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Abstract
The blood–brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates 
what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the 
BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic 
brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer’s disease, vascular dementia, small vessel disease). 
Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure 
and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied 
ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure 
and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods 
for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
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CEST MRI  Chemical exchange saturation transfer MRI
CNS  Central nervous system
COX  Cyclooxygenase
CSF  Cerebrospinal fluid
CT  Computerised tomography
DCE  Dynamic contrast-enhanced MRI
DEXSY  Diffusion-exchange spectroscopy
DGE  Dynamic glucose-enhanced MRI
FDG  Fluorodeoxyglucose
FEXI  Filter exchange imaging
FOV  Field of view
GBCA  Gadolinium-based contrast agent
GLUT  Glucose transporter
ICAM  Intercellular adhesion molecule
JAM  Junctional adhesion molecule
LRP  Low-density lipoprotein receptor–related 

protein
MCI  Mild cognitive impairment
MCT  Monocarboxylate transporter
MMP  Matrix metalloproteinase
MRI  Magnetic resonance imaging
MS  Multiple sclerosis
NMR  Nuclear magnetic resonance
PDGFR  Platelet-derived growth factor receptor
PECAM  Platelet endothelial cell adhesion molecule
PET  Positron emission tomography
RAGE  Receptor for advanced glycation end 

products
ROI  Region of interest
SPECT  Single photon emission computed 

tomography
SVD  Small vessel disease
TJ  Tight junction
WM  White matter

Background

The concept of a blood–brain barrier (BBB) first arose 
in the early twentieth century. Early studies showed that 
peripherally administered water-soluble dyes or toxic 
agents failed to stain or act in the central nervous system 
(CNS) or cerebrospinal fluid (CSF), whereas dyes injected 
into the CSF did stain brain parenchyma [1]. Since then, 
knowledge of the structure and function of the BBB, and 
its role in neuropathology, has expanded dramatically. The 
vertebrate BBB is a complex, heterogeneous multicellular 
structure, which separates the CNS from systemic 
circulation. It protects the delicate homeostasis of the CNS 
against blood-borne neurotoxic and inflammatory threats, 
contributes to clearance of metabolic by-products from 
the brain, regulates and maintains a precisely configured 
extracellular matrix, and mediates communication 

between the CNS and periphery through recruitment of 
immune cells and transport of soluble factors [2, 3].

BBB dysfunction plays a central role in many acute 
brain disorders including ischemic and haemorrhagic 
stroke, traumatic brain injury, cerebral malaria, and 
other central and systemic infections [4, 5]. In these 
conditions, blood–brain barrier damage leads to influx 
of blood products into the brain parenchyma, causing 
oedema and neurotoxicity. Subtler BBB dysfunction is 
also increasingly recognised as a key hallmark of chronic 
neurodegenerative disorders including AD, cerebral 
small vessel disease, and multiple sclerosis, and is 
thought to directly contribute to cognitive impairment 
[6–8]. Developing our understanding of the healthy and 
dysfunctional BBB will help to characterise, diagnose, 
and potentially treat such diseases [9].

In vitro models of the BBB have advanced 
dramatically in recent years – they can now incorporate 
numerous cell types in three-dimensional cultures with 
integrated imaging and electrophysiology [2, 10, 11]. 
However, whilst these models can be useful in probing 
certain specific aspects of dysfunction and assessing 
permeability of molecules of interest, they do not 
completely recreate the physiological environment, 
which limits the translatability of such studies. The 
complexity of the BBB necessitates in vivo studies to 
preserve its intricate anatomy and physiology and to 
truly understand pathological processes in disease. This 
review summarises the key established and prospective 
imaging techniques for probing BBB dysfunction in vivo 
in rodents and man.

BBB structure and function

The barrier properties of the BBB are stringent enough to 
restrict > 98% of small molecules and passive diffusion 
of all large molecules. The small molecules which are 
able to cross are those which satisfy Lipinski’s Rule of 5 
[12, 13]. That is, they must be smaller than 500 Da, have 
fewer than five hydrogen bond donors and ten hydrogen 
bond acceptors, and an octanol–water partition coef-
ficient less than or equal to 5. Certain large or polar 
molecules can cross the healthy BBB, although this is 
tightly regulated by specific receptor/transporter-medi-
ated processes. Complex interactions between numerous 
cell types (Fig. 1) and molecular mediators are respon-
sible for maintaining these properties in health, as well 
as modulating them in inflammatory and pathological 
conditions. To appreciate the value of in vivo studies—
and why it is so challenging to produce physiologically 
accurate in vitro models—it is important to understand 
this complexity.
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Endothelial cells

Brain endothelial cells (BECs) are typically considered the 
principal component of the BBB, adapted to limit transport 
across (transcellular) and between cells (paracellular). BECs 
can be distinguished from their peripheral equivalents by 
their lack of fenestrae and pinocytic vesicles, which result in 
limited transcellular transport. They also express proteins at 
intra- and inter-endothelial cell borders, which impede para-
cellular transport. These proteins fall into three main classes: 
tight junctions (TJs, e.g. claudins), adherens junctions (AJs, 
e.g. cadherins) and cellular adhesion molecules (CAMs, 
e.g. JAM1, PECAM-1, ICAM-1) [14, 15], which obstruct 
molecules larger than 500 Da (Fig. 1) [13]. These junctional 
proteins also confer polarity to BECs, delineating the border 
between the apical (lumen-facing) and basolateral (tissue-
facing) surfaces by restricting the diffusion of membrane 
proteins between the surfaces. The most highly expressed 
TJ protein at the BBB is claudin-5, but other claudins and 
TJ molecules, such as occludin, are important too. They are 
anchored to the actin cytoskeleton via adaptor proteins, such 
as ZO-1, ZO-2, ZO-3, and catenins. Dynamic remodelling 
of these complexes is involved in adaptive barrier functions, 
which facilitate the extravasation of circulating leukocytes 
[16–19]. BECs also express an anionic gel-like layer known 
as the glycocalyx, which extends into the lumen from their 
apical surface and is comprised of glycoproteins (e.g. syn-
decans), glycosaminoglycans (e.g. chondroitin/heparin 

sulfates), and glycolipids. The functions of the glycocalyx 
are still being elucidated, but it is believed to directly regu-
late the ability of circulating cells and molecules to access 
the BBB and it contributes to mechano-transduction of shear 
stress, which is necessary for junctional integrity [20, 21].

Disruption to these structures impairs the barrier func-
tion of the BBB. For example, by manipulating the amount 
of claudin-5 expression using knockout mice and adenovi-
rus transfection-mediated claudin-5 knock-in mice, it has 
been shown to dose-dependently restrict the large (340 kDa) 
plasma protein, fibrinogen, from crossing the BBB [22]. 
This demonstrates the efficacy of TJs in preventing large-
molecule paracellular diffusion. Interestingly, the prevalence 
of schizophrenia is higher in patients with 22q11 deletion 
syndrome, a disorder that reduces claudin-5 expression, 
highlighting the clinical importance of TJs in BBB function 
[22]. Leakage of endogenous molecules, such as fibrino-
gen and albumin, is indicative of severe BBB impairment 
and is well-documented in post mortem studies and serum 
measurements from neurodegenerative disease patients and 
animal models [23–25]. BBB permeability to smaller mol-
ecules (e.g. gadolinium-based MRI contrast agents, or water) 
is thought to be enhanced earlier during disease progression 
[26–28]. The early onset of such dysfunction has increased 
the popularity of the vascular theory, and vascular two-hit 
hypothesis of dementia, in which vascular dysfunction pre-
cedes and drives neuropathology [29, 30]. Improving the 
detection of subtle leakage of small molecules will enable 

Fig. 1  Structural Elements of the BBB. Endothelial cells are the prin-
cipal component of the BBB, expressing an array of tight junctions, 
adherens junctions, and junctional adhesion molecules which restrict 
large molecules from diffusing between cells. These proteins are 
tethered to the actin cytoskeleton by adaptor proteins, such as ZO-1. 
Pericytes extend processes along and around vessels. These physi-
cally attach to endothelial cells via peg-and-socket junctions, which 
contribute to BBB formation and maintenance and may also actively 
modulate microvascular tone. Astrocytes extend endfeet to wrap cer-

ebral vasculature. These form the glia limitans, a key element in the 
neurovascular unit, mediating neural control of regional blood supply 
and transport of a wide array of molecules and ions between circu-
lation and neurones. The basement membrane is formed of proteins, 
such as laminins and collagen-IV, which are secreted by endothelium, 
pericytes, and astrocytes. The basement membrane is essential for 
BBB maintenance and is the rate-limiting step in leukocyte extravasa-
tion
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the study of early BBB changes in vivo to determine when 
and where they occur, and to track the effects of therapeutics 
that aim to target the restoration of BBB function. Phospho-
rylation and translocation of TJs are also central to the devel-
opment of vasogenic oedema following stroke and traumatic 
brain injury, in which increased BBB permeability allows 
plasma proteins and subsequent osmotic water movement 
into the brain, increasing intracranial pressure and neuro-
degeneration [31].

Paracellular diffusion is just one means of trans-BBB 
transport. Additionally, molecules can access the CNS via 
receptor-mediated, carrier-mediated, or adsorptive trans-
cytosis; ions can cross the barrier via ion pumps/channels, 
and an armoury of efflux pumps actively clears the CNS 
of toxic compounds and waste products (Fig.  2a) [15]. 
Adsorptive-mediated transcytosis by lipid invaginations 
known as caveoli also plays a role in bulk transport, pre-
dominantly of larger molecules. Caveoli appear to be impor-
tant in focused ultrasound-enhanced BBB permeability to 
large molecules, with a key component (caveolin-1) being 
upregulated in sonicated mouse hippocampi, and caveolin-1 
knockouts showing reduced permeability to 500 kDa dex-
tran following sonication [32]. Finally, peripheral immune 
cells are able to cross the BBB. This is a multi-step process 
involving leukocyte adhesion to BECs, rolling, and diape-
desis (Fig. 2b) [33, 34]. This may be paracellular (neces-
sitating dynamic alterations to TJ arrangement) or transcel-
lular and primarily occurs at the post-capillary venule in 
inflamed brain regions, important for the CNS inflammatory 
response [35, 36]. These diverse pathways create a network 
of regulated transport mechanisms by which the brain can 
extract essential nutrients (glucose, amino acids, etc.) from 
the blood, and extrude harmful compounds and metabolic 
by-products. Disturbances to any of these can destabilise 
CNS homeostasis, resulting in excessive accumulation of 
harmful substances or insufficient supply of essential nutri-
ents. For example, increased uptake of amyloid peptides via 
Receptor for Advanced Glycation End-products (RAGE) and 
reduced clearance from the brain via the active efflux trans-
porters of amyloid peptides, p-glycoprotein (P-gp), and LDL 
receptor–related protein 1 (LRP1), contribute to the amyloid 
burden pathognomonic of AD [37]. Elevated P-gp function 
in stroke and treatment-resistant epilepsy also hampers the 
delivery of potential therapeutics [37]. Improving meth-
ods of quantifying BBB transport will help develop a more 
comprehensive understanding of homeostatic challenges in 
diseases and may improve diagnoses.

Pericytes

Whilst endothelial cells form the primary physical barrier, 
several other cell types are required to develop and main-
tain the BBB, as well as modulate its function. Pericytes 

are morphologically diverse motile cells embedded in the 
basement membrane throughout the cerebral microvascula-
ture, which are capable of proliferation and migration to sites 
of injury and angiogenesis [40]. They extend far-reaching 
(~ 300 µm) processes either longitudinally or circumferen-
tially, which physically attach to multiple BECs via peg-
and-socket and gap junctions (Fig. 1) [41]. This facilitates 
paracrine and juxtacrine signalling, which is essential for 
the development and maintenance of the BBB [42–45]. In 
addition to maintaining BBB integrity, physical contact via 
peg-and-socket junctions may allow pericytes to exert direct 
contractile force on endothelial cells and actively modulate 
microvascular tone, although this remains controversial [46]. 
Some groups have argued that capillary pericytes rather than 
arteriolar smooth muscle cells are responsible for the major-
ity of functional hyperaemia [47, 48]. This may occur specifi-
cally at post-arteriole capillary junctions, where ensheathing 
pericytes modulate flow into specific regions of the capil-
lary bed by detecting extracellular  K+ and initiating and 
propagating capillary dilatation from the site of stimulus to 
upstream vessels [49]. Contrary to these findings, alternative 
data derived by the same modality (high-resolution in vivo 
two-photon imaging) suggest that capillaries lack vasomo-
tor responses and that smooth muscle cells on arterioles are 
responsible for controlling vascular tone [50]. These con-
troversies may partly stem from ambiguity over distinctions 
between pericytes and smooth muscle cells. The development 
of more specific molecular markers and higher resolution 
imaging modalities will help characterise the morphology 
and localisation of each cell type more clearly.

The physiological significance of pericytes is high-
lighted by their involvement in a range of neurological 
disorders. Pericyte-deficient mice show clear structural 
abnormalities in the cerebral vasculature, associated with 
increased deposits of immunoglobulins (IgG) and fibrino-
gen [51]. This demonstrates the importance of pericytes in 
BBB maintenance. Vascular pericyte coverage decreases 
with age in C57BL/6 mice, which leads to concomitant 
reductions in pericyte-induced gene expression in endothe-
lial cells and increased extravasation of plasma proteins 
[52], suggesting BBB impairment occurs during normal 
ageing. Pericytes are also implicated in disease; levels of 
the pericyte marker soluble platelet-derived growth factor 
receptor β (sPDGFRβ) are significantly elevated in CSF of 
cognitively impaired patients [24, 53, 54]. The presence of 
sPDGRFβ in CSF indicates pericyte damage, suggesting 
that their death or dysfunction may contribute to cogni-
tive impairment. Moreover, exogenous and endogenous 
amyloid oligomers constrict capillaries near pericytes, 
but not arterioles and venules in human and murine brain 
tissue. This suggests that pericytes may be responsible 
for the early blood flow reductions seen in AD [55]. Peri-
cytes are also particularly susceptible to stroke, following 
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which a sustained pericyte contraction has been observed 
[48]. This may underlie the post-ischemic no-reflow phe-
nomenon [48, 56, 57], wherein capillary blood flow is not 
restored after the recommencement of arterial flow.

Astrocytes

Astrocytes are another major component of the BBB and 
neurovascular unit. The cells are connected in syncytium 

Fig. 2  Transport mechanisms at the BBB. A (1) An array of trans-
porters are expressed for a number of molecules in endothelial cells. 
For example, GLUT1 facilitates glucose transport from the blood 
to the brain down its concentration gradient. Astrocyte endfeet also 
express a variety of these, including a 45-kDa isoform of GLUT1, 
and AQP4, which regulates water uptake. (2) Ion channels in the 
endothelium regulate the transport of numerous ions including  Na+, 
 K+,  Cl−,  HCO3−, and Ca.2+. These support neural function and dys-
regulation contributes to pathologies including oedema. (3) The BBB 
is also fundamental in clearance of neurotoxic compounds via efflux 
transporters, such as P-gp and LRP1. P-gp and LRP1 dysfunction 
has been implicated in amyloid burden in AD. (4) Brain endothelial 
cells are capable of bulk transport via lipid raft invaginations known 
as caveolae, which play a key role in focused ultrasound-enhanced 
BBB permeability [32]. (5) Receptor-mediated transcytosis is a final 
mechanism of transport, typically responsible for transporting pep-
tides and proteins, such as insulin, into the brain. B (1) At resting 
state, leukocytes circulate in blood and are excluded from the brain 
by the BBB. To enter the brain, a complex series of molecular inter-
actions must occur [33]. (2) Rolling: endothelial receptors, e.g. E- and 

P-selectin, are upregulated in inflammatory states. Leukocyte plasma 
membrane glycoproteins bind to these, which allows them to roll 
along the endothelium to the site of inflammation [38]. Due to sig-
nificantly reduced blood flow in the postcapillary venules of inflamed 
regions, these interactions are most likely to occur in postcapillary 
venules, rather than at other levels of the arteriovenous axis. (3) Leu-
kocyte activation: Rolling brings leukocytes into close proximity with 
other inflammatory agents on the luminal surface of the endothelium. 
These agents activate G protein-coupled receptors, initiating intracel-
lular cascades in leukocytes, which activate integrins expressed on 
leukocyte plasma membranes [33]. (4) Adhesion: integrins typically 
bind to extracellular matrix proteins secreted by endothelial cells, 
such as ICAM-1, VCAM-1, and PECAM-1 [39]. This tight binding 
halts rolling. Leukocytes crawl along the endothelium to cell borders 
either with or against the direction of blood flow. (5) Diapedesis: leu-
kocytes cross the BBB between or through endothelial cells. This is 
dependent on homophilic interactions between receptors on leuko-
cytes and those on endothelial cells, basement membrane, and peri-
cytes [33]
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by gap junctions, which facilitates rapid signalling across 
large areas by calcium waves, and diffusion of metabolites 
and other molecules [58, 59]. They are highly polarised 
cells, extending perivascular endfeet which ensheath the 
endothelium—this forms a secondary barrier known as the 
glia limitans—and endfeet which ensheath synapses, where 
they modulate, receive, and directly contribute to synaptic 
signalling via gliotransmission [60].

Perivascular endfeet cover almost all cerebral micro-
vasculature. As with pericytes, these are important for 
the formation and maintenance of endothelial TJs, but 
they also express dense and varied transport proteins, 
including aquaporin 4 (AQP4), GLUT1, and big current 
potassium (BK) channels [61–63]. These proteins play 
fundamental roles in bidirectional neurovascular cou-
pling. For example, astrocytes can stimulate vasodilata-
tion or constriction, dependent on the magnitude of astro-
cytic calcium oscillations [64]. These calcium signals 
can be driven by metabotropic glutamate communication 
with neurones [65], demonstrating the role of astrocytes 
in directing blood flow to areas of neuronal activity.

CBF regulation is intrinsically linked to neuronal metab-
olism. Astrocytes further support neuronal metabolism by 
storing and supplying metabolites on demand. The Astrocyte-
Neurone Lactate Shuttle hypothesis proposes that astrocytes 
mediate the majority of activity-dependent energy supply to 
neurones [66]. In this model, glucose enters astrocytes via 
GLUT1 and is either stored as glycogen or glycolytically 
metabolised into lactate. Lactate derived from either gly-
cogen or glucose can then be shuttled from astrocytes into 
neurones by monocarboxylate transports (MCTs) [67, 68]. 
Lactate can then be converted to pyruvate, which acts as a 
substrate in the tricarboxylic acid cycle, fuelling oxidative 
phosphorylation in neurones. This is regulated by the degree 
of neuronal activity, whereby rising extracellular concentra-
tions of potassium [69] or glutamate [66] indicate increased 
action potential firing and stimulate astrocytic glycogenoly-
sis. This represents a mechanism by which metabolically 
active neurones can be supplied with an energy source in 
an activity-dependent (efficient) manner, and by which glu-
cose can be stored in astrocytic glycogen deposits, which 
act as a buffer in the event of glucose deprivation, such as 
in ischemia. Since its proposal, the ANLS hypothesis has 
remained controversial. This debate has been extensively 
reviewed elsewhere [70, 71] and contributing to this discus-
sion is not the focus of this review. Glucose hypometabo-
lism is a characteristic early pathology in Alzheimer’s and 
has been reliably detected by FDG-PET in the clinic and in 
rodent models [72–76]. If astrocytes are the major supplier 
of neuronal energy substrates, this suggests that astrocytes, 
not neurones, may be the source of this deficiency [77, 78].

Astrocytes are not just central to neuronal nutrient supply; 
they also play a key role in clearing waste products from the 

brain. AQP4 contributes to the mixing of perivascular CSF 
with interstitial fluid. This is necessary for a recently identi-
fied bulk clearance mechanism, known as the glymphatic 
system, which removes toxic compounds including amyloid 
and tau peptides from the brain, as reviewed by Rasmus-
sen et al. [79]. Alterations in the expression and localisa-
tion of AQP4 can profoundly affect glymphatic clearance. 
Loss of astrocytic AQP4 polarity, for example, is correlated 
with cognitive decline, Braak stage, and amyloid burden in 
AD [80]. AQP4 is also implicated in the pathophysiology 
of stroke and traumatic brain injury. In healthy tissue, ion 
channels and AQP4 maintain water homeostasis, which is 
essential to maintain cell/tissue volume. In ischemic stroke, 
however, cellular oedema is observed rapidly, followed by 
vasogenic oedema in the subacute phase (24–48 h) [81]. Pre-
clinical models have shown that AQP4 expression directly 
correlates with cytotoxic oedema [82], and this can be driven 
by the translocation of AQP4 to the plasma membrane [83]. 
AQP4 knockouts show marked reductions in cytotoxic 
oedema [62] and water exchange across the BBB [84]. In 
contrast, AQP4 knockouts have also demonstrated exagger-
ated swelling in vasogenic oedema models [85], whereby 
luminal water crosses the BBB and builds up in the CNS. 
This highlights a complex relationship between astrocytes, 
AQP4, and the development and resolution of oedema.

Basement membrane

The BBB is encased by a basement membrane, a network 
of extracellular matrix proteins secreted by endothelial cells 
(endothelial basement membrane) and pericytes/astrocytes 
(parenchymal basement membrane) [86–88]. The membrane 
is a network consisting primarily of diverse isoforms 
within the families of laminins, collagen IV, nidogens, and 
heparan sulfate proteoglycans [89]. These are molecularly 
and functionally distinct layers [90, 91] which add an extra 
barrier, and also support and facilitate interactions between 
the cells of the BBB [4, 92]. This barrier is considered the 
rate-limiting step in leukocyte diapedesis [93], indicating its 
importance in CNS immune privilege. Leukocytes pass the 
barrier by secreting matrix metalloproteinases to degrade 
the membrane (this takes around 30 min, compared with 
3–4 min to cross the endothelial monolayer [94]). These 
infiltrating cells cross the BBB at sites dependent on which 
basement membrane laminins are expressed. T lymphocytes, 
for example, cross in areas of low laminin 511 expression, 
whilst neutrophils and monocytes can cross in areas with 
either laminin 411 or laminin 511 expression [91, 94].

In addition to its role as a physical barrier, the basement 
membrane anchors cellular components to the barrier with 
cell-type-specific integrin and dystroglycan receptor inter-
actions. These interactions are important for BBB func-
tion; the extent of collagen IV interaction with endothelial 
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integrin receptors is correlated with claudin 5 expression, 
for example [95]. Furthermore, laminin 511 has been shown 
to promote VE-cadherin expression at endothelial junc-
tions and increase transendothelial electrical resistance, a 
measure of paracellular integrity [94]. This is thought to 
be a specific interaction, as the study did not find this effect 
with laminin 411 or non-endothelial laminins. Additionally, 
astrocyte endfeet express integrin α2, which interacts with 
endothelial laminin to promote a BBB-protective phenotype 
of pericytes, AQP4 expression in astrocyte endfeet and inter-
endothelial TJ formation [96].

The basement membrane is difficult to study for two rea-
sons. First, many components of the membrane are widely 
expressed, and a number of knockout models prevent devel-
opment past the embryonic stage, as reviewed by Thomsen 
et al. [4] Secondly, the complex structural assembly of the 
different molecular components—and the variability of this 
composition along the arteriovenous axis and between tis-
sues—prevents accurate recreation of the complete base-
ment membrane in vitro. For these reasons, and the variety 
of specific molecular interactions detailed in the previous 
paragraph, basement membrane research benefits greatly 
from studying the intact BBB.

Alterations in the composition of the basement membrane 
are observed in a range of diseases including diabetes, and 
AD [4]. Cerebral amyloid angiopathy, a major vascular 
component of AD, is associated with significant amyloid 
deposition in the basement membrane, as well as vessel 
walls [97]. Furthermore, basement membrane thickening 
is observed in AD, hypertension, small vessel disease, and 
diabetes [98–101]. In contrast, the upregulation of proteases 
and inflammatory cytokines in stroke contributes to the 
degradation of basement membrane components, including 
collagen IV, agrin, laminins, and fibronectin [102–105].

Immune cells, microglia, and peripheral factors

The BBB confers immune privilege to the CNS; i.e., periph-
eral immune cells are predominantly excluded. However, the 
BBB is profoundly affected by inflammatory mediators, such 
as cytokines and oxidative species, which are secreted by 
the pro-inflammatory ‘activated’ microglia and astrocytes 
in the brain, as well as infiltrating immune cells. As such, 
inflammatory mediators, immune cells, and glia can dictate 
whether the BBB is intact or ‘leaky’ [2, 3, 106]. Addition-
ally, glial and immune cells secret matrix metalloproteinases 
(MMPs), which are necessary for leukocyte infiltration and 
degrade both paracellular junctions and basement mem-
brane to increase BBB permeability in neurodegeneration 
and ischemia [107, 108]. In acute inflammation, this modula-
tion allows peripheral monocytes to invade and tackle CNS 
pathogens and remove harmful compounds. However, per-
sistent inflammation is believed to initiate a self-perpetuating 

increase in BBB permeability and this may contribute to 
the pathogenesis and symptoms of neurodegenerative dis-
eases [106]. This is exemplified by the duality of microglial 
behaviour in acute and chronic inflammation. Acute systemic 
inflammation induced by LPS injection promotes microglial 
migration to the BBB, where they express claudin 5 and 
extend processes through the basement membrane to con-
tact endothelium [109]. This appears to support the BBB, 
partially mitigating the impairment caused by the inflamma-
tion. With continued daily LPS injections, however, con-
ditional microglia knockout mice and minocycline-treated 
mice show reduced BBB permeability, suggesting that in 
chronic inflammation activated microglia are detrimental to 
the barrier.

Heterogeneity of the BBB

CNS barriers are highly heterogeneous between brain 
regions. For example, the hippocampus is more vulnerable 
to ageing- and hypertension-associated BBB leakage [24, 
110], the distribution and phenotype of pericytes varies 
with cortical depth [111], and the location of stroke has a 
significant effect on leukocyte infiltration [112].

In addition to regional variations, BBB structure and 
function vary according to the level of the vascular tree. For 
example, leukocyte infiltration preferentially occurs at post-
capillary venules [113]. There is also significant variation in 
the basement membrane thickness and laminin composition 
between vessel types [4]. Furthermore, endothelial cells 
display continuous transcriptomic changes along the axis, 
whereas there are discrete transcriptional/morphological 
classes of mural cells [111, 114, 115].

A number of CNS barriers exist. The blood-CSF barrier 
is a functionally and structurally distinct barrier in the 
choroid plexus and circumventricular organs [116, 117], 
and the blood-spinal cord barrier is another distinct barrier 
encasing spinal vessels. These heterogeneities are frequently 
overlooked and the barriers are sometimes incorrectly 
collectively referred to as the BBB [114].

Macroscopic imaging techniques, such as MRI and PET, 
facilitate the characterisation of regional heterogeneity (i.e. 
differences in the BBB between regions). Microscopic tech-
niques enable detailed visualisation of heterogeneities occur-
ring over smaller scales (i.e. along the arterio-venous axis).

In vivo imaging techniques of the BBB

The complexity of the BBB and the array of diseases in 
which several components are affected necessitates a mul-
timodal approach to imaging these changes in vivo. An 
overview of these structural/functional changes is given in 
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Table 1, alongside appropriate imaging modalities used to 
detect them.

Magnetic resonance imaging

A range of magnetic resonance imaging (MRI) techniques 
exist to probe a variety of BBB functions. This permits 
investigation of BBB integrity and transport under 
physiological conditions and, as they are largely non-
invasive, they provide a means to measure BBB function 
in humans. As a non-ionising modality, it is also feasible 
to perform longitudinal MRI studies to track disease 
progression in clinical and preclinical studies.

DCE‑MRI

MRI-based measurements of BBB integrity are typically 
performed via T1-weighted dynamic contrast-enhanced 
(DCE)-MRI [113, 114], in which a contrast agent—typically 
a paramagnetic gadolinium-based contrast agent (GBCA)—
is injected intravenously and leakage of the agent across the 
BBB is detected as a change in the T1 of brain tissue (Fig. 3). 
The aim of DCE-MRI assessment of the BBB is to esti-
mate the contrast agent transfer constant, Ktrans, which is a 
quantitative measure of the rate of indicator transfer from 

the vascular to extravascular space. Due to the 3D macro-
scopic resolution of DCE-MRI, it is possible to determine 
region-specific Ktrans values in humans and animals [24, 
184]. This method has been used to demonstrate BBB leak-
age in cerebral small vessel disease [6] (Fig. 4), AD [24, 
185], and MS [131], as well as in conditions with more 
severe leakage such as stroke and brain tumours.

Since each voxel of brain tissue contains both blood 
(approximately 5% of the voxel volume) and parenchyma, 
a measured arterial input function combined with kinetic 
models are needed to infer vascular and extravascular 
(leakage) contributions to the signal enhancement. To allow 
kinetic analysis, measured T1-timecourses are converted 
to GBCA concentration–time courses using the GBCA 
spin–lattice relaxivity factor, r1:

where T10is the pre-contrast spin–lattice relaxation time 
and T1(t) is the post-contrast T1.

The most appropriate kinetic model to use depends 
on the level of indicator leakage. In a healthy brain, and 
brains with subtle BBB pathology (e.g. neurodegen-
erative disorders), it is accepted that the Patlak model 

(1)C(t) =
1

r
1

(

1

T
1
(t)

−
1

T
10

)

Fig. 3  Leakage of GBCA across the BBB  in DCE-MRI. DCE-MRI 
uses an intravenous injection of T1-shortening GBCAs. Under nor-
mal conditions, GBCA molecules are restricted from the CNS by 
the BBB. Inflammation reduces the junctional expression of TJ pro-
teins in endothelial cells, which increases the size of molecules that 
are able to cross the BBB. As a result, GBCA molecules are able to 

permeate the CNS. These molecules consist of a paramagnetic core, 
which interacts with adjacent water molecules to increase the rate 
of T1 relaxation, which is detected as a signal enhancement on T1-
weighted MRI. By scanning dynamically and applying kinetic models 
to the change in signal over time, the leakage rate of GBCA can be 
estimated and used as a measure of paracellular integrity
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Fig. 4  Dynamic contrast-enhanced MRI for the estimation of con-
trast agent leakage rate (Ktrans) across the BBB. A Gadolinium-based 
contrast agent is injected during dynamic collection of T1-weighted 
images. The contrast agent enhances the signal, first in the blood, 
and later in the tissue as the contrast agent leaks across the BBB. The 
concentration of contrast agent in the blood plasma (Cp) of a feed-
ing artery  and each tissue voxel (Ct) can be measured over time. A 
kinetic model is fitted to this data in order to calculate Ktrans in each 

voxel of the brain. B Example Ktrans images in a patient with small 
vessel disease (SVD) aged 73 years (top) and a woman with no health 
problems aged 68 years (bottom). Elevated Ktrans can be seen in SVD, 
predominantly in the white matter. Note that the dynamic series 
of images in A is from the gentleman with cSVD shown in B. The 
images kindly provided by Dr Laura Parkes were taken from a study 
acquiring DCE-MRI data in people with Parkinson’s disease and/or 
cerebrovascular disease [186]

Fig. 5  Tracer kinetic models for subtle BBB leakage. Two common 
models for estimating gadolinium leakage across the BBB rely on dif-
ferent assumptions and are appropriate in different contexts. The Pat-
lak model assumes that backflux of the compound of interest into the 
blood is negligible during the timeframe of the imaging experiment, a 
condition that is met when leakage is very low such that the concen-

tration of contrast agent in plasma (Cp) is always in significant excess 
of that in tissue (Ce). The extended Tofts model allows for some 
backflux of tracer into the blood (represented by the constant, kep, 
which is equal to Ktrans/ve, where ve is the extravascular extracellular 
volume fraction), and is considered a more suitable model in cases of 
more significant BBB impairment



European Journal of Nuclear Medicine and Molecular Imaging 

1 3

[187] (Fig. 5) is most appropriate for estimating Ktrans 
[133, 137]. Using this model, the voxel concentration of 
GBCA, C [mM], is given by:

where vp [mL plasma/mL tissue] is the fractional plasma 
volume, Cp [mM] is the concentration of contrast agent in 
capillary plasma, and Ktrans is the volume transfer constant 
 (min−1) of contrast agent from the blood–brain.

This model assumes that:

 i. The indicator has access to two compartments sepa-
rated by the blood–brain barrier, namely the vascular 
compartment and the extravascular extracellular com-
partment.

 ii. The indicator extravasation is permeability limited 
(i.e. cerebral blood flow >  > PS). Under these condi-
tions, Ktrans is approximately equal to the permeability 
surface area product (PS).

 iii. The bolus of indicator undergoes zero dispersion 
between arterial and capillary blood (i.e. the GBCA 
concentration is equal in arteries and capillaries; 
Cp = Ca). Under these conditions, the measured arterial 
input function can be directly used in Eq. 1 in place of 
Cp [188].

 iv. That water exchange across the BBB and other cell 
membranes is infinitely fast relative to differences 
in compartmental spin–lattice relaxation rates. This 
assumption is valid under most conditions, but may 
transiently exit from these conditions during the peak 
plasma concentrations, or in the presence of  substan-
tial indicator leakage into tissue [27, 135].

 v. That efflux of indicator back into the blood during the 
measurement duration is negligible, and thus, the tis-
sue compartment can be treated as irreversible. This 
assumption is akin to assuming infinitely large intersti-
tial volume, ve. It will be violated if ve is unexpectedly 
small, or if Ktrans is high [188].

 vi. That indicator is well-mixed within each compart-
ment.

In areas with significant BBB leakage (e.g. haemorrhage 
or tumour), extravasation of indicator into brain tissue will 
depend on both cerebral blood flow (delivery of indicator 
to the vascular bed), and vascular permeability (i.e. PS) 
[189, 190]. The effects of P and S cannot be distinguished, 
and thus Ktrans is not a true marker of permeability—it will 
depend on fractional blood volume and vessel size distribu-
tions, which may contribute to inter-regional variability and 
may also be affected in disease states. Methods to measure 
microvessel diameter using MRI have been developed [191, 

(2)C(t) = vpCp(t) + K
trans∫

t

0

Cp(t) dt

192], but have not yet been used in combination with meas-
ures of Ktrans to derive measures of Ktrans independent of 
vessel surface area. Alternatively, a marker of vascular leak-
age that is independent of blood volume can be determined 
by calculating the exchange rate (kGad) by dividing Ktrans by 
the plasma volume fraction (vp) [130]. This parameter reflects 
how often on average an indicator particle exchanges from 
blood to tissue. It is unclear how valid such an assumption is, 
given the Patlak model assumes negligible efflux of indicator 
back into the bloodstream.

When BBB impairment is more severe, the assumption of 
negligible efflux of tracer back into the vascular space during 
the measurement duration may be inaccurate. Under those 
conditions, the extended Tofts model, which accounts for 
finite efflux, may be more accurate [193, 194]. A common 
assumption to the Patlak and extended Tofts models is that 
contrast agent concentration is equivalent between arteries 
and capillaries. If cerebral blood flow is reduced (for exam-
ple in patients with AD, or due to stroke), it is possible that 
the indicator bolus undergoes dispersion between the feeding 
artery and capillaries (Cp ≠ Ca).

Arterial input functions (AIFs) are used across dynamic 
imaging modalities to describe the delivery of indicator to 
tissue as a function of time, which is required for accurate 
kinetic modelling. The regular sampling of arterial blood 
necessary to estimate this accurately is highly invasive and 
technically challenging. In DCE-MRI, it is possible to use 
image-derived methods to quantify the arterial contrast agent 
concentration without the need for blood testing; this method 
requires the image analyst to segment an image region con-
taining arterial blood (usually a large artery), and to convert 
measured  R1 time courses to contrast agent concentration 
using a pre-defined calibration constant called the relaxivity. 
However, factors such as inflow effects, and partial volume 
effects of the artery with surrounding tissue, and insufficient 
temporal resolution, make indicator concentrations in blood 
difficult to measure accurately [6]. For DCE-MRI in the 
brain, temporal resolutions of between 5-60 s are possible 
depending on the imaging protocol. Simulations have shown 
errors to be small for temporal resolutions < 60 s, which is 
readily achievable using modern hardware [195]. Further-
more, it is possible to acquire data using a dual-resolution 
approach, whereby data around the AIF peak is acquired 
using lower-spatial resolution and higher temporal resolution 
than the data after the peak (i.e. during the leakage phase), 
which produces robust leakage estimates [196]. Finally, it is 
possible to use a slower injection, which reduces the tem-
poral resolution requirements further by smoothing out the 
AIF peak and reducing sensitivity to flow effects [197]. Most 
contrast agents are extracellular and do not cross intact cell 
membranes. This has implications for kinetic modelling, 
since only compartments accessible to the contrast agent 
contribute towards observed signal changes, and thus can 
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be modelled. This means that plasma contrast agent con-
centrations must be calculated from whole blood AIFs. For 
DCE-MRI agents, rapid water exchange between plasma 
and erythrocytes means that plasma AIFs can be calculated 
by scaling the whole blood AIF by 1/(1-Hct), where Hct is 
the arterial haematocrit. Clearly, any error in measuring the 
haematocrit will lead to errors in the estimate of the plasma 
AIF.

Despite DCE-MRI forming the cornerstone of MRI BBB 
studies, there are limitations associated with the use of 
GBCAs. For example, they may be too large to diffuse across 
the BBB unless BBB breakdown is relatively severe [198, 
199]. Thus, using DCE-MRI to study diseases with sub-
tle BBB dysfunction, such as AD and small vessel disease, 
where the leakage is very slow, and associated MRI signal 
changes are of low magnitude relative to noise, is challeng-
ing. Furthermore, gadolinium leakage is paracellular and 
so, whilst it is a useful indicator of junctional integrity, it 
cannot be used to assess the function of specific transcellular 
transport systems.

Other factors confound DCE-MRI measurements of sub-
tle BBB leakage, including artefacts (Gibbs ringing), scan-
ner drift, and heterogeneity between tissues (partial volume 
effects), which can obscure leakage being distinguished from 
background noise [27, 132], or lead to misinterpretation of 
results. The choice of model, as discussed above, can also 
influence findings. Furthermore, concern has been growing 
regarding the unknown long-term consequences of gado-
linium accumulation, which has been observed in numerous 
brain regions including the thalamus, substantia nigra, and 
red nucleus in patients with seemingly intact BBB [200]. 
Whilst DCE-MRI has proved very useful, these limitations 
suggest it may be beneficial to develop improved contrast 
agents or contrast-free MRI techniques.

Water‑exchange MRI techniques for probing BBB function

To address the low sensitivity of DCE-MRI, there has been 
extensive work to develop methods that quantify the rate of 
water exchange across the BBB [27]. As a smaller molecule, 
it has greater BBB permeability than GBCAs, exchanging 
several thousand times faster than GBCAs [130]. It may, 
therefore, be more sensitive to subtle changes in junctional 
integrity. In contrast to GBCAs, water can  pass across the 
BBB through trans-membrane proteins, ion channels [201] 
and AQP4 water channels located on astrocyte endfeet [84]. 
Changes in water permeability may therefore occur through 
a much wider range of mechanisms than an alteration to 
junctional integrity and so it has less pathological specificity 
than DCE-MRI. There are three main approaches for meas-
uring BBB water-exchange: contrast-enhanced techniques 
[28, 202–204], arterial spin labelling (ASL) techniques 
[27, 138, 205–210], and more recently approaches based 

on double-diffusion encoding MRI [211]. All these tech-
niques aim to detect the effects of trans-BBB exchange on 
either T1, T2, ADC, or any other detectable NMR property 
that is sufficiently different between intra- and extravascular 
compartments.

Contrast agent-based techniques use an intravascular indi-
cator to preferentially shorten the T1 or T2 of blood. Water 
has a similar T1 relaxation rate in intra- and extravascular 
compartments and, due to the small size of the intravascular 
compartment, MRI cannot reliably detect these differences. 
Intravascular contrast agents are often used to shorten the T1 
of blood water,  increasing the difference between intra- and 
extravascular compartments [28, 202]. This enhances the 
sensitivity for detecting bi-exponential relaxation, facilitat-
ing the estimation of the blood-tissue water exchange rate 
(kin, also referred to as kbe). In contrast to other approaches 
for measuring water-exchange discussed later, GBCA 
approaches also enable the estimation of cerebral blood 
volume, proving a means to also calculate the permeability 
surface area product, PSw. This provides a measure of the 
total amount of water exchanging per unit time (taking into 
account the contribution from blood volume), whereas kin 
provides information only on the frequency at which each 
water molecule exchanges [27].

ASL water exchange techniques study the kinetics of 
tagged arterial water as it passes through the vascular tree 
and into tissue. To estimate water exchange, standard ASL 
can be extended and combined with T2/T2*- or diffusion-
weighting, which enables label localisation (intra- or 
extravascular) to be determined as a function of post-label 
delay time. These techniques are completely non-invasive, as 
GBCAs are not injected. The magnetic labelling of arterial 
spins occurs upstream of the voxel of interest into which it 
flows, meaning that the arterial transit time (ATT) needs to 
be known. As with GBCA-based techniques, the similar T1 
of blood/brain water renders standard ASL techniques insen-
sitive to water exchange; the following techniques have been 
proposed to improve this. Multi-echo time (Multi-TE) ASL 
techniques allow the T2 of the labelled spins to be estimated, 
and infer that the T2 increase associated with increased post-
label delay (PLD) time is a result of labelled water expe-
riencing the longer T2 environment of the extravascular 
compartment [84, 138, 212]. This is used to calculate the 
pre-exchange lifetime of water, although these calculations 
depend on accurate ATT measurement. Tissue/blood T2 is 
also oxygen-dependent, complicating comparisons between 
studies where arterial and capillary  pO2 may differ between 
groups. Diffusion-weighted (DW)-ASL exploits the differ-
ence in apparent diffusion coefficient between vascular and 
extravascular compartments, which can be coupled with 
ASL to quantify the proportion of label in each compart-
ment as a function of PLD [205, 213]. Double-diffusion 
encoding methods for measuring water exchange are based 
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on diffusion-exchange spectroscopy (DEXSY). These are 
known as filter-exchange imaging (FEXI). They do not rely 
on contrast agents or spin labelling and instead aim to har-
ness the natural differences in water diffusion, or pseudo-
diffusion, between extravascular and intravascular compart-
ments. Intravoxel incoherent motion, originally proposed by 
Le Bihan et al. [137], describes the perfusion of spins in 
the intravascular (capillary) compartments as mimicking 
isotropic diffusion. The first diffusion-encoding block aims 
to null spins from the fast-diffusing compartment (in this 
case, the intravascular compartment). Spins are allowed 
to exchange for a given mixing time, then a second diffu-
sion encoding block encodes spins with a second diffusion 
weighting. If spins exchange during the mixing time, then 
the measured apparent diffusion coefficient will increase 
with mixing time, the rate of recovery being dependent on 
the exchange rate [214–216]. This method has been used pri-
marily to measure transcytolemmal water exchange but has 
recently been applied to study BBB water exchange [211]. 
This study yielded encouraging results, reporting exchange 
rates in the range of previously published data using other 
techniques. However, FEXI methods are not without limi-
tations. They typically use a simplified ‘apparent exchange 
rate’ model which ignores the effects of relaxation rate dif-
ferences between compartments [217], and the effects of 
longitudinal storage crusher gradients [218], both of which 
can introduce substantial biases into exchange rate estimates.

One of the major challenges with water exchange imag-
ing is distinguishing the signals from each compartment 
with sufficient accuracy and precision, while ensuring the 
water dynamics within each compartment are accurately 
modelled. The extravascular compartment, for example, is 
often modelled as a single well-mixed compartment but in 
reality is composed of different cell types acting as distinct 
microcompartments with different NMR properties and 
cell membrane permeabilities [214, 219]. Validating such 
techniques is also complicated, due to the varied pathways 
water can take between compartments, especially the BBB. 
This multifactorial transport route means that, whilst these 
techniques may be more sensitive to BBB leakage than tra-
ditional GBCA-based methods, they may be less specific and 
more vulnerable to bias. A recent small-scale clinical study 
demonstrated regional heterogeneity in correlation between 
DCE and ASL water-exchange MRI measurements [130], 
suggesting that different mechanisms underlie the trans-
port of GBCAs and water. This highlights the ambiguity in 
interpreting water exchange data; altered exchange rate may 
reflect passive paracellular diffusion, or altered flux through 
transporters, such as aquaporins and GLUTs [201, 220]. 
Alternatively, changes may be driven by altered metabolic 
turnover, as transcytolemmal water exchange has been reli-
ably correlated with  Na+/K+-ATPase, indicating an active 
contribution to water exchange [204, 221, 222].

MPIO and USPIO MRI

Superparamagnetic compounds, such as iron-oxide particles, 
induce T2 dephasing, presenting as signal voids on T2- and 
T2*-weighted images. A major advancement in MRI con-
trast agents has been the development of antibody-conjugated 
micro-sized particles of iron oxide (MPIO) [223]. Coupled 
with the molecular specificity of antibody binding, these con-
jugates facilitate direct, minimally invasive in vivo imaging 
of molecular targets  present on the luminal surface of the 
BBB. Smaller iron-oxide contrast agents may also be used 
to image within the brain but these require low molecular 
weight to surpass the BBB, which reduces the concentra-
tion of iron delivered and precludes antibody conjugation, 
dramatically reducing both sensitivity and specificity [143].

Endothelial activation during inflammation stimulates the 
upregulation of CAMs (e.g. VCAM-1, ICAM-1) and selec-
tins, involved in leukocyte adhesion, rolling, and diapedesis. 
These molecules may therefore be utilised as indicators of 
vascular inflammation to monitor disease progression and/
or the effects of therapeutic interventions. The first study 
using MPIO-enhanced MRI demonstrated upregulation of 
VCAM-1 following intrastriatal IL-1β administration [223]. 
Subsequently, more sensitive contrast agents have identified 
cerebrovascular VCAM-1 upregulation in preclinical models 
of disease (AD, vascular dementia, experimental autoim-
mune encephalomyelitis (EAE)) and in acute systemic chal-
lenges (LPS, ethanol, hyperglycaemia), and the void vol-
ume was shown to correlate well with ex vivo measures of 
mRNA and protein concentration assessed using qPCR and 
Western blot [224]. In particular, the use of MPIOs appears 
promising to track the time course of inflammation for early 
diagnosis and image-guided therapy in chronic diseases. For 
example, in cases of tumour metastasis to the brain, aver-
age survival post-diagnosis is only 6 months [225]. This is 
largely due to late detection using existing methods (gado-
linium-enhanced MRI). In three xenograft models of micro-
metastatic human tumours (breast carcinoma, lung adeno-
carcinoma, and melanoma) in mice, MPIO MRI detected 
cerebrovascular VCAM-1 upregulation several days prior to 
detection of micro-metastases using gadolinium-enhanced 
MRI [226]. This identifies VCAM-1 as a potential biomarker 
for disease progression and indicates the potential for the 
improved diagnostic potential of VCAM-MPIO MRI relative 
to the existing gold standard. However, the authors highlight 
that VCAM-1 upregulation was detected up to 150 µm from 
the nearest micro-metastases in the histological examina-
tion, reducing the applicability of VCAM-MPIO MRI to 
precision image-guided treatments. P-selectin-MPIO MRI 
has also shown diagnostic promise; spinal cord imaging of 
P-selectin expression predicted both relapse and remission 
in a murine EAE model, suggesting benefits in monitoring 
patients with relapsing–remitting multiple sclerosis [148]. 
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The P-selectin expression has also been used to image vas-
cular inflammation in response to transient ischaemic attack 
[227], an event which often precedes stroke in humans but 
is difficult to diagnose. Importantly, the authors were able 
to distinguish transient ischemia from models of migraine 
and epilepsy, which showed no significant increase in void 
volume relative to control. It should be noted that these 
were side-by-side comparisons. This discriminative capac-
ity may be reduced in individual animals or patients, par-
ticularly given that P-selectin is upregulated in numerous 
diseases which may display similar patterns of upregulation. 
If distinct disease-specific patterns of upregulation can be 
characterised, then the diagnostic potential of MPIO MRI 
will be improved. Numerous other preclinical studies have 
utilised MPIO MRI to image cerebrovascular inflamma-
tion in a range of preclinical disease models [151, 152, 154, 
155, 228]. Whilst these have focused on CAM and selectin 
expression, countless antibodies are available to target pro-
teins expressed in the luminal endothelium, suggesting that 
the true versatility of MPIO MRI has yet to be explored. 
However, antibody binding is likely to affect the function 
of target proteins. Consequently, MPIO MRI may not be 
viable for essential transport proteins such as GLUT1 if a 
high enough concentration of antibody was injected to block 
transport function. They may still prove useful in studying 
alternative inflammatory mediators and luminal BBB com-
ponents in vivo.

Key features for ideal MPIO contrast agents to image the 
brain endothelium have been identified by Gauberti et al. 
[143]: the binding affinity of the antibody should be high to 
withstand the shear force of blood flow and the biological 
half-life of the conjugate in blood should be short to enable 
washout before imaging. The contrast agent should also 
be large enough to prevent false positive measurements 
caused by extravasation of the contrast agent to the brain 
parenchyma, where it would be protected from clearance 
mechanisms. The size of MPIOs promotes phagocytic 
clearance from the blood via the reticuloendothelial system, 
resulting in a very short blood half-life in the order of 
seconds to minutes (despite accumulation in organs such as 
the liver and spleen) [150, 153]. Conjugation to antibodies 
also prevents extravasation unless disruption is very severe, 
thus binding affinity is the major factor here and careful 
antibody selection is paramount.

The heavily T2*-weighted sequences used to image 
MPIOs are vulnerable to artefacts, such as dephasing asso-
ciated with the BOLD effect, as reviewed by Gauberti et al. 
[143]. This obscures the MPIO signal in diseases such as 
stroke and tumours, in which CAMs play an important role 
and in which there are profound changes in blood oxygena-
tion in and around the lesions. The same group overcame 
these false positive effects by pre-treating mice with oxy-
gen to normalise haemoglobin oxygenation across the lesion 

prior to imaging, yielding impressive molecular images of 
VCAM-1 in a murine stroke model [229]. The authors also 
assessed behavioural metrics and showed no effect of this 
treatment on the mice. However, no experiments were per-
formed to assess whether the oxygen treatment itself affected 
the expression of VCAM-1; the possibility that the interven-
tion may alter VCAM-1 expression should be investigated 
further by analysing VCAM-1 protein and mRNA expression 
ex vivo with and without oxygen treatment. The dramatic 
effect of oxygen treatment also highlights the importance of 
carefully controlled administration of anaesthetic carrier gas 
in such studies, particularly if anaesthesia is prolonged.

The size of iron-oxide particles has profound effects 
on their applications for imaging. Ultra-small particles of 
iron-oxide (USPIOs; < 50 nm) are smaller than MPIOs (in 
the micrometre range), which affects their blood half-life, 
T2-dephasing, and interactions with/diffusion through the 
BBB. The smaller particles are less susceptible to phago-
cytic clearance via the reticuloendothelial system, which 
contributes to a much longer half-life than MPIOs, in the 
order of several hours [150]. The reduced size also confers 
reduced density of dephasing particles, hence the expres-
sion of an equal number of molecular targets would present 
as a much weaker signal void in USPIO MRI compared 
with MPIO MRI [150]. Computer simulations also suggest 
that these smaller particles would interact less with the 
endothelium, suggesting there may also be less antibody-
target interaction, exacerbating the sensitivity deficit [230]. 
USPIOs have, however, proved useful in tracking the move-
ment of leukocytes across the BBB. Leukocytes can be 
loaded with USPIOs ex vivo and reintroduced to the vas-
culature. In this instance, the resistance to degradation is 
beneficial, as it allows sufficient time for leukocytes to cir-
culate to sites of inflammation and enter the CNS. Whilst 
circulating leukocytes can be labelled in vivo by taking up 
intravenously administered USPIOs, this limits specificity 
due to passive diffusion through the BBB. USPIOs can 
also be conjugated to antibodies in the same manner as 
MPIOs, and despite reduced sensitivity, in the absence of 
biodegradable coatings for MPIOs, USPIOs have a favour-
able safety profile. Accordingly, there are FDA-approved 
USPIO agents available, such as ferumoxytol and feru-
moxtran-10, which have been used to image CNS tumours, 
neoplasms, MS, stroke, and inflammation, as reviewed by 
Gkagkanasiou and colleagues [149].

The main barrier to clinical translation is the use of non-
biodegradable sheathes to encapsulate MPIOs; as of yet, 
there has been little success in generating agents which 
combine the biodegradability of USPIOs with the sensitiv-
ity of MPIOs. Iron administration is well tolerated clinically 
at higher levels than those used in preclinical MPIO studies 
[143]. The capsules, however, prevent degradation, resulting 
in bioaccumulation in the reticuloendothelial system [146]. 
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Biodegradable alternatives would allow for the breakdown 
of the contrast agent and subsequent recycling of iron by 
the body. Perez-Balderas et al. achieved this using MPIOs 
encapsulated by an amine-functionalized dextran coat and 
demonstrated its ability to image VCAM expression follow-
ing intrastriatal IL-1β administration in mice [156]. How-
ever, the sensitivity is lower than that of other agents and 
was tested in a severe model of acute inflammation. In order 
to assess whether their contrast agent may improve the early 
detection of pathology, it should be validated longitudinally 
in models of chronic disease. Other factors to consider relate 
to the development of sequences that retain high sensitivity 
at clinical field strengths; due to partial volume effects, the 
signal intensity from MPIOs is proportional to spatial reso-
lution, as discussed by Gauberti et al. [146]. A novel type of 
tracer has recently been developed using dopamine-coated 
magnetite nanocrystals, which self-assemble to form micro-
sized matrix-based magnetic particles (M3P) [231] in an 
attempt to develop a fully biodegradable tracer that retains 
high sensitivity. Biodegradability was assessed in mac-
rophage culture, where the M3P particles were fragmented 
but commercial MPIO particles remained intact. This was 
supported by in vivo MRI imaging of the visceral organs of 
mice. Signal voids indicating accumulation in the liver were 
observed up to 24 h post-MP3 injection, and in the spleen 
up to 7 days post-injection, but these returned to baseline at 
later time points, suggesting degradation or excretion of the 
superparamagnetic particles. When conjugated to an anti-
body, M3P clearly detected VCAM-1 upregulation follow-
ing intrastriatal LPS administration, with voids increasing 
at higher doses of LPS. M3P also elicited larger voids in a 
direct comparison with USPIO MRI, highlighting its high 
sensitivity, and VCAM-1 upregulation was also observed 
following ischemic stroke induction, a more clinically rel-
evant model of inflammation. M3P, therefore, is a highly 
promising alternative to MPIO or USPIO tracers which may 
be fundamental in enabling the clinical implementation of 
highly sensitive targeted MRI contrast agents.

Glucose CEST/CESL MRI

Unlike water, which can take varied routes through the 
BBB, certain molecules required by the brain for specific 
purposes, such as glucose and amino acids, are transported 
across cell membranes via specialised transport proteins. For 
example, glucose transport is tightly regulated via GLUTs 
on endothelial cells, astrocytic endfeet, and neurones [201, 
232–234]. Disturbances to this system are well-documented 
in neurodegenerative diseases and typically accompany meta-
bolic dysfunction [72, 235]. Recently, glucose-sensitive MRI 
techniques—glucose-enhanced chemical exchange satura-
tion transfer (glucoCEST), and glucose-enhanced chemical 
exchange spin lock (glucoCESL)—have been developed, 

which can probe glucose transport and metabolism. These 
approaches appear capable of quantifying glucose uptake 
into the brain [174, 236], and may be useful tools to probe 
BBB GLUT alterations in vivo. Both require intravenous 
injection of glucose in solution (~ 1 g/kg). GlucoCEST uses 
an off-resonant saturation pulse to saturate spins in glucose 
hydroxyl groups and encodes the signal as saturated protons 
from glucose exchange with unsaturated protons in water. 
GlucoCESL uses an on-resonant pulse to saturate water, then 
records the relaxation of water in the rotating frame (R1ρ), 
as unsaturated protons in glucose, and other labile protons, 
exchange with saturated protons in water. This sensitivity to 
labile protons from numerous molecules reduces the specific-
ity of the technique, although by injecting a bolus of glucose 
and quantifying the signal change from baseline, this limita-
tion can be largely circumvented. These techniques have been 
used to detect increased uptake of glucose in rodent tumour 
models [175, 237], and reduced uptake in rodent models of 
AD [236, 238, 239] with sub-millimetre resolution. However, 
validation of uptake against changes to GLUTs or vascular 
pathology has not been done. Kinetic modelling has recently 
been applied to this type of data to extract transport and met-
abolic parameters [240]. Assuming the cerebral metabolic 
rate of glucose is constant and saturable glucose kinetics, 
the rate of change of glucose in a voxel, C [mM], can be 
modelled as [240, 241]:

where Cb(t) [mM] is the glucose concentration in whole 
blood, Ce(t) [mM] is the glucose concentration in the paren-
chyma, T

max
 [μmol/min/mL] is the maximal rate of transport, 

K
t
 [mM] is the half saturation constant of glucose transport, 

and CMRglc [μmol/min/mL] is the cerebral metabolic rate of 
glucose utilisation. Kinetic analysis of this type may enable 
estimation of transport and metabolic rates, providing infor-
mation on the density of glucose transporters and the rela-
tive number of each type (Fig. 6). However, it is currently 
challenging to obtain reliable image-derived input functions 
(i.e. estimates of Cb(t)), which is particularly important due 
to individual differences in insulin responses [242]. There-
fore, new approaches that provide more robust detection of 
image-based input functions are needed if kinetic analy-
ses of glucoCEST and/or glucoCESL data are to be use-
ful as research and clinical markers of glucose uptake and 
metabolism.

Substantial validatory work has been performed comparing 
glucoCEST and CESL uptake to that of other glucose analogues 
or tracers such as non-metabolisable 3OMGc [243], partially 
metabolised 2DG [173], and intravascular agents L-glucose 
[175] and mannitol [174], and across different conditions such 
as altered anaesthesia and dose [173, 174]. However, validation 
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against transport and TJ protein levels at the BBB, glial activa-
tion or hexokinase activity has not been done.

Chemical exchange MRI is an exciting area of develop-
ment, as it could potentially be applied to any molecule with 
labile protons exchanging in the detectable range, thereby 
facilitating non-invasive studies into BBB transport and 
metabolism of amino acids, for example. These develop-
ments may help develop a more comprehensive understand-
ing of disease-specific BBB pathology. The techniques are 
limited in that they require a large (in the order of 1 g/kg) 
injection of glucose, which may itself alter the distribu-
tion of transporters or osmotically increase the paracellular 
permeability at the BBB. A recent study demonstrated that 
xylose can be infused as a more sensitive (hence lower dose) 
agent than glucose in both CEST and CESL [244]. 2-Deoxy-
glucose (2DG), a non-metabolised analogue of glucose, has 
also been used as a more sensitive agent [238] but is toxic at 
the doses required for detection.

Nuclear imaging techniques

MRI is a powerful technique with moderate to high resolu-
tion and structural and functional imaging capacity. Coupled 

with the availability of endogenous or easily administered 
tracers, it is immensely useful in BBB studies (Fig. 7). How-
ever, the poor sensitivity and specificity of MRI limit its use 
for molecular imaging notably of active transporters. Posi-
tron emission tomography (PET) and single-photon emis-
sion computed tomography (SPECT) are nuclear imaging 
techniques, which sacrifice some spatial resolution but have 
exquisite sensitivity and are considered gold standard tech-
niques for in vivo imaging of transport mechanisms such as 
P-gp-mediated efflux, and GLUT1-mediated glucose uptake 
from the blood.

Positron emission tomography (PET) is an ionising 
nuclear imaging technique sensitive to positrons, which are 
released from radiotracers via beta decay. These positrons 
travel short distances before interacting with their anti-
particles, electrons, in annihilation events which produce 
two antiparallel photons per event. These photons travel as 
gamma rays in opposite directions, which facilitates coinci-
dence detection by scintillation counters for reconstruction 
into images. In contrast, SPECT radiotracers directly emit 
single photons. This yields fewer photons than PET, and 
these events cannot be localised via coincidence detection, 
which reduces spatial resolution relative to PET.

Fig. 6  Dynamic glucoCESL MRI for the estimation of glucose trans-
port across the BBB. A D-glucose is injected during the dynamic col-
lection of R1ρ-weighted images. This enhances the signal, first in the 
blood, and later in the tissue as the glucose is transported across the 
BBB. At each tissue voxel, the change in glucose concentration from 
baseline (ΔCt) over time is calculated from the change in R1ρ using 

known R1ρ relaxivity of glucose, usually measured before the experi-
ment in a test object. A kinetic model can be fitted to this data in 
order to calculate the maximal rate of transport (Tmax) and the half-
saturation constant of the glucose transporters (Kt) in each voxel of 
the brain [240]. B Example Tmax and Kt images in a Sprague–Dawley 
rat (unpublished data)
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Imaging efflux

Efflux transporters are densely expressed at the BBB 
and are fundamental to the regulation of homeostasis 
within the CNS (Fig. 8). These predominantly belong 

to the ATP-Binding Cassette (ABC) family and include 
the transporters P-gp, BRCP, and MRP, each of which 
can actively transport a variety of compounds from the 
CNS to blood and there is a large degree of redundancy 
between them [245–247]. These systems are known 
to falter in many diseases [248] and they also present 
a major barrier to CNS drug delivery, contributing to 
multidrug resistance in epilepsy and cancer, for example 
[249, 250]. There is also a subtler decrease in efflux 
function at the BBB in normal ageing, a factor that has 
been identified as a potential cause of worsened drug 
side-effects in elderly patients [251].

[11C]-verapamil and its enantiomers [252] have 
been used to quantify the function of the efflux trans-
porter P-gp (Fig. 9), three of which  ([11C]-verapamil, 
 [11C]-N-desmthyl-loperamide and  [11C]-metoclopramide) 
have been approved for clinical use [178]. Three types 
of radiotracers have been developed: efflux transporter 
substrates, inhibitors, and pro-drugs. Radiolabelled 
substrates are by far the most studied and are the major 
focus here. They have been used to demonstrate that 
P-gp over-expression confers multi-drug resistance in 
treatment-refractory tumours [253] and epileptic foci 
[254, 255] by blocking the access of drugs to their tar-
gets. Conversely, degenerative diseases like AD [177, 
256] and PD [257] are linked to the downregulation or 
loss of function of these transporters, which impairs the 
clearance of amyloid and other neurotoxic compounds, 
potentially driving or exacerbating neurodegeneration 
by further disrupting homeostasis. The use of modula-
tors, such as the P-gp inhibitor cyclosporin A (CsA), has 
helped validate measures of P-gp function. For example, 

Fig. 7  Different markers indicate different aspects of BBB function/
dysfunction. A Tight junctions restrict the majority of molecules 
from crossing the BBB. Detection of molecules such as dextrans and 
fibrinogen is generally considered to indicate that these junctions are 
impaired, as these molecules do not have specific transport mecha-
nisms. B Molecules such as glucose and amino acids have specific 
transport proteins, so alterations in the transport of these substances 
may indicate disruption to these mechanisms. Alternatively, they may 
indicate changes to free diffusion resulting from tight junction impair-
ment. C Very small molecules, such as water, are able to cross the 
BBB even when junctions are intact, although the rate of exchange 
increases when junction integrity is compromised. Water is also a 
cofactor for many transport proteins, including GLUT1. These numer-
ous routes of movement across the BBB complicate the interpretation 
of readouts from water-exchange techniques

Fig. 8  Parametric maps of the plasma-to-brain transport rate con-
stant K1 of the P-glycoprotein (P-gp) substrate PET tracer (R)-[11C]
verapamil estimated from the single-tissue compartment model with 
blood volume using a metabolites-corrected plasma input function. 
Administration of the P-gp inhibitor Tariquidar at 2 mg/kg increased 
brain uptake by 54% compared to baseline in this 36-year-old healthy 
male volunteer. The images kindly provided by Dr Marie-Claude 
Asselin were acquired as part of the EURIPIDES study [267]
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the volume of distribution of  [11C]-Verapamil increases 
dose-dependently with increased CsA [258]. Verapamil 
is considered the gold-standard tracer to assess P-gp 
function, primarily because of its high selectivity for 
P-gp at nanomolar concentrations [259], but also due 
to its good reproducibility and ability to detect subtle 
changes, such as those which occur in normal human 
ageing [260, 261]. However, the lipophilicity and 
metabolite profiles of verapamil are below optimal, as 
reviewed by Luurtsema et al. [176]. Verapamil (along 
with other radiolabelled P-gp substrates) has high affin-
ity for P-gp and therefore low initial standardised uptake 
values; this limits their potential in studying differences 
in transporter function (extrusion) between brain regions 
without P-gp blocking with CsA or tariquidar [262]. Fur-
thermore, partial volume effects can make it difficult to 
study small brain regions such as the hippocampus, due 
to the higher signal in the nearby choroid plexus[263], 

which can be a limitation in diseases with a significant 
hippocampal component, such as AD or epilepsy. One 
strategy to develop improved P-gp tracers is to identify 
substrates or inhibitors with less affinity to the trans-
porter (e.g.  [11C]-Metoclopramide and  [18F]-MC255), 
which allows for higher initial brain uptake and, there-
fore, greater capacity to assess P-gp function [176]. In 
rats,  [18F]-MC255 demonstrates a high volume of dis-
tribution and metabolic stability and is not affected by 
BCRP inhibition, suggesting it has good selectivity for 
P-gp [179].  [11C]-Metoclopramide has also shown prom-
ise in rodents and non-human primates and humans, with 
similar selectivity for P-gp [264–266]. Tracers have been 
developed to study the other major efflux transporter 
families (breast cancer resistance proteins and multi-drug 
resistance proteins), although there is poor specificity 
between families.

Imaging paracellular integrity

Whilst DCE-MRI remains the most common method of 
imaging BBB integrity in vivo, a number of radiotracers 
have been investigated in attempts to utilise the higher 
sensitivity of PET to improve detection.

The amino acid 2-aminoisobutyric acid (AIB) is 
restricted from the brain by the healthy BBB, has a 
molecular weight of 103 Da, is metabolically stable, and 
can be readily labelled with 11C, making it a viable can-
didate to assess BBB permeability [268]. [3-11C]-AIB 
has demonstrated promise in cancer diagnosis, compar-
ing preferably to FDG-PET in discriminating between 
tumours and normal tissue with regard to BBB impair-
ment and hypermetabolism, respectively [140]. Subse-
quently, a more detailed validatory study investigated 
the tracer in two models of BBB opening: focused ultra-
sound and LPS in young rats [141]. The study also made 
limited comparisons with DCE-MRI. Several advanta-
geous characteristics were identified here: firstly, the 
tracer kinetics in plasma and whole blood were not found 
to differ, suggesting that aortic image-derived arterial 
input functions may be possible, reducing the technical 
skill required for studies and minimising discomfort for 
patients in the event of clinical translation. Secondly, 
enhanced unidirectional blood–brain transfer constant 
(Ki) was detected in both models relative to the contralat-
eral hemisphere; this decreased over the course of 60 min 
following sonication—as expected in the acute model of 
BBB opening—but remained significant for the duration 
of the session. Furthermore, analysis by autoradiography 
and Evans Blue microscopy showed a strong correlation 
between in vivo imaging and high-resolution ex vivo 
methods. Finally, the SNR of PET imaging increased 
during the 60-min imaging session, whereas DCE-MRI 

Fig. 9  Parametric maps from  [18F]fluorodeoxyglucose brain PET 
scans in an AD subject (right column) and a control participant (left 
column) calculated with spectral analysis [285]. The top row shows 
the values of the impulse response function at 1 min which are simi-
lar (although not identical) to the plasma-to-brain transport rate con-
stant K1. In the bottom row, regional cerebral metabolic rates of glu-
cose are shown with clearly lower rates in the cortical grey matter of 
the AD subject than the control participant. As a characteristic imag-
ing feature, the glucose hypometabolism is particularly noticeable in 
the parietal cortex of the AD subject with marked left–right asymme-
try. In contrast to rCMRglc, the differences between the two IRF1min 
images are much smaller. Images reproduced by courtesy of Edison 
et al. [286]
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SNR peaked at around 10 min. No comparisons were 
made between the sensitivity of these two techniques, 
however, which would have been a valuable comparison.

Direct comparisons with DCE-MRI will be essential in 
evaluating the efficacy of these radiotracers. This is highlighted 
by Breuer et al., who compared PET  ([68 Ga]DTPA), SPECT 
 ([99mTc]DTPA), and DCE-MRI (Gd-DTPA) in a pilocarpine 
model of epileptogenesis in female rats [269]. All techniques 
detected BBB impairment in the model, predominantly in the 
hippocampus. Overall, DCE MRI outperformed both nuclear 
techniques in terms of sensitivity which could be due to vari-
ous factors. First, the relationship between the MR signal and 
Gd concentration may not be linear whereas SPECT/PET pro-
vides an exact quantification of the tracer concentration. Sec-
ond, MR Gd-contrast agents are administered in concentration 
in the milligram range, hence providing a very strong signal 
with optimised Gd-detection T1 sequence, whereas PET and 
SPECT tracers are administered in the nano- to microgram 
range, which has the advantage of limiting possible undesir-
able effect or accumulation due to the high concentrations 
used in MRI. Third, the relatively low resolution of SPECT 
and PET when compared with the size of the ROIs may lead 
to some partial volume effect (spill-over), hence leading to an 
under-estimation of the signal. Finally, the authors pointed 
out that previous studies had shown that DTPA  [68 Ga] com-
plexes might be less stable than with other chelators, leading 
to free  [68 Ga] being released in the blood and associating with 
plasma protein transferrin which can be actively transported 
across the BBB, therefore reducing the specific  [68 Ga]DTPA 
to noise ratio in the ROIs. However, the authors also noticed in 
the cerebellum that DCE MRI detected a BBB leakage which 
was not observed ex vivo with FITC-albumin. This is likely 
due to the difference in molecular weight between GBCAs and 
albumin, but may also suggest that, in some instances or some 
brain ROI, DCE-MRI may be affected by in situ T1 signal or 
that DTPA compounds and FITC-albumin are not exactly dif-
fusing across the BBB in the same way [269]. Other tracers, 
such as  [18F]2-Fluoro-2-deoxy-sorbitol, have been developed 
to investigate paracellular permeability notably in the focused 
ultrasound model [139]. Whilst the tracer appears sensitive and 
reproducible in this model of BBB opening by FUS, this tracer 
needs to be evaluated in a more clinically relevant model of 
disease in which more subtle BBB openings are present.

On another hand, PET imaging may also prove useful to 
evaluate the permeability of the BBB to nanoparticles with 
potential therapeutic perspectives as illustrated by Debatisse 
et al. [270]. However, such application is only relevant in 
case of severe BBB alterations, such as in stroke, due to the 
fairly large size of such nanoparticles (~ 10 kDa).

Overall, PET and SPECT offer much greater sensitivity 
than MRI techniques at the cost of resolution and exposure 
to radioactivity, although this improvement in sensitivity 
is yet to be demonstrated experimentally and will require 

developments and optimisation of new small molecular 
weight tracers. Radiolabelling techniques also provide 
potential access to smaller molecules than classical Gad-
olinium contrast agents used for DCE-MRI without the 
requirement of a chelator. This is of particular importance, 
as smaller contrast agents are required to assess subtler alter-
ations of the BBB which may not be detected with classi-
cal Gd-based DCE-MRI contrast agents. In the case of MR 
measure, water diffusion through the BBB is of great inter-
est (see ‘Water-exchange MRI techniques for probing BBB 
function’ section) while other, more effective, PET tracers 
of low molecular weight may be considered in the future.

Measuring glucose transport across the BBB:  [18F]FDG‑PET

[18F]-fluorodeoxyglucose (FDG) is the  [18F] radiolabelled 
form of 2-DG, a functional substrate of GLUT1, hence it 
is extracted from the blood across the BBB via the same 
mechanisms as glucose, but does not undergo further metab-
olisation after phosphorylation into FDG-6P by hexokinase 
[271–273]. In contrast to glucose, this results in the accu-
mulation of  [18F]FDG in cells allowing accurate quantitative 
measurements of cerebral metabolic rate for glucose utiliza-
tion (CMRGlu).  [18F]FDG PET has demonstrated cerebral 
glucose hypometabolism in AD in a reproducible symptom-
relevant pattern (Fig. 9) [274–276] with the capacity to dis-
tinguish AD from MCI and cognitively normal individuals 
[277, 278].  [18F]FDG PET has, therefore, excellent diag-
nostic potential and has been used extensively to stratify 
MCI and AD patients before β-amyloid specific tracers 
such as  [11C]PIB or  [18F]Florbetaben became available [76, 
279–281]. Hypometabolism has been observed in several 
neurodegenerative diseases and its anatomical distribution 
is disease-specific. Moreover, hypometabolism indicated by 
FDG-PET is a good predictor of imminent cognitive decline 
[72, 278], unlike amyloid, which may build up in the AD 
brain for decades prior to clinical symptoms. However, it 
remains unclear whether hypometabolism is a cause or con-
sequence of reduced neuronal activity linked to synaptic 
loss [282, 283]. This is further complicated by the proposed 
multicellular mechanism of glucose and lactate transport, 
known as the astrocyte-neurone lactate shuttle (ANLS) [66, 
78, 232]. Furthermore, the measures are affected by CBF 
and the permeability surface-area product of glucose, which 
are both affected by ageing and disease [29, 284].

Whilst FDG-PET is typically used to quantify metabolism, 
the early signal readout is also linked to transport. Measuring 
this accurately is dependent on measuring an accurate input 
function, preferably through arterial blood sampling during 
dynamic scanning. This sampling facilitates the determina-
tion of K1, a measure of uptake across the BBB via GLUT1.
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Modelling of FDG-PET kinetics is similar to that of 
glucoCESL/CEST, however, since only trace amounts of 
FDG are administered, rate constants K1 and k2 are not 
concentration-dependent. Furthermore, because FDG is 
trapped in cells as FDG-6-phosphate, the contribution 
from glucose metabolites is non-negligible. The rate of 
change of FDG in the free glucose compartment is given 
by [273, 287]:

where K1  [min−1] is the rate of tracer influx across the 
BBB, k2  [min−1] is the rate of tracer efflux from brain-
blood, k3 is the rate of phosphorylation of FDG into FDG-
6-P, Cp is the concentration of FDG in plasma, and Cf is 
the concentration of FDG in tissue. These parameters can 
be used to calculate Ki:

The rate of change of the concentration of FDG-6-
phosphate in the metabolised compartment is:

It is common to also model a rate of dephosphorylation 
from FDG-6-P to FDG using an additional rate constant k4 
[287]. However, since FDG is largely trapped in cells upon 
phosphorylation and the rate of dephosphorylation is slow, 
k4 may be treated as negligible for the analysis of dynamic 
data from FDG-PET scans [288]. The total concentration 
of radioactivity is given by:

This two-compartment kinetic model has been used in 
the FUS model of BBB disruption, in which Ki of FDG 
was significantly lower in sonicated rat brains compared 
to control rats immediately after sonication [289]. Interest-
ingly, this was true in both hemispheres, despite sonication 
being directed only upon the right hemisphere. This was 
supported by Western blot, which showed reduced global 
GLUT1 expression, demonstrating that FUS induces a tran-
sient downregulation of cerebral GLUT1 and that this can be 
detected via FDG-PET. Similar studies could be performed 
in preclinical disease models to assess whether FDG-PET 
can detect changes in glucose transport in more physiologi-
cally relevant cases.

FDG-PET is not without limitations, however. Accurate 
assessment of glucose uptake and metabolism using FDG-
PET requires the image analyst to mathematically account 
for differences in transport and phosphorylation between 
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FDG and glucose. This is done using the experimentally-
derived lumped constant (LC), which is dependent on the 
relative expression of glucose transporters and relative 
contributions of transport and phosphorylation. The LC 
has been shown to be variable when calculated in differ-
ent labs, as well as between brain regions and in lesions, 
particularly tumours [290]. This variability may introduce 
bias into imaging studies if the LC is not accurately cal-
culated with appropriate spatial resolution. Despite these 
limitations, kinetic analysis of FDG uptake across the BBB 
appears adept at detecting changes in uptake associated with 
reduced GLUT1 expression, and studies directly comparing 
this with glucose-sensitive MRI methods will be important 
in understanding the relative merits of each modality.

Imaging of BBB molecular components

Tracers capable of investigating other aspects of BBB 
function are less established than verapamil and FDG, 
although a number are being developed. Aquaporin 
radiotracers, for example, have the potential to investigate 
water exchange. One such tracer is  [11C]TGN-020, which 
is capable of distinguishing between clinical stages of 
astrocytoma [180]. It binds to both AQP1 and AQP4 
[291], predominantly expressed in the BCSFB and BBB, 
respectively [292]. The poor spatial resolution of nuclear 
imaging, and binding to both AQP4 and AQP1, may cause 
quantification errors in the boundaries between these 
barriers where they cannot be easily spatially distinguished.

Recently, tracers for RAGE have been developed [293]. 
These tracers  ([18F]RAGER and  [18F]InRAGER) target the 
intra- and extracellular domains of RAGE. They have high 
affinity and good brain uptake, although have demonstrated 
binding to other targets, such as melatonin receptors, in vitro 
[293]. Despite this, these tracers will make useful scaffolds 
to develop improved tracers, unlike previous tracers which 
were macromolecular and unable to cross the BBB [293].

A promising example of PET tracers being developed to 
improve the categorisation of lesions is that of matrix metal-
loproteinase (MMP)-PET, which has been used to distinguish 
early BBB lesions (those with active leukocyte infiltration) 
from existing lesions in which leukocyte infiltration has ceased 
[294–296]. This could be used in combination with MRI tech-
niques to confirm whether changes seen in water exchange, for 
example, are affected by the pathological stage of the lesions 
they are associated with. Alternatively, nanobodies can be used 
for targeted PET to image inflammatory markers in the BBB. 
These have been used to image VCAM-1 in atherosclerotic 
lesions in mice [297] and similar tracers are being developed 
to image ICAM-1 [298]. These tracers have been used broadly 
to image immune interactions peripherally, as reviewed by Lee 
et al. [158], although they could also be used to image the BBB. 
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Theoretically, these could be applied to a range of molecules, 
similarly to MPIO MRI, as discussed above.

Intravital microscopy

Whilst MRI and nuclear imaging techniques are powerful in 
providing macroscopic information with full brain coverage 
and can do so in a highly specific manner to probe individual 
mechanisms of BBB dysfunction, they lack the spatial 
resolution necessary to elucidate the cellular/molecular 
underpinning of these observations. This resolution can 
be attained using intravital microscopy. High-resolution 
fluorescent in vivo microscopy can quantify and localise 
cellular components, including junctional proteins and 
leakage of tracers across the BBB at the level of the vessel. 
Multiphoton microscopy is the predominant form used in 
BBB research and will be the focus here.

Multiphoton imaging uses near-infrared lasers to excite 
coincidence-detecting fluorophores in a specific plane. This 
limits photodamage and increases penetrance [299]. These 
properties are essential for in vivo imaging as they reduce 
tissue damage, facilitate repeated or longitudinal imaging 
sessions, and increase the depth of tissue that can be imaged. 
Furthermore, the sub-femtolitre volume of excitation is 
precise enough to facilitate photolytic uncaging of signalling 
molecules. This enables acute experimental modulation of 
signalling pathways in mechanistic studies in vivo.

With regard to imaging the BBB and vasculature, two 
approaches are typically used: injection of dyes/leakage 
agents, or imaging of cell-specific fluorescent markers. 
Dyes, commonly fluorescent dextrans, can be used to image 
vasculature. Larger dextrans are retained within vessels and 

are useful for imaging vascular density and morphology. 
Smaller dextrans (< 3 kDa) can pass through the impaired 
BBB; this can be imaged to quantify BBB leakage (Fig. 10) 
[142, 300]. The applications of specific cellular/subcellular 
markers are diverse. For example, imaging BBB calcium 
signalling in NG2-creERT2;GCaMP6f mice following syn-
aptic activation demonstrates a precise temporal pattern 
of the smooth muscle cell and pericyte activation, which 
propagates from the site of activation upstream to the pial 
arteriole, in order to modulate functional hyperaemia [196]. 
The relative contributions of mural cells to functional hyper-
aemia is highly contested [50] and two-photon imaging has 
been instrumental in distinguishing the roles of vascular 
smooth muscle cells and pericytes [301]. This cell type- 
and phenotype-specific discrimination has the potential to 
improve statistical power through experimental resolution 
(i.e. by specifically analysing one cell type or phenotype, 
rather than heterogeneous populations). This will be par-
amount in studies probing subtle dysfunction in the early 
stages of neurodegeneration, for example, where effect sizes 
are small and may be diluted by the inclusion of cells that are 
not involved in pathogenesis. The technique has also been 
used to demonstrate the accumulation of liposomes associ-
ated with increased transcellular and paracellular permeabil-
ity following stroke [302]. This is proposed as a potential 
route for therapeutic intervention in the disease. This high-
lights the value of high spatial resolution in determining 
specific mechanisms of BBB dysfunction (i.e. accumulation 
of liposomes via upregulated caveolae or by disassembly of 
TJ complexes).

In vivo two-photon imaging has also been paramount in 
understanding leukocyte diapedesis [303] (Table 2). In the 

Fig. 10  Increased BBB permeability imaged with intravital two-pho-
ton microscopy following acute experimental stroke. Changes in BBB 
permeability after experimental stroke: Mice were injected via tail 
vein with fluorescent dextran 3 kDa (green) and albumin (red). Before 
the procedure (A) and 45  min after acute middle cerebral artery 
occlusion (B), both the dextran and albumin are detected mainly in 

the vessel resulting in yellow appearance. In the following 2 h, there 
is an increase in the BBB permeability with the green dextran leaking 
into parenchyma while the red albumin stays inside the vessel (C). 
In vivo imaging using two-photon microscopy, Schiessl lab. Unpub-
lished data
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presence of intravascular dyes, leukocytes appear dark and 
can be distinguished from erythrocytes based on velocity. 
They can also be directly visualised via DNA-intercalating 
dyes [304]. Leukocyte cell type resolution can be attained 
by isolating the cells, purifying and labelling them in vitro, 
and then reintroducing them [303]. Similarly, two-photon 
imaging has shed light on the heterogeneous behaviour of 
astrocytes in glial scarring following brain injury [167, 305]. 
These examples highlight how intravital microscopy can be 
used to probe the microscopic detail underlying macroscopic 
changes measured by MRI and nuclear imaging. However, 
intravital microscopy is low throughput and highly invasive, 
necessitating either craniotomy or cranial thinning for opti-
cal imaging of the brain. Cranial thinning is less invasive 
and is necessary in older animals (it is common for the dura 
to attach to the skull. This can cause immediate damage and 
subsequent inflammation when the skull is removed from 
older animals). It is also well-suited to mice, whose meninges 
are more translucent and cranium less dense than those of 
rats [306]. However, this technique diminishes resolution as 
a result of optical scattering by the remaining cranium. The 
cranial window technique exerts a temporary (2–3 days) cool-
ing effect on the brain; the use of water-immersion objectives 
reinstates this temperature drop and should be avoided or cor-
rected for [307]. Craniotomy is also associated with reactive 
gliosis, inflammation, and oedema, which need to be mini-
mised by careful aseptic technique and surgery [306, 308].

The fundamental limitations of optical imaging are dif-
ficult to overcome in vivo. For example, the optical path is 
scattered significantly and penetrance is limited to ~ 600 µm 
[46], although this can be extended slightly by using a sys-
tem with excitation and emission shifted to lower wave-
lengths. The resolution within this visible depth is variable, 
as scattering disrupts the homogeneity of the excitation and 
emission light paths [301] and this is also variable between 
animals, introducing potential quantification error [306]. 
This penetration limit constrains our visualisation to the 
outer cortex. This tissue lies immediately beneath the site 
of craniotomy and is thus most affected by the procedure, 
which means any vessels imaged will be exposed to inflam-
mation and the cooling effects associated with the cranial 
window. It also prevents investigation of BBB changes in 
deep areas, such as the hippocampus, which is believed to 
have neurovascular impairment in AD [24], a murine model 
of epilepsy [309], and rodent models of essential hyperten-
sion [310]. The penetration limit can be circumvented using 
two-photon endoscopy [311], although this will initiate 
penetration-induced inflammation [312, 313].

Furthermore, multiphoton microscopy is dependent on 
the availability of good markers. Some fluorophores are 
better suited to single-photon excitation [314] and mark-
ers may lack specificity. For example, only recently have 
dyes been developed that are capable of distinguishing 
between mural cells [315]. A potential area for future 

Table 2  In vivo imaging techniques

MRI PET/SPECT Intravital two-photon microscopy

Field of view Whole brain 3D Whole brain 3D • Typically ~ 500 µm2, dependent on 
magnification

• Poor tissue penetration (600 µm) 

Tissue Contrast Good Poor Excellent 

Ionising radiation? No Yes No 

Maximum spatial resolution 100 µm isotropic • 0.83 mm and 2.36 mm for 
preclinical and clinical PET 
scanners respectively

• down to < 1 mm and 8 mm for 
preclinical and clinical SPECT 
scanners respectively 

 < 1 µm

Sensitivity 0.1—1 mM 10 – 100 pM 100 – 1000 nM 

Invasive? No (or minimally) No (or minimally) Highly 

Other considerations • Vulnerable to image acquisition 
artefacts including Gibbs ringing, 
susceptibility artefacts, and spatial 
distortions

• Logistical issues regarding tracer 
synthesis

• Photodamage to tissue – although 
less than in other microscopy 
techniques

• Unsuitable for clinical use
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development is to produce pH-sensitive dyes capable of 
detecting extravasation. Higher  CO2 concentration in tis-
sues reduces pH relative to blood [316]; a dye that was 
excited in this acidic pH but not in the relatively alkaline 
environment of the vascular lumen would aid improve the 
distinction of intra-/extravascular dye and reduce vari-
ability in how this is determined between groups.

The tiny field of view (FOV) using this technique rela-
tive to MR and nuclear techniques, and the spatial restric-
tion imposed by the cranial window, means that appropriate 
localisation of the craniotomy/cranial thinning is essential. 
This can be guided by the tomographic and MR techniques 
discussed above. For more precise localisation, techniques 
such as intrinsic signal optical imaging can be used to iden-
tify specific vessels to investigate based on changes in the 
oxygenation state of blood [48].

Discussion and summary

This review discusses the fundamental strengths and limita-
tions of in vivo imaging techniques available to study cer-
ebrovasculature and BBB. It is clear that no one method can 
fully characterise the complexity of the BBB (Fig. 7), and 
that numerous modalities and approaches need to be com-
bined for complete characterisation. Macroscopic imaging 
techniques, such as MRI and PET, can be used to identify key 
areas of interest and perform longitudinal studies both clini-
cally and in laboratory animals. More invasive in vivo tech-
niques such as intravital two-photon imaging are restricted 
to preclinical research but can provide high-resolution data 
to validate macroscopic techniques and elucidate the mecha-
nisms by which macroscopic changes arise.

DCE-MRI has been established as the standard non-inva-
sive method of assessing paracellular BBB integrity. The 
availability of small molecular weight contrast agents means 
they can be used to detect relatively subtle changes in perme-
ability. Questions remain as to whether these contrast agents 
pass purely via junctional gaps, or whether they can also pass 
via transcytosis. This may be an important consideration for 
ischemic stroke and AD, where Cav1, a membrane protein 
essential for transcytosis is upregulated [302, 317]. Despite 
these uncertainties, DCE-MRI remains a valuable technique 
and numerous kinetic modelling approaches have been devel-
oped to probe the transport of contrast agents across the BBB. 
However, the need to detect even earlier, subtler BBB patholo-
gies to diagnose degenerative diseases has driven the devel-
opment of alternative tracers, such as water, which is both 
endogenous and smaller in size than GBCAs. Alternatively, 
the development of improved tracers to exploit the higher sen-
sitivity of nuclear imaging techniques may provide a different 
route to assess the subtlest impairments to BBB integrity.

Additionally, MRI may be used to probe specific car-
rier-mediated transport and inflammatory mediators via 
glucoCEST/CESL and USPIO/MPIO imaging. These 
techniques have been applied in pathologies with major 
dysfunction; for example, glucoCESL has been applied in 
cancer, a disease with profound upregulation of transport 
and metabolic processes. To demonstrate the true potential 
of the techniques, they need to be shown to detect changes 
in a wider range of disorders with less pronounced symp-
toms. The deficit in glucose transport/metabolism in AD, 
for example, is an order of magnitude smaller than that in 
cancer. Combining glucoCESL MRI with intravital two-pho-
ton imaging or ex vivo analysis could provide high-resolu-
tion molecular detail to clarify changes in cortical glucose 
uptake, based on BBB protein expression and localisation. 
These data could additionally be used to assess changes to 
transport/metabolic apparatus which may be used to support 
the validation and development of kinetic models to describe 
glucose-sensitive MRI data. This will build confidence in 
the interpretation of clinical data. Characterising the biol-
ogy underlying the changes in these novel MRI techniques 
is essential, due to the number of factors that may affect 
readout—both regulated transport systems and alterations in 
paracellular integrity may influence signal in glucose-sensi-
tive MRI, and numerous cell types may be involved. Further-
more, direct comparisons with FDG-PET for kinetic analysis 
of glucose/FDG uptake will be fundamental in assessing 
the relative merits of each technique. The use of antibody 
conjugates and nanobodies for MRI and nuclear imaging is 
a highly promising area of development. The specificity con-
ferred by antibodies may allow for a more comprehensive 
analysis of the expression of proteins in the BBB across the 
entire brain, although these techniques have so far only been 
applied to a limited range of molecular targets.

In vivo microscopy has been particularly useful in 
elucidating changes at the cellular level, e.g. processes 
involved in the modulation of haemodynamics, leukocyte 
migration, and diapedesis, as well as rapid cellular processes 
such as calcium signalling dynamics. Furthermore, 
the ability to image subcellular detail is valuable in 
characterising alterations in the thickness of the basement 
membrane and glycocalyx. It can also be used to assess 
leakage of perfused markers, which is useful in supporting 
readouts from DCE-MRI. However, the small FOV 
and technical/invasive procedures required to set up the 
microscope reduce the throughput of the technique.
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