
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 1, pp. 326–368. DOI:10.46586/tches.v2023.i1.326-368

BipBip: A Low-Latency Tweakable Block Cipher
with Small Dimensions

Yanis Belkheyar1, Joan Daemen1, Christoph Dobraunig2, Santosh Ghosh2

and Shahram Rasoolzadeh1

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
firstname.lastname@ru.nl

2 Intel Labs, Hillsboro, USA firstname.lastname@intel.com

Abstract. Recently, a memory safety concept called Cryptographic Capability Com-
puting (C3) has been proposed. C3 is the first memory safety mechanism that works
without requiring extra storage for metadata and hence, has the potential to signifi-
cantly enhance the security of modern IT-systems at a rather low cost. To achieve
this, C3 heavily relies on ultra-low-latency cryptographic primitives. However, the
most crucial primitive required by C3 demands uncommon dimensions. To partially
encrypt 64-bit pointers, a 24-bit tweakable block cipher with a 40-bit tweak is needed.
The research on low-latency tweakable block ciphers with such small dimensions is not
very mature. Therefore, designing such a cipher provides a great research challenge,
which we take on with this paper. As a result, we present BipBip, a 24-bit tweakable
block cipher with a 40-bit tweak that allows for ASIC implementations with a latency
of 3 cycles at a 4.5 GHz clock frequency on a modern 10 nm CMOS technology.
Keywords: BipBip · low-latency · tweakable block cipher

1 Introduction
In this paper, we present BipBip, an ultra-low-latency 24-bit tweakable block cipher for the
primary use in Cryptographic Capability Computing (C3) [LRD+21]. C3 aims to provide a
generic low-overhead solution against long-lasting memory safety problems. In particular,
it hardens systems against attackers that exploit software bugs and vulnerabilities like
buffer overflows, use-after-free, etc. A capability architecture [Lev84] provides isolated
environment for each object by defining precise access rights inherently with the object
identifier. Traditionally, capability architectures for memory safety require the expansion
of pointers enforcing radical changes to the microarchitectural structures throughout
processors [WWC+14]. On the contrary, C3 relies on the existing 64-bit pointer format
utilizing the power of tailored symmetric cryptography while requiring minimal changes of
the microarchitecture. For current 64-bit computer systems, C3 encrypts one part of a
64-bit pointer and uses all other parts as tweak of the encryption. More specifically, as
depicted in Figure 1, it encrypts 24 bits within the 64-bit pointer and the other 40 bits are
used as a tweak.

Each pointer in C3 is encrypted only once for each memory allocation and used
repeatedly within the following code execution whenever it is dereferenced to access the
data it points to. The pointer value needs to be decrypted within the processor core (more
specifically, inside the memory execution or load/store pipeline) whenever it is dereferenced.
Therefore, the pointer decryption procedure is latency-critical and directly related to the
overall performance overhead of C3.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-07-15 Accepted: 2022-09-15 Published: 2022-11-29

https://doi.org/10.46586/tches.v2023.i1.326-368
mailto:yanis.belkheyar@ru.nl, joan.daemen@ru.nl, shahram.rasoolzadeh@ru.nl
mailto:christoph.dobraunig@intel.com, santosh.ghosh@intel.com
http://creativecommons.org/licenses/by/4.0/

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 327

03334575863

Encrypted [24 bits]
Tweak Low [34 bits]Tweak High [6 bits]

Figure 1: Pointer encryption format in Cryptographic Capability Computing.

Challenges and contributions. As far as we know, no one ever attempted to design
an ultra-low-latency tweakable block cipher with a block size smaller than 32 bits while
aiming to achieve a meaningful security level. Until very recently, there was simply a
lack of applications for such ciphers. Hence, we faced several challenges imposed by the
following restrictions stemming from the envisioned real-world application:

• Ultra-low-latency. The integration of the cipher for decrypting the pointers directly
lies in the critical path of the pipeline of modern CPUs. Hence, one design goal
for BipBip was to have a latency of under 3 cycles at 4 GHz on a modern CMOS
technology to keep performance impacts small.

• Small block size. Since software should still be able to manipulate pointers within allo-
cations, the allocations can vary in size, and for performance reasons (see [LRD+21]),
not the whole 64-bit pointer can be encrypted, but only a fraction of it. Such a
small block size allows for attacks that are typically out of range for ciphers with a
larger block size. For instance, if the full codebook for a single tweak is available,
e.g., the difference distribution table (DDT) can be computed for a given key and
tweak, which is infeasible for 64-bit or 128-bit block ciphers. Pairing the small block
size with the stringent latency requirement increases the challenges to overcome even
more, since only 24 bits of key material can be processed per round. This means
that already 4 rounds are needed to process 96 bits of key material whereas a 64-bit
and 128-bit block cipher can do this in 2 rounds and 1 round, respectively.

• Low area. Modern CPUs typically consist of many processors, each of them typically
allowing for out-of-order (parallel) execution of instructions. Therefore, we have a
multitude of places where pointers must be decrypted, leading to a multitude of
hardware implementations of the tweakable block cipher within a single CPU. Thus,
for a matter of cost, but also to save energy, it is important to allow for rather
compact hardware implementations.

As we can see, the constraints imposed by the real-world use-case do not allow us
trading to be exceptionally good in one metric, e.g., the latency, for being exceptionally
bad in another one, e.g., the area. The small reliefs we get in the stringent constraints are
that the cipher does not need to perform well in software, that low latency is only required
for decryption and not encryption, and that efficient implementations of side-channel and
fault injection attack countermeasures like masking [GP99,CJRR99] are not a primary
concern. The reason that we do not focus on protection against physical attacks is because
our primary application (C3) aims to protect from remote software adversaries against
exploiting software bugs, vulnerabilities, and memory safety issues by encrypting each
pointer/linear address by the memory allocator with per process key, where decryption
is only performed deep into the processor pipeline through a pipelined implementation
of BipBip. However, for other applications and adversary models, the user should apply
known SCA and FI countermeasures, where at least in one cipher evaluation direction, the
rather low algebraic degree of the S-box of 2/3 should facilitate masking. Nevertheless, to
meet the stringent latency requirements, we had to explore uncommon design paths.

328 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

• Non-linear tweak schedule. The majority of recently designed popular tweakable
block ciphers like Skinny [BJK+16], Qarma [Ava17] and other ciphers following the
tweakey framework [JNP14] use a linear tweak schedule and a linear key schedule. As
with most design choices, the choice of a linear tweak schedule comes with benefits,
e.g., easier to analyze related-tweak differential trails, but also bears some drawbacks.
In this case, the most important drawback is the limited ability of a linear tweak
schedule to contribute to the cryptographic strength of the tweakable block cipher.
In essence, having a linear tweak schedule means that only the datapath provides
the necessary “non-linearity” required to make the cipher secure. Hence, the only
way to increase the cryptographic strength for a fixed block size is to either add
more rounds or use stronger round functions. Both options typically have a negative
impact on the latency.

In contrast, a non-linear tweak schedule can significantly impact the cryptographic
strength against attacks aiming to exploit tweak relations in the case of differential
[BS90] and linear [Mat93] cryptanalysis. While the time budget of 3 cycles at 4
GHz limits the usable number of sequential operations a.k.a. rounds, we can adjust
the width of the tweak schedule rather freely. Hence, we can increase the number
of operations by computing them in parallel. This means, it is to a certain extent
possible to increase the cryptographic strength of a cipher by increasing the width
of the non-linear tweak schedule. If area was of no concern, we could use a sponge
function [BDPV11b] with a capacity bigger than our aimed security level of 96 bits
as tweak schedule. However, we have to find a balance between area and strength of
the tweak schedule, as we did in choosing a tweak schedule of 53-bit width to process
a 40-bit tweak.

• Heterogenous rounds. One very strong challenge we faced in the design of a 24-bit
tweakable block cipher was the limited amount of key material that can be processed
per round of the datapath. In essence, this means that we have to deal with attacks
that allow to partially en-/decrypt ciphertexts and plaintexts under key guesses
for a considerable number of rounds. In addition, also meet-in-the-middle attacks
become a considerable threat. To increase the number of rounds while keeping
the latency constant, we decided to use a layered structure similar to the block
cipher Mars [BCD+99] with more lightweight rounds surrounding a core consisting
of cryptographically stronger rounds. Essentially, this follows the insight that mainly
the core of a cipher affects the strength of distinguishers, while the outer rounds are
likely to be bridged by key guessing in attacks.

• Larger masterkey. Guessing bits of the round keys used in the datapath or tweak
schedule in attacks should be as costly as possible to allow for a cipher with a
low number of rounds. Essentially, what we want to prevent is that a very small
advantage on a guess of a small fraction of the round keys in the datapath or tweak
schedule can be easily turned into an advantage in recovering the masterkey. Or
conversely, that the guess of a single masterkey bit reveals many more round key
bits in an exploitable manner. We denote the ability to extract x bits of round key
material out of y bits of the masterkey (x ≥ y) with key bridging.

Therefore, we decided to use more masterkey bits than minimally needed to meet
the claimed security level. In particular, while aiming at 96 bits of security, we use a
256-bit masterkey. This decision has also an interesting effect on the area of ASIC
implementations. The expected dominant use of BipBip for C3 most likely relies on
pipelined hardware implementations. Having a key of 96 bits would likely require a
strong key schedule to evolve the round key in each pipeline stage. Hence, additional
registers are needed to store the round key, which sum up to 3 · 96 = 288 registers in

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 329

a three-stage pipeline. This requires already more area than storing a 256-bit static
masterkey, so the larger masterkey even saves us some area.

• Cryptanalyst’s playground. The small block size, together with our design decisions,
make BipBip quite unique in the realm of cryptographic primitives with real-world
usage. The small block size allows to apply cryptographic techniques or evaluate
cryptographic properties practically on the real cipher, minimizing the need to create
smaller toy versions. In addition, the small block size allows for the application and
evaluation of little followed concepts, e.g., attacks using multiple differentials [AL12]
up to the reconstruction of the full DDT for a given key and tweak.

Influence of specialized ciphers. While the lion’s share of symmetric cryptographic tasks like
(authenticated) encryption, tag computation, and hashing is fulfilled by general-purpose
primitives like AES [DR20], or ChaCha [Ber08], primitives dedicated to specific applications,
such as BipBip are increasingly important. Even if such a specialized symmetric primitive
is just used for a single use-case, the ubiquity and large-scaling of information technology
can lead to an increase in security for billions of devices and users, often impossible to
achieve with general-purpose primitives. A prime example for this is the tweakable block
cipher Qarma [Ava17] and its use for pointer authentication in processors.

The strict requirements that specialized primitives have to fulfill often leads to uncon-
ventional design choices, like using a nonce-dependent affine layer [DEG+18], or security
via secret algorithm variability [KLPR10]. At the time of the publishing of these designs,
the security implications of such decisions might not be completely explored or understood.
However, even if such choices lead to a security flaw, we can benefit from the discovery of
new cryptanalytic techniques and concepts and learn more about the impact of the taken
design choices. In a bigger picture, this allows us to increase our knowledge on symmetric
cryptography paving the way to more efficient and secure symmetric cryptographic algo-
rithms. Examples of ciphers leading to novel cryptanalytic insights include a cipher for IC
printing called PRINTcipher [KLPR10] and the invariant subspace attack [LAAZ11], or a
cipher designed for multi-party computation called LowMC [ARS+15] and advancements
in algorithms for solving multivariate equation systems [Din21].

Related work. A very active research area that deals with (tweakable) block ciphers
having a small block size is format preserving encryption (FPE). Although the focus of
FPE is to provide flexible solutions for varying block sizes and not on low latency, we
can still learn from design decisions and cryptanalysis in that area. Prominent tweakable
block ciphers for FPE are the NIST standards FF1 and FF3/FF3-1, and the South-Korean
standards FEA-1 and FEA-2. Those standards have in common that they are based on
the Feistel structure using very strong round functions like truncated AES. Furthermore,
FF3/FF3-1, FEA-1, and FEA-2 have a very simplistic linear tweak schedule. Despite
their very strong round functions, numerous attacks on those FPE schemes have been
published in recent years [BHT16,DV17,HTT18,DKLS20,ADK+21,Bey21]. Many of these
attacks [DV17, DKLS20, Bey21] exploit the simplicity of the tweak schedule and hence,
strengthened our confidence in the choice of a non-linear tweak schedule.

Other prominent block ciphers with small block length are the 32-bit block versions
of Katan and Ktantan [DDK09]. They aim for hardware implementations with very low
area and have many rounds and hence, no low latency. Still, meet-in-the-middle attacks
on Ktantan [BR10] demonstrate the challenges faced in designing a good key schedule for
block ciphers with small block sizes.

Outline. The paper starts with the specification of BipBip in Section 2. After that, we
give insight into our design decisions in Section 3. In Section 4, we show our preliminary

330 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

R′ R′ R′ R R R R R R′ R′ R′

χ G G G′ G G′ G G′ G

κ1 κ2 κ3 κ4 κ5 κ6

κ0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

E E E0 E0 E0 E0 E0 E

T ∗

C P

Figure 2: Structure of BipBip.

cryptanalysis to support our security claim. The implementations discussed in Section 5
demonstrate that BipBip indeed has a low latency. Finally, we conclude in Section 6.

2 Specification of BipBip
BipBip is a tweakable block cipher designed to have low-latency decryption when imple-
mented on ASICs. BipBip has a block size of 24 bits, masterkey length of 256 bits, and
tweak length of 40 bits. Compared to most block cipher specifications that describe the
cipher as transformation from the plaintext to the ciphertext, we do the main description
from ciphertext to plaintext, since this is the transformation with the more stringent
latency requirements.

2.1 High-level Structure
Figure 2 depicts the high-level structure of the data flow in BipBip’s decryption. BipBip
consists of three main parts, the datapath, the tweak schedule, and the key schedule. The
key schedule forms the tweak-round keys κi and the whitening key κ0 by selecting bits
from the 256-bit masterkey K. For clarity, the key schedule is omitted in Figure 2.

The datapath starts with the addition of the whitening key κ0 to the ciphertext C,
followed by the alternating application datapath rounds R or R′ and data-round key
additions with ki to finally output the plaintext P . The data-round keys ki are extracted
from the tweak schedule.

The tweak schedule processes the tweak T and tweak-round keys κi to derive the
data-round keys ki. This is done by the alternating application of tweak-round keys κi and
tweak schedule rounds G or G′ on a 53-bit state. The data-round keys ki are extracted
from the 53-bit state between the round applications. The 53-bit state is initialized with
the padded 40-bit tweak.

To derive round-reduced versions of BipBip for cryptanalysis, we use the naming
convention BipBipx,y,z. This means for the decryption the first part is constituted of x
shell rounds R′, the middle part of y core rounds R and the final part of z shell rounds
R′. So, the full version of BipBip can be denoted with BipBip3,5,3. The tweak schedule
and key schedule is the same for round-reduced versions and the data-round keys are used
in the order κ0, k1, k2, . . . , for as many data-round keys as needed to instantiate the
round-reduced version of BipBip.

2.2 Datapath
The datapath uses two round functions, one called core round function R and the other
shell round R′. The shell round function has no mixing layer and therefore has lower
latency than the core round function. The core round function R consists of an S-box
layer S, a linear mixing layer θd, and two-bit shuffles π1 and π2. The shell round function

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 331

Table 1: The truth table for BipBipBox of the S-box layer.

x5x4 x3x2x1x0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 00 01 02 03 04 06 3e 3c 08 11 0e 17 2b 33 35 2d
1. 19 1c 09 0c 15 13 3d 3b 31 2c 25 38 3a 26 36 2a
2. 34 1d 37 1e 30 1a 0b 21 2e 1f 29 18 0f 3f 10 20
3. 28 05 39 14 24 0a 0d 23 12 27 07 32 1b 2f 16 22

R′ includes the same S-box layer S and a different bit shuffle π3. We have:

R = π2 ◦ θd ◦ π1 ◦ S , and R′ = π3 ◦ S .

2.2.1 S-box layer S

The S-box layer of BipBip’s datapath is based on a 6-bit S-box, called BipBipBox. The
state is divided into 4 words of 6 bits and applies BipBipBox to each word in parallel:

S : (y6i+5, y6i+4,y6i+3, y6i+2, y6i+1, y6i)
← BipBipBox(x6i+5, x6i+4, x6i+3, x6i+2, x6i+1, x6i) ,

for 0 ≤ i < 4. We specify BipBipBox with a truth table using hexadecimal notation in
Table 1 and the following algebraic representation.

y5 = x4x3x2 + x3x2x1 + x5x0 + x4x3 + x3x2 + x2x1 + x5

= x4x3x2 + x3x2x1 + x5x0 + x3x2,

y4 = x1x2 + x0x3 + x4 + x1x4 + x5 + x3x5 = x1x2 + x0x3 + x1x4 + x3x5,

y3 = x1x2 + x3 + x0x3 + x4 + x2x4 + x0x5 = x1x2 + x0x3 + x2x4 + x0x5,

y2 = x2 + x1x3 + x2x3 + x0x4 + x5 + x4x5 = x1x3 + x2x3 + x0x4 + x4x5,

y1 = x5x3x2 + x3x2x0 + x5x3 + x4x1 + x3x2 + x2x0 + x1

= x5x3x2 + x3x2x0 + x4x1 + x3x2,

y0 = x0 + x0x2 + x2x3 + x4 + x1x5 + x4x5 = x0x2 + x2x3 + x1x5 + x4x5.

2.2.2 Mixing layer θd

The mixing layer multiplies the datapath state with a binary circulant matrix:

θd : yi ← xi + xi+2 mod 24 + xi+12 mod 24 , for all 0 ≤ i < 23 .

2.2.3 Bit permutations π1, π2 and π3

We permute bits in the datapath state:

π1 : yi ← xP1(i) , π2 : yi ← xP2(i) , π3 : yi ← xP3(i) ,

for all 0 ≤ i < 23 where P1, P2 and P3 are permutations of Z/24Z specified by following
tables:

P1 = [1, 7, 6, 0, 2, 8, 12, 18, 19, 13, 14, 20, 21, 15, 16, 22, 23, 17, 9, 3, 4, 10, 11, 5] ,

P2 = [0, 1, 4, 5, 8, 9, 2, 3, 6, 7, 10, 11, 16, 12, 13, 17, 20, 21, 15, 14, 18, 19, 22, 23] ,

P3 = [16, 22, 11, 5, 2, 8, 0, 6, 19, 13, 12, 18, 14, 15, 1, 7, 21, 20, 4, 3, 17, 23, 10, 9] .

332 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

2.3 Tweak schedule
The tweak schedule operates on a 53-bit state, called the tweak state. It consists of the
application of two types of round functions G and G′, and the addition of the tweak-round
keys κi. The tweak-round keys come from the key schedule that selects them from the
masterkey.

2.3.1 Round functions

The first tweak schedule round function G has 4 steps:

G = χ ◦ π5 ◦ θ ◦ π4 ,

with χ being a non-linear layer, θ a linear mixing layer and π4 and π5 bit permutations.
We have, ∀i:

χ : ai ← ai + (ai+1 + 1) ai+2 ,

π4 : ai ← a13i ,

θt : ai ← ai + ai+1 + ai+8

π5 : ai ← a11i ,

Here, all operations are done in F2 for the state bits and modulo 53 for indices.
The second tweak schedule round function G′ differs from G by the mixing layer:

G′ = χ ◦ π5 ◦ θ′ ◦ π4 ,

with

θ′ : ai ← ai + ai+1 for all 0 ≤ i < 52, and a52 ← a52,

2.3.2 Tweak state initialization

We extend the 40-bit tweak T to 53 bits by padding it with a single 1 bit and twelve 0
bits. So, we initialize the state of the tweak schedule with T ∗ = T∥1∥012.

2.3.3 Extracting data-round keys (E)

We derive 24-bit data-round keys from the 53-bit intermediate state value xi using two
extractor functions E0 and E1. We have

ki = E0(xi) = (xi
0, xi

2, .., xi
46) , ki+1 = E1(xi) = (xi

1, xi
3, .., xi

47) .

2.4 Key schedule
We compute the following keys from the 256-bit masterkey K of bits Kj with j ∈ 0, . . . , 255:

• one 24-bit data-round key κ0,

• six 53-bit tweak-round keys κi with 1 ≤ i ≤ 6.

We build the 24-bit k0 as:

κ0 = (K3, K32 mod 256, . . . , K324 mod 256) .

and the six 53-bit tweak-round keys as:

κi = (K53i mod 256, K53i+1 mod 256, . . . , K53i+52 mod 256) .

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 333

2.5 Security Claim
We make our security claim in reference to the probability of correctly guessing that a
ciphertext Ci maps to a plaintext Pi under a certain tweak Ti (Ci ⇆ Pi|Ti) for an instance
of BipBip denoted by EK where the masterkey K has been randomly chosen and that
(Pi, Ci) pair has not been queried before. The probability of a correct guess depends on
the queries made before the guess and the computational resources spent by an adversary,
which we denote with:

q: total number of queries to both encryption and decryption of EK ,

qTi
: number of queries to both encryption and decryption of EK with tweak of value Ti,

t: computation time with the unit amount of computation equivalent to evaluating EK .

Since a look-up in the L1 cache has a latency (3–4 cycles) similar to that of a pipelined
implementation of BipBip, we attribute one memory lookup to be equivalent to one EK .

Our security claim is the following bound on the probability of a correct guess

PBipBip(Ci ⇆ Pi|Ti) ≤
1

max(224−µ − qTi
, 1) + q

296 + t

296 + qt

2120 ,

where µ = 0.5 and the reason behind this choice is explained in detail at Section 3.5 and
Section 4.

3 Design Rationale
As we already detailed in the introduction, the goal of our design process was to fit into the
stringent requirements imposed by the application within C3. In this section, we discuss
the decisions we made when designing the datapath, tweak schedule, and key schedule in
more detail.

3.1 Preliminaries on differential and linear propagation
Here we give a short introduction to differential and linear propagation as they play an
important role in our rationale.

Differential cryptanalysis exploits differentials (a, b) with high probability P(a, b) over
(part of) a cipher. Here a is a difference at the input and b a difference at the output. We
denote with differential probability (DP) the number of input pairs with difference a that
map to output difference b divided by the total number of input pairs with input difference
a for a certain fixed key. DP of differentials applies to building blocks such as S-boxes but
also to larger structures such as a data path of a block cipher or a permutation. For a
keyed function Bk, the DP of a differential is in general key-dependent and we can write
DPBk

(a, b). The average of the DP taken over all sequences of round keys is called the
expected DP (EDP) and we denote it as EDPB(a, b) or for short EDP(a, b) if the function
B is known from the context. As we will see in Section 4.3.3, the EDP value of a differential
says something about the distribution of the number of pairs in that differential over all
keys.

In an iterated cipher, a differential can be decomposed in differential trails. A trail
specifies not only the input difference a and output difference b but also the intermediate
differences: it can be seen as a chain of round differentials. The DP of a trail is the
probability that an input pair with difference a exhibits the differences specified by the
trail. The EDP of a trail is the expected value over all round key sequences and can be
computed by multiplying the DP values of the round differentials. Clearly, the (E)DP

334 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

of a differential (a, b) is the sum of the (E)DP values of all differential trails with initial
difference a and final difference b.

Linear cryptanalysis exploits linear approximations (a, b) with high correlation C(a, b)
over (part of) a cipher. Here a is a mask at the input and b a mask at the output and the
correlation is between the linear Boolean functions defined by these masks and has a value
in the range [−1, 1]. The linear potential (LP) of a linear approximation is the square
of its correlation: LP(a, b) = C2(a, b). LP of linear approximations applies to building
blocks such as S-boxes but also to larger structures such as a data path of a block cipher
or a permutation. For a keyed function Bk, the correlation of a linear approximation is in
general key-dependent and we can write CBk

(a, b). The linear potential (LP) of a linear
approximation is the square of its correlation: LPBk

(a, b) = C2
Bk

(a, b). The average of the
linear potential taken over all sequences of round keys is called the expected linear potential
(ELP) and we denote it as ELPB(a, b) or for short ELP(a, b) if the function B is known
from the context. As we will see in Section 4.4.2, the ELP value of a linear approximation
says something about the distribution of the correlation of that linear approximation over
all keys.

In an iterated cipher, a linear approximation can be decomposed in linear trails. A
trail specifies not only the input mask a and output mask b but also the intermediate
masks: it can be seen as a chain of linear approximations over the rounds. The correlation
contribution of a trail is the product of the correlations of its round linear approximations
and its LP is simply the square of its correlation contribution. The correlation of a linear
approximation (a, b) is the sum of the correlation contributions of all linear trails with
initial mask a and final mask b. The ELP of a linear approximation (a, b) is the sum of
the LP values of all linear trails with initial mask a and final mask b.

3.2 Datapath
3.2.1 High-level structure

Probably the first decision to be made when designing a datapath is to follow either a
(generalized) Feistel approach, or to construct the datapath as iterated application of
full-width non-linear permutations, linear permutations, and key additions, which we
shorten as NLK approach that is also called Substitution-Permutation-Network (SPN)
in the literature. While one round of the Feistel approach influences only a part of the
state, one round of NLK influences the whole state and hence, is considered by us to be
favorable in low-latency applications.

The next high-level decision made was to use two different round functions. We use
strong rounds R which build the core of the datapath and more lightweight rounds R′ on
the outside (shell) of the datapath. The only difference between the core rounds and the
shell rounds lies in their linear layer, which is a bit-permutation in the case of the shell
rounds. The main motivation behind this choice lies in the rather small data-round keys we
have versus the security level we aim to achieve. As we can see, e.g., in meet-in-the-middle
attacks of Section 4.8, it is feasible for an attacker to guess whole data-round keys to
calculate internal state values. If a whole data-round key is guessed, an attacker can
calculate the output of one round from the input of one round independently of the strength
of the round function.

Hence, we decided to use shell rounds R′ at places in the cipher that are likely to be
skipped by key guesses in attacks in order to increase the total number of rounds of the
cipher compared to a cipher with the same latency that just uses the core rounds R.

3.2.2 S-box

Our non-linear layer is the parallel application of four 6-bit S-boxes. The reason we did
not choose a 3-bit, or 4-bit S-box is based on the upper bounds given in [BCD11] for

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 335

estimating growth of the algebraic degree. 3-bit or 4-bit S-boxes provide a slow growth in
comparison with a 6-bit S-box of the same algebraic degree.

The combination of a bit permutation with the non-linear layer of 6-bit S-boxes allows
the input of each S-box to depend on the previous round outputs of all S-boxes.

Since there exist 6-bit S-boxes with a rather low latency while having good cryptographic
properties [LMMR21], we decided to use 6-bit S-boxes in our design. We think that 6-bit
S-boxes provide a good trade-off between latency and security especially when paired with
a good linear mixing layer, as used for the core rounds R.

Our S-box BipBipBox is built in a way that its hardware implementation for achieving
the lowest latency has gate depth of 4 in the basis of 2-bit NAND and NOR gates. This
S-box provides the smallest nontrivial maximum DP and LP, namely 2−4 for both values,
within all the bijective 6-bit S-boxes with gate depth of 4 in the same basis. Note that the
smallest nontrivial maximum DP and LP among all bijective 6-bit S-boxes are 2−5 and
2−4 respectively that is known as Dillon’s S-box [BDMW10]. However, it is not possible
to implement any of such S-boxes within gate depth of 4 in the basis of 2-bit NAND and
NOR gates [Ras22].

Besides, each coordinate of BipBipBox non-linearly involves all the input bits, so-called
full dependency and it is the same for its inverse S-box. This property helps us to provide
full diffusion in the datapath after two S-box layers. Furthermore, the algebraic degree
of BipBipBox is 3 (for only two coordinates) and 2 (for other coordinates), while for its
inverse it is 4 (for four coordinates) and 3 (for other coordinates). For more information
about the implementation of BipBipBox, see Section 5.

The BipBipBox was previously found in [Ras22] which introduces a new technique for
building S-boxes. The basic idea behind technique is to build low-latency bijective n-bit
S-boxes with an upper limit on the linear potential (LP) and differential probability (DP).
We first need to find F , the set of all low-latency and balanced n-bit Boolean functions
with LP of less or equal than the limit. Then, we start to build the S-box. We choose
f0, f1 ∈ F as two coordinates of the S-box. We call f1 is compatible with f0, if f1 + f0 is
balanced and has an LP of less or equal than the limit. If f1 is not compatible with f0, we
choose another function for f1. But if it is, then we continue to select the third coordinate
f2 ∈ F . We call f2 to be compatible with f0 and f1, if f2 + f0, f2 + f1, f2 + f1 + f0 are
balanced and have LP of less or equal to the limit. Again, if f2 is not compatible with f0
and f1, we choose another function for f2. But if it is, then we select the fourth coordinate
f3 ∈ F . We continue in this way to have n coordinates that are jointly compatible with
each other. That is all 2n−1 component functions (any linear combinations of fi functions)
are balanced and have LP of less or equal than the limit. Then, we can check for DP of
the S-box to be less or equal to the given limit. If the S-box fulfills this condition, then
it is a low-latency S-box with given conditions in LP and DP. For more details on this
algorithm of building S-box and the possibilities for making it efficient, see [Ras22].

We have chosen the BipBipBox over, e.g., the Speedy [LMMR21] S-box, since its
cryptographic properties provide a good balance in the number of rounds needed to
defend against differential, linear, and higher-order differential attacks. Such a balance
in attack vectors is important for low latency ciphers, since the security is determined
by the strongest attack vector and so is the number of rounds that have a huge influence
on the latency. For example, the Speedy [LMMR21] S-box and the BipBipBox have very
similar implementation characteristics. However, the Speedy [LMMR21] S-box has a higher
algebraic degree, but worse maximum DP and LP. Hence, we would need more rounds to
defend against differential and linear cryptanalysis, leading to more rounds and a higher
latency. The same argument is true if we would take an S-box with an algebraic degree
two in all coordinates. We would need many more rounds to defend against higher-order
differential attacks leading to a cipher having a higher latency as indicated by the degree
evolution in Table 7.

336 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

3.2.3 Linear layers

For the shell rounds R′, we have decided to pair the non-linear layer with a linear layer
that is just a bit permutation, π3. The first criterion for choosing the bit permutation π3
is that the input of each S-box of a round depends on at least one output bit of each of the
4 S-boxes from the previous round. To be precise, we use two inputs from outputs of one
S-box, two from another S-box, and one from each of other remaining S-boxes. This way,
all the output bits after the second round are non-linearly dependent on all the input bits
of the first round. Note that the same holds for the inverse of two shell rounds. The input
bit of the first round non-linearly depends on all the output bits after the second round.

The second criterion is to optimize the degree in the algebraic normal form (ANF)
representation for r consecutive shell rounds. We maximize the minimum algebraic degree
of the coordinates after two rounds. For this, we try all the bit permutations satisfying the
first criterion and compute the algebraic degree after two rounds. The minimum algebraic
degree of the coordinates after two rounds for the best bit permutations with respect to
this criterion is 5. In more detail, in the output of each S-box, there are two coordinates
with degree 5, two with degree 6 and the other two are with degree 8. Note that there are
some bit permutations which make the algebraic degree of some coordinates to be 9, but
on the other hand, the minimum algebraic degree for the other coordinates will be smaller
than 5.

The minimum degree of the coordinates after 3, 4 and 5 shell rounds, for the bit
permutation we used as π3, is 13, 20 and 23, respectively. Precisely, after 3 rounds there
are two coordinates with algebraic degree 13, six with 14, eight with 16, two with 18, five
with 19 and one with 20. After 4 rounds, the algebraic degrees are either 20, 21 or 22, that
each happens exactly for eight coordinates, and after 5 rounds all the coordinates have the
maximum algebraic degree, 23.

For the core rounds R, we use two bit permutations and a linear mixing layer θ which
calculates the sum of 3 rotated states. Hence, the key addition and linear mixing layer can
be computed with a gate depth 2. Note that compared to the shell rounds, the core round
has only one extra gate depth and using mixing layers with an output that sums more
than 3 input bits will require higher gate depth value, which will cause a significant cost
(more than 50%) on the latency of the linear mixing layer.

There are about
(24

3
)24 ≈ 211·24 of such linear mixing layers. So it is impossible to

exhaustively analyze every single mapping in this space. That is why we restrict ourselves
to use a linear mixing layer based on a circulant matrix together with bit shuffles in its
input and output.

Up to bit shuffles in the input and in the output bits, in dimension 24, there are only
15 circulant invertible matrices which sum 3 input bits in each output bit. For each of
these 15 matrices, we check all the input- and output-bit shuffle pairs to find one suiting
the following criteria.

For the first criterion we decide that for each output bit of the linear layer, the three
corresponding input bits come from outputs of different S-boxes. It is similar for the
inverse that each input bit is computed from inputs of at least 3 different S-boxes in the
next round. This criterion’s intent is to improve the diffusion within the cipher.

The second criterion is that we want the word-wise (words of 6 bits) branch number
for the linear layer and its inverse to be the maximum, 4. Therefore, in any differential or
linear trails for two rounds (such that the first one is a core round), there are at least four
active S-boxes. This condition alone guarantees that in any differential or linear trail for
2r and 2r + 1 core rounds, there are at least 4r and 4r + 1 active S-boxes. Note that the
first condition is already included in the second one, but for a given circulant matrix it is
easier to first filter the bit shuffle pairs satisfying the first condition and then from the
remaining bit shuffle pairs, we check for the second condition.

From those 15 matrices, for only 6 of them there are some bit shuffle pairs fulfilling

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 337

these two criteria. Moreover, from those 6 matrices, only for one matrix there are bit
shuffle pairs providing semi-uniform distribution of input words of the linear layer in its
output words. That is, since in each output word 3 · 6 bits are involved, for a uniform
distribution of the input words in the output words, we need that those 18 bits are 5 from
one word, 5 from another word and 4 from each of other words. The θd chosen for BipBip’s
mixing layer is the corresponding mapping for this matrix.

As the last criterion for the linear layer of core rounds, we considered the algebraic
degree of the coordinates after each round. Similar to the one for shell rounds, within the
remaining bit shuffle pairs for the chosen θd, we prefer the ones which cause the highest
minimum algebraic degree for coordinates of the output after r core rounds. Using P1
and P2 bit shuffles, after two rounds algebraic degree of the coordinates are either 6 or
9, after three rounds are 16 or 20, after four rounds are 22 or 23 and after 5 rounds all
coordinates are full degree. The complementing preliminary algebraic cryptanalysis that
aims to exploit low algebraic degrees can be found in Section 4.7.

3.3 Tweak schedule

3.3.1 High-level structure

Low-latency tweakable block ciphers like Mantis [BJK+16] or Qarma [Ava17] have a low
latency for encryption and decryption. One ingredient that makes this possible is their
simple and structured tweak schedule. However, in the case of BipBip, we only require
ultra-low latency for decryption. Therefore, from a performance perspective, there is no
issue with using a non-linear tweak schedule with high diffusion. In contrast, using a
non-linear tweak schedule is an opportunity to lower the latency compared to using a
simple and structured tweak schedule, since non-linearity paired with good diffusion in the
tweak schedule can significantly contribute to the cryptographic strength of the cipher.

We decided to use a tweak schedule of 53-bit width, adding 53-bit tweak-round keys to
its internal state whenever we have extracted 48 bits of data-round key material. With
53, we have chosen the nearest prime number that allows to initialize the state with a
40-bit tweak and extract two 24-bit data-round keys from the state at once. In addition, a
53-bit state allows to make a considerable impact on the cryptographic strength of the
tweakable block cipher by ensuring, e.g., the non-existence of high-DP differential trails
that use differences in the tweak as shown in Section 4.5.1.

3.3.2 Round functions

The operation of the cipher does not require the computation of the inverse of the tweak
schedule and therefore its round functions do not need to have efficient inverses. This is a
feature in common with the sponge and duplex construction [BDPV11a] and hence, it makes
sense to get inspiration from permutations from prominent permutation-based schemes
like Keccak [BDPV11c], Ascon [DEMS21], Norx [AJN14], Subterranean v2.0 [DMMR20],
or Xoodyak [DHP+20]. From these options, Subterranean v2.0 has the round with the
lowest number of sequential operations, while providing good cryptographic properties.
In particular, the single-circle χ has an inverse with a high degree that complicates
cryptanalysis.

Therefore, the core round function G we use in the tweak schedule is a scaled-down
version of that of Subterranean. Moreover, we use a round function G′, which has a linear
layer with a lower latency. We use this variant to maximize the number of rounds in the
tweak schedule given the latency constraints.

338 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

3.4 The envisioned use of BipBip
The primary use of BipBip is within C3. Here it is used for the encryption of pointers.
More specifically, 24 bits of 64-bit pointers are encrypted, while other parts of the pointer
are used as tweak. If an attacker now manipulates such an encrypted pointer, on use of
this pointer, the pointer gets decrypted. Dependent on the memory load of the system,
the decrypted pointer now points to an unmapped page with a rather high probability
and triggers a page fault. Encrypting pointers can be seen as a form of implicit pointer
authentication. However, compared to pointer authentication using a MAC truncated to a
few bits (e.g., as low as 3 to 32 bits) [Ava17], C3 has the benefit that address space has
not to be shrunk to store the tag, while still providing reasonable security in this online
attack use-case.

As we can see from above, the envisioned use-case for BipBip is as a stand-alone
tweakable blockcipher ensuring authenticity rather than confidentiality. Hence, it is
thinkable to use BipBip directly for other authentication tasks where only short messages
need to be authenticated. Apart from that, modes-of-operation exist that allow to
authenticate longer messages. For instance, PMAC_TBC3k [Nai15], which is a parallel
message authentication code. Here, the security degenerates quadratically with the number
of messages authenticated but does not depend on the length of the messages (number of
blocks per message). In particular, denoting with q the number of queries to the oracle
and n the blocksize, the dominating term in the security bound is

0.5q2

(2n − q)2

Hence, this seems to be a candidate when only a few messages need to be authenticated
and the number of forgery attempts is restricted, e.g., communication stops if a few forgery
attempts are detected. For instance, when plugging in n = 24 and q = 212, the advantage
of an adversary bound by this term is ≈ 2−25. Hence, the best chance for an adversary to
craft a forgery in this case seems to be still guessing the 24-bit tag.

Note that many so called beyond birthday bound secure MAC construction for tweak-
able blockciphers exist, e.g., also nonce-based ones that just have the number of verifi-
cation attempts but not the number of correctly queried MACs as part of the security
bound [CIL+20]. To sum up, BipBip seems to be suited for authentication purposes
requiring extremely low latency and small tags even apart from the use of C3.

3.5 Security Claim
The maybe biggest notable feature of our security claim is that we do not set the goal of the
adversary A to distinguish between EK and an array of random permutations π, e.g., by
making the claim in reference to strong tweakable pseudorandom permutation (STPRP)
security. In particular, our analysis in Section 4.3.2 suggests that BipBip does not achieve
STPRP security. Making the cipher secure against distinguishing attacks would require
so many rounds and high latency that it would not be usable for C3. However, we argue
that C3 does not need a cipher with such strong properties. What is of interest for C3 is
the probability with which an adversary can predict a plaintext from a ciphertext or vice
versa. Even for an ideal 24-bit tweakable block cipher, this probability is (224 − qTi)−1,
assuming that an adversary has not recovered the secret key. Hence, the security of C3 is
only mildly influenced if this probability is increased to (223.5 − qTi

)−1.
As we can see from the description of the use of BipBip for C3 in Section 3.4, we

have to definitely assume that an attacker can read and choose ciphertexts and tweaks.
However, to be on the safe side, in our security claim we assume that an attacker can also
read and choose plaintexts. An attacker does not know the secret key and we require the
key to be randomly picked from a uniform distribution.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 339

As indicated by our analysis in Section 4, the more data is available, the higher is the
number of rounds an attacker can distinguish. However, for practical applications, high
data complexity attacks are often not a primary concern. For example, Qarma [Ava17],
or Mantis [BJK+16] provide instances that only claim to be secure as long as the num-
ber of chosen plaintext/ciphertext pairs stays below 230. We do not give such a strict
bound. However, as common with other low-latency block ciphers, e.g., Prince [BCG+12],
Qarma [Ava17], or Mantis [BJK+16], we include in our security claim also the product of
time and available data, e.g., d · t. In contrast to the above schemes, we do not embed this
limit generically by using the FX-construction [KR96].

As we can see in Section 2.5, we claim at most 96 bits of security against key recovery
attacks, which is less than the more common 128 bits. The reason for this lies in the
stringent low latency required due to the use in C3. BipBip targeting 96 bits of security
needs fewer rounds than a hypothetical version of BipBip aiming at 128 bits of security.
We think that 96 bits of security are more than enough for the envisioned application in
C3. Here, an attacker just benefits from recovering the key as long as the key is used by a
process. Hence, the window for a key recovery attack to gain a benefit is controlled by the
application and can be made small.

3.6 Key schedule
For our security claim to hold, key recovery has to be hard. One key ingredient of our
cipher for making key recovery hard is to have a larger masterkey than the claimed security
level in bits. If we would have a masterkey matching the security level in bits, a small
distinguishing advantage under a key guess can very likely be turned into an attack on
the whole cipher by using brute-force encryptions according to the key ranking. Having
a larger masterkey forces the correct key of a partial key guess to be ranked relatively
high. Another concern we had is key bridging that has the potential to either lower the
complexities of attacks or allow to cover more rounds.

As we can see in Figure 2, we have a 24-bit whitening key κ0 and six 53-bit tweak-round
keys κi. So, in total, we could use a 342 bit masterkey. However, we wanted the masterkey
to match typical power of 2 storage requirements and hence, decided to use a 256-bit
masterkey. As discussed in the introduction, even from an implementation perspective,
it seems favorable to use a 256-bit masterkey and just select the 342 bits needed from it
over just having a 96-bit, or 128-bit masterkey and use a stronger key schedule to derive
tweak-round keys.

4 Preliminary Security Analysis
4.1 Classification of Attack Strategies
To ease the discussion for the upcoming analysis, we categorize attacks into 3 attack
strategy classes. For all these classes, an attacker can know/choose ciphertexts, plaintexts,
and tweaks. However, according to our security claim (Section 2.5), the secret masterkey
K of the cipher is randomly chosen.

• Single-tweak: In this case BipBip acts as a block cipher and the attack has a
natural data limit of ≤ 224, as dictated by the block size of BipBip.

• Multi-tweak: Here the attacker utilizes the tweak to lift the data-limit of the
cipher. The types of attacks that we consider in this category do not need to exploit
tweak-relations, or tweak values apart from them being different. Because an attacker
largely treats a change in tweak as a new selection of hard to predict data-round
keys in this category, only the datapath provides security against such attacks.

340 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

• Multi-chosen-tweak: Here the attacker considers the actual value of the tweak or
relations between tweaks. In contrast to the single-tweak and multi-tweak scenario
that are largely agnostic to the specifics of the tweak schedule, here the attacker
considers the details of the tweak schedule. Hence, the complex non-linear key
schedule contributes to the cryptographic strength of BipBip for these attacks.

4.2 Round Key Guessing
In many attacks, guessing round keys in outer rounds and evaluating the guess against
a distinguisher spanning inner rounds is an important part of an attack. For many
(tweakable) block ciphers, an attacker is free to choose if it guesses the round keys at the
beginning of the cipher, the end of the cipher, or a mixture between those two. This is
also the case for BipBip for single-tweak attacks, where the data-round keys ki do not
change over the course of an attack and hence, the attacker can aim to recover, e.g., the
last used data-round key k10.

However, for multi-tweak and multi-chosen-tweak attacks, the situation is different.
Here, the changing tweak leads to changing data-round keys ki during the attack. Due to
the use of a complex non-linear tweak schedule, it gets harder and harder to predict how a
change in the tweak influences a data-round key ki for rising i. Hence, we assume that
an attacker has to perform guesses on the tweak-round keys of the first few rounds of the
tweak schedule if it wants to guess more than the first 24 bits of κ0. Furthermore, since,
our tweak schedule has width of 53 bits, an attacker is forced to guess more key material
on the tweak schedule to reveal the data-round keys used in the datapath.

4.3 Differential Cryptanalysis
In this section we discuss the resistance of BipBip against differential cryptanalysis. First,
we will study attacks where the goal is to distinguish BipBip loaded with a secret 256-bit
masterkey from an array of random 24-bit permutations. Then we will take a look at divide-
and-conquer type attacks where part of the key is guessed, and differential propagation
serves as a distinguisher to identify the correct guess.

4.3.1 Expected differential probabilities (EDP) of the datapath

The word-wise branch number of the linear layer of a core round is 4. This guarantees that
in any single-tweak differential trail for 2r core rounds, we have at least 4r active S-boxes,
and similarly for any single-tweak differential trail for 2r + 1 core rounds, we have at least
4r + 1 active S-boxes. We checked this lower bound for some differential trails of 3 to 6
rounds and found that it is the exact value for the minimum number of active S-boxes in
any single-tweak differential trail.

Using the fact that the maximum DP for BipBipBox is 2−4, together with the minimum
number of active S-boxes in differential trails gives us an upper bound for EDP of any
single-tweak differential trails in BipBip core rounds. It is 2−16r and 2−16r−4 for 2r and
2r + 1 rounds, respectively. We emphasize that this is only an upper bound on the EDP
of differential trails and does not imply the existence of such a differential trail.

However, we need to consider the clustering effect in the differentials and for that we
wish to compute the EDP values of differentials over r core rounds. Here Markov cipher
theory comes to the rescue [LMM91]. If we arrange the EDP (= DP for the round function)
of all round differentials (a, b) in an array with DP(a, b) in row a and column b, we obtain
what we call its Markov EDP matrix. As shown in [LMM91], the Markov EDP matrix for
r rounds is then the simply the Markov EDP matrix to the r-th power.

For relatively simple round functions, such as those in BipBip, we can easily determine
the elements of the matrix of EDPs of all differentials (a, b) over a round. However, its

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 341

Table 2: EDP of single-tweak differential trails, highest and lowest EDP found for single-
tweak differentials and variances of EDP for 3 to 6 core rounds. nr and ns denotes the
number of core rounds and the minimum number of active S-boxes in the differential trails.
The variance, is the variance for EDP of all differentials with the same input difference.

nr ns upper bound on EDP minimum EDP maximum EDP maximum of average of
of differential trails of differentials of differentials variances variances

3 5 2−20 0 2−19.74 2−57.85 2−59.46

4 8 2−32 2−24 − 2−29.28 2−24 + 2−28.95 2−73.44 2−75.22

5 9 2−36 2−24 − 2−37.08 2−24 + 2−37.12 2−89.31 2−90.99

6 12 2−48 2−24 − 2−44.79 2−24 + 2−45.07 2−105.05 2−106.74

size, 224 × 224, is prohibitively large. Therefore, to compute the EDP of differentials over
r core rounds of BipBip, we used a technique introduced in [ELR20], the so-called simple
word-by-word method. In this technique, we consider the S-box layer S as a sequence
of four sub-layers Si with 0 ≤ i < 4. Each sub-layer Si operates on a 24-bit state and
applies a single S-box to the i-th word of the state, and the identity to the other words.
This means the input and output differences in a differential for these sub-layers match in
3 word positions. In the word-by-word method of [ELR20], we need to do 218×2 matrix
multiplications of matrices of size 26 × 26 per Si sub-layer. Hence, the computation cost
for computing EDP of all 224·2 differentials is reduced from 224·3 = 272 per round to
218·2 · 26·3 · 4 = 256 per round. Moreover, to fit our computations in reasonable memory, we
start from a given input difference and compute the EDP values of differentials from this
input difference to all output differences. This method requires only 224 memory blocks.
Still, the number of non-zero input differences 224 − 1 is very large for our resources and
we only made the computation for a subset of them: those that have at most 3 active
words in the input difference totaling to about 220 input differences. For more information
on this technique, we refer to [ELR20].

In Table 2, we report on some findings on EDP of those 244 differentials for r core rounds
of BipBip with r ∈ {3, 4, 5, 6}. It turns out that in distinguishing attacks the deviation
of the EDP of differentials from the expected values in case of a random permutation
1/(224 − 1) is relevant.

4.3.2 BipBip, the Markov cipher

In a first approximation we will assume that the tweak randomly selects a round-key-
sequence. When the round keys are assumed to be independent, the datapath forms a
Markov cipher [LMM91]: the expected differential probability (EDP) of a differential trail
is the product of its round differentials. The fact that the master key has 256 bits and
that in total there are only 10 round keys in between the rounds supports this assumption.

In a classical differential attack, one uses a differential (a, b) over the cipher with last
round removed with high EDP(a, b) as a distinguisher. One queries the tweakable block
cipher with plaintexts in pairs with a given difference a and observes the difference at the
input of the last round by guessing part of the last round key. If the guess is correct, a
fraction of (about) EDP(a, b) of the pairs will exhibit the difference b and if not, it is likely
to be less. For such an attack to work some conditions must be satisfied. First, EDP(a, b)
needs to be relatively high and of all 2n−1 pairs, the number of pairs with input difference
a that give an output difference b shall be close to 2n−1EDP(a, b) for quasi all keys.

In BipBipx,y,z with y ≥ 4 such an attack cannot work. As can be seen in Table 2,
we see that even after 4 rounds the EDP of all differentials is similar and very close to
1/(224− 1). This suggests that the number of pairs is 223/(224− 1) ≈ 1/2, while the actual
number of pairs will be an integer. One may ask what such EDP(a, b) values actually mean.

342 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

Fortunately, the case of differential attacks on small Markov ciphers was investigated
in [AL12] and that analysis is fully applicable to BipBip.

4.3.3 Distributions of the number of pairs in a differential

We denote number of pairs in a differential (a, b) by N(a, b). In [AL12] it is argued that
over all round-key-sequence values N(a, b) has a binomial distribution that is very close
to Poisson distribution with λ = 223EDP(a, b). This follows from the fact that the set
of pairs in a differential (a, b) are the union of the sets of pairs in the trails with initial
difference a and final difference b. We consider the case where the trails Q have weight w
higher than 23. Such a trail has the following distribution: 1 pair for a fraction 223−w(Q)

of the round-key-sequences and no pairs for remaining fraction 1− 223−w(Q) (and in some
cases it has 2 or more pairs for a very very small fraction of the round-key-sequences). If
the subsets of the round-key-sequences for which the trails have a pair are independent,
then the distribution of the number of pairs in (a, b) is the convolution of the distribution
of the number of pairs of its trails. This is the sum of the probabilities of rare events and
hence will be very close to a Poisson distribution. And as EDP(a, b) =

∑
Q in (a,b) 2−w(Q),

this Poisson distribution has λ = 223EDP(a, b).
For a random permutation the distribution of N(a, b) was investigated in [O’C93]: it

has a Poisson distribution with λ = 223/(224 − 1).
We experimentally verified these distributions for 4 core rounds of BipBip by computing

N(a, b) for some specific values of a and b for 14× 212 random round keys (so the 3 round
keys in between the 4 core rounds). The resulting distribution of N(a, b) for fixed a and
b over these round keys is a sampling of the distribution over all round key values, that
is supposed to have a Poisson shape with λ = 223EDP(a, b). We did the experiment for
(a, b) = (0x00002e, 0x220020) that has 223EDP = 0.516122. The distribution we obtained
experimentally has the characteristic shape of Poisson distribution and has mean 0.516095
and so is only at a distance of 0.000027 (= 0.054%) of the λ value based on the EDP. We
provide the full distribution in Table 10 and Figure 13.

4.3.4 Single-tweak differential distinguishing attack

We assume an attacker is in a setup where she must distinguish between BipBip for a
given tweak value and a random permutation and has obtained from her queries a number
of ciphertext-plaintext pairs for the given tweak value. In the worst case the attacker may
have the whole codebook for that tweak value. We assume this case.

From ciphertext-plaintext pairs the adversary can compute the number of pairs in
differentials (a, b) in some set Ω to base her decision on. As a matter of fact, she can
compute N(a, b) for all (224 − 1)2 differentials (a, b), so Ω is the set of all differentials over
the cipher.

The array N(a, b) is a sampling of a distribution: the one of BipBip determined by the
array of values EDP(a, b) or the one of a random permutation where N(a, b) has a Poisson
distribution with λ = 223/(224 − 1) for all differentials (a, b). As investigated in [AL12],
the optimum criterion to decide which is the distribution the sample comes from, is the
log-likelihood ratio. This is determined by the λ values of the Poisson distributions:

l′ =
∑

(a,b)∈Ω

N(a, b) log
(

EDP(a, b)
1/(224 − 1)

)
≈

∑
(a,b)∈Ω

N(a, b)EDP(a, b)− 1/(224 − 1)
1/(224 − 1) ,

where the approximation makes use of the fact that EDP(a, b) is very close to 1/(224 − 1).
For simplicity we can omit the denominator, yielding:

l =
∑

(a,b)∈Ω

N(a, b)
(

EDP(a, b)− 1
224 − 1

)
.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 343

Clearly, l, and hence the advantage, is fully determined by the array of values EDP(a, b).
To determine the optimum guessing strategy, we need to compute the distributions for

l for the case of a random permutation and for the cipher.
For both cases l is the weighted sum of (224 − 1)2 variables with each a Poisson

distribution. Due to the central limit theorem, this results in Normal distributions.
For a random permutation all variables have λ = 223/(224 − 1), resulting in a Normal

distribution with mean:

223

224 − 1
∑

(a,b)∈Ω

(
EDP(a, b)− 1

224 − 1

)
.

If Ω consists of the differentials (a, b) for a given number of input differences a but all
output differences b, this mean is zero as for any a,

∑
b EDP(a, b) = 1. And there are

224 − 1 non-zero values of b. We will assume that computing the values N(a, b) for a given
differential from the queries is not less work than computing the values N(a, b) for a given
input difference a and all output differences b.

For BipBip the mean is:∑
(a,b)∈Ω

223EDP(a, b)
(

EDP(a, b)− 1
224 − 1

)
,

resulting in the following difference of means:

Dom = 223
∑

(a,b)∈Ω

(
EDP(a, b)− 1

224 − 1

)2
.

For the random permutation the variance is:

Var = 223

224 − 1
∑

(a,b)∈Ω

(
EDP(a, b)− 1

224 − 1

)2
,

and for BipBip we get a variance very close to this due to the fact that EDP(a, b) is very
close to 1/(224 − 1).

The optimum strategy of the adversary is now to guess that it is BipBip if l is higher
than the average of the two means, namely Dom/2, and a random permutation otherwise.
The advantage can be derived from:

Pr(l > Dom/2 | BipBip) = 1
2

(
1 + erf

(
Dom√
2Var

))
.

So the advantage is erf
(

Dom√
2Var

)
. Filling in yields:

Adv = erf

√√√√222(224 − 1)
∑

(a,b)∈Ω

(
EDP(a, b)− 1

224 − 1

)2
 .

For very small values of x, erf(x) ≈ (2/π)x and we have

Adv ≈ 224

π

√√√√ ∑
(a,b)∈Ω

(
EDP(a, b)− 1

224 − 1

)2
. (1)

In this formula the expression in the square root is the Euclidean distance between the
EDP(a, b) vector with coordinates in Ω and the vector with #Ω components equal to

344 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

1/(224 − 1). This distance can be seen as a ripple of the EDP around the average and it
can be made smaller by adding rounds, as illustrated in Table 2. We will refer to it as RΩ.

From Equation 1 we see that claiming 96 bits of SPRP security would be quite
demanding. Given an attack complexity X, this would imply the distinguishing advantage
can be at most 2−96+X , or RΩ can be at most 2−119+X . The attack at hand has q = 224

queries and the computation of the quantity can have computational cost t up to 248,
depending on the size of Ω. We consider that Ω contains for each input difference a it
covers, all 224 − 1 output differences b, i.e., Ω =

{
(a, b) | a ∈ A, b ∈ F24

2 \ {0}
}

.
The attack requires the adversary to compute differential distribution for all the

differences in Ω. Since computing differential distribution for each fixed input difference a
and all the output differences needs 224 operations, the attack complexity will be 224|A|.
This would require the ripple to be smaller than 2−119+24|A| = 2−95|A|. Note that for
considered Ω, we have

RΩ =
√

(224 − 1)
∑
a∈A

σ2
a ≈ 212

√∑
a∈A

σ2
a . (2)

that σ2
a denotes the variance for EDP values of all 224− 1 differentials with the same input

difference a.
The best scenario for the attacker would be to consider A to include only a single

input difference amax which has the highest value for σ2
a, i.e., amax = arg maxa∈A σ2

a.
Consequently, if σ2

amax
> 2−214, BipBip can be distinguished from a random permutation

with higher advantage as implied to achieve a security strength of 96 bits.
In Table 2, we report about σ2

amax
values, called maximum of variances, and also about

average of σ2
a values, called average of variances, that is equal to the variance of EDPs for

all differentials we tested. Extrapolating Table 2, a 96-bit STPRP security claim would
require 13 core rounds.

4.3.5 Multi-tweak differential distinguishing attack

An adversary may be able to obtain the full codebook for multiple tweak values. This
can be seen as multiple samples of the distribution and the log-likelihood can easily be
generalized. The adversary just computes the sum of the l values for each of the obtained
codebooks and adds them. For M codebooks, this multiplies both the Dom and Var by N ,
and hence the advantage by

√
N relative to a single codebook. Hence the advantage only

increases with the square root of the data complexity and the STPRP security strength in
the multi-tweak setting is determined by the single-tweak attack.

4.3.6 Attacks with key guessing

An attacker can peel off some rounds by guessing a part of the round-key-sequence or a
part of the master key K. A correct key guess removes some rounds from the cipher. An
incorrect key guess has the effect of adding rounds and will result in a smaller ripple. One
can use the difference between the two ripples in defining the log-likelihood ratio to rank
the key guesses. If the correct key guess comes out on top, the adversary has successfully
recovered part of the key and can attack the reduced-round cipher to determine the rest of
the key. Even if that is not the case but the correct key is ranked high enough in the list,
the adversary may have an advantage. This depends on the effort to find the rest of the
key.

We now study the following: Given a certain variance of the EDP and number of
guessed key bits, what is the required effort to have the correct key guess to come out on
top? For simplicity we will assume that the adversary has the whole codebook for N tweak

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 345

values. If we assume an incorrect key guess has no ripple at all, the expected fraction of
wrong key guesses that will give a higher l value than the correct key is given by

Pr(l > Dom | random) = 1
2

(
1− erf

(
Dom√
2Var

))
If we want this probability to be small enough that very likely there are no incorrect key
guesses with l value higher than the correct one, Dom√

2Var must be relatively large. For large
enough values we have erf(x) ≈ e−x2

/(2
√

πx). If x = 5 the probability is of the order 2−32

but for x = 10 it becomes of the order 2−139. In other words, if Dom√
2Var is around 10 and

the length of the guessed key is significantly smaller than 139, the correct key comes likely
out on top.

As Dom√
2Var ≈ 223

√
NRΩ, this would require

√
N ≥ 2−19/RΩ. Using 2, this translates to

N ≥ 2−62∑
a∈A σ2

a

.

For example, for 5 core rounds plus 1 shell round this would require N ≥ 2105.05−62−24 >
219. For x guessed key bits, this would correspond to a computational cost of about
2x216224 ≈ 2x+40. As peeling off the shell rounds requires at least guessing 120 key bits,
x ≥ 120 and hence key recovery using this type of attack appears out of reach.

4.4 Linear Cryptanalysis
In this section we discuss the resistance of BipBip against linear cryptanalysis. Similar
to the case for differential cryptanalysis, we first study distinguishing attacks and then
divide-and-conquer type attacks where part of the key is guessed.

4.4.1 Expected Linear Potential (ELP) of the datapath

Similar to the Markov EDP matrix, we can build the Markov ELP matrix of a round func-
tion by arranging the ELP (=LP for a round function) values of all linear approximations
(a, b) in a matrix with LP(a, b) in row a and column b. This is the correlation matrix of
the round with its entries squared [DR20]. The ELP matrix for r rounds is then simply
the Markov ELP matrix to the r-th power.

For relatively simple round functions, such as those in BipBip, we can easily determine
the elements of the Markov ELP matrix and for finding multiple-round ELP values we
can use the same techniques we applied for the Markov EDP matrix, see Section 4.3.2.

As can be seen in Table 3, we see that after 4 rounds the ELP of all linear approximations
is similar and very close to 1/(224 − 1). As for the case of EDP values, one may ask what
ELP(a, b) values actually mean.

4.4.2 Distributions of the correlation value of linear approximations

C(a, b), the correlation of a linear approximation (a, b) depends on the round-key-sequence.
It was proven, e.g., in [DR20], that in a key-alternating cipher (such as BipBip), C(a, b)
has a distribution with mean 0 and variance ELP(a, b) over the round-key-sequences. If
the linear approximation is composed of many linear trails this distribution will be close
to a Normal distribution. For a random permutation it was shown in [DR07] that for any
linear approximation C(a, b) has a Normal distribution with mean 0 and variance 2−n.

The mean of the distributions is 0 in both cases and hence cannot be used to distinguish
them. The deviation between the two is in the variance and that can be assessed by
comparing the square of the correlation: the LP.

346 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

Table 3: ELP of single-tweak linear trails, highest and lowest ELP found for the single-
tweak linear approximations and variances of ELP for 3 to 6 core rounds. nr and ns

denotes the number of core rounds and the minimum number of active S-boxes in the
linear trails. The variance, is the variance for ELP of all linear approximations with the
same output mask.

nr ns upper bound on minimum ELP of maximum ELP of maximum of average of
ELP of linear trails approximations approximations variances variances

3 5 2−20 2−74.00 2−21.20 2−58.54 2−59.75

4 8 2−32 2−24 − 2−29.05 2−24 + 2−28.85 2−74.38 2−75.55

5 9 2−36 2−24 − 2−37.17 2−24 + 2−37.21 2−90.20 2−91.37

6 12 2−48 2−24 − 2−45.03 2−24 + 2−45.03 2−106.09 2−107.18

For a random 24-bit permutation, the distribution of LP(a, b) has mean 1/(224−1) and
variance 2−47 [DR07]. For a block cipher the distribution of LP(a, b) has mean ELP(a, b),
but the variance depends on the number of linear trails in the approximation and their
weight. For a linear approximation with many trails, the variance is close to 2(ELP(a, b))2,
as argued in [DR07].

We experimentally verified the distribution of the correlation of a linear approximation
for 4 core rounds of BipBip by computing C(a, b) for some specific masks a and b for
40 × 212 random round keys (so the 3 round keys in between the 4 core rounds). The
resulting distribution of C(a, b) for fixed a and b over these round keys is a sampling of
the distribution over all round key values, that is expected to have a Normal distribution
with variance ELP(a, b). We did the experiment for (a, b) = (0x0008c0, 0x1a0974) that
has 224ELP = 1.03477. The distribution we obtained experimentally looks like a sampling
of a Gaussian distribution and has variance 1.034764 and so is only at a distance of
(= 0.66× 10−5) of the variance based on the ELP. We provide a figure of the distribution
in Figure 14.

4.4.3 Single-tweak distinguishing linear attack

We assume an attacker that has obtained from her queries the whole codebook for some
tweak value and computes from these LP(a, b) for a large set of linear approximations
(a, b). The array LP(a, b) is a sampling of a distribution, either that for BipBip or that
for a random permutation. We can, as in the case of the differential attack, compute the
log-likelihood ratio:

l′ =
∑

(a,b)∈Ω

LP(a, b) log
(

ELP(a, b)
1/(224 − 1)

)
≈

∑
(a,b)∈Ω

LP(a, b)ELP(a, b)− 1/(224 − 1)
1/(224 − 1) ,

where the approximation makes use of the fact that ELP(a, b) is very close to 1/(224 − 1).
Omitting the denominator yields:

l =
∑

(a,b)∈Ω

LP(a, b)
(

ELP(a, b)− 1
224 − 1

)
.

For both cases l is the weighted sum of (224 − 1)2 variables resulting in Normal
distributions. For a random permutation the mean is:

1
224 − 1

∑
(a,b)∈Ω

(
ELP(a, b)− 1

224 − 1

)
,

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 347

and for BipBip it is ∑
(a,b)

ELP(a, b)
(

ELP(a, b)− 1
224 − 1

)
,

resulting in the following difference of means:

Dom =
∑

(a,b)∈Ω

(
ELP(a, b)− 1

224 − 1

)2
.

For the random permutation the variance is:

Var = 2−47
∑

(a,b)∈Ω

(
ELP(a, b)− 1

224 − 1

)2
,

and for BipBip the variance very close to this as ELP(a, b) ≈ 1/(224 − 1).
As in the case of the single-tweak differential attack, the advantage is erf

(
Dom√
2Var

)
.

Filling in and using the approximation erf(x) ≈ (2/π)x for small x yields

Adv ≈ 224

π

√√√√ ∑
(a,b)∈Ω

(
ELP(a, b)− 1

224 − 1

)2
. (3)

Remarkably, Equation 3 is identical to Equation 1 with ELP values taking the place of
the EDP values. Moreover, even the results in Table 3 are very similar to those in Table 2,
with the values for ELP being slightly smaller.

The similarity makes that the discussion of the exploitation of these advantages for
linear cryptanalysis is essentially the same as for differential cryptanalysis, with two
differences.

The first difference is about Ω: in differential attacks it contains all the output differences
for some input differences while in linear attacks it contains all the input masks for some
output masks: the attacker computes the LP values for a given number of output masks
for all input masks by doing a Walsh-Hadamard transform of the Boolean function that
represents an output mask applied to the queried codebook. The second difference is
the computational cost: a Walsh-Hadamard transform computation requires 24 · 224, so
a factor 24 more than the computational cost for computing an array of N values. This
makes the differential approach the most efficient of the two attacks.

4.5 Multi-chosen-tweak Differential and Linear Cryptanalysis
This section complements Section 4.3.2 and Section 4.4 with results for differential and
linear cryptanalysis that consider tweak relations. In this scenario, a big contributor to
BipBip’s security is the tweak schedule. Hence, we will make statements on differential
trails in the tweak schedule first.

4.5.1 Differential trail search in the tweak schedule

We investigate EDP of differential trails of the tweak schedule using differential trail cores.
We use the approach introduced by Mella et al. in [MDV17] to search efficiently for those
differential trail cores. We recall that a differential trail core is a differential trail where
the first and last difference are unspecified. It is shown that the weight of a differential
trail is the minimum weight of all trail cores compatible with the given differential trail.

348 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

Table 4: Lower bounds on the weight of differential trails for tweak schedule. Note that
the order of rounds is the same as depicted in Figure 2.

rounds 1 2 3 4 5 6 7 8 9
weight 2 8 24 ≥35 ≥43 ≥45 ≥53 ≥55 ≥63

We perform an exhaustive trail search up to 5 rounds. Thereby, we first compute all
2-round trail core (using two rounds of G round function) and then we extend them by one
round in forward or backward directions to obtain all possible 3-round trail cores. For the
case of 4- and 5- round differential trails, we use the same method as for 3-round trails; we
extend the 3-round trail cores in the forward direction by one and two rounds, respectively.

Table 4 shows the results on the minimum weight of the differential trails over tweak
rounds that the weight of a differential trail Q with an EDP equals p is defined as
w = − log2 p. Note that this trail search is done for the same order of the rounds as tweak
schedule that is depicted in Figure 2. That is in the case of 5 rounds, it starts with a
round that is without a linear layer, then there are three rounds with a strong linear layers
and one with a light linear layer.

We find only one trail of weight 24 for 3 rounds and there is no trail with a weight less
than 24. For 4 rounds, we find no trail of weight of below 35. Therefore, we conclude that
there is no trail of weight below 43 after 5 rounds.

4.5.2 Differential cryptanalysis

As we know from our trail search of Section 4.5.1, no differential trails for the tweak
schedule with a high EDP exist. This means that it is infeasible for an attacker to force a
certain differential pattern on all data-round keys ki for a certain tweak difference ∆T .
However, we do not wait until the whole tweak schedule is computed before extracting
ki, rather the extraction is a continuous process. Hence, an attacker can predict and
influence the differences of the first few data-round keys with a rather high probability,
while gradually losing this ability towards the data-round keys that are extracted at last.
Therefore, we also have a look at the number of active S-boxes with respect to random
difference patterns in the data-round keys.
Simple counting. For the simple counting, we assume that differences induced by all
possible 224 differences ∆ki can and will always be canceled with ∆ki+1. This leads to
having always at least 4 inactive S-boxes per 2 rounds as shown in the example of Figure 3.

However, due to the construction of our tweak schedule, an attacker that has limited
influence on the difference ∆ki has only limited influence on ∆ki+1, and hence, cannot
enforce a differential pattern that can cancel induced differences. So, we overestimate the
capabilities of an attacker here.

Based on this model, we calculated that for 5 rounds of BipBip, out of the 272 possible

S

S

S

S

∆ki = 0x000001

∆in = 0

S

S

S

S

∆ki+1 = 0xffffff

L

Figure 3: Example for model that assumes the differences always cancel. The active
S-boxes are in red.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 349

key differences, only the fraction of 2−32 difference patterns can lead to less than 6 active
S-boxes in the datapath (details in Table 5). For 7 rounds of BipBip, the same holds for
the fraction of 2−54 difference patterns out of 296 possible ones.

Table 5: Probability that a random data-round key difference leads to x active S-boxes
for 5 R′, or 5 R

Number of active S-boxes 0 1 2 3 4 5
Probability 2−72.0 2−62.4 2−54.0 2−46.2 2−39.1 2−32.4

Counting for shell round functions R′. Not every differential pattern induced by ∆ki can
be canceled by every differential pattern induced by ∆ki+1. For instance, a differential
pattern that leads to a single active S-box in round i cannot be canceled by 18 bits of ∆ki+1

of a shell round. Even if we assume the 6 bits of ∆ki+1 that can cancel the differences of
single active S-box always cancel this difference, the remaining 18 bits can still lead to
active S-boxes in this round as indicated in the example shown in Figure 4. We can count
this pattern up 4 active S-boxes, where we assume that all 24 bits of ∆ki+1 always cancel
out the differences as before.

We implemented this model for the shell round functions R′. For 3 rounds of R′, we
calculated that out of all possible 272 data-round key differences, only a fraction of 2−14

difference patterns lead to less than 6 active S-boxes (details in Table 6). For hypothetical
4 and 5 consecutive rounds of R′, this fraction would be 2−30 and 2−51, respectively.
Interpretation of Results. Let us combine the results of Table 5 and Table 6 and inter-
pret them for BipBip0,5,3. For random data-round key differences, we have following
probabilities:

• 0 active S-boxes: 2−72 · 2−72 = 2−144

• 1 active S-box: 2−62 · 2−72 + 2−72 · 2−57 = 2−129

• 2 active S-boxes: 2−72 · 2−43 + 2−72 · 2−54 + 2−62 · 2−57 = 2−115

• 3 active S-boxes: 2−72 · 2−32 + 2−72 · 2−46 + 2−62 · 2−43 + 2−54 · 2−57 = 2−103

• 4 active S-boxes: 2−72 ·2−22 +2−62 ·2−32 +2−54 ·2−43 +2−46 ·2−57 +2−39 ·2−72 = 2−93

• 5 active S-boxes: 2−72 · 2−14 + 2−62 · 2−22 + 2−54 · 2−32 + 2−46 · 2−43 + 2−39 · 2−57 +
2−32 · 2−72 = 2−83

Above results show us that considering the difference induced by data-round keys as
random for a certain difference in the tweak will not allow for exploitable differential
trails with high probability. In particular, for the results of Table 5 we have taken a
very favorable model for the attacker that assumes that the S-boxes of every second

S

S

S

S

∆ki = 0x000001

∆in = 0

S

S

S

S

∆ki+1 = 0xffffff

π3

Figure 4: Example for model considering π3. Active S-boxes in red.

350 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

Table 6: Probability that a random data-round key difference leads to x active S-boxes
for 3 R′.

Number of active S-boxes 0 1 2 3 4 5
Probability 2−72.0 2−57.0 2−43.8 2−32.1 2−22.0 2−14.4

round are inactive independent of the actual induced differences by the data-round keys.
On the other hand, we know from Section 4.5.1 that also predicting differences induced
by data-round keys in the datapath is not a viable strategy, since no high probability
differential trails for the tweak schedule exist. Taking all together, we expect BipBip to
withstand multi-chosen-tweak differential attacks.

4.5.3 Linear cryptanalysis

For an attack based on linear cryptanalysis that aims to also exploit tweak relations, we
have a considerable increase in the available data complexity from 224 to 264 considering
a 40-bit tweak. This means that an attacker can potentially exploit linear trails with a
smaller correlation than in single-tweak attacks. However, this comes at the cost that
linear trails have to also take our non-linear tweak schedule into account.

Compared to the differential case, the additional consideration of the tweak schedule
does not influence the minimum number of linearly active S-boxes in the datapath. Rather,
we consider additionally the approximation of the data-round keys via the tweak schedule.
Interestingly, it is also possible to approximate the influence of data-round keys of round
r with the influence of r + 1 with a trail just involving the part of the tweak schedule
between those rounds. In other words, not necessarily all rounds of the tweak schedule
have to be linearly active, which results to a certain degree in the dual of the differential
case.

If we consider 4 R plus 3 R′ rounds, we have at least 11 active S-boxes in the datapath.
In addition, we conservatively estimate that we only need three active bits at the input
of χ for 3 rounds of the tweak schedule to fulfill the conditions imposed by a trail of
the datapath. Hence, the best linear trail has a correlation of at most 2−(11·4+3) = 2−47.
Assuming that this trail is dominating, we need in the order of 294 data to use it as a
distinguisher in a potential key recovery attack. In addition, we expect that especially the
tweak schedule involves much more complicated trails. Therefore, we expect that BipBip
is secure against this type of attack.

4.6 Combined Differential and Linear Attacks
With combined differential and linear attacks, we denote attacks that do not directly
evaluate the differential or linear approximation over a cipher Ew. In contrast, they aim to
provide better distinguishers by dividing the cipher into subciphers, e.g., Ew = Ee ◦Eb and
combining shorter differential and linear trails over the subciphers. One prime example for
such an attack is the Boomerang attack [Wag99] that combines differentials over Eb with
differentials over Ee. Denoting the DP of the differential over Ew, Eb, and Ee with pw,
pb, and pe, respectively, the number of pairs needed to get a distinguishing advantage is
approximately (pbpe)−2 compared to p−1

w . In the case of differential-linear attacks [LH94],
we use a differential for the first part of the cipher and a linear trail for the second part.
Denoting the correlation of the linear trail with ce for Ee, the data complexity needed to
gain a distinguishing advantage is approximately (pbc2

e)−2 compared to c−2
w when using a

linear approximation for the whole cipher.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 351

From the observations on the expected data complexities, it becomes clear that combined
attacks are advantageous over differential and linear attacks for ciphers where the DP of
differentials and the correlation of linear trails massively drops with a rising number of
rounds. For BipBip, we do not see such a massive drop. When looking at BipBip, the
number of active S-boxes for 2 core rounds in the best linear, or differential trail is 4. If
we double the number of core rounds to 4, the number of active S-boxes doubles to 8.

To give a more illustrative example, let us compare a differential distinguisher for 5
core rounds of BipBip with a Boomerang distinguisher for 5 core rounds of BipBip in
a single-tweak or multi-tweak setting. A differential trail has at least 9 active S-boxes
for 5 core rounds of BipBip. For the Boomerang distinguisher, we can combine a 3 core
round trail (5 active S-boxes) with a 2 core round trail (4 active S-boxes). Since we have
(pbpe)−2 versus p−1

w for the data complexity, the data complexity needed to evaluate the
Boomerang distinguisher is more-or-less equivalent to 18 active S-boxes in a differential
distinguisher. Even if it would be possible to connect the Boomerang over two middle
rounds with probability one using advanced techniques, we still combine a two-round
trail (4 active S-boxes) with a 1 round trail (1 active S-box) giving 10 equivalent active
S-boxes for a differential distinguisher. Analogue arguments can be made in the case of
differential-linear attacks. Therefore, we conjecture that combined attacks are unlikely to
perform much better than differential, or linear attacks.

4.7 Algebraic Attacks
In this category, we examine cryptanalytic techniques that work by exploiting knowledge
on the algebraic degree of a cipher or isolated parts of the cipher. This category of
attacks is rather large and contains higher-order differential [Lai94], integral [KW02], and
cube [DS09] attacks, as well as the division property [Tod15]. In this section, we will
first have a look at the algebraic degree of the datapath relevant for single-tweak, and
multi-tweak attacks. After that, we have a look at the algebraic degree of the tweak
schedule providing additional security in the multi-chosen-tweak scenario.

4.7.1 Algebraic degree of the datapath

Since the width of the datapath is so small, we are able to directly evaluate certain input
sets. Hence, with the help of [HLLT20,HLLT21], we are able to show that all monomials
of degree 23 are present in each linear combination of the output bits after a certain
number of rounds. Moreover, we can show that sums of any selection of output bits are
key dependent for any selection of input sets that are non-empty and not the full set.

Upper bounds on the degree. First, let us have a look at the upper bound we can give
on the degree following [BCD11]. Since we have decided to use 6-bit S-boxes, we give the
upper bounds on the degree assuming that an S-box has degree 5, 4, 3, or 2 for all output
bits in Table 7.

Table 7 shows us that it is possible to reach a degree of 23 after 4 rounds for 6-bit
S-boxes with a degree of 3 or 4 and after 3 rounds for 6-bit S-boxes with a degree of 5.
However, those bounds are upper bounds and the degree after 5 rounds could be smaller,
or high-degree terms could be missing. Furthermore, we use an S-box that has algebraic
degree 3, but on some output bits only a degree of 2. Hence, we have a closer look at the
monomials that appear in the ANF of 5 rounds of BipBip.
Checking for degree 23 monomials. In the spirit of [HLLT20], we check that for 5 rounds
of R, each possible linear combination of the output bits can contain each possible degree
23 monomial of the input bits assuming independent data-round keys. Since we deal with
monomials of degree 23, we can directly compute the evaluation of the superpoly [Din21]
for each monomial for a certain data-round key.

352 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

Table 7: Upper bounds on the ANF degree of outputs after r rounds using 6-bit S-boxes
with degree of d in all the coordinates of the S-box.

Rounds (r) Degree (d)
2 3 4 5

1 2 3 4 5
2 4 9 16 21
3 8 21 22 23
4 16 23 23 23
5 22 23 23 23

Essentially, if we see an output bit flip for an evaluation of the superpoly using different
data-round keys, we know that the superpoly for this specific monomial is not empty
for this bit. To check if also all linear combinations of the output bit contain a specific
monomial, we fix one single monomial and evaluate the higher-order differential of all 24
output bits under x different random data-round keys and form a 24× x matrix. If the
rank of this matrix is 24, we know that the specific monomial of degree 23 is present in each
linear combination of the output bits at least for one data-round key. We implemented this
check for all 24 possible degree 23 monomials with x = 13943 and verified that all matrices
have rank 24 for 6 core datapath rounds, 6 shell datapath rounds, their inverses, and
mixtures of 3 rounds each. Furthermore, we evaluated that 5 core datapath rounds and 4
core datapath rounds plus 1 shell datapath rounds also achieve full degree. In contrast, 1
shell datapath round plus 4 core datapath rounds achieve a maximum algebraic degree of
22.
Arguments against integral distinguishers. An adversary does not have to select the inputs
for an integral distinguisher so that they form an affine space. It is possible to pick any
set and evaluate it. In [HLLT21], strong arguments against integral distinguishers are
given. In essence, in the first step, for each output bit, one has to show that the superpolys
associated with each high-degree term are linearly independent. So what we do to check
this is to compute the evaluation of superpolys for all 24 high-degree terms for x different
keys, where always at most 3 keybits are 1 and put them into a x× 24 matrix. By adding
the evaluation of the empty key to each superpoly, we recover a part of all monomials
of key bits associated with each high-degree term. If the rank of this matrix is 24, the
monomials of key bits are linearly independent.

In a next step, we again have to check if linear combinations of output bits can lead to
monomials of key bits that are linearly dependent. We do this by arranging the 24 x× 24
matrices into a single x× 242 matrix, where each row represents superpoly evaluations
for the same key. This matrix is required to also have full rank. We implemented the
above-mentioned procedure with x = 13943 and verified that all resulting matrices have
full rank for 6 core datapath rounds, 6 shell datapath rounds, their inverses, and mixtures
of 3 rounds each. Furthermore, we evaluated that 5 core datapath rounds and 4 core
datapath rounds plus 1 shell datapath round also fulfill these properties.

4.7.2 Algebraic degree of the tweak schedule

For the tweak schedule, the non-linear layer is a 53-bit permutation of degree 2. First,
let us have a look at the upper bounds [BCD11] on the degree we can give assuming a
53-bit tweak. The result is given in Table 8. As we can see in Table 8, it is possible to
reach full degree in 6 rounds. Since we only have a tweak of 40-bits, we assume that our
tweak schedule has a sufficient number of rounds to prohibit the injection of exploitable
sets into the datapath. Note that the non-linearity of the tweak schedule is not a necessity

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 353

Table 8: Upper bounds on the ANF degree after r quadratic (degree 2) round functions of
53 bits as used for the tweak schedule.

Rounds (r) 1 2 3 4 5 6
Degree (d) 2 4 8 16 32 52

in prohibiting algebraic attacks, since designs with a linear tweak schedule can provide
resistance against algebraic attacks [BJK+20]. However, a non-linear tweak schedule highly
complicates the attack path involving tweak relations.

4.7.3 Algebraic degree of the cipher

Considering the ciphertext and the tweak together as a modifiable input by an attacker,
we are left with 64 bits of modifiable input. Assuming that both, the tweak schedule and
the datapath can independently achieve the maximal degree and that in the case of the
datapath, this is true for all possible linear combination of output bits, we assume that
after injection of full degree monomials from the tweak schedule to the datapath, one
additional round already provides enough mixture to reach a combined maximal degree.

When considering plaintext and tweak together, maximum degree tweak monomials
are already inserted at the beginning of the processing of the plaintext bits. Hence, we
assume that also in this case, enough datapath rounds are available to reach maximum
degree in tweak and plaintext bits.

4.7.4 Interpretation of results

In this section, we provide strong arguments that 6 datapath rounds of BipBip do not
allow for integral distinguishers. This means that in a single-tweak attack, it has to be
possible to overcome at least 6 datapath rounds by other means, e.g., key guessing, before
there is the possibility to evaluate a 5-round integral distinguisher. Even then, if those
5 datapath rounds are 5 core datapath rounds or 4 core datapath rounds plus 1 shell
datapath round an integral attack is likely to fail. Hence, assuming that adding additional
rounds to BipBip do not weaken its resistance against integral attacks, we conclude that
BipBip withstands single-tweak integral attacks. Furthermore, we also do not see a benefit
from moving to multi-tweak integral attacks. For multi-chosen-tweak integral attacks, we
also do not see a promising attack angle, since both datapath and tweak schedule quickly
rise in the algebraic degree, while the key guessing becomes much more involved due to
the changing tweaks.

4.8 Meet-in-the-Middle Attacks
In this section, we first consider idealized rounds to get a lower-bound on the number of
rounds needed for a cipher with block size of 24. Then we look at meet-in-the-middle
attacks exploiting the structure of BipBip.

4.8.1 Meet-in-the-middle attack on 6 rounds assuming ideal round functions

In this section, we explore the minimum number of rounds we need for a 24-bit block
cipher to be able to reach 96 bits of security. We do this by showing an attack on a 6 round
24-bit block cipher assuming independent data-round keys ki and an ideal permutation p
as round function. The sketch of the attack is shown in Figure 5. We split the cipher into
two halves. For the cipher half H1, we compute from the plaintext P to the meeting point
S and for cipher half H2, we compute from the ciphertext C to S′. The 72-bit data-round

354 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

key material k0, k1, and k2 are exclusively used in H1. The 72-bit data-round key material
k4, k5, and k6 are exclusively used in H2.

Attack. For the attack to work, we need 4 known plaintext-ciphertext pairs. In the first
step, we encrypt the 4 plaintexts under all possible guesses for the 72-bit data-round key
material up to S denoted by S0, S1, S2, S3. We store the resulting data-round key and
value of S0 in a list W sorted by values of S1 + S0, S2 + S0, S3 + S0. On average, in each
index of the list, there will be one saved value. Then, we decrypt the 4 ciphertexts back
to S′, denoted by S′

0, S′
1, S′

2, S′
3, under all possible guesses of the other 72-bit data-round

key material and we compute S′
1 + S′

0, S′
2 + S′

0, S′
3 + S′

0. Considering a matching between
S1 + S0, S2 + S0, S3 + S0 and S′

1 + S′
0, S′

2 + S′
0, S′

3 + S′
0, we query for entries in the index

S1 + S0, S2 + S0, S3 + S0 of the list W . This matching indicates k4, k5, and k6 from
current guess, k0, k1, and k2 from entry of the list, and k3 computed by S0 + S′

0 is a
candidate for the data-round key with high probability (about 2−4·24). Using another 3
known plaintext-ciphertext pairs, this 168-bit candidate for the data-round key can be
checked if it is the right one.

Attack complexity. From a time complexity perspective, first we did 272 half encryptions
and 272 half decryptions, together with 272 random memory accesses to find the matching.
Then we need 272 · (1 + 2−24 + 2−48) ≈ 272 full encryptions to check if the candidate key
is the right one. In total the complexity of attack will be about 273 encryptions and 272

random memory accesses. The memory complexity is roughly 3 · 274 bytes and we need 7
known plaintext-ciphertext pairs.

4.8.2 Meet-in-the-middle attack on 8-round BipBip

After describing the attack above, one wonders how far we get when considering the
structure of the round function. Let us have a look at an 8-round version called BipBip2,5,1
as shown in Figure 6. As we can see in Figure 6, our linear layer allows to compute the
three below equations that need six output bits from two S-boxes s and six input bits from
two S-boxes of the next layer.

x6 ⊕ x19 ⊕ k4
6 ⊕ k4

19 = x′
2 ⊕ x′

23

x8 ⊕ x20 ⊕ k4
8 ⊕ k4

20 = x′
19 ⊕ x′

4

x10 ⊕ x22 ⊕ k4
10 ⊕ k4

22 = x′
21 ⊕ x′

1

In an attack, the attacker now has to guess the 24-bit data-round keys κ0, k1, and k2, as
well as 12 bits of k3. For the other half of the cipher, an attacker has to guess k8, k7, k6,
and 12 bits of k5. In total, we now have 171 bits of data-round key material, 84 bits on
one half, 84 on the other, and 3 in the middle.

Attack. Since the matching point is only 3 bits, an attacker needs to know 57 plaintext-
ciphertext pairs to uniquely determine the used key with high probability. In the first step
of the attack, we perform the partial decryption of 29 ciphertexts under all 278 data-round

p p p p p p

k0 k1 k2 k3 k4 k5 k6

P C

S S ′

Figure 5: Attack sketch for six round cipher with ideal round function.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 355

R′ R′ R R R R R′

κ0 k1 k2 k3 k5 k6 k6 k7

C P

1
2

4

19

21

23

6

8

10

19
20

22

X ′ X

(k410 ⊕ k422, k48 ⊕ k420, k46 ⊕ k419)

s

s

s

s

s

s

s

s

Figure 6: Meet-in-the-middle attack on 8 round version of BipBip.

keys and compute the corresponding 3 bits in the middle of cipher. We denote these 3-bit
values by X0, . . . , X28 for each plaintext-ciphertext pair. We store the 84-bit key material
together with value of X0 in the index X1 + X0, . . . , X28 + X0 of a sorted list W .

In the second step of the attack, we partially encrypt all 29 plaintexts under all 278

data-round key guesses and search for a matching in the list. That is, we partially encrypt
all the 29 plaintexts until X ′, denoted by X ′

0, . . . , X ′
28, under all possible guesses of the

other 78-bit data-round key material and we compute X ′
1 + X ′

0, . . . , X ′
28 + X ′

0. Considering
a matching between X1 +X0, . . . , X28 +X0 and X ′

1 +X ′
0, . . . , X ′

28 +X ′
0, we query for entries

in the index X1 + X0, . . . , X28 + X0 of the list W . This matching indicates 78-bit key from
current guess, 78-bit key from entry of the list, and 3-bit key computed by X0 + X ′

0 is
a candidate for the 171-bit data-round key with high probability (about 2−3·29). Using
another 28 known plaintext-ciphertext pairs, this 171-bit candidate for the data-round key
can be checked if it is the right one. Finally, the remaining 9 · 24− 171 = 45 data-round
key bits can be found by an exhaustive search.

Attack complexity. In the first step of the attack, we perform 29 · 278 half decryptions
and create a list of 278 81-bits. In the second step, we perform 29 · 278 half encryptions
and 278 table look-ups. Then we need 278 · (1 + 2−3 + 2−6 + . . . + 2−75) ≈ 1.14 · 272 full
encryptions to check if the candidate key is the right one.

In total the complexity of attack to recover the whole 216-bit data-round key material
is about 282.86 encryptions and 278 random memory accesses. The memory complexity is
about 10 · 278 bytes and we need 57 known plaintext-ciphertext pairs.

It is noteworthy to mention that besides the above-mentioned meet-in-the-middle attack,
there are another 3 different ones with the same complexity. Not only for BipBip2,5,1, for
any BipBipx,5,y with x + y = 3, there are four different meet-in-the-middle attacks, with
the same complexity. However, still then, we do not expect an attack to cover significantly
more than 8 data rounds.

4.9 Generalized Demirci-Selçuk Attacks
In this section, we discuss the application of generalized Demirci-Selçuk attacks [DS08],
and their various improvements [DKS10,DFJ13,DF13]. At the heart of the attack lies a
distinguishing property first described for AES [GM00], which is also applicable to BipBip.
For the 9-round attack, we consider BipBip2,5,2 as shown in Figure 7 and the function f
of one active 6-bit word (marked in black) and 3 constant words in state x1 to one word
marked in black of state z5.

4.9.1 Basic principles of the attack

Distinguishing property. If we now look at the sequence f(0), f(1), . . . , f(63), we see
that the values of this sequence are fully determined by 16 6-bit words, namely the value
of the 4 words of x2 when f(0) was calculated, and the 12 words of k2, k3, and k4. Hence,

356 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

z0

κ0
x1

S

y1

L

z1

k1
x2

S

y2

L

z2

k2
x3

S

y3

L

z3

k3

x6

S

y6

L

z6

k6
x7

S

y7

L

z7

k7
x8

x4

S

y4

L

z4

k4
x5

S

y5

L

z5

k5

S

y8

L

z8

k8
x9

S

y9

L

z9

k9
x10

Figure 7: Generalized Demirci-Selçuk attack on 9 round version of BipBip.

we can see at most 24·24 = 296 different sequences out of all possible (26)64 sequences. This
is a property that can be used in a key recovery attack to distinguish wrong key guesses
from the correct key guess.

We can further convert this distinguishing property to consider the differences f(1)⊕
f(0), . . . , f(63)⊕ f(0). Now, we lose a bit of information and have 296 sequences out of
(26)63 = 2378 ones. However, the function f extends to state x6 since the difference cancels
k5. An attack then looks like follows.

Precomputation. At first, we prepare the 296 sequences and store them in an ideal hash
table. This means we need around 296 · 26 = 2102 encryptions and at least 296 memory
accesses, even if the hash table is ideal. Note that with an ideal hash table, we assume the
best-case scenario for an attacker. This is called the offline phase, but precomputation
would be more suitable.

Attack complexity. To perform the attack, we need 26 ciphertexts that iterate over all
values of the word marked in red in z0 and the corresponding plaintexts. The guess of
one word of κ0 determines the order of sequence of differences, that we calculate from
the ciphertexts by guessing full k7, k8, k9, and one word of k6 for all 26 plaintexts. The
sequence of differences is contained in the precomputed table with a probability of 1 for
the correct key and around 296−378 = 2−282 for a wrong key guess. The complexity of this
part of the attack is around 26 · 278 = 284 partial encryptions and 284 memory look-ups.

4.9.2 Refinements

As we have seen in the previous section, the complexity of the precomputation phase is
higher than 296 BipBip encryptions. Hence, we discuss options to lower the complexity
and balance the attack so that the time complexity is smaller than 296 calls to BipBip.

Refined distinguishing property. As pointed out in [DKS10], the effect that the guess
of the 6-bit word of key k1 has is to order the values of the set f(1) ⊕ f(0), f(2) ⊕
f(0), . . . , f(63)⊕ f(0) we use as distinguishing property. Hence, we can just not guess this
word of key k1 and use the unordered multiset of differences as distinguishing property.
However, we still get at most 296 multisets from z0 to x6, but having only 6-bit words, we
only have about

(64+63−1
63

)
≈ 2122 different multisets in total. Hence, the probability that

a wrong key guess hits one of the multisets contained in the hash table is non-negligible
(about 296−102 = 2−6). A simple way to alleviate this is to use the multiset of 12-bits
from x6 as distinguishing property. Then, we have

(4096+63−1
63

)
≈ 2466 different possible

multisets that makes the probability that a wrong key guess hits one of the multisets
contained in the hash table to be about 296−466 = 2−370.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 357

z0

κ0
x1

S

y1

L

z1

k1
x2

S

y2

L

z2

k2
x3

S

y3

L

z3

k3

x6

S

y6

L

z6

k6
x7

S

y7

L

z7

k7
x8

x4

S

y4

L

z4

k4
x5

S

y5

L

z5

k5

S

y8

L

z8

k8
x9

S

y9

L

z9

k9
x10

Figure 8: Generalized Demirci-Selçuk attack on 9 round version of BipBip.

Shorter precomputation. Instead of preparing 296 sequences, we just prepare 290 and
store them in an ideal hash table. This means we need around 290 · 26 = 296 encryptions
and at least 290 memory accesses, even if the hash table is ideal.

Attack. Due to the different distinguishing property, we do not have to guess κ0 anymore.
However, still we need 26 ciphertexts that iterate over one word in z0, while being constant
in all other words. For all corresponding 26 plaintexts, we guess full k7, k8, k9, and 12
bits of k6 and check if the multiset of 63 differences is contained in our table. Since we
do not store all possible sequences, there is a chance of roughly 2−6 that the sequence
produced by the correct key guess is not in our list. That means for the correct guess, it is
contained with probability 2−6 and for a wrong guess with probability 290−466 = 2−376.
Hence, if we redo the attack on average 26 times, we only recover the correct partial key
with high probability.

Attack complexity. For the attack, we have a data complexity of 26 · 26 = 212 plaintext
ciphertext pairs. In total, we do 212 · 284 = 296 partial calls to BipBip plus at least
26 · 284 = 290 accesses to the ideal hash table.

With the help of an automated search tool [DF16], we were able to improve the attack
complexities for BipBip2,5,2 based on the truncated pattern shown in Figure 8.

This is due to the property of the linear layer of the core round function R. We can
get knowledge on three bits of the input of the two S-boxes marked in green of state x6 by
combining the information of 6 bits of two S-box outputs of state y5.

x6
6 ⊕ x6

19 ⊕ k5
6 ⊕ k5

19 = y5
2 ⊕ y5

23

x6
8 ⊕ x6

20 ⊕ k5
8 ⊕ k5

20 = y5
19 ⊕ y5

4

x6
10 ⊕ x6

22 ⊕ k5
10 ⊕ k5

22 = y5
21 ⊕ y5

1

Distinguishing property. This influences now the distinguishing property for the sequence
f(0), f(1), . . . , f(63). This sequence now consist of 3-bit chunks and is fully determined
by 14 6-bit words, namely the value of the 4 words of x2 when f(0) was calculated, the 8
words of k2 and k3, and 2 words of k4. Hence, we can see at most 26·14 = 284 different
sequences out of all possible (23)64 = 2192 sequences. This is a property that can be used
as a distinguisher.

Attack complexity. To perform the attack, we need 26 ciphertexts that iterate over all
values of the word marked in red in z0 and the corresponding plaintexts. The guess of
one word of κ0 determines the order of sequence of differences, that we calculate from
the ciphertexts by guessing full k7, k8, k9, and two words of k6 for all 26 plaintexts. The
sequence of differences is contained in the precomputed table with a probability of 1 for
the correct key and around 284−192 = 2−108 for a wrong key guess. The complexity of this
attack is around 26 · 284 = 290 encryptions and 290 memory look-ups.

358 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

z0

κ0
x1

S

y1

L

z1

k1
x2

S

y2

L

z2

k2
x3

S

y3

L

z3

k3

x7

S

y7

L

z7

k7
x8

S

y8

L

z8

k8
x9

x4

S

y4

L

z4

k4

x6

S

y6

L

z6

k6

S

y9

L

z9

k9
x10

S

y10

L

z10

k10
x11

x5

S

y5

L

z5

k5

Figure 9: Generalized Demirci-Selçuk attack on 10 round version of BipBip.

4.9.3 Extending to 10 Rounds

We also applied the automated search tool [DF16] on BipBip2,5,3, suggesting the pattern
shown in Figure 9 for an attack. It is basically an extension of Figure 8 by one round
at the front. This is possible by not considering the iteration over all 6 bits of one word
in x2 but rather we iterate over 2 bits. Now, the 3-bit output is defined by 15 words, so
we see at most 26·15 = 290 different sequences of 22 3-bit values. However, there are only
(23)4 = 212 different ones. So, it seems that this property does not lead to a key recovery
attack.

The other way to extend the attack of Figure 8 by one round is to add one round in
the middle to the precomputation phase as shown in Figure 10. Here, we see that the
function from one word in x1 to 3 bits in z6 is determined by 18 words. However, as
argued by [DFJ13], if the sequence of function values contains one pair of values that
follows the differential in black, we know that the 18 words can only take 215·6 different
values. Hence, table size and precomputation reduce to 26 · 290 partial encryptions and 290

memory accesses. However, to be sure to have at least one pair that follows the truncated
differential, we need to have around 212 plaintext ciphertext pairs. This leads to 212 · 290

partial decryptions in addition to the 290 memory look-ups.

4.9.4 Verdict

In this section, we explored the application of generalized Demirci-Selçuk attacks. We are
able to give attacks on 9 rounds of BipBip. Furthermore, we have investigated approaches
given suggested by an automated search tool [DF16] for 10 rounds of BipBip. For 10
rounds of BipBip, we were not able to give attacks below a time complexity of 296 calls to
BipBip. Potentially, those attacks can be further improved by, e.g., considering details
of the S-box. However, considering that all of these attacks have a very high memory
complexity, it seems unlikely that a practical threat to the security of 11 rounds of BipBip
emerges from these types of attacks.

z0

κ0
x1

S

y1

L

z1

k1
x2

S

y2

L

z2

k2
x3

S

y3

L

z3

k3

x7

S

y7

L

z7

k7
x8

S

y8

L

z8

k8
x9

x4

S

y4

L

z4

k4

x6

S

y6

L

z6

k6

S

y9

L

z9

k9
x10

S

y10

L

z10

k10
x11

x5

S

y5

L

z5

k5

Figure 10: Generalized Demirci-Selçuk attack on 10 round version of BipBip.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 359

4.10 Invariant Attacks, Cycles, and Symmetries
Invariant attacks [LAAZ11,TLS16] exploit the knowledge that if the input to a (keyed)
permutation belongs to a certain input set, it will map to a certain output set. With cycle
we denote the event that after r applications of a (keyed) round function, an input X maps
to X for all r contained in the cycle. With symmetries we denote a possible characteristic
of a (keyed) permutation that an input X and a simple bit-permutation of X lead to an
output Y and a simple permutation of Y .

All these above-mentioned characteristics have in common that besides a careful
selection of linear and non-linear components, typically the round constant plays an
important role in the prevention of the mentioned characteristics [BCLR17]. However,
notably, we do not use a round constant. The reason for that is rather simple, the purpose
of round constants is to differentiate single rounds although the used round key (for a
weak-key portion of all keys) stays the same. However, we use a masterkey of 256 bits, while
only having data-round keys of 24 bits aiming at 96-bit security. Formulated differently,
we come even very close to having independent tweak-round keys in the tweak schedule.
Therefore, we do not expect any security benefits from using round constants, since they do
not have a big influence on the number of weak keys in our case. Summing up, we assume
that the use of randomly chosen 256-bit data-round keys together with the non-linear
tweak schedule prohibits invariant attacks and attacks exploiting cycles, or symmetries.

5 Implementation
To assess the goal of designing a low-latency tweakable block cipher, we have to implement
BipBip. The first implementation we will discuss is a fully unrolled implementation to
evaluate the input to output latency without any intermediate register stages. Therefore,
we unrolled all data-block rounds as well as tweak rounds of BipBip as depicted at a
high-level in Figure 11. At the input, we have registered the input data, key and tweak.
After that, all datapaths are put through back-to-back combinatorial logic. Finally, the
output of the last combinatorial logic is registered. So, all combinatorial datapaths of the
entire cipher are placed in between the input register and the output register.

Except for the BipBipBox and the non-linear χ function, all other operations of
BipBip are linear and hence, rather easy to optimize in implementations. The χ func-
tion has already a very compact definition at gate level with three inputs as χ : ai ←
ai XOR (NOT(ai+1) AND ai+2), which limits potential further optimization opportu-
nities. Therefore, to achieve an optimized implementation of the BipBip datapath, we
first explored different design options for the BipBipBox. First, we have implemented an
optimized NAND-based design, which uses four 2-input NAND gates with 25.9 ps critical
path as depicted in Figure 12. Note that all four NAND gates may not have the same
delay, since in standard cell technology, the output delay of a gate varies significantly
depending on its input transitions and output loads. As a second option, we implemented
BipBipBox as a table look-up using case statements in Verilog Hardware Description
Language (HDL). The Synopsys Design Compiler optimized this implementation with 3
logic levels (1 OAI, 1 NOR and 1 XOR) resulting in only a 1.9 ps longer critical path. All

Input
Register

Combinatorial Circuit for Data Rounds 1 to 12

Combinatorial Circuit for Tweak Rounds 1 to 9

Cipher
Output

Register

Critical-path

CT/PT
Tweak

Key

Clk

Figure 11: Unrolled micro-architecture for BipBip that estimates input to output latency.

360 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

Table 9: Unrolled implementation results on Intel 10nm with 0.85 V and 100°C.

Cipher Critical Path Area Power
Gate Levels Delay [ps] [GE] [mW]

Prince Enc/Dec 74 853 7542 42.71
BipBip Dec 48 622 5741 15.91
BipBip Enc 148 1523 10776 19.23

the hardware design experiments reported in this paper are performed on Intel 10nm FinFet
technology [AAA+17] with a 0.85 V target voltage and 100°C temperature while we put
timing constraints in the synthesis tool. Experiments for the S-box implementations started
with 100 ps target clock period and were reduced iteratively to capture the minimum clock
period for which the implementation is still capable to meet the timing constraints.

As a next step, we explored the effect of these two S-box implementations on the entire
unrolled BipBip datapath (Figure 11). We implemented two instances of the unrolled
datapath which differ only in the S-box implementation. Both instances were synthesized
multiple times with different target clock periods starting from 1000 ps. Interestingly,
both NAND and case-statement based implementations converged to the same timing
with 622 ps as lowest result, while they differ in the number of gate levels in the critical
path with 54 and 48, respectively. Note that the critical path of our unrolled design
is measured in between two rising edges of the clock, which includes the delay of the
input register and the delay of the entire combinatorial circuit to implement the whole
tweakable block cipher. This experiment ensured that the Synopsys Design Compiler is
capable of finding the optimal design from a table look-up implementation in HDL. Moving
forward, we implemented an unrolled design of BipBip’s encryption with a table look-up
based inverse S-box implementation. Similarly, to compare the performance of BipBip
against state-of-the-art low-latency block ciphers, we implement Prince [BCG+12] with the
same implementation principles on the same technology. Table 9 reports the comparative
implementation results.

As we can see, BipBip’s encryption datapath provides 27% smaller critical path delay
compared to the 64-bit block cipher Prince which is known as one of the lowest-latency
block ciphers in the literature. It also requires 24% lower area compared to Prince. Note
that both BipBip and Prince process 64 bits and that is why comparing the area and
energy costs are reasonable. The implementation of BipBip’s encryption computes the
unrolled tweak schedule followed by the inverse datapath for the 11 inverse rounds. Our
results show that the implementation of BipBip’s encryption is 2.45 times slower and
requires 1.88 times more logic gates compared to the decryption.

The major use-case for BipBip lies in pipelined implementations. In particular, it shall
be possible to compute the pointer decryption for C3 in three cycles @4GHz on Intel 10nm
technology. To achieve this, we break the BipBip unrolled decryption circuit into three
parts and incorporate two registers to achieve a depth-3 pipeline. In this implementation,
we place rounds 1 to 4 of the datapath and the corresponding rounds 1 to 4 of the tweak

Drives to other 2 gates

25.9 ps

OAI21

27.8 ps

Figure 12: Critical path of the BipBipBox implementation in Verilog-HDL: (left) with
optimized NAND logic and (right) with case statement of the substitution function.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 361

schedule within the first stage of the pipeline. The second stage of the pipeline consists
of rounds 5 to 7 of the datapath as well as the corresponding tweak schedule. The third
stage computes the rest of the cipher. This depth-3 pipelined implementation met all
timing constraints with a 223 ps critical path, which ensures that BipBip’s decryption can
be performed within 3 cycles even up to 4.5 GHz clock frequency with 0.85 V and 100°C
operating condition.

Regarding the power consumption shown in Table 9, we see that Prince needs 42.71
mW while BipBip requires 15.91 mW. Focusing on the decrypted bits, we get 0.667 mW
per bit for Prince and 0.662 mW per bit for BipBip. However, we want to mention that in
addition to the 24 bits of ciphertext, BipBip also processes 40 bits of tweak, which would
turn the metric mW per processed bit of data even more in favor of BipBip with 0.249 mW
per processed bit. For getting the corresponding energy and energy per bit numbers, the
power can be multiplied with the critical path delay. The power consumption is estimated
by the Synopsys tool while we compiled the RTL for Intel 10nm technology, operating
voltage 0.85V, Max operating Temp 100C and target operating clock 4GHz.

The reason why we mainly focus on the decryption implementation in this section is
because decryption is called whenever a pointer is dereferenced. This happens often in a
typical program and hence, the latency of the decryption is very performance critical. In
the case of multi-core systems that can perform out-of-order execution, many execution
ports can do pointer dereferencing to load data from memory and hence, BipBip must be
implemented in multiple places. Therefore, the area is also critical for decryption.

On the other hand, encryption is only called when new memory is allocated. This
happens comparatively infrequently and adding a few cycles more does not impact perfor-
mance much. So, it could be implemented as, e.g., instruction set extension, or even in
software, since the performance impact where it is used is comparatively small.

6 Conclusion

In this paper, we investigated how to design a secure ultra-low-latency tweakable block
cipher with a small block size of 24 bits. The result of this investigation is BipBip that
allows for decryption within 3 cycles for up to 4.5 GHz clock frequency on modern CMOS
technologies. To support its security claim, we provide extensive preliminary cryptanalysis.

The design of BipBip was a very challenging task, since results for low-latency tweakable
block cipher with such a very small domain are scarce. What adds to the challenge is
that even the research area of format preserving encryption, which deals with such small
dimensions but uses non-low-latency round functions up to the full AES for a single round,
deals with many recent breaks of proposed schemes [BHT16, DV17, HTT18, DKLS20,
ADK+21,Bey21]. Nevertheless, we think it is the time to take on this challenge, since with
C3 [LRD+21], there is a convincing application that demands for small domain low-latency
tweakable block cipher. We hope that BipBip together with C3 triggers much more research
on the design of small domain low-latency primitives, cryptanalysis exploiting such small
dimensions, and applications that can benefit from using such primitives.

Acknowledgments This work was partially funded by Intel through the Crypto Frontiers
Research Center. Joan Daemen is supported by the European Research Council under
the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA,
and Shahram Rasoolzadeh is supported by the Netherlands Organisation for Scientific
Research (NWO) under TOP grant TOP1.18.002 SCALAR.

362 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

References
[AAA+17] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall,

N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han,
D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho,
S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman,
K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker,
S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Raja-
mani, A. Saha, J. Dacuna Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha,
P. Smith, M. Sprinkle, A. St. Amour, C. Staus, R. Suri, D. Towner, A. Tri-
pathi, A. Tura, C. Ward, and A. Yeoh. A 10nm high performance and
low-power CMOS technology featuring 3rd generation FinFET transistors,
Self-Aligned Quad Patterning, contact over active gate and cobalt local in-
terconnects. In 2017 IEEE International Electron Devices Meeting (IEDM),
pages 29.1.1–29.1.4, 2017.

[ADK+21] Ohad Amon, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.
Three Third Generation Attacks on the Format Preserving Encryption Scheme
FF3. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT
2021, volume 12697 of LNCS, pages 127–154. Springer, 2021.

[AJN14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX:
Parallel and Scalable AEAD. In Miroslaw Kutylowski and Jaideep Vaidya,
editors, ESORICS 2014, volume 8713 of LNCS, pages 19–36. Springer, 2014.

[AL12] Martin R. Albrecht and Gregor Leander. An All-In-One Approach to Differen-
tial Cryptanalysis for Small Block Ciphers. In Lars R. Knudsen and Huapeng
Wu, editors, SAC 2012, volume 7707 of LNCS, pages 1–15. Springer, 2012.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS, pages
430–454. Springer, 2015.

[Ava17] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Construc-
tions With Non-Involutory Central Rounds, and Search Heuristics for Low-
Latency S-Boxes. IACR Transactions on Symmetric Cryptology, 2017(1):4–44,
2017.

[BCD+99] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro,
Shai Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mo-
hammad Peyravian, David Safford, and Nevenko Zunic. MARS - a candidate
cipher for AES. Submission to NIST AES competition, 1999.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-Order
Differential Properties of Keccak and Luffa. In Antoine Joux, editor, FSE
2011, volume 6733 of LNCS, pages 252–269. Springer, 2011.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT
2012, volume 7658 of LNCS, pages 208–225. Springer, 2012.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 363

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving
Resistance Against Invariant Attacks: How to Choose the Round Constants.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10402
of LNCS, pages 647–678. Springer, 2017.

[BDMW10] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN
Permutation in Dimension Six. Finite Fields: theory and applications, 518:33–
42, 2010.

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS,
pages 320–337. Springer, 2011.

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions. https://keccak.team, 2011.

[BDPV11c] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
Keccak reference. SHA-3 competition (round 3), 2011. https://keccak.
team/papers.html.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. https://cr.yp.to/
chacha.html, 2008.

[Bey21] Tim Beyne. Linear Cryptanalysis of FF3-1 and FEA. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, volume 12825 of LNCS, pages 41–69.
Springer, 2021.

[BHT16] Mihir Bellare, Viet Tung Hoang, and Stefano Tessaro. Message-Recovery
Attacks on Feistel-Based Format Preserving Encryption. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 444–455. ACM, 2016.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, volume 9815
of LNCS, pages 123–153. Springer, 2016.

[BJK+20] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash. IACR Transactions on Symmetric Cryptology,
2020(S1):88–131, 2020.

[BR10] Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle
Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In Alex
Biryukov, Guang Gong, and Douglas R. Stinson, editors, SAC 2010, volume
6544 of LNCS, pages 229–240. Springer, 2010.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology
- CRYPTO ’90, 10th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1990, Proceedings, volume 537 of
Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

https://keccak.team
https://keccak.team/papers.html
https://keccak.team/papers.html
https://cr.yp.to/chacha.html
https://cr.yp.to/chacha.html

364 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

[CIL+20] Wonseok Choi, Akiko Inoue, ByeongHak Lee, Jooyoung Lee, Eik List,
Kazuhiko Minematsu, and Yusuke Naito. Highly secure nonce-based macs
from the sum of tweakable block ciphers. IACR Trans. Symmetric Cryptol.,
2020(4):39–70, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards Sound Approaches to Counteract Power-Analysis Attacks. In Michael J.
Wiener, editor, CRYPTO ’99, volume 1666 of LNCS, pages 398–412. Springer,
1999.

[DDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume
5747 of LNCS, pages 272–288. Springer, 2009.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A Cipher with Low AND depth and Few ANDs per Bit. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, volume 10991 of LNCS,
pages 662–692. Springer, 2018.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. J. Cryptol.,
34(3):33, 2021.

[DF13] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk Meet-in-
the-Middle Attacks Against Reduced-Round AES. In Shiho Moriai, editor,
Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore,
March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture Notes in
Computer Science, pages 541–560. Springer, 2013.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic Search of Meet-in-
the-Middle and Impossible Differential Attacks. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 157–184. Springer, 2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recov-
ery Attacks on Reduced-Round AES in the Single-Key Setting. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 371–387.
Springer, 2013.

[DHP+20] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Xoodyak, a lightweight cryptographic scheme. IACR Transactions
on Symmetric Cryptology, 2020(S1):60–87, 2020.

[Din21] Itai Dinur. Cryptanalytic Applications of the Polynomial Method for Solving
Multivariate Equation Systems over GF(2). In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, volume 12696 of LNCS, pages
374–403. Springer, 2021.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 365

[DKLS20] Orr Dunkelman, Abhishek Kumar, Eran Lambooij, and Somitra Kumar
Sanadhya. Cryptanalysis of Feistel-Based Format-Preserving Encryption.
Cryptology ePrint Archive, Report 2020/1311, 2020. https://ia.cr/2020/
1311.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks
on 8-Round AES-192 and AES-256. In Masayuki Abe, editor, Advances in
Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore, December
5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science,
pages 158–176. Springer, 2010.

[DMMR20] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann
Rotella. The Subterranean 2.0 Cipher Suite. IACR Transactions on Symmetric
Cryptology, 2020(S1):262–294, 2020.

[DR07] Joan Daemen and Vincent Rijmen. Probability Distributions of Correlation
and Differentials in Block Ciphers. J. Math. Cryptol., 1(3):221–242, 2007.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and Cryp-
tography. Springer, 2020.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on
8-Round AES. In Kaisa Nyberg, editor, Fast Software Encryption, 15th
International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13,
2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer
Science, pages 116–126. Springer, 2008.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.
In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
278–299. Springer, 2009.

[DV17] F. Betül Durak and Serge Vaudenay. Breaking the FF3 Format-Preserving
Encryption Standard over Small Domains. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, volume 10402 of LNCS, pages 679–707.
Springer, 2017.

[ELR20] Maria Eichlseder, Gregor Leander, and Shahram Rasoolzadeh. Computing
Expected Differential Probability of (Truncated) Differentials and Expected
Linear Potential of (Multidimensional) Linear Hulls in SPN Block Ciphers. In
Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, editors,
INDOCRYPT 2020, volume 12578 of LNCS, pages 345–369. Springer, 2020.

[GM00] Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael.
In The Third Advanced Encryption Standard Candidate Conference, April
13-14, 2000, New York, New York, USA, pages 230–241. National Institute of
Standards and Technology„ 2000.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis
(The "Duplication" Method). In Çetin Kaya Koç and Christof Paar, editors,
CHES’99, volume 1717 of LNCS, pages 158–172. Springer, 1999.

[HLLT20] Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower
Bounds on the Degree of Block Ciphers. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, volume 12491 of LNCS, pages 537–566. Springer,
2020.

https://ia.cr/2020/1311
https://ia.cr/2020/1311

366 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

[HLLT21] Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Strong
and Tight Security Guarantees Against Integral Distinguishers. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, volume 13090 of
LNCS, pages 362–391. Springer, 2021.

[HTT18] Viet Tung Hoang, Stefano Tessaro, and Ni Trieu. The Curse of Small Domains:
New Attacks on Format-Preserving Encryption. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, volume 10991 of LNCS, pages
221–251. Springer, 2018.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, volume 8874 of LNCS, pages 274–288. Springer,
2014.

[KLPR10] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B.
Robshaw. PRINTcipher: A Block Cipher for IC-Printing. In Stefan Mangard
and François-Xavier Standaert, editors, CHES 2010, volume 6225 of LNCS,
pages 16–32. Springer, 2010.

[KR96] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive
Key Search. In Neal Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS,
pages 252–267. Springer, 1996.

[KW02] Lars R. Knudsen and David A. Wagner. Integral Cryptanalysis. In Joan
Daemen and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages
112–127. Springer, 2002.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
206–221. Springer, 2011.

[Lai94] Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis, pages
227–233. Springer US, Boston, MA, 1994.

[Lev84] Henry M Levy. Capability-based Computer Systems. Digital Press, 1984.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis.
In Yvo Desmedt, editor, CRYPTO ’94, volume 839 of LNCS, pages 17–25.
Springer, 1994.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differ-
ential Cryptanalysis. In Donald W. Davies, editor, EUROCRYPT ’91, volume
547 of LNCS, pages 17–38. Springer, 1991.

[LMMR21] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh. The
SPEEDY Family of Block Ciphers Engineering an Ultra Low-Latency Cipher
from Gate Level for Secure Processor Architectures. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(4):510–545, 2021.

[LRD+21] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir
Grewal, and Sreenivas Subramoney. Cryptographic Capability Computing. In
MICRO ’21, pages 253–267. ACM, 2021.

Belkheyar, Daemen, Dobraunig, Ghosh, and Rasoolzadeh 367

[Mat93] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor
Helleseth, editor, EUROCRYPT ’93, volume 765 of LNCS, pages 386–397.
Springer, 1993.

[MDV17] Silvia Mella, Joan Daemen, and Gilles Van Assche. New Techniques for Trail
Bounds and Application to Differential Trails in Keccak. IACR Transactions
on Symmetric Cryptology, 2017(1):329–357, 2017.

[Nai15] Yusuke Naito. Full prf-secure message authentication code based on tweakable
block cipher. In Man Ho Au and Atsuko Miyaji, editors, Provable Security
- 9th International Conference, ProvSec 2015, Kanazawa, Japan, November
24-26, 2015, Proceedings, volume 9451 of Lecture Notes in Computer Science,
pages 167–182. Springer, 2015.

[O’C93] Luke O’Connor. On the Distribution of Characteristics in Bijective Mappings.
In Tor Helleseth, editor, EUROCRYPT ’93, volume 765 of LNCS, pages
360–370. Springer, 1993.

[Ras22] Shahram Rasoolzadeh. Low-latency boolean functions and bijective s-boxes.
IACR Transactions on Symmetric Cryptology, 2022(3):403–447, Sep. 2022.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear Invariant Attack -
Practical Attack on Full SCREAM, iSCREAM, and Midori64. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, volume 10032 of
LNCS, pages 3–33, 2016.

[Tod15] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, volume
9056 of LNCS, pages 287–314. Springer, 2015.

[Wag99] David A. Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE
’99, volume 1636 of LNCS, pages 156–170. Springer, 1999.

[WWC+14] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert M.
Norton, and Michael Roe. The CHERI Capability Model: Revisiting RISC in
an age of risk. In ACM/IEEE ISCA 2014, pages 457–468. IEEE Computer
Society, 2014.

Results for differential distribution and linear correlation

Table 10: Experimental and theoretical distributions of N(a, b), number of pairs for
differential (a, b) = (0x00002e, 0x220020) for 14× 212 randomly chosen key samples. The
experimental line contains the histogram of the number of keys for which the differential
(a, b) has N pairs and the theoretical line the expected number of keys in the case of a
Poisson distribution with λ = 223EDP = 0.516122.

N 0 1 2 3 4 5 6
Experimental 34100 17845 4551 755 83 9 1
Theoretical 34224.64 17664.10 4558.42 784.23 101.19 10.45 0.90

368 BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

0 1 2 3 4 5 6 7

0.1

1

10

100

1000

10000

100000

Experimental Theoretical

Figure 13: Experimental and theoretical distributions of N(a, b), corresponding to Table 10.

-0.0008 -0.0007 -0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Experimental

Theoretical

Figure 14: Experimental and theoretical cumulative distributions for C(a, b), with (a, b) =
(0x0008c0, 0x1a0974) using 40× 212 randomly chosen key samples. The experimental line
contains the cumulative ratio of the keys for which the linear approximation (a, b) has
value of x and the theoretical line the expected cumulative ratio of keys in the case of a
Normal distribution with µ = 0 and σ2 = ELP = 1.034764× 2−24.

	Introduction
	Specification of BipBip
	High-level Structure
	Datapath
	Tweak schedule
	Key schedule
	Security Claim

	Design Rationale
	Preliminaries on differential and linear propagation
	Datapath
	Tweak schedule
	The envisioned use of BipBip
	Security Claim
	Key schedule

	Preliminary Security Analysis
	Classification of Attack Strategies
	Round Key Guessing
	Differential Cryptanalysis
	Linear Cryptanalysis
	Multi-chosen-tweak Differential and Linear Cryptanalysis
	Combined Differential and Linear Attacks
	Algebraic Attacks
	Meet-in-the-Middle Attacks
	Generalized Demirci-Selçuk Attacks
	Invariant Attacks, Cycles, and Symmetries

	Implementation
	Conclusion

