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Abstract: Glioblastoma Multiforme (GBM) is considered one of the most aggressive malignant
tumors, characterized by a tremendously low survival rate. Despite alkylating chemotherapy being
typically adopted to fight this tumor, it is known that O(6)-methylguanine-DNA methyltransferase
(MGMT) enzyme repair abilities can antagonize the cytotoxic effects of alkylating agents, strongly
limiting tumor cell destruction. However, it has been observed that MGMT promoter regions may
be subject to methylation, a biological process preventing MGMT enzymes from removing the alkyl
agents. As a consequence, the presence of the methylation process in GBM patients can be considered
a predictive biomarker of response to therapy and a prognosis factor. Unfortunately, identifying
signs of methylation is a non-trivial matter, often requiring expensive, time-consuming, and invasive
procedures. In this work, we propose to face MGMT promoter methylation identification analyzing
Magnetic Resonance Imaging (MRI) data using a Deep Learning (DL) based approach. In particular,
we propose a Convolutional Neural Network (CNN) operating on suspicious regions on the FLAIR
series, pre-selected through an unsupervised Knowledge-Based filter leveraging both FLAIR and
T1-weighted series. The experiments, run on two different publicly available datasets, show that the
proposed approach can obtain results comparable to (and in some cases better than) the considered
competitor approach while consisting of less than 0.29% of its parameters. Finally, we perform an
eXplainable AI (XAI) analysis to take a little step further toward the clinical usability of a DL-based
approach for MGMT promoter detection in brain MRI.

Keywords: glioblastoma; convolutional neural network; MRI; MGMT promoter methylation

1. Introduction

Glioblastoma Multiforme (GBM) is considered one of the most aggressive malignant
tumors beginning within the brain, cerebellum, and brain stem [1]. Despite being a rare
tumor when compared with the incidence of all other malignancies, it is the most common
primary brain tumor in adults, often diagnosed in patients between 45 and 70 years
old. It is considered one of the most threatening dangers to humans due to its typical
unfavorable prognoses, low survival rate, and rapidly progressive course. Moreover, its
nonspecific symptoms and unknowable causes (except when arising after therapeutic
irradiation to the brain performed for another disease) bring uncertainty and dejection to
sick patients, making GBM prevention extremely hard and often late diagnosed. In clinical
trials, the diagnostic procedures consist of biopsies and neurological exams, invasive and
time-consuming practices that further complicate rapid and effective diagnosis. To cope
with this, Magnetic Resonance Imaging (MRI) is more and more preferred as a non-invasive
diagnostic tool for GBM early detection [2].

Once diagnosticated, neurosurgery, radiation therapy, and chemotherapy are the pos-
sible treatments [3]. In more detail, chemotherapy based on alkylating agents is used since

J. Imaging 2022, 8, 321. https://doi.org/10.3390/jimaging8120321 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8120321
https://doi.org/10.3390/jimaging8120321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-2578-9349
https://orcid.org/0000-0001-5033-9617
https://orcid.org/0000-0003-0874-8294
https://orcid.org/0000-0001-6852-0377
https://orcid.org/0000-0002-8176-6950
https://doi.org/10.3390/jimaging8120321
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8120321?type=check_update&version=1


J. Imaging 2022, 8, 321 2 of 14

it attaches alkyl groups to tumor cells’ DNA to damage it and prevents cell replication. De-
spite chemotherapy, it is known that O(6)-methylguanine-DNA methyltransferase (MGMT)
enzyme repair abilities can antagonize the cytotoxic effects of alkylating agents, strongly
limiting tumor cell destruction. However, it has also been observed that MGMT promoter
regions may be subject to methylation, a biological process preventing MGMT enzymes
from removing the alkyl agents [4]. As a consequence, the presence of the methylation pro-
cess in GBM patients can be considered as a predictive biomarker of response to alkylating
therapies and thus a favorable prognosis factor [5]. Therefore, the quick and effective iden-
tification of methylation activation is becoming an urgent matter for effective GBM therapy
assessment. Unfortunately, identifying signs of methylation is a non-trivial matter, often
requiring expensive, time-consuming, and invasive procedures. Indeed, although studies
on methylation detection by means of Machine Learning (ML) approaches on MRI scans are
promising [6,7], they still do not report an absolute correlation between radiomics features
and the MGMT promoter methylation [8,9].

To support this line of research, recently the Radiological Society of North America
(RSNA) and the Medical Image Computing and Computer Assisted Intervention Society
(the MICCAI Society) have jointly launched a competition (https://www.kaggle.com/
competitions/rsna-miccai-brain-tumor-radiogenomic-classification, accessed on 13 July
2021) to identify the genetic subtype of glioblastoma using MRI with the aim of detecting
the presence of MGMT promoter methylation. Despite being far from conclusive, results
achieved by different teams seem to suggest that some correlations may actually exist and
can be found by using Deep Learning (DL) approaches. Nonetheless, several participants
highlighted the difficulties associated with (i) the high inter-subject variability and (ii) the
resulting need for a wider amount of data to train huge DL models.

To cope with these problems, in this work, we introduce a new simple but effective
DL-based approach able to perform better than the official competition winner while
consisting of less than 0.29% of its parameters (14,356,929 of the winner versus 40,561 of the
proposed approach). More in detail, we propose a Convolutional Neural Network (CNN),
a particular artificial neural network consisting, among others, of convolutional layers able
to autonomously learn a set of morphological and textural features that fit the specific
task to solve. Moreover, leveraging the fact that medical images are more than pictures [10],
in the proposed methodology we have also implemented a multimodal Knowledge-Based
Filtering (KBF) approach to serve as an early fusion technique to merge information coming
from two different MRI series. In particular, we fuse the T1-weighted (T1-w) and the
Fluid Attenuated Inversion Recovery (FLAIR) series, both very common in brain MRI,
with the aim of retrieving as much useful information as possible from patients. The
resulting system consists of a supervised approach operating on suspicious regions on the
FLAIR series, pre-selected through an unsupervised knowledge-based filter leveraging
both FLAIR and T1-weighted series. To estimate the effectiveness of the proposed approach
in a real clinical context we also tested our approach on the UPENN-GBM dataset (https:
//wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642 , accessed
on 15 June 2022) [11]. Finally, to try to limit the impact of the highlighted inter-patient
variability, all the experiments have been executed by using a 5-fold cross-validation
approach.

The rest of the paper is organized as follows: Section 2 briefly analyzes the current
literature, with an emphasis on the limits of current proposals; Section 3 introduces the
considered datasets; Section 4 describes the implemented methodology; Section 5 illustrates
the experimental setup; Section 6 reports the obtained results; finally Section 7 provides
some conclusions.

2. Related Works

In recent years, a few approaches were explored to build an efficient MGMT promoter
methylation detector. Most of them adopt DL techniques, in particular CNNs, which are
used to detect distinctive methylation features in the tumor areas, both in 2D slices and
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in 3D brain volumes. In 2018, L. Han et al. [12] proposed a hybrid solution exploiting
CNNs and bidirectional recurrent neural networks, called CRNN, as an alternative to the
standard 3D CNN. The bidirectional RNN allows the gathering of patient slices providing
a unique methylation state. The considered datasets come from The Cancer Imaging
Archive, including T1-w, T2-w and FLAIR sequences, and from The Cancer Genome Atlas
for methylation sites. The implemented solution obtains accuracy and AUC scores on the
test set of 62% and 61%, respectively. In 2021, Yogananda et al. [13] proposed a powerful
model for MGMT promoter methylation detection that achieved nearly 95% on the test
set. Its effectiveness was possible due to the available data since both T2-w sequences and
tumor segmentation masks were provided. In 2022, S. Chen et al. [14] exposed a complete
solution for methylation detection, giving the opportunity to work both in single and in
multimodality exploiting T1-w, T2-w, Apparent Diffusion Coefficient (ADC) and Contrast-
Enhanced (CE) T1-w MRI sequences. This solution is based on the ResNet model [15] and
relies on manually segmented slices in order to focus only on tumor areas. In the same year,
another solution was proposed by S. Das [16], using datasets provided by the BraTS 2020
and 2021 challenges, that included both MRI slices and tumor masks. The authors built an
adversarial architecture based on an enhanced ResNet model gaining accuracy and AUC
scores on the test set of about 66%. In particular, the authors focused on the BraTS 2020
and 2021 datasets to train a model for tumor segmentation, while the dataset presented
in the Brain Tumor AI Challenge (https://www.kaggle.com/competitions/rsna-miccai-
brain-tumor-radiogenomic-classification) [17] is used for MGMT promoter methylation
detection. Moreover, the solution proposed in [16] strongly highlights the need for a mask
that gives information about tumor localization.

It is worth noting that despite the reported solutions exploiting different models and
approaches, they all share the need for detailed information about methylation sites or
segmented tumor areas. However, this is rarely available in a real scenario, to the point
that even the Brain Tumor AI Challenge (https://www.kaggle.com/competitions/rsna-
miccai-brain-tumor-radiogenomic-classification) [17] highlighted the need for approaches
able to work directly on MRI data, without further information about tumor location or
segmentation. Taking this characteristic into account, a recent work [18] tried to understand
if the methylation detection task was possible with DL approaches without segmentation
masks, using the data from the Brain Tumor AI Challenge (https://www.kaggle.com/
competitions/rsna-miccai-brain-tumor-radiogenomic-classification) [17]. After proposing
their model based on a 3D variant of the EfficientNet [19], they had to admit that, even if
a model can be trained with methylation labels exploiting MRI sequences as T1-w, T2-w,
CE T1-w and FLAIR, it cannot have great performance, showing an average AUC on the
test set of 58%. Along the same lines, the winner of the competition, the Tunisia.ai team,
reached only 62% of AUC on the test set fine-tuning a massive residual network consisting
of more than 14M parameters. These results, together with the performance shown on
the challenge leaderboard and with the high inter-patient variability highlighted by the
participants during the competition, suggest that it is important to implement a (possibly
unsupervised) way to automatically obtain the area of the tumor and, in turn, design
a smaller architecture able to better generalize despite the reduced number of available
samples for each genetic expression of the methylation.

3. Considered Cohorts

As for most biomedical tasks, identifying a suited sample of subjects properly repre-
senting the real population is a non-trivial task. To try to limit the impact of this choice and
to estimate the clinical effectiveness of the proposed approach, in this paper, we focus on
two datasets:

• The first one is provided by the Brain Tumor AI Challenge (https://www.kaggle.com/
competitions/rsna-miccai-brain-tumor-radiogenomic-classification) [17], consisting
of 573 subjects obtained by merging the training and validation sets available in
the competition. This dataset is composed of 303 patients with MGMT promoter

https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification


J. Imaging 2022, 8, 321 4 of 14

methylation and 270 without. The dataset uses DICOM files, that include a list of
metadata in the form of a set of tags, such as Image Orientation, Slice Location, Pixel
Spacing, and Spacing Between Slices that are used to generate the acquisition volumes.

• The second dataset is the UPENN-GBM one (https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=70225642) [11], consisting of 291 subjects for whom
the information about the MGMT promoter methylation is available, of which 121
with methylation and 170 without. Similarly to the first dataset, the UPENN-GBM [11]
uses the DICOM file format. This dataset comes from scans obtained from GBM
patients of the University of Pennsylvania Health System, which contain other clinical
information such as overall survival and patients’ demographics.

Both datasets include Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted
(T1w), T1-weighted post-contrast (T1wCE) and T2-weighted (T2w) MRI sequences.

4. Proposed Approach

In this paper, we propose a DL-based approach for MGMT promoter methylation iden-
tification leveraging medical knowledge to deal with the lack of tumor segmentation masks.
In more detail, the implemented solution consists of three main blocks, as summarized in
Figure 1: the Data Preparation step, generating isotropic and normalized acquisitions; the
Knowledge-Based Filtering (KBF), leveraging the medical knowledge to pre-select, in an unsu-
pervised manner, the Region of Interest (ROI) corresponding to possibly tumor regions in
the MRI scans; the MGMT promoter methylation identification, using a 2D or 3D CNN for the
identification of a methylation process. The next sections detail each module, highlighting
input and output while explaining the rationale behind the choices made.

Figure 1. Exemplified schema of the proposed approach: on the left, the Data Preparation step gener-
ates isotropic and normalized acquisitions; in the middle, the Knowledge-Based Filtering (KBF) step
leverages the medical knowledge to pre-select, in an unsupervised manner, the ROI corresponding to
suspect lesions; on the right, the MGMT promoter methylation identification step adopts a CNN for the
identification of the methylation process.

4.1. Data Preparation

In MRI acquisition, the slices are stacked into 3D volumes representing the brain. As
reported in [11,17], the datasets used in this paper were heterogeneously obtained from
different scanners and acquisition protocols from multiple institutions, resulting in the need
for implementing several steps to prepare volumes, before using them in the proposed
methodology. In both datasets, the Data-Preparation step consists of volume retrieval, co-
registration of acquisitions to the same anatomical template [20], inter-modality registration,
scaling and rotation to have acquisitions with the same isotropic dimension of 1 mm and
spatial orientation. In particular, the volume retrieval focuses on the creation of the 3D
volumes representing the MRI scans, considering the DICOM files. All the slices are ordered
using the Slice Location tag, available in each DICOM file, obtaining for each patient a set
of aligned acquisitions for the co-registration as proposed in [20] and the inter-modality
registration step using a rigid transformation. Each voxel in the generated volume is
linked to information about its millimeter measurement (mm). The property Pixel Spacing,
which is determined by two values (x̂p, ŷp) that represent the row and vertical spacing,
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specifies the physical separation between the centers of each two-dimensional pixel during
the acquisition of the MRI sequence for the patient p. Additionally, the Spacing Between
Slices feature, denoted by the numeric value ẑp, describes the separation between slices as
determined along the first image’s normal. This means that each voxel represents a volume
with dimensions of x̂p × ŷp × ẑp mm3, which is the resolution of the MRI image for the
patient p. Since various subjects’ resolutions might differ, all patient volumes are equally
scaled to provide acquisitions with an isotropic size of 1 × 1 × 1 mm 3. Moreover, the Image
Orientation attribute specifies the direction cosines of the first row and the first column
with respect to the patient, and it is composed of three two-element vectors for the x, y
and z axes directions. The information included in the above tag enables a proper rotation
of the isotropic volume to a standard patient orientation space. At the end of the data
preparation module, all the volumes will have a sagittal orientation. Since volumes may
include extra-cerebral tissues, which are not required for our purposes, a skull stripping
process is performed. This process requires the adoption of a 3D semantic segmentation
network for brain detection in order to generate a brain mask, which will be used to
crop what is outside of it. In this case, we exploit the HD-BET tool [21], based on a 3D
U-Net. It is worth noting that the skull stripping procedure is applied on UPENN-GBM one
(https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642) [11],
since the pre-processing implemented by the authors on the dataset provided in the Brain
Tumor AI Challenge (https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-
radiogenomic-classification) [17] included this step. The pipeline of Data-Preparation step is
summarised in Figure 2.

Figure 2. Illustration of the processes involved within the “Data Preparation” step.The volume
retrieval and scaling create the 3D acquisitions with the isotropic dimension of 1 × 1 × 1 mm3; the
Rotation step creates a set of volumes in the sagittal projection; the Skull stripping removes the tissue
outside the brain.

4.2. Knowledge-Based Filtering (KBF)

As described in Section 2, determining the ROI representing the tumor region when the
segmentation mask is not available is a crucial step. In this work, we propose to select the
area of interest in an unsupervised manner, leveraging past medical experience as proposed
in [22,23] for tumor recognition. In particular, we exploit two very simple characteristics of
lesioned tissues in the considered series: in T1-W slices, tumor areas have pixels whose
intensity is higher than cerebrospinal fluids but lower than any other kind of tissue; in
FLAIR slices, pixels with the highest intensity belong to the tumor region. Leveraging
these characteristics, from each input volume it is possible to preselect potentially lesioned
tissues by applying a threshold on the histogram of the signal intensities occurrences. Since
tumor areas are characterized by pixels with high intensity in the FLAIR and low values
in the T1-W, the most common value in terms of signal intensity (mode) can be used to
split the available information and remove one of the two generated subareas. In particular,
pixels with an intensity higher than the mode are considered in the FLAIR acquisition,
while pixels with an intensity lower than the mode are retained in the T1-w volume. Then,
the remaining pixels are sorted by the intensity value and undergo a further threshold
operation, which considers the 25% of the highest and the 25% of the lowest values in the
FLAIR and T1-w acquisition, respectively. Figure 3 provides an illustrative example of the
threshold operations implemented in Knowledge-Based Filtering (KBF). Non-significant
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values in terms of intensity near the intensity modal value are removed, as they are very
unlikely to represent tumor areas. Since tumor pixels have high intensity on FLAIR and low
intensity on T1-w, a cross-intersection between the highest values of the first and lowest
values of the second acquisition is required. Despite this possibly causing the loss of some
pixels for the tumor due to their similarity with those of cerebrospinal fluids in T1-W, this is
not a real concern in our case, as the main aim of the procedure is to localize the tumor and
not to perform a pixel-level segmentation. The output of this process is a mask consisting
of huge clusters corresponding to the ROIs (i.e., possibly lesioned areas) and little outliers
if the slice has a tumor or sparse outliers in the opposite case. Figure 4 shows an example
of KBF application on two MRI acquisitions belonging to patients with and without cancer,
respectively. The resulting ROI is used to select from the FLAIR sequence the portion of
the image to be considered by the actual methylation detection module, implementing a
point-wise multiplication. We chose the FLAIR sequence for the good performance shown
in the literature for tasks related to lesion diagnosis [24,25].

Figure 3. An illustrative example of the threshold operations performed during the KBF procedure
on FLAIR and T1w slices (first image), reported in the first and second rows respectively. The red
filter (second image) considers the mode value, while the third image represents the output of the
first filtering process. On the other hand, the light-blue filter (fourth image) exploits the 25% of the
highest and the 25% of the lowest values in the FLAIR and T1-w acquisition, respectively. The output
of the KBF procedure is shown in the fifth image.

Figure 4. An illustrative example of the results produced by the KBF module on two patients: if the
slice contains a tumor (top row) a huge cluster is generated in the preselection mask, while in the
opposite case (bottom row) the mask contains sparse outliers.
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The proposed KBF module aims to compensate for the lack of segmentation masks,
reducing the effort required by the physicians and making our methodology applicable to
datasets where tumor areas are not identified. The KBF exploits properties of T1-w and
FLAIR sequences, resulting in a multi-modal knowledge-based pre-processing procedure.
In particular, we implement an early fusion technique, in which information coming from
multiple sources is merged to highlight different characteristics [26]. In this paper, the
two sequences are exploited to create a mask representing the area to consider. Figure 5
summarizes the KBF procedure, showing the results on three central slices.

To reduce the amount of data to process, we crop each FLAIR volume considering the
smallest cubical box around the brain, obtaining acquisitions of size 192 × 192 × 192. It
is worth noting that the choice of the box is computed considering the characteristics of
both datasets, and ensuring that pixels belonging to the area identified by the KBF are not
removed. Moreover, the obtained volume is normalized in [0,1] on a patient basis to ensure
that, in the next stage, the considered CNNs operate on images having the same scale
across different acquisitions. Furthermore, it is worth noting that, since the KBF procedure
aims to select the tumor area inside the brain, it is robust against an incomplete removal of
the skull, which may occur in the Data Preparation step.

Figure 5. An illustrative example of how the KBF module operates on three consecutive couples
of FLAIR and T1-W slices: the threshold based on the mode value is represented in red, while the
light-blue line represents the threshold at 25% of the values for the FLAIR and T1-W acquisitions.

4.3. MGMT Promoter Methylation Identification

We exploit CNN to face the task of MGMT promoter methylation identification. In par-
ticular, we introduce the MGMTClassifier, a sequential network with seven convolutional
blocks and two fully connected layers separated by the Rectified Linear Unit (ReLU) as
an activation function, whose architecture is represented in Figure 6. More in detail, each
convolutional block consists of a convolutional layer, followed by batch normalization
and ReLU function, responsible for the dimensionality reduction in the input feature map
while doubling the number of the channels, except for the first convolutional block with
eight output channels. To reduce the number of training parameters while avoiding over-
fitting, we adopt depth-wise separable convolution [27] in each convolutional layer that
consists of implementing two operations: the former acts in the spatial dimension (spatial
convolution) without changing the number of channels, while the latter is a pointwise
convolution that determines the output channels. This architecture has been designed
taking into consideration the morphological characteristics of the brain in DCE-MRI. In-
deed, the proposed structure works with both 2D and 3D convolutional layers, allowing
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the use of the preferred version based on the characteristic of the dataset (e.g., spacing
between slices, number of available samples, etc.). In both cases, the convolutional layers
in the proposed architecture consist of operations where the spatial convolution uses 3 × 3
(×3) kernel, with a stride and padding set to 2 and 1, respectively, while the pointwise
convolution presents a 1× 1 (×1) kernel with a stride set to 1 and without padding. Finally,
to improve the network robustness by introducing variability in the set of data used for
training, we use classical data augmentation techniques, such as random rotations and
flipping.

Figure 6. The MGMTClassifier architecture consisting of seven convolutional blocks with depth-wise
separable convolutions spaced by batch normalization and ReLU as activation function, followed by
two fully connected layers and a ReLU activation.

5. Experimental Setup

As described in Section 3, we perform experiments on two different datasets: one
provided by the Brain Tumor AI Challenge (denoted as dataset “A” hereafter) and another
gathered by the University of Pennsylvania (denoted as dataset “B” hereafter). We tested
the proposed methodology on both datasets separately, also performing experiments by
merging them to further assess the generalization ability of the designed approach. All the
experiments were executed using a 5-fold cross-validation strategy. It is worth noting that
we did not consider the test set provided by the Brain Tumor AI Challenge (https://www.
kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification) [17] since
the labels were (and are, at the time of writing this paper) not available. Moreover, as high-
lighted by several participants, the high inter-intra patient variability has resulted in huge
variations between public and private leaderboards. We merged the public train and
validation set, before defining the folds to perform the experiments. Using a CV strategy
allows for the reduction in the variations associated with a fortunate/unfortunate split,
thus increasing the reliability of the results.

As described in Section 4.3, the proposed CNN can be implemented using both 2D and
3D convolutional layers. For the sake of completeness, we experimented with both, trying
to highlight the pros and cons of both solutions. During the experiments, the maximum
number of epochs has been set to 150, the batch size to 8 to 5 × 10−4, using the Adam
optimizer. Performance was evaluated in terms of Accuracy (ACC), Specificity (SPE),
Sensitivity (SEN), Precision (PRE), and Area under the ROC Curve (AUC). In particular,
ACC represents the percentage of corrected classified instances, while SEN and SPE are
used in the binary classification task to assess the true positive and true negative rates,
respectively. In this paper, we consider as positive volumes in which the methylation process
is present and as negative the others. As a consequence, SEN corresponds to the fraction of
methylation cases correctly identified, whilst SPE acts on the MRI volumes in which this
process is not available (negative cases), reporting the portion of them properly predicted
by the implemented model. As aforementioned in Section 1, the presence of the methylation
process is a favorable prognosis factor since it prevents the MGMT enzymes from removing
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the alkylating agents. This characteristic suggests that an error in the negative samples
leads to an underestimation of tumor severity as a prognosis more favorable than the actual
one predicted. Finally, the AUC is an essential performance measurement since it evaluates
the ability of the model to distinguish between two classes.

To better frame the results achieved by the proposed approach, we also compared
(under the same 5-cv experimental setup) it against the solution proposed by Tunisia.ai,
the competition-winning team, proposing to implement a 3D residual network trained
from scratch considering only the T1-w CE sequence. For the comparison, we use the
code that the team released on the competition website. As aforementioned, in this paper,
we did not use the test set provided by the competition, where the winners achieved
62% of AUC since labels have not been made public. The use of a 5-fold cv proved a
more robust evaluation than the hold-out implemented in the competition. Our aim is
to compare two different approaches that are the one presented in this paper and the
solution proposed by Tunisia.ai, in which we retain the input sequence used by the team
(T1-w CE). All the experiments were run using Python 3.9, with the proposed CNN
implemented in PyTorch (version 1.10). We used a Linux workstation equipped with
AMD Ryzen 7 5000 (AMD, Sunnyvale, CA, USA) and an 8 GB DDR4 RAM NVIDIA
RTX 3080 (NVIDIA, Santa Clara, California). All the codes used to derive the results
reported in this paper will be made available to the research community (The code is
available here: https://github.com/priamus-lab/GBM-MGMT-Detection, accessed on 18
September 2022).

6. Results

In this section, we report the results obtained by the proposed approach on dataset A,
B and on their union, in terms of the performance metrics described in Section 5 under the
described 5-fold cross-validation scenario. Table 1 shows the results obtained considering
the dataset A. The first two rows report the performance achieved with the 3D MGMTClas-
sifier and 2D MGMTClassifier, respectively, while the last one shows the comparison with
the solution proposed by the team Tunisia.ai. It is possible to note that the configuration
based on the 2D MGMTClassifier has the highest performance in terms of ACC (57.77%),
SPE (54.44%), PRE(59.93%), and F1 (63.33%). Similarly, Table 2 reports the performance
of the implemented experiments on the B dataset. In this case, the 3D MGMTClassifier
outperforms the other models by a wide margin , achieving 60.06% in ACC, 74.03% in SPE,
64.40% in PRE and 52.53% in F1.

Table 1. 5-fold CV performances of models trained and tested on dataset A. The input sequence is
KBF for both the 3D and 2D MGMTClassifier models and T1-w CE for the Tunisia.ai one. For each
metric, the best value is reported in bold.

Model ACC SPE SEN PRE F1 AUC

3D MGMTClassifier 55.09% 50.34% 59.74% 55.18% 57.37% 55.38%
2D MGMTClassifier 57.77% 54.44% 60.73% 59.93% 60.33% 53.55%

Tunisia.ai 52.31% 33.45% 69.38% 53.52% 60.30% 53.84%

As aforementioned, to further assess the generalization ability of the proposed ap-
proach, we also experimented with a cross-dataset scenario. In particular, Table 3 reports
the results of the models trained on dataset A and tested on B, while Table 4 shows the
performance of the networks trained on dataset B and tested on A. In both cases, we retain
the same 5-fold CV division, making the results in Tables 3 and 4 comparable with those
presented in Tables 2 and 1, respectively. Despite the fact that in both cases there is a
reduction in performance, it is interesting to note that our approach tends to perform in a
more robust manner, showing an overall behavior coherent with the one had in the single
dataset scenarios. Indeed, Tunisia.ai model presents a huge gap in performance when the
network trained on A is tested on B, obtaining 37.30%, 26.72%, 36.54%, and 49.58% in ACC,
SPE, PRE, and AUC. For the sake of completeness, in Table 5, we report the results obtained

https://github.com/priamus-lab/GBM-MGMT-Detection
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by merging both datasets into a A+B setting. In this case, we still implement a 5-fold CV by
merging, in each iteration, the corresponding folds previously identified on datasets A and
B separately.

Table 2. 5- fold CV performances of models trained and tested on dataset B. The input sequence is
KBF for both the 3D and 2D MGMTClassifier models and T1-w CE for the Tunisia.ai one. For each
metric, the best value is reported in bold.

Model ACC SPE SEN PRE F1 AUC

3D MGMTClassifier 60.06% 74.03% 45.35% 62.40% 52.53% 59.80%
2D MGMTClassifier 55.66% 62.98% 45.31% 46.40% 45.85% 55.57%

Tunisia.ai 55.14% 54.31% 56.52% 42.39% 48.45% 57.56%

Table 3. 5-fold CV performances of models trained on dataset A and tested on dataset B. The input
sequence is KBF for both the 3D and 2D MGMTClassifier models and T1-w CE for the Tunisia.ai one.
For each metric, the best value is reported in bold.

Model ACC SPE SEN PRE F1 AUC

3D MGMTClassifier 48.99% 57.80% 40.16% 48.68% 44.01% 48.78%
2D MGMTClassifier 52.58% 59.41% 42.98% 42.98% 42.98% 51.51%

Tunisia.ai 37.30% 26.72% 55.07% 36.54% 43.93% 49.58%

Table 4. 5-fold CV performances of models trained on dataset B and tested on dataset A. The input
sequence is KBF for both the 3D and 2D MGMTClassifier models and T1-w CE for the Tunisia.ai
one.For each metric, the best value is reported in bold.

Model ACC SPE SEN PRE F1 AUC

3D MGMTClassifier 49.47% 65.94% 33.00% 49.21% 39.51% 50.57%
2D MGMTClassifier 51.66% 51.85% 51.49% 54.55% 52.98% 50.72%

Tunisia.ai 51.93% 28.35% 73.29% 52.90% 61.45% 50.83%

Table 5. 5-fold CV performances of models trained and tested on dataset A+B. The input sequence is
KBF for both the 3D and 2D MGMTClassifier models and T1-w CE for the Tunisia.ai one. For each
metric, the best value is reported in bold.

Model ACC SPE SEN PRE F1 AUC

3D MGMTClassifier 56.81% 65.13% 48.58% 58.44% 53.06% 57.59%
2D MGMTClassifier 53.74% 48.11% 59.63 % 52.34% 55.75% 55.17%

Tunisia.ai 56.88% 48.22% 65.96% 54.87% 59.91% 58.63%

7. Discussion and Conclusions

In this work, we introduced a new approach leveraging deep learning and unsu-
pervised voxel pre-selection to perform MGMT promoter methylation identification in
brain MRI when suspect lesion masks are not available. In particular, we propose a Con-
volutional Neural Network (CNN) operating on suspicious regions on the FLAIR series
(using 2D or 3D convolutional filters, based on the amount of available data), pre-selected
through an unsupervised Knowledge-Based filter leveraging both FLAIR and T1-weighted
series. To estimate the effectiveness of the proposed approach, we performed experi-
ments on two different datasets: the Brain Tumor AI Challenge (https://www.kaggle.com/
competitions/rsna-miccai-brain-tumor-radiogenomic-classification) [17], a competition
that started in July 2021, with more than 1500 teams taking part; the UPENN-GBM one
(https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642) [11],
consisting of subjects from the University of Pennsylvania Health System. For both datasets,
we compared our approach (both 2D and 3D versions) against the official Brain Tumor AI
Challenge winner, under a 5-fold cross-validation strategy to reduce the high inter-intra
patient viability.

https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642
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When the two datasets are considered separately (Tables 1 and 2), results show that the
proposed approach performs, in some cases sensibly, better than the considered competitor.
Interestingly, the cross and mixed dataset scenarios are less consistent, with the proposed
approach and the competitor outperforming each other on different metrics. This further
confirms the high variability associated with MGMT promoter detection. Focusing on the
structures of the considered approaches (both the proposed ones and the competitor), it
is worth noting that they are quite different in terms of size and required training time.
Indeed, while the Tunisia.ai approach is based on a ResNet [15] model consisting of more
than 14 M trainable parameters, the proposed approach only consists of 183,000 and 22,000
parameters, respectively, for the 3D and 2D versions. This, turn, results in a training
time of ∼30 s per epoch for the proposed approaches versus ∼5 m per epoch for the
Tunisia.ai model, considering in both cases the same hardware (Section 5). This suggests
that considering a bigger dataset, the proposed approach could potentially perform even
better.

One of the biggest concerns associated with using AI models in a real clinical context,
especially when performances are not astonishing, is associated with their trustworthiness.
Thus, we also report some Explainable-AI (XAI) analyses to assess the interpretability of the
solution showing the best performance (i.e., the 3D MGMTClassifier). In particular, we use
the Integrated Gradients [28] and Occlusion [29] approaches from Captum [30], an open
source library built on PyTorch. In particular, the former is an interpretability algorithm that
assigns an importance score to each input feature, while the latter consists in a perturbation-
based approach that computes the importance of each region by evaluating the differences
in the output when the selected area is replaced (occluded) with a given baseline (i.e., zero
value). The result of the Occlusion [29] method is a mask in which the most critical areas
show an intense value. Figure 7 shows the results of the Integrated Gradients [28] and
Occlusion [29] models considering four different input volumes. In the first two rows, we
consider negative samples in which the methylation process is absent, while in the last rows,
we report positive instances, in which the methylation is present. It is worth noting that
the images shown in Figure 7 are correctly classified by the implemented model and, even
if the input is a 3D volume, we report only the slice with the highest information content
for clarity in the visualization. As we expected, the results of the Integrated Gradients [28]
model suggest that only the pixels within the ROI identified by the KBF are considered,
thus exploiting the tumor area. Moreover, the Occlusion method [29] considers the tumor
region as a critic only in the case with methylation, as reported in the third and fourth rows,
while in patients without methylation it seems that the area surrounding the tumor strongly
affects the output, making the network change its prediction if that part is occluded. This
further support the idea that, when an ROI is not available, even a simple unsupervised
pre-selection stage can support the reliability of a DL-based approach.

Besides the reported results, when evaluating the solutions implemented only by
considering the competition dataset (https://www.kaggle.com/competitions/rsna-miccai-
brain-tumor-radiogenomic-classification), it is possible to note a big difference in terms of
performance between the solutions proposed in the literature (i.e., 95% of accuracy) and
those proposed in this work, as well as those submitted to the competition (as visible from
the competition leaderboard and from a recap work reported in [18]). We strongly argue
that, despite our approach partially coping with this, the absence of tumor segmentation
masks poses severe limits to the performance that a DL-based approach can achieve for
the MGMT promoter detection task. After finding out that the KBF pipeline makes the
solution better than the ones participating in the Brain Tumor AI Challenge, the focus for
future works will be on improving the filtering, in order to remove small clusters, and on
building new, more sophisticated, and tailor-made neural networks, so that it can better
identify methylation features, and to test an intermediate multimodal fusion configuration
(e.g., a Y-shaped network).

https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
https://www.kaggle.com/competitions/rsna-miccai-brain-tumor-radiogenomic-classification
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Figure 7. Results of the Integrated Gradients [28] and Occlusion [29] models considering four different
inputs volumes. In the first two rows, we consider negative samples without the methylation process.
The last two rows show positive instances, in which the methylation is present.
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