16.550	Median	15.2
		Media-upper confidence limit ($p = 0.95$)	15.86991525
		Media-lower confidence limit ($p = 0.95$)	14.64608475
		Media-confidence interval $(p = 0.95)$	0.611915255
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	6.262157163
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No
Rippe	r Schmitt method		
	Sample	Data number (n)	10
1	14.080	Media (Xm)	15.352
2	15.360	Variance (s_r^2)	3.469084444
3	16.640	Standard deviation (s _r)	1.862547837
4	15.360	<i>t</i> Student ($v = n - 1$; $p = 0.95$)	2.262157163
5	14.080	Coefficient of variation ratio (CV _r %)	12.13228138
6	16.640	Minimum (min)	12
7	15.00	Maximum (max)	19
8	12.00	Range	7
9	15.360	Median	15.36
10	19.00	Media-upper confidence limit ($p = 0.95$)	16.68438646
		Media-lower confidence limit $(p = 0.95)$	14.01961354
		Media-confidence interval $(p = 0.95)$	1.332386458
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	5.958613384
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No

Table 2. Precision of methods used for SO₂ concentration valuation when white wine vinegar with low SO₂ concentration was tested.

Spect	rophotometric method		
	Sample		
1	57.02	Data number (n)	10
2	54.32	Media (Xm)	53 311
3	50.42	Variance (s_{1}^{2})	6 264498889
4	51.98	Standard deviation (s_i)	2 502898098
5	54.25	t Student $y = n - 1$; $n = 0.95$)	2 262157158
6	49.46	Coefficient of variation ratio (CV.%)	4 694899923
7	53.17	Minimum (min)	49.46
8	51.99	Maximum (max)	57.05
9	57.05	Range	7 59
10	53.45	Median	53 31
		Media-upper confidence limit $(p = 0.95)$	55 10146544
		Media-lower confidence limit $(p = 0.95)$	51 52053456
		Media-confidence interval $(p = 0.95)$	1 790465436
		Degrees of freedom $(y - n - 1)$	9
		Method repeatability limit	8 00720404851
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No
Rinne	r Schmitt method		10
nappe	Sample		
1	48.00	Data number (n)	10
2	46.08	Media (Xm)	44.352
-	44.16	Variance (s^2)	4 919751111
4	42.88	Standard deviation (s _r)	2.218051197
5	42.24	t Student ($v = n - 1$: $p = 0.95$)	2.262157158
6	44.80	Coefficient of variation ratio (CV_r %)	5.001017309
7	41.60	Minimum (min)	41.60
8	44.16	Maximum (max)	48.00
9	42.24	Range	6.40
10	47.36	Median	44.16
		Media-upper confidence limit ($p = 0.95$)	45.93869824
		Media-lower confidence limit ($p = 0.95$)	42.76530176
		Media-confidence interval ($p = 0.95$)	1.586698238
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	4.095593024
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No
			-

Table 3. Precision of methods used for SO₂ concentration valuation when white wine vinegar with high SO₂ concentration was tested.

Spect	rophotometric method		
	Sample		
1	21.02	Data number (n)	10
2	20.89	Media (Xm)	22.004
3	22.07	Variance (s_r^2)	0.65156
4	21.45	Standard deviation (s_r)	0.807192666
5	22.25	<i>t</i> Student ($v = n - 1$; $p = 0.95$)	2.262157158
6	21.31	Coefficient of variation ratio $(CV_r\%)$	3.668390592
7	22.14	Minimum (min)	20.89
8	22.98	Maximum (max)	23.05
9	23.05	Range	2.16
10	22.87	Median	22.105
		Media-upper confidence limit ($p = 0.95$)	22.58143085
		Media-lower confidence limit $(p = 0.95)$	21.42656915
		Media-confidence interval $(p = 0.95)$	0.577430847
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	2.582349252
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No
Rippe	r Schmitt method		
	Sample		
1	29.18	Data number (n)	10
2	28.67	Media (Xm)	28 779
3	27.98	Variance (s^2)	0.318032222
4	28.03	Standard deviation (s.)	0.563043457
5	28.67	standard deviation (sr) t Student ($y = n - 1$; $n = 0.95$)	0.303943437
6	28.67	$C_{\text{oefficient of variation ratio}}(CV \%)$	1 959565852
7	28.67	Minimum (min)	27.08
8	29.70	Maximum (max)	27.36
9	28.67	Banga	29.70
10	29.55	Madian	1.72
		Media upper confidence limit $(n = 0.95)$	20.07
		Media-upper confidence limit $(p = 0.95)$	29.18242085
		Media-confidence interval $(p = 0.95)$	0.403420845
		Degrees of freedom $(y - p - 1)$	Q
		Method repeatability limit	1 804152868
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No
			110

Table 4. Precision of methods used for SO_2 concentration valuation when red wine vinegar with low SO_2 concentration was tested.

Spect	rophotometric method		
	Sample		
1	90.79	Data number (n)	10
2	97.33	Media (Xm)	94 87
3	98.96	Variance (s^2)	19 69057778
4	97.95	Standard deviation (s)	4 43740665
5	99.15	t Student ($y = n = 1$; $n = 0.95$)	2 262157158
6	99.16	Coefficient of variation ratio (CV %)	4 677354959
7	96.36	Minimum (min)	87 30
8	87.39	Maximum (max)	99.16
9	90.38	Range	11 77
10	91.23	Median	06.845
		Media-upper confidence limit $(n = 0.95)$	90.045
		Media lower confidence limit $(p = 0.95)$	98.04432949
		Media-confidence interval $(p = 0.95)$	3 17/329/85
		Neura-confidence interval $(p = 0.93)$	0
		Method repeatability limit	18 10603302
		Normal Distribution (Shaniro-Wilk test 5%)	10.17005502 Ves
		Outlier (Huber test 5%)	No
Rinne	er Schmitt method	ounier (Huber test 576)	110
мррс	Sample		
1	96 00		
2	99.20	Data number (n)	10
2	95.36	Media (Xm)	92.177
4	97 92	Variance (s_r^2)	31.20502333
5	86.40	Standard deviation (s _r)	5.58614566
5	86.40	<i>t</i> Student ($v = n - 1$; $p = 0.95$)	2.262157158
0 7	86.40	Coefficient of variation ratio (CV _r %)	6.060238085
0	00.40 94 49	Minimum (min)	84.48
0	04.40	Maximum (max)	99.20
9	96.50	Range	14.72
10	94.23	Median	94.805
		Media-upper confidence limit ($p = 0.95$)	96.17308787
		Media-lower confidence limit ($p = 0.95$)	88.18091213
		Media-confidence interval ($p = 0.95$)	3.996087867
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	17.87104823
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No

Table 5. Precision of methods used for SO_2 concentration valuation when red wine vinegar with high SO_2 concentration was tested.

Spect	rophotometric method		
	Sample		
1	14.00	Data number (n)	10
2	11.52	Media (Xm)	13.435
3	16.44	Variance (s_r^2)	3.527183333
4	12.80	Standard deviation (s_r)	1.878079693
5	16.60	t Student ($v = n - 1$; $p = 0.95$)	2.262157158
6	12.44	Coefficient of variation ratio (CV_r %)	13.97900776
7	14.20	Minimum (min)	11.52
8	13.12	Maximum (max)	16.60
9	11.55	Range	5.08
10	11.68	Median	12.96
		Media-upper confidence limit ($p = 0.95$)	14.77849728
		Media-lower confidence limit ($p = 0.95$)	12.09150272
		Media-confidence interval ($p = 0.95$)	1.343497276
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	6.0083302472
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No
Rippe	r Schmitt method		
11	Sample		
1	10.88		10
2	9.60	Data number (n)	10
3	12.16	Media (Xm)	9.605
4	10.24	Variance (s_r^2)	1.820694444
5	10.24	Standard deviation (s_r)	1.34933111
6	8.96	<i>t</i> Student ($v = n - 1$; $p = 0.95$)	2.262157158
7	7.68	Coefficient of variation ratio (CV_r %)	14.04821562
8	9.65	Minimum (min)	7.68
9	8.32	Maximum (max)	12.16
10	8.32	Range	4.48
10		Median	9.25
		Media-upper confidence limit ($p = 0.95$)	10.57025333
		Media-lower confidence limit ($p = 0.95$)	8.639746674
		Media-confidence interval ($p = 0.95$)	0.965253326
		Degrees of freedom ($v = n - 1$)	9
		Method repeatability limit	4.316744105
		Normal Distribution (Shapiro-Wilk test 5%)	Yes
		Outlier (Huber test 5%)	No

Table 6. Precision of methods used for SO₂ concentration valuation when balsamic wine vinegar with low SO₂ concentration was tested.

Sample	Reproducibility
White wine vinegar with a low SO ₂ concentration	$\frac{0.855}{1.86} = 0.460$
White wine vinegar with a high SO ₂ concentration	$\frac{2.50}{2.22} = 1.13$
Red wine vinegar with a low SO ₂ concentration	$\frac{0.807}{0.560} = 1.43$
Red wine vinegar with a high SO ₂ concentration	$\frac{4.44}{5.59} = 0.794$
Balsamic wine vinegar with a low SO ₂ concentration	$\frac{1.88}{1.35} = 1.39$
Depending on the degree of freedom (n=9)	
Upper limit of reproducibility = 0.548 ; Lower limit of	reproducibility = 1.480

Table 7. Method's reproducibility.

Table 8. Accuracy—white wine vinegar.

 $x = \frac{\text{concentration official meth/colorimetric meth}}{2}$

2

T 11 40		1 1	•	•	•
Table 10	. Accuracy	∕—balsa	mic v	wine	vinegar.

y = concentration official method/colorimetric method

 $x = \frac{\text{concentration official method/colorimetric method}}{2}$

Table 9. Accuracy—red wine vinegar.

Vinegar samples	Average deviation	Average of the averages	Relative deviation %
White wine vinegar with	n a low 0.059	15.32	0.38
SO ₂ concentration			
White wine vinegar with	a high -8.959	48.83	18.34
SO ₂ concentration			
Redwine vinegar with lo	ow SO ₂ 6.775	25.39	26.68
concentration			
Red wine vinegar with	a high -2.693	93.52	2.88
SO ₂ concentration			
Balsamic wine vinegar	with a -4.283	11.29	37.93
low SO ₂ concentration			

Table 11. t Student data processing.

Our results showed that the average deviation was very high in samples with low SO_2 concentrations and decreased with high SO_2 concentrations (Table 11), demonstrating the matrix independence and measurement dependence of the systematic errors.

3.6. Measurement uncertainty

The measurement uncertainties evaluate the errors associated with a measurement. They affect the accuracy and precision of the measurements. The uncertainties measure is recommended by the international standard ISO/IEC 17025:2017 [25–27]. It gives the analytical procedure quality and supports the interpretation of results [26]. The uncertainties are categorized as Type A if they are measured by the statistical analysis of reiterated measurements (linked to the spread of experimental data) and Type B if they are evaluated by other available information (i.e., instrument specifications, apparatus calibration, etc.) Standard deviation measurements confirmed the type A results' reliability for the number of degrees of freedom considered (Tables 12–16). Also, type B uncertainties were considered irrelevant since they were lower than those from the Ripper test.

4. Conclusions

An automated colorimetric method was validated to determine the SO₂ concentration in vinegar samples, as it could be helpful in the laboratory routine to reduce the analysis time, use of specialized personnel, and analysis costs. The validation was obtained by comparing the colorimetric test with the "Ripper test" (reference test for European legislation).

The test measuring range, sensitivity, and precision complied with those obtained using the Ripper method. The accuracy parameter was not respected in samples containing low dosages of SO₂. The type A and B uncertainties of the rapid analytical method tested were lower than the Ripper method uncertainties. Therefore, this method can be considered reliable for determining SO₂ only in vinegar with a high concentration of SO₂. New studies must be performed to optimize method performance if it is to be used to determine low SO₂ levels in vinegar.

Type A standard uncertainties						
Х	Spectrophotometric method			Ripper-Schmitt method		
1	15.44			14.08		
2	14.57		15.	36		
3	15.26		16.	.64		
4	14.99		15.	.36		
5	15.27		14.	08		
6	15.14		16.	.64		
7	13.93		15.	00		
8	17.10		12.	00		
9	14.68		15.	.36		
10	16.55		19.	00		
X _m	15.2930		15.	3520		
Y = 47x + 547						
Standard deviation	0.9274 1.8625			625		
Relative deviation (s _r)	0.0606			0.1213		
Type A _{uncertainity} = $\sqrt{\frac{variance}{Degrees of freedom}}$	0.309 0.621					
Type B systematic uncertainties						
Spectrophotometric method						
	U(p)	U(mr)	U(ct)	U(bt)	U(m)	
Type B uncertainty Xm		7.500000	1.244771			
Type B uncertainty Xm/radq	0.000000	2.165064	0.359334	0.000000	0.000000	
Uncertainty u (Xm) _{B/Xm}	0.0000000	0.014434	0.054693	0.0000000	0.0000000	
Resulting relative uncertainty u(y)/y	0.08293					
Resulting uncertainty u(y)	1.268					
Coverage factor k $(2 < k < 3)$	2					
Extended uncertainty U(y)	2.536					
Ripper -Schmitt method						
	U(p)	U(mr)	U(ct)	U(bt)	U(m)	
Type B uncertainty Xm	0.050000	0.050000			0.030000	
Type B uncertainty Xm/radq	0.014434	0.014434	0.000000	0.000000	0.008660	
Uncertainty u (Xm) _{B/Xm}	0.002887	0.000940		0.0000000	0.000087	
Resulting relative uncertainty $u(y)/y$	0.12136					
Resulting uncertainty u(y)	1.863					
Coverage factor k $(2 < k < 3)$	2					
Extended uncertainty U(y)	3.726					

Table 12. Uncertainties-white wine vinegar with low SO₂ concentration.

Type A standard uncertainties						
Х	Spectrophoto	metric meth	iod F	Ripper-Schmitt	method	
1	57.02			48.00		
2	54.32		4	46.08		
3	50.42		4	4.16		
4	51.98		4	2.88		
5	54.25		4	2.24		
6	49.46		4	4.80		
7	53.17		4	1.60		
8	51.99		4	4.16		
9	57.05		4	2.24		
10	53.45		4	7.36		
X _m	53.3110		4	4.3520		
Y = 46.6x + 567						
Standard deviation						
Relative deviation (s _r)						
Type B systematic uncertainties						
Spectrophotometric method						
	U(p)	U(mr)	U(ct)	U(bt)	U(m)	
Type B uncertainty Xm		0.050000	0 41793	9		
Type B uncertainty Xm/radq	0.00000	0.014434	0.12064		0.00000	
Uncertainty u (Xm) _{B/Xm}	0.000000	0.014434	0.12004	9 0.000000	0.000000	
	0.0000000	0.000096	0.120649	9 0.000000	0.0000000	
Resulting relative uncertainty u(y)/y	0.12946					
Resulting uncertainty u(y)	6.902					
Coverage factor k $(2 < k < 3)$	2					
Extended uncertainty U(y)	13.803					
Ripper -Schmitt method						
	U(p)	U(mr)	U(ct)	U(bt)	U(m)	
Type B uncertainty Xm	0.050000	0.050000			0.030000	
Lype B uncertainty Xm/radq	0.014434	0.014434	0.000000	0.000000	0.008660	
Uncertainty u (AIII) _{B/Xm}	0.002887	0.000325		0.0000000	0.000087	
Resulting relative uncertainty u(y)/y	0.05009					
Resulting uncertainty u(y)	2.222					
Coverage factor k $(2 < k < 3)$	2					
Extended uncertainty U(y)	4.444					

Table 13. Uncertainties-white wine vinegar with high SO₂ concentration.

Type A standard uncertainties					
Х	Spectroph	otometric m	ethod	Ripper-Sch	mitt method
1	21.02			29.18	
2	20.89			28.67	
3	22.07			27.98	
4	21.45			28.03	
5	22.25			28.67	
6	21.31			28.67	
7	22.14			28.67	
8	22.98			29.70	
9	23.05			28.67	
10	22.87			29.55	
X _m	22.0040			28.7790	
Y = 47x + 547					
Standard deviation	0.8072			0.5639	
Relative deviation (s _r)	0.367			0.0196	
Type A _{uncertainty y} = $\sqrt{\frac{variance}{Degrees of freedom}}$	0.269			0.188	
Type B systematic uncertainties					
Spectrophotometric method					
· ·	U(n)	U(mr)	U(ct)	U(bt)	U(m)
Type B uncertainty Xm	C(P)	0.050000	0 417939	0(00)	0(111)
Type B uncertainty Xm/radq	0 000000	0.014434	0 120649	0 000000	0.00000
Uncertainty u (Xm) _{B/Xm}	0.0000000	0.000096	0 120649	0.0000000	0.0000000
Resulting relative uncertainty $u(y)/y$	0.12610	010000000	01120019	0.00000000	
Resulting uncertainty $u(y)$	2.775				
Coverage factor k $(2 < k < 3)$	2				
Extended uncertainty $U(v)$	5.550				
Ripper -Schmitt method					
	$U(\mathbf{p})$	U(mr)	U(ct)	U(bt)	$\mathbf{U}(\mathbf{m})$
Type B uncertainty Xm	0(p)	0 050000	0(01)	0(01)	0.030000
Type B uncertainty Xm/radq	0.030000	0.030000	0.000000	0.00000	0.030000
Uncertainty u $(Xm)_{B/Xm}$	0.014434	0.014434	0.000000	0.0000000	0.000000
Resulting relative uncertainty $u(y)/y$	0.002007	0.000302		0.0000000	0.000007
Resulting uncertainty $u(y)$	0.570				
Coverage factor k $(2 < k < 3)$	2				
Extended uncertainty $U(\mathbf{v})$	- 1.140				

Table 14. Uncertainties-red wine vinegar with low SO₂ concentration.

Type A standard uncertainties					
Х	Spectrophot	tometric meth	od	Ripper-Schmi	tt method
1	90.79			96.00	
2	97.33			99.20	
3	98.96			95.36	
4	97.95			97.92	
5	99.15			86.40	
6	99.16			86.40	
7	96.36			86.40	
8	87.39			84.48	
9	90.38			95.36	
10	91.23			94.25	
X _m	94.8700			92.1770	
Y = 46.6x + 567					
Standard deviation	4.4374			5.5861	
Relative deviation (s _r)	0.0468			00606	
Type A uncertainty $y =$	1.479			1.862	
variance					
$\sqrt{\text{Degrees of freedom}}$					
Type B systematic uncertainties					
Spectrophotometric method					
	U(p)	U(mr)	U(ct)	U(bt)	U(m)
Type B uncertainty Xm		0.050000	0.417939)	
Type B uncertainty Xm/radq	0.000000	0.014434	0.120649	0.000000	0.000000
Uncertainty u (Xm) _{B/Xm}	0.0000000	0.00096	0.120649	0.0000000	0.0000000
Resulting relative uncertainty u(y)/y	0.12940				
Resulting uncertainty u(y)	12.276				
Coverage factor k $(2 < k < 3)$	2				
Extended uncertainty U(y)	24.552				
Ripper -Schmitt method					
	U(p)	U(mr)	U(ct)	U(bt)	U(m)
Type B uncertainty Xm	0.050000	0.050000	- ()		0.030000
Type B uncertainty Xm/radq	0.014434	0.014434	0.000000	0.000000	0.008660
Uncertainty u (Xm) _{B/Xm}	0.002887	0.000157		0.0000000	0.000087
Resulting relative uncertainty $u(y)/y$	0.06067				
Resulting uncertainty u(v)	5.593				
Coverage factor k $(2 < k < 3)$	2				
Extended uncertainty U(y)	11.185				

Table 15. Uncertainties-red wine vinegar with high SO2 concentration.

Type A standard uncertainties						
X	Spectropl	notometric m	ethod	Ripper-S	Schmitt	method
1	14.00			10.88		
2	11.52			9.60		
3	16.44			12.16		
4	12.80			10.24		
5	16.60			10.24		
6	12.44			8.96		
7	14.20			7.68		
8	13.12			5.12		
9	11.55			8.32		
10	11.68			8.32		
X _m	13.4350			9.1520		
Y = 77.4x + 552						
Standard deviation	1.8781			1.9564		
Relative deviation (s _r)	0.1398			0.2138		
Type A uncertainty y = $\sqrt{\frac{variance}{Degrees of freedom}}$	0.626			0.652		
Type B systematic uncertainties						
Spectrophotometric method						
	U(p)	U(mr)	U(ct)	U(bt)	U(m)
Type B uncertainty Xm	- (1)	0.050000	0.000000	- (/	- ()
Type B uncertainty Xm/radq	0.000000	0.014434	0.000000	0.00	0000	0.000000
Uncertainty u (Xm) _{B/Xm}	0.0000000	0.000096	0.000000	0.00	00000	0.0000000
Resulting relative uncertainty $u(y)/y$	0.13979					
Resulting uncertainty u(y)	1.878					
Coverage factor k $(2 < k < 3)$	2					
Extended uncertainty U(y)	3.756					
Ripper -Schmitt method						
	U(n)	U(mr)	U(ct)	U(bt)	Ţ	J(m)
Type B uncertainty Xm	0.050000	0.050000		0(01)	0	030000
Type B uncertainty Xm/radq	0.014434	0.014434	0.000000	0.00000	0 0	.008660
Uncertainty u (Xm) _{B/Xm}	0.002887	0.001577	5.00000	0.00000	00 0	.000087
Resulting relative uncertainty $u(v)/v$	0.21379				- 0	
Resulting uncertainty u(v)	1.957					
Coverage factor k $(2 < k < 3)$	2					

Table 16. Uncertainties-balsamic wine vinegar with low SO₂ concentration.

Conflict of interest

The authors declare no conflict of interest.

Supplementary

	Standard	X (g/L)	Y_{found}	Ycalculated
High and low concentration red and white and high	1	19	1451.6008	1450
concentration balsamic wine vinegars (mg/L)				
	2	38	2319.5044	2340
	3	75	4022.3055	4060
	4	150	7598.7301	7560
	1	19	1483.0711	1450
	2	38	2323.9193	2340
	3	75	4057.2913	4060
	4	150	7559.4303	7560
	1	19	1474.3658	1450
	2	38	2361.0670	2340
	3	75	4037.2093	4060
	4	150	7549.0236	7560
Low concentration balsamic wine vinegar (mg/L)	1	1.88	708.8872	698
	2	3.75	845.173	843
	3	7.5	1100.3899	1130
	4	15	1726.0638	1710
	1	1.88	717.8597	698
	2	3.75	846.4987	843
	3	7.5	1100.8734	1130
	4	15	1726.8831	1710
	1	1.88	717.468	698
	2	3.75	841.4904	843
	3	7.5	1100.2545	1130
	4	15	1728.1739	1710

Table S1. Concentrations used to develop the calibration curve.

High and low co	ncentration red and	l white and high co	oncentration balsar	nic wine vinegars	
Х	\mathbf{h}_{i}	ei	e _{Ni}	e _{Si}	e_{ji}
	leverages	absolute	normalized	studentized	standardized
	coefficient	residuals	residuals	residuals	residuals
19.0	0.171	-1.31	-0.051	-0.056	-0.054
38.0	0.118	-18.9	-0.742	-0.790	-0.774
75.0	0.084	40.5	-1.590	-1.661	-1.852
150	0.293	40.4	1.584	1.884	2.226
19.0	0.171	30.2	1.182	1.299	1.351
38.0	0.118	-14.5	-0.569	-0.606	-0.585
75.0	0.084	-5.56	-0.218	-0.228	-0.217
150	0.293	1.12	0.044	0.052	0.049
19.0	0.171	21.5	0.841	0.924	0.917
38.0	0.118	22.6	0.888	0.945	0.90
75.0	0.084	-25.6	-1.005	-1.050	-1.057
150	0.293	-9.29	-0.364	-0.433	-0.415
Low concentration	on balsamic wine v	vinegar			
Low concentration	on balsamic wine v h _i	vinegar e _i	e _{Ni}	e _{Si}	e _{ji}
Low concentration	on balsamic wine v h _i leverages	rinegar e _i absolute	e _{Ni} normalized	e _{Si} studentized	e _{ji} standardized
Low concentration	on balsamic wine v h _i leverages coefficient	vinegar e _i absolute residuals	e _{Ni} normalized residuals	e _{si} studentized residuals	e _{ji} standardized residuals
Low concentration	n balsamic wine v h _i leverages coefficient 0.171	vinegar e _i absolute residuals 11.1	e _{Ni} normalized residuals 0.515	e _{si} studentized residuals 0.565	e _{ji} standardized residuals 0.545
Low concentration x 1.88 3.75	n balsamic wine v h _i leverages coefficient 0.171 0.119	rinegar e _i absolute residuals 11.1 2.61	e _{Ni} normalized residuals 0.515 0.121	e _{Si} studentized residuals 0.565 0.129	e _{ji} standardized residuals 0.545 0.123
Low concentration x 1.88 3.75 750	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084	rinegar e _i absolute residuals 11.1 2.61 -32.5	e _{Ni} normalized residuals 0.515 0.121 -1.509	e _{Si} studentized residuals 0.565 0.129 -1.576	e _{ji} standardized residuals 0.545 0.123 -1.725
Low concentratio x 1.88 3.75 750 15.0	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293	rinegar e _i absolute residuals 11.1 2.61 -32.5 12.6	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186	e _{Si} studentized residuals 0.565 0.129 -1.576 0.697	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678
Low concentratio x 1.88 3.75 750 15.0 1.88	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171	rinegar e _i absolute residuals 11.1 2.61 -32.5 12.6 20.1	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932	e _{Si} studentized residuals 0.565 0.129 -1.576 0.697 1.023	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026
Low concentratio x 1.88 3.75 750 15.0 1.88 3.75	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171 0.119	rinegar ei absolute residuals 11.1 2.61 -32.5 12.6 20.1 3.93	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932 0.183	esi studentized residuals 0.565 0.129 -1.576 0.697 1.023 0.195	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026 0.185
Low concentratio x 1.88 3.75 750 15.0 1.88 3.75 7.50	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171 0.119 0.84	rinegar e _i absolute residuals 11.1 2.61 -32.5 12.6 20.1 3.93 -32.0	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932 0.183 -1.486	e _{Si} studentized residuals 0.565 0.129 -1.576 0.697 1.023 0.195 -1.553	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026 0.185 -1.691
Low concentratio x 1.88 3.75 750 15.0 1.88 3.75 7.50 15.0	on balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171 0.119 0.84 0.293	rinegar ei absolute residuals 11.1 2.61 -32.5 12.6 20.1 3.93 -32.0 13.4	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932 0.183 -1.486 0.625	esi studentized residuals 0.565 0.129 -1.576 0.697 1.023 0.195 -1.553 0.743	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026 0.185 -1.691 0.725
Low concentratio x 1.88 3.75 750 15.0 1.88 3.75 7.50 15.0 1.88	on balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171 0.119 0.84 0.293 0.171	rinegar e _i absolute residuals 11.1 2.61 -32.5 12.6 20.1 3.93 -32.0 13.4 19.7	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932 0.183 -1.486 0.625 0.914	e _{Si} studentized residuals 0.565 0.129 -1.576 0.697 1.023 0.195 -1.553 0.743 1.003	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026 0.185 -1.691 0.725 1.004
Low concentratio x 1.88 3.75 750 15.0 1.88 3.75 7.50 15.0 1.88 3.75	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171 0.119 0.84 0.293 0.171 0.119 0.84 0.293 0.171	rinegar ei absolute residuals 11.1 2.61 -32.5 12.6 20.1 3.93 -32.0 13.4 19.7 -1.08	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932 0.183 -1.486 0.625 0.914 -0.050	esi studentized residuals 0.565 0.129 -1.576 0.697 1.023 0.195 -1.553 0.743 1.003 -0.053	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026 0.185 -1.691 0.725 1.004 -0.050
Low concentratio x 1.88 3.75 750 15.0 1.88 3.75 7.50 15.0 1.88 3.75 7.50 1.88 3.75 7.50	n balsamic wine v h _i leverages coefficient 0.171 0.119 0.084 0.293 0.171 0.119 0.84 0.293 0.171 0.119 0.84 0.293 0.171 0.119 0.84	rinegar e _i absolute residuals 11.1 2.61 -32.5 12.6 20.1 3.93 -32.0 13.4 19.7 -1.08 -32.6	e _{Ni} normalized residuals 0.515 0.121 -1.509 0.5186 0.932 0.183 -1.486 0.625 0.914 -0.050 -1.515	esi studentized residuals 0.565 0.129 -1.576 0.697 1.023 0.195 -1.553 0.743 1.003 -0.053 -1.583	e _{ji} standardized residuals 0.545 0.123 -1.725 0.678 1.026 0.185 -1.691 0.725 1.004 -0.050 -1.735

References

- 1. Abaje IB, Bello Y, Ahmad SA (2020) A review of air quality and concentrations of air pollutants in Nigeria. *JASEM* 24: 373–379. https://doi.org/10.4314/jasem.v24i2.25
- 2. Schroeter LC (1966) *Sulfur dioxide: Applications in foods, beverages, and pharmaceuticals,* Long Island City: Pergamon Press, Inc.
- Mandrile L, Cagnasso I, Berta L, et al. (2020) Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy. *Food Chem* 326: 127009. https://doi.org/10.1016/j.foodchem.2020.127009

- Morgan SC, Tantikachornkiat M, Scholl CM, et al. (2019) The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. *Int J Food Microbiol* 290: 1–14. https://doi.org/10.1016/j.ijfoodmicro.2018.09.020
- Gabriele M, Gerardi C, Lucejko JJ, et al. (2018) Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine. *Food Chem* 245: 1105– 1112. https://doi.org/10.1016/j.foodchem.2017.11.060
- 6. Giacosa S, Segade SR, Cagnasso E, et al. (2019) *Red Wine Technology*, 1 Eds., New York: Academic Press, 309–321. https://doi.org/10.1016/B978-0-12-814399-5.00021-9
- 7. Seralini G, Douzelet J, Halley J (2021) Sulfur in Wines and Vineyards: Taste and Comparative Toxicity to Pesticides. *Food Nutr J* 6: 231. https://doi.org/ 10.29011/2575-7091.100131
- 8. Directive 2003/89/EC of the European Parliament and of the Council of 10 November 2003 amending Directive 2000/13/EC as regards indication of the ingredients present in foodstuffs (Text with EEA relevance). (2003) Available from: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32003L008913/12/2014.
- Commission Regulation No 606/2009 of 10 July 2009. Laying down certain detailed rules for implementing Council Regulation (EC) No 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions. (2009) Available from: https://eurlex.europa.eu/eli/reg/2009/606/oj/eng.
- Jenkins TW, Howe PA, Sacks GL, et al. (2020) Determination of molecular and "Truly" free sulfur dioxide in wine: a comparison of headspace and conventional methods. *AJEV* 71: 222–230. https://doi.org/10.5344/ajev.2020.19052
- 11. Danchana K, Clavijo S, Cerdà V (2019) Conductometric determination of sulfur dioxide in wine using a multipumping system coupled to a gas-diffusion cell. *Anal Lett* 52: 1363–1378. https://doi.org/10.1080/00032719.2018.1539742
- 12. Eurachem Guide (2014) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2 Eds., Available from: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf.
- 13. Pepe P, Bosco A, Capuano F, et al. (2021) Towards an Integrated Approach for Monitoring Toxoplasmosis in Southern Italy. *Animals* 1: 1949. https://doi.org/10.3390/ani11071949
- 14. Laneri S, Di Lorenzo R, Sacchi A, et al. (2019) Dosage of bioactive molecules in the nutricosmeceutical helix aspersa muller mucus and formulation of new cosmetic cream with moisturizing effect. *Nat Prod Commun* 14: 1–7. https://doi.org/10.1177/1934578X19868606
- 15. Mancusi F, Capuano S, Girardi O, et al. (2022) Detection of SARS-CoV-2 RNA in bivalve mollusks by droplet digital RT-PCR (dd RT-PCR). *Int J Environ Res Public Health* 19: 943. https://doi.org/10.3390/ijerph19020943
- Fanelli F, Cozzi G, Raiola A, et al. (2017) Raisins and currants as conventional nutraceuticals in Italian market: Natural occurrence of Ochratoxin A. J Food Sci 82: 2306–2312. https://doi: 10.1111/1750-3841.13854
- Mancusi A, Giordano A, Bosco A, et al. (2022) Development of a droplet digital polymerase chain reaction tool for the detection of Toxoplasma gondii in meat samples. *Parasitol Res* 121: 1467– 1473. https://doi.org/10.1007/s00436-022-07477-9
- Capuano F, Capparelli R, Mancusi A, et al. (2013) Detection of Brucella spp. in Stretched Curd Cheese as Assessed by Molecular Assays. J Food Saf 33: 145–148. https://doi.org/10.1111/jfs.12034

- 19. Cristiano D, Peruzy MF, Aponte M, et al. (2021) Comparison of droplet digital PCR vs real-time PCR for *Yersinia enterocolitica* detection in vegetables. *Int J Food Microbiol* 354: 109321. https://doi.org/10.1016/j.ijfoodmicro.2021.109321
- 20. OIV 2007 Organisation Internationale de la Vigne et du Vin (2007) Available from: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-ofinternational-methods-of-analysis-of-wines-and-musts.
- 21. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). *Biometrika* 52: 591–611. https://doi.org/10.2307/2333709
- 22. Huber PJ (1981) Robust statistics, New York: Wiley, 1-384.
- Dini I, Seccia S, Senatore A, et al. (2019) Development and validation of an analytical method for total polyphenols quantification in extra virgin olive oils. *Food Anal Met* 13: 457–464. https://doi.org/10.1007/s12161-019-01657-7
- 24. Dini I, Di Lorenzo R, Senatore A, et al. (2020) Validation of rapid enzymatic quantification of acetic acid in vinegar on automated spectrophotometric system. *Foods* 9: 761. https://doi.org/10.3390/foods9060761
- 25. ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories (2017) Available from: https://www.iso.org/standard/66912.html.
- 26. Molognoni L, Daguer H, Dos Santos IR, et al. (2019) Influence of method validation parameters in the measurement uncertainty estimation by experimental approaches in food preservatives analysis. *Food Chem* 282: 147–152. https://doi.org/10.1016/j.foodchem.2018.12.115
- 27. Dini I, Di Lorenzo R, Senatore A, et al. (2021) Comparison between Mid-Infrared (ATR-FTIR) spectroscopy and official analysis methods for determination of the concentrations of alcohol, SO₂, and total acids in wine. *Separations* 8: 191. https://doi.org/10.3390/separations8100191

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)