
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 1, pp. 369–400. DOI:10.46586/tches.v2023.i1.369-400

Higher-Order DCA Attacks on White-Box
Implementations with Masking and Shuffling

Countermeasures
Yufeng Tang, Zheng Gong(�), Jinhai Chen and Nanjiang Xie

School of Computer Science, South China Normal University, Guangzhou, China
cis.gong@gmail.com

Abstract. On white-box implementations, it has been proven that differential compu-
tation analysis (DCA) can recover secret keys without time-costly reverse engineering.
At CHES 2021, Seker et al. combined linear and non-linear masking protections (SEL
masking) to prevent sensitive variables from being predicted by DCA. At Eurocrypt
2021, Biryukov and Udovenko introduced a public dummy shuffling construction
(BU shuffling) to protect sensitive functions. In this paper, we extend higher-order
DCA (HO-DCA) to higher-degree context for exploiting the vulnerabilities against
the state-of-the-art countermeasures. The data-dependency HO-DCA (DDHO-DCA),
which is proposed at CHES 2020, is improved to successfully recover the correct key
of SEL masking. In specific, our improved DDHO-DCA can also enhance the attack
result of #100 which is the third winning challenge in WhibOx 2019. Since the XOR
phase plays the same role as linear masking, we prove that a specific BU shuffling is
vulnerable to HO-DCA attacks. Furthermore, we demonstrate that the combination
of SEL masking and the specific BU shuffling still cannot defeat our higher-degree
HO-DCA and improved DDHO-DCA attacks.
Keywords: White-box Implementation · Masking · Dummy Shuffling · Higher-order
DCA · Data-dependency Attack

1 Introduction
White-box cryptography aims to securely execute cryptographic primitives even in a
hostile environment where an adversary has full control over the implementation. In
the white-box context, the attacker can get full access to the memory and modify all
resources during the execution. In 2002, Chow et al. [CEJvO02a,CEJvO02b] proposed the
seminal white-box implementations of AES and DES, which are categorized as the CEJO
framework. The principle of the CEJO framework is to convert full-round operations into a
series of lookup tables (LUTs) with embedded keys. Therefore, each table is obfuscated by
(non)linear encodings to protect the secret keys. However, Billet et al. [BGE04] exhibited
a structural attack (which is called BGE analysis) on Chow et al.’s white-box AES to
retrieve the key and encodings. Although many improved white-box implementations are
proposed [BCD06,XL09,Kar10], all of them are broken latter by BGE analysis and its
successors [MWP10,MRP12,MRP13].

However, BGE analysis requires construction details, which implies extra efforts on
reverse engineering in practice. To avoid these time-costly efforts, it is inspired to apply
side-channel analysis (SCA) to evaluate the security of white-box implementations. At
CHES 2016, Bos et al. [BHMT16] introduced differential computation analysis (DCA) as a
software counterpart of differential power analysis (DPA). DCA records the computation
traces in a noise-free context and exploits them to recover the secret key under the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-07-15 Accepted: 2022-09-15 Published: 2022-11-29

https://doi.org/10.46586/tches.v2023.i1.369-400
mailto:cis.gong@gmail.com
mailto:cis.gong@gmail.com
http://creativecommons.org/licenses/by/4.0/

370 HO-DCA Attacks on White-Box Implementations

DPA model. It can be fully automated and breaks many publicly available white-box
implementations. Hereafter, many enhanced DCA attacks [BBIJ17,RW19,ZMAB19] have
been proposed to reduce the amount of required traces and plaintexts.

To resist DCA, a natural idea is to adapt the obfuscation methods, such as masking and
shuffling countermeasures from the gray-box model [BRVW19]. Due to the introduction of
secret shares, the white-box implementation is represented as a bitsliced Boolean circuit.
Linear masking splits a sensitive variable into multiple shares and processes them securely
without leaking any information. However, it has been proven that linear masking is
vulnerable to higher-order DCA (HO-DCA) [BRVW19] and algebraic DCA [BU18] (also
called linear decoding analysis (LDA) [GPRW20]). At Asiacrypt 2018, Biryukov and
Udovenko [BU18] proposed a non-linear masking scheme against algebraic attacks. The
non-linear masking ensures that applying any linear function to the intermediate vectors
will not recover any sensitive variable. Unfortunately, this proposal is also broken by DCA
based on the recent studies [GRW20, SEL21]. At CHES 2020, Goubin et al. [GRW20]
discussed three cases to combine linear and non-linear masking schemes and demonstrated
their weakness against HO-DCA, higher-degree decoding analysis (HDDA), and data-
dependency HO-DCA (DDHO-DCA), respectively. At CHES 2021, Seker et al. [SEL21]
proposed a combined masking scheme (SEL masking) to defeat algebraic DCA.

To add more randomness in the implementations, shuffling desynchronizes the computa-
tion traces by switching the order of several independent operations (e.g., Sbox). At CHES
2017, Banik et al. [BBIJ17] analyzed three cases of software countermeasures to counteract
DCA by shuffling the order of table accesses. The cases are control-flow obfuscation,
table location randomization, and dummy operations. They also proposed zero differ-
ence enumeration attack and broke these countermeasures. Bogdanov et al. [BRVW19]
distinguished two dimensions, namely time and memory. Time shuffle randomizes the
order of operations while memory shuffle rearranges the addresses of intermediate states.
However, a DCA adversary can reorder the traces by the accessed memory addresses when
the order of computations is shuffled in time. Hence, both time and memory shuffles are
necessary to resist DCA. Bogdanov et al. also adapted the template attacks [CRR02]
as multivariate HO-DCA against a masked and shuffled implementation. Goubin et
al. [GRW20] introduced horizontal shuffling to randomize the computation in memory.
Vertical shuffling permutes the order of successive operations. It can shuffle both the order
of computations and memory locations. However, they also applied an integrated HO-DCA
to defeat the horizontal shuffling. At Eurocrypt 2021, Biryukov and Udovenko [BU21]
defined dummy shuffling by adding dummy operations to hide sensitive function and
distinguished hidden and public shuffling. They also proposed a public dummy shuffling
construction (BU shuffling) which has an explicit separation of each sensitive functions.
The main function computes on the correct input while the dummy function computes on
a randomly generated input. An XOR phase is then introduced to retrieve the real output.

To motivate the white-box AES implementations, WhibOx 2017 [PCY+] and 2019
[FMIS+] contests were organized for publicly examining the protection/attacking methods.
Although the submitted schemes are not required to reveal their construction details,
the enhanced SCA techniques are successfully applied on the challenges. Goubin et
al. [GPRW20] studied the ranking first challenge in WhibOx 2017 and proposed LDA to
break it. Bock and Tref [BT20] discussed the robustness of the challenges in WhibOx
2017 to defeat DCA and fault attacks. Goubin et al. [GRW20] presented DDHO-DCA and
integrated HO-DCA against the three winning implementations with masking/shuffling
countermeasure in WhibOx 2019.

Our Contribution. For the improved white-box countermeasures, DCA-like attacks
become the pivotal threats to the implementations. Both SEL masking and BU shuffling
are proposed to resist DCA and algebraic DCA attacks. However, the practical security

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 371

of these schemes against HO-DCA attacks is still pending for more intensive analysis. In
specific, the security of dummy shuffling has not been practically analyzed. This paper aims
to apply HO-DCA attacks against masking and shuffling countermeasures in white-box
implementations. Our contributions are threefold.

1. HO-DCA attacks against masking and shuffling countermeasures. We
revisit the techniques of HO-DCA attacks including HO-DCA, HDDA, DDHO-DCA,
and integrated HO-DCA. Subsequently, we implement a bitsliced AES protected by
SEL masking and analyze its security against HO-DCA, HDDA, and DDHO-DCA.
We also implement an AES implementation protected by a specific BU shuffling. In
this construction, each sensitive function is a key-embedded Sbox. Due to the masks
XOR to zero, the XOR phase of the specific BU shuffling is reduced to linear masking.
Hence, HO-DCA and algebraic DCA have been proven to defeat such a specific
BU shuffling. Furthermore, we discuss a practical way to combine SEL masking
and specific BU shuffling. The analysis results support that HO-DCA attacks can
still defeat the combined countermeasures. The analyzed implementations and HO-
DCA attacks are both formalized in a generalized form. The time complexities on
computing the traces of HO-DCA attacks are provided as well.

2. Higher-degree HO-DCA attack. HO-DCA only recovers the linear shares of
masking schemes. For defeating the non-linear masking, we propose a higher-degree
HO-DCA (HDHO-DCA) attack. A degree-d HDHO-DCA extends the probed traces
by multiplying all the d tuples and then applies HO-DCA on the higher-degree traces.
This attack also generalizes HDDA to deal with linear masking and thus it is a generic
attack against masking. We prove that HDHO-DCA not only defeats SEL masking
but also breaks the combination of masking and dummy shuffling countermeasures.

3. Improved data-dependency HO-DCA attack. Although HDHO-DCA is a
generic attack of masking, it is a brute-force approach by computing all the products
and sums of shares. To reduce the time complexity, we mount DDHO-DCA on
SEL masking by tracing the co-operands of variables through an AND instruction.
However, our experimental results show that DDHO-DCA fails to break a certain
AES implementation with SEL masking. A comprehensive study reveals that the
target variables and the tracing values of DDHO-DCA are incorrect. To fill up this
gap, we propose three paths to improve DDHO-DCA, namely targeting the input
variable of AND gates, exploiting the variables with the same multipliers, and tracing
the nodes in the second round. The improved attack successfully retrieves the correct
key of SEL masking and enhances the attack results of challenge #100 in WhibOx
2019. We also introduce two security notions to mitigate the improved DDHO-DCA.

For summarizing the cryptanalysis results, Table 1 illustrates the time complexity
of HO-DCA attacks to break SEL masking, a specific BU shuffling, and their combined
countermeasure. HO-DCA attacks can be divided into two phases that are computing
higher-order traces and analyzing traces for key recovery. We note that the time complexity
of key recovery is negligible compared with the one of trace computation. Thus, the time
complexity is used to denote the costs of computing higher-degree/higher-order traces
throughout this paper. The results indicate that the time complexity of our improved
DDHO-DCA only depends on the numbers of AND gadgets m and gates s. Hence, it is
independent of the order of masking and the degree of shuffling. Compared with HDHO-
DCA, the improved DDHO-DCA has an advantage on the time complexity. The source
code of the implementations and HO-DCA attacks is open-sourced 1.

1 https://github.com/scnucrypto/HO-DCA

https://github.com/scnucrypto/HO-DCA

372 HO-DCA Attacks on White-Box Implementations

Table 1: HO-DCA attacks on SEL masking, a specific BU shuffling, and their combination.

Countermeasures
Attacks HDDA Integrated HDHO-DCA Improved

[GRW20] HO-DCA (brute-force attack) DDHO-DCA
[BU21] [GRW20] (Section 3.1) (Section 3.2)

SEL masking O
(
(t + q)2.8) not O

((
t+q
n+1

))
O(ms)[SEL21] applicable

A specific
O(t2.8) O(t) O(p) notBU shuffling applicable(Section 4.1)

Combined masking
O

(
(p + g)2.8)†

O(t) O
((

p+g
n+1

))†

O(ms)and shuffling
(Section 4.3) O

(
(t + q)2.8)

O
((

t+q
hd+1+eh

))
Note: The dimension of a computation trace is t, the masking degree is d + 1, the
masking order is n, and the shuffling degree is h. The tracing function contains m
AND gadgets and each gadget consists of s AND gates. Let p =

(
t
h

)
, q =

(
t

d+1
)
, and

g =
(

p
d+1

)
. The symbol † represents that the attack contains a pre-processing step.

Organization. The remainder of this paper is organized as follows. Section 2 reviews HO-
DCA and the masking/shuffling countermeasures in white-box implementations. Section
3 studies HO-DCA against SEL masking. A higher-degree HO-DCA is proposed. It
also improves DDHO-DCA to break SEL masking and challenge #100 in WhibOx 2019.
In Section 4, HO-DCA attacks are analyzed to defeat a specific BU shuffling and its
combination with SEL masking. Section 5 concludes this paper.

2 Preliminaries
2.1 Computational and Algebraic Attacks
Differential Computation Analysis. Bos et al. [BHMT16] proposed DCA (computational
attack in more general sense) to break white-box implementations without the knowledge
of the underlying construction details. DCA adapts the technique of DPA to the white-
box context. In the noise-free context, DCA successfully breaks many public white-
box implementations. It firstly invokes the implementation several times with different
plaintexts. During each execution, the software computation traces are collected through a
dynamic instrumentation tool, such as Intel PIN. A DCA attacker then makes a key guess
to predict the sensitive intermediate variables based on the same plaintexts. Subsequently,
the correlation between the predictions and each sample of the computation traces is
computed. A key guess with the highest correlation is probably a correct key. The function
for calculating an intermediate state is defined as a selection function. The principle for
distinguishing a key candidate based on the correlation between computation traces and
predicted variables is called a distinguisher. The following paragraphs recall the definitions
of DCA distinguisher.

Definition 1 (Pearson’s Correlation Coefficient [RW19]). Let Cov(X, Y) be the covariance
between X and Y , σX denote the standard deviation of X, and E(X) represent the
expectation of X. Pearson’s correlation coefficient is a measure of linear correlation
between two random variables X and Y , which can be denoted by Cor(X, Y) as follows.

Cor(X, Y) = Cov(X, Y)
σX · σY

= E(XY)− E(X)E(Y)√
E(X2)− (E(X))2

√
E(Y 2)− (E(Y))2

Cor(X, Y) has a value between −1 and 1. For Cor(X, Y) = −1 and 1, X and Y have

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 373

negative and positive correlations, respectively. If Cor(X, Y) = 0, X and Y are linearly
independent.

Definition 2 (Boolean Correlation [RW19]). Let F2 denote the finite field with order
2 and Fn

2 be the n-dimensional vector space over F2. Let f, g : Fn
2 → F2 represent two

n-variable boolean functions such that

Nf
b = |{x ∈ Fn

2 , b ∈ F2 : f(x) = b}|,

Nf,g
b1b2

= |{x ∈ Fn
2 , b1, b2 ∈ F2 : f(x) = b1, g(x) = b2}|.

For a uniformly distributed random input x ∈ Fn
2 , Pearson’s correlation between f(x) and

g(x) can be described as follows.

Cor(f, g) = Nf,g
11 Nf,g

00 −Nf,g
10 Nf,g

01√
Nf

1 Nf
0 Ng

1 Ng
0

(1)

The bias of a boolean function f is defined by

B(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2 · wt(f), (2)

where wt(f) denotes the Hamming weight of the truth-table of f , i.e., wt(f) = |{x ∈
Fn

2 : f(x) = 1}|. If a boolean function f equally outputs 0 and 1, f is balanced and
wt(f) = 2n−1. For two balanced n-ary boolean functions f and g, Equation (1) can be
simplified to

Cor(f, g) = 1
2n

B(f + g). (3)

Definition 3 (DCA Distinguisher [RW19]). Let φ denote a selection function for a
hypothesized key k∗, whilst its correct key is k. A computation trace {v1, · · · , vt} consists
of t samples. A common selection function is defined as the output of Sbox such that
φ(x, k∗) = S(x⊕ k∗). The DCA distinguisher is calculated as the maximal absolute value
of the correlation between each trace sample vi and j-th output of φ, that is

δk = max1≤i≤t|Cor(φj , vi)|.

Algebraic DCA. Biryukov and Udovenko [BU18] introduced the algebraic DCA to defeat
masking countermeasures. Let (v1, · · · , vt) denote a computation trace containing n linear
shares of a sensitive variable x. The algebraic attack finds a linear combination of shares
by solving the equations and recovers a constant vector (a1, · · · , at) ∈ {0, 1}t such that

t⊕
i=1

ai · vi = x.

If the system is solvable, the key guess is most likely correct. This attack is also indepen-
dently discussed as linear decoding analysis (LDA) by Goubin et al. [GPRW20]. The time
complexity of algebraic DCA is O(|K| · t2.8) where K is the subkey space and O(t2.8) is
the time complexity of using the Strassen algorithm [Str69] to solve the linear system.
Notably, it is independent of the masking order.

2.2 Higher-Order DCA Attacks
Higher-Order DCA. Bogdanov et al. [BRVW19] introduced HO-DCA against masking
countermeasures in white-box implementations. HO-DCA consists of a pre-processing

374 HO-DCA Attacks on White-Box Implementations

step and a first-order DCA. Let (v1, · · · , vt) denote a computation trace. An order-n
DCA computes

(
t
n

)
combinations of the trace and form an order-n trace (vj1 , · · · , vjp

).
Each node vji

for 1 ≤ i ≤ p is the sum of n nodes in (v1, · · · , vt). HO-DCA recovers the
sum of n linear shares by enumerating all the subsets with n nodes in the computation
traces. Thus, a sensitive variable protected by linear masking can be retrieved from the
higher-order traces.

Higher-Degree Decoding Analysis. To extend the algebraic DCA to deal with non-linear
masking, HDDA has been proposed [GRW20,BU21]. HDDA multiplies all the d tuples
in the computation trace and applies the algebraic DCA to an extended higher-degree
trace. For a degree-d HDDA, the higher-degree traces contain q =

(
t
d

)
samples. The

extended traces consist of (t + q) nodes. Thus, the time complexity of the algebraic DCA
is O(|K| · (t + q)2.8).

Data-Dependency Higher-Order DCA. Goubin et al. [GRW20] proposed DDHO-DCA
to attack the three winning challenges in WhibOx 2019 competition. The basic principle
of DDHO-DCA is that the linear shares of some variables can be recovered by targeting
the multipliers of an intermediate variable. This attack prevents the exponential growth of
the linear masking order. Algorithm 1 is recalled for deriving the sets of co-operands for
AND gates in a boolean circuit.

Algorithm 1 DetectCoOperands(C) [GRW20]
Input: A boolean circuit C.
Output: An associative array M mapping a gate in C to a set of gates in C.

1: M ← empty associative array
2: for g ∈ AND_GATES(C) do
3: g1, g2 ← the two incoming gates of g
4: if M does not have key g1 then
5: M [g1]← ∅
6: if M does not have key g2 then
7: M [g2]← ∅
8: M [g1]←M [g1] ∪ {g2}
9: M [g2]←M [g2] ∪ {g1}

10: return M

The obtained array M contains the variables of which the sum is correlated to a sensitive
variable. Therefore, a data-dependency trace can be derived to compute the bitwise sum of
each set. For each g in M ,

⊕
e∈M [g] e forms the nodes in a data-dependency trace. In this

case, one of the nodes in the trace might be the sum of linear shares. Therefore, DCA can
be applied to recover the secret key.

Integrated Higher-Order DCA. Goubin et al. [GRW20] adapted the integrated attacks
[CCD00,RPD09] with HO-DCA to defeat against shuffling countermeasure in white-box
implementations. The principle is to combine t (shuffled) samples of traces and compute
the correlation between the sum and the predicted value. The following lemma indicates
that the obtained correlation is reduced by a factor

√
t instead of t.

Lemma 1 ([GRW20]). Let Xi ∈ F2 for 1 ≤ i ≤ t be t mutually independent and uniformly
random variables. Let Y ∈ F2 be a random variable satisfying Cor(Y, Xj) = ρ for some
j ∈ {1, · · · , t} and Y is independent of remaining Xi. We have

Cor(Y,
∑

i

Xi) = 1√
t
Cor(Y, Xj) = ρ√

t
.

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 375

2.3 Masking and Shuffling Countermeasures
Linear Masking. Linear masking is also called Boolean masking. Ishai et al. [ISW03]
defined that an order-n linear masking (ISW masking) splits a sensitive variable x into
n + 1 shares satisfying

x = x0 ⊕ x1 ⊕ · · · ⊕ xn.

The variables x0, · · · , xn−1 are generated uniformly and independently, and xn = x ⊕
x0 ⊕ · · · ⊕ xn−1. This masking ensures that any combination of less than n + 1 shares
cannot reveal any information about x. However, algebraic DCA can break it by utilizing
elementary linear algebra. An order-(n+1) HO-DCA can also recover the sensitive variable
of this linear masking.

Non-Linear Masking. Biryukov and Udovenko [BU18] proposed a non-linear masking
scheme (BU masking). It splits a sensitive variable x into three shares a, b, and c satisfying

x = ab⊕ c,

where a and b are randomly generated bits, and c is computed as c = x ⊕ ab while
Pr[(x⊕ ab) = x] = 3

4 . Both Goubin et al. [GRW20] and Seker et al. [SEL21] proved that it
is vulnerable to DCA.

Combination of Linear and Non-Linear Masking. Linear and non-linear masking schemes
are vulnerable to algebraic DCA and DCA attacks, respectively. Thus, the combination of
linear and non-linear masking is intuitively secure against computational and algebraic
attacks. Goubin et al. [GRW20] discussed three possible cases to combine linear and
non-linear masking (GRW masking), but none of them derives secure gadgets for each
encoding. Let x ∈ F2 be a sensitive variable and a, b, ai, bi, ci ∈ F2 denote the shares for
1 ≤ i ≤ n. The three cases of GRW masking are listed as follows.

• Case 1. x = (a1 ⊕ a2 ⊕ · · · ⊕ an)(b1 ⊕ b2 ⊕ · · · ⊕ bn)⊕ (c1 ⊕ c2 ⊕ · · · ⊕ cn),

• Case 2. x = (a1b1 ⊕ c1)⊕ (a2b2 ⊕ c2)⊕ · · · ⊕ (anbn ⊕ cn),

• Case 3. x = ab⊕ c1 ⊕ c2 ⊕ · · · ⊕ cn.

In specific, Case 1 applies a linear masking on top of a non-linear masking while Case 2
applies a non-linear masking on top of a linear masking. For Case 3, it replaces the first
share c0 in ISW masking by a non-linear share ab. By analyzing the correlation between
the sensitive variable and the sum of the linear shares, Goubin et al. revealed the weakness
of the three combinations. The results imply that these cases cannot provide resistance
against HO-DCA, DDHO-DCA, and integrated HO-DCA.

To resist computational and algebraic attacks, Seker et al. [SEL21] proposed the SEL
masking which consists of linear shares of order n and non-linear shares of degree d. It
follows two security notions, probing security [ISW03, KHL11] and prediction security
[BU18]. The former model states that every tuple of n or less intermediate variables
cannot reveal any information about the sensitive variable. The latter model focuses
on the probability of an adversary to predict the secret value of any degree-d function
over intermediate values. Let x ∈ F2 be a sensitive variable. The encoding phase of SEL
masking can be described by

x =
d∏

j=0
x̃j ⊕

n⊕
i=1

xi. (4)

The variables x̃0, · · · , x̃d, x1, · · · , xn−1 ∈ F2 are chosen randomly and independently, and
xn = x⊕

∏d
j=0 x̃j ⊕

⊕n−1
i=1 xi. Seker et al. also defined an XOR gadget, an AND gadget,

376 HO-DCA Attacks on White-Box Implementations

and a Refresh gadget to perform computation on encoded variables. The AND gadget is
recalled in Algorithm 2 in which Refresh function represents the Refresh gadget of SEL
masking. To resist the algebraic attacks, the refreshed masks prevent the inputs of the
gadget from being fixed by the adversary.

Algorithm 2 AND gadget for combined masking [SEL21]
Input: (x̃j)j∈[0,d], (xi)i∈[1,n] satisfying

∏d
j=0 x̃j ⊕

⊕n
i=1 xi = x and (ỹj)j∈[0,d], (yi)i∈[1,n]

satisfying
∏d

j=0 ỹj ⊕
⊕n

i=1 yi = y.
Output: (z̃j)j∈[0,d], (zi)i∈[1,n] satisfying

∏d
j=0 z̃j ⊕

⊕n
i=1 zi = xy.

1: (x̃j)j∈[0,d], (xi)i∈[1,n] ← Refresh((x̃j)j∈[0,d], (xi)i∈[1,n])
2: (ỹj)j∈[0,d], (yi)i∈[1,n] ← Refresh((ỹj)j∈[0,d], (yi)i∈[1,n])
3: for 0 ≤ i ≤ d do
4: z̃i = x̃iỹi′ ▷ i′ = i + 1 mod(d + 1)
5: for 1 ≤ j ≤ n do
6: ri,j ← rand(0, 1)
7: z̃i = z̃i ⊕ ri,j

8: for 0 ≤ i ≤ n do
9: for i < j ≤ n do

10: if i = 0 then
11: rj,0 ← And[n, d]
12: else
13: ri,j ← rand(0, 1)
14: rj,i ← (ri,j ⊕ xiyj)⊕ xjyi

15: for 1 ≤ i ≤ n do
16: zi ← xiyi

17: for 0 ≤ j ≤ n and j ̸= i do
18: zi ← zi ⊕ ri,j

19: return (z̃j)j∈[0,d], (zi)i∈[1,n]

For the And[n, d] function in AND gadget, Seker et al. only provided the detailed
transformation for d = 1 and d = 2 which are described as follows.

And[n, 1] : rj,0 = x̃1(x̃0yj ⊕ r0,j ỹ0)⊕
ỹ1(ỹ0xj ⊕ r1,j x̃0)⊕ r1,j(r0,1 ⊕ · · · ⊕ r0,n).

And[n, 2] : rj,0 = x̃0[x̃2(x̃1yj ⊕ r0,j ỹ0)⊕ r1,jvỹ1]⊕
ỹ0[ỹ1(ỹ2xj ⊕ r1,j x̃2)⊕ r0,jux̃2]⊕
x̃0ỹ1(r1,j x̃2ỹ0 ⊕ r2,j x̃1ỹ2)⊕ r0,j x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,j x̃0 ⊕ r1,j ỹ1)⊕ uvr0,j ,

u = r1,1 ⊕ · · · ⊕ r1,n,

v = r2,1 ⊕ · · · ⊕ r2,n.

Therefore, this specific SEL masking aims to resist arbitrary order DCA and at most
degree-2 algebraic DCA.

Dummy Shuffling. Biryukov and Udovenko [BU21] introduced dummy shuffling to hide
the real computation among several redundant computations. The target of dummy
shuffling is a computational slot which is a sensitive function of the implementation
that can be computed separately and independently. Dummy shuffling is performed in
input-shuffling (shuffles the main and dummy inputs), evaluation (computes the slots on

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 377

main/dummy inputs), and output-selection (extracts the main output) phases. Based
on the abilities of an adversary, the dummy shuffling techniques can be classified into
hidden/public dummy shuffling. An attacker is hard to isolate any single (main/dummy)
slot among a group of slots in a hidden dummy shuffling implementation, whilst any slot
can be clearly separated and isolated in a public dummy shuffling implementation. However,
it is still difficult to predict the location of a main slot. BU shuffling is a construction of
public dummy shuffling with a single main slot and multiple dummy slots. It has a clear
slot separation and the outputs of all the slots are simply XORed to extract the main
output. A variant of this construction was implemented by the third winning challenge
#100 in WhibOx 2019 contest [FMIS+].

3 Security Evaluation on Combined Masking
In this section, we analyze HO-DCA against SEL masking, extend HO-DCA to higher-
degree context, and enhance the results of DDHO-DCA.

Target Implementation. We assume that the target implementation is possibly a Boolean
circuit protected by SEL masking. It is represented by a directed acyclic graph where
the vertices are gate and the edges between two nodes are wires. A gate might compute
the NOT, XOR, and AND of the input wire(s) or output a constant value (0 or 1). The
output of each gate can be connected to several following gates and can be associated with
a Boolean circuit of the plaintexts. The intermediate variables are the values assigned
to the wires that are neither input wires nor output ones. An XOR or AND gadget is a
sub-circuit that securely process with 2 · (n + d + 1) inputs (i.e., input shares). It relates
to the XOR or AND operation between two unmasked sensitive variables. Each gadget
has n + d + 1 outputs which are the shares of the resulting value. The required random
values depend on the inputs of the implementation. A computation trace consists of several
intermediate variables of the circuit. It is assumed that the attacker is able to locate
a t-dimensional sub-trace which is denoted by a t-large window. Such a window might
contain the shares of the target sensitive variable.

3.1 Higher-Order DCA Attacks on SEL Masking
To resist the algebraic DCA, SEL masking replaces the first share x0 in ISW masking
by non-linear shares x̃0, · · · , x̃d satisfying

∏d
j=0 x̃j = x0. For d = 1 and d = 2, the

encoding schemes of SEL masking are specified in Equation (5) and (6), respectively. The
corresponding constructions are named (n, 1)-masking and (n, 2)-masking.

x = x̃0x̃1 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn (5)
x = x̃0x̃1x̃2 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn (6)

We note that Equation (5) is equal to Case 3 of GRW masking. In the following paragraphs,
the security of (n, 1)-masking and (n, 2)-masking is evaluated via HO-DCA attacks.

HO-DCA on SEL Masking. For (n, 1)-masking and (n, 2)-masking, Equation (5) and (6)
imply that x1⊕x2⊕· · ·⊕xn = x⊕ x̃0x̃1 and x1⊕x2⊕· · ·⊕xn = x⊕ x̃0x̃1x̃2, respectively.
For any x, x̃0, x̃1, x̃2 ∈ F2, Pr[(x ⊕ x̃0x̃1) = x] = 3

4 and Pr[(x ⊕ x̃0x̃1x̃2) = x] = 7
8 . A

correlation can be found between the sensitive variable x and the sum of the intermediate
variables x1⊕x2⊕· · ·⊕xn. Thus, there exists one node in the higher-order traces which is
highly correlated to a predictable vector. The following lemma helps analyze the expected
correlation of HO-DCA to SEL masking.

378 HO-DCA Attacks on White-Box Implementations

Lemma 2. Let X, X0, X1, · · · , Xd ∈ F2 be mutually independent and uniformly random
variables. We have

Cor(X, X ⊕
d∏

j=0
Xj) = 1− 1

2d
.

Proof. Since X and X ⊕
∏d

j=0 Xi are both balanced, from Equation (2) and (3), we have

Cor(X, X ⊕
d∏

j=0
Xj) = Cor(0,

d∏
j=0

Xj) = 1
2d+1 (2d+1 − 2 · wt(

d∏
j=0

Xj)).

For a (d + 1)-ary function
∏d

j=0 Xj , it outputs 1 only when the input variables are all
equal to 1 such that wt(

∏d
j=0 Xj) = 1. Hence, Cor(X, X ⊕

∏d
j=0 Xj) = 1− 1

2d .

From Lemma 2, it indicates that for (n, 1)-masking,

Cor(x, x1 ⊕ x2 ⊕ · · · ⊕ xn) = Cor(x, x⊕ x̃0x̃1) = 1
2 .

For (n, 2)-masking,

Cor(x, x1 ⊕ x2 ⊕ · · · ⊕ xn) = Cor(x, x⊕ x̃0x̃1x̃2) = 3
4 .

The strong correlation implies that an HO-DCA attacker is able to recover the secret key
with high probability by targeting the n linear shares x1, x2, · · · , xn. This process, on a
t-large window, has time complexity O

((
t
n

))
without locating the non-linear shares of

degree-d. Besides, Lemma 2 also shows that the correlation nearly approaches 1 when the
masking has a high degree d.

To extend HO-DCA to defeat non-linear masking, we introduce a higher-degree version
of HO-DCA. A higher-degree HO-DCA (HDHO-DCA) with degree-d and order-n consists
of a multiplication step followed by an HO-DCA. The adversary first multiplies all d points
in the computation trace and mounts HO-DCA to combine n nodes in the higher-degree
trace. For unknown d, the attacker can compute the products of all 2, 3, · · · , ℓ points
among the nodes in the trace by guessing a possible degree satisfying ℓ ≥ d. A degree-d
trace consists of

(
t
d

)
points given by (vj1 , · · · , vjq

). Each node vji
for 1 ≤ i ≤ q is the

product of d nodes in (v1, · · · , vt). The multiplication of nodes helps to recover the product
of non-linear shares. HDHO-DCA joints the higher-order trace with the original one and
obtains t+ jq points (v1, · · · , vt, vj1 , · · · , vjq). Consequently, an order-n DCA combines the
n nodes in the obtained trace to recover the sensitive variable. For defeating BU masking,
HDHO-DCA enumerates all the subsets of the computation trace with cardinality 2 and
multiplies the elements of each subset to obtain the degree-2 trace. Such a trace recovers
the product of ab in BU masking. Since the variable c is recorded in the original trace, the
connection of the degree-2 trace and the original trace contains the nodes ab and c. Thus,
an order-2 DCA can recover the sensitive variable ab⊕c by adding all order-2 combinations
of the trace. For (n, d)-masking, HDHO-DCA first obtains all the subsets with cardinality
d+1 and multiplies the elements of each set. Such a trace recovers the product of non-linear
shares, i.e., x̂ =

∏d
j=0 x̃j , and computes q =

(
t

d+1
)

items. Subsequently, HDHO-DCA
combines the degree-(d + 1) trace with the original trace and mounts an order-(n + 1) DCA
to compute

(
t+q
n+1

)
items. Thus, x̂⊕ x1 ⊕ · · · ⊕ xn = x is retrieved as a node in the trace.

HDDA on SEL Masking. HDDA first computes a degree-(d + 1) trace to multiply all
the (d + 1)-tuples in the computation trace. Similar to HDHO-DCA, this process aims to
recover the product of non-linear shares and computes q =

(
t

d+1
)

nodes. By combining the
higher-degree trace with the original trace, there exist n + 1 nodes of which the sum is a
sensitive variable. Through a decoding phase by algebraic DCA, the linear shares can be
recovered with the time complexity O(|K| · (t + q)2.8).

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 379

Data-Dependency HO-DCA on SEL Masking. DDHO-DCA aims to bypass the efforts
of finding the masking shares. It recovers the linear shares of some sensitive variables by
the multipliers of some intermediate variables.
Definition 4 (Multiplier). A multiplier is a co-operand of a variable for an AND operation.
Let vg denote the output of a gate g in the circuit. The set {vg′}, which includes the
multipliers of vg, is the co-operands such that (vg, vg′) will enter a subsequent AND gate.
Definition 5 (Data-Dependency Trace). Let {vg′} be the multipliers of vg. A data-
dependency trace v consists of the sum of the multipliers for each gate g in the circuit
such that v = {⊕{vg′

1
}, · · · ,⊕{vg′

t
}}.

Definition 6 (Data-Dependency Node). Let (v1, · · · , vt) denote a data-dependency trace.
Each sample vi is called a data-dependency node. Each data-dependency node is the sum
of multipliers for a variable.

In SEL masking, most of the AND gates appear in the AND gadgets. The set of
multipliers of the input variables in the AND gadget for (n, 1)-masking and (n, 2)-masking
are enumerated in Table 2 and Table 3, respectively. The multipliers in {·} are iterated
over the order n. For the variables xi and yi in (n, 1)-masking, the full set and subset of
multipliers that contain the linear shares have a correlation 1

2 . However, for such cases in
(n, 2)-masking, the full set of multipliers only has a correlation 1

4 , which is still possible to
distinguish the correct key. Although the Refresh gadget updates the shares of masking, the
sum of the updated linear sharing is correlated to a sensitive variable. Therefore, applying
Refresh gadgets cannot prevent this kind of flaw. The correlation holds for arbitrary high
order n of linear masking shares. To get a high correlation for (n, 2)-masking, the adversary
can obtain a subset of the multipliers for xi and yi by combining n variables among n + 1
variables. One of the combinations is y1 ⊕ · · · ⊕ yn or x1 ⊕ · · · ⊕ xn. Thus, a correlation 3

4
can be derived. This process implies that DDHO-DCA cannot recover the linear shares of
SEL masking directly but can find the set consisting of the linear shares. The introduction
of a non-linear share reduces the correlation in the case of (n, 2)-masking.

To verify the leakage, we implement a bitsliced AES-128 with BP Sbox which is
proposed by Boyar and Peralta [BP09] (recalled in Appendix A). For a practical DDHO-
DCA, Algorithm 1 is modified as Algorithm 3. It detects the co-operands of intermediate
variables for AND gates. Since an operated gate in a Boolean circuit is hard to be tracked
in the software, the new algorithm traces the memory address to record the intermediate
variable. This attack uses 256 traces limited to 7168 and 8192 data-dependency nodes
computed in the first round, respectively for (5, 1)-masking and (5, 2)-masking. The results
are illustrated in Figure 1. The target variable is the 8-th output bit (i.e., s8 in Appendix
A) of the first Sbox in the initial round. Figure 1 depicts that the correct key candidate
plotted in blue is hard to be distinguished from other candidates plotted in gray. This is
not consistent with the correlation on the full multipliers of the variables xi/yi, especially
for the case of (n, 1)-masking (refer to Table 2). The same negative result can be obtained
by targeting any output bit of 16 Sboxes in the first round. This implies that the sum of
the multipliers for any variable in the first round has a low correlation with any output bit
of arbitrary Sbox. Such an observation stimulates a comprehensive study on DDHO-DCA
and an exploration of its failure against SEL masking.

3.2 Improved Data-Dependency HO-DCA
DDHO-DCA exploits the multipliers of intermediate values to obtain a set consisting of
linear shares. Nevertheless, the results reveal that an attacker cannot obtain a strong
correlation when targeting any output of Sbox in the first round. This section explains
the inefficiency of DDHO-DCA against SEL masking. Then we illustrate three paths to
improve the data-dependency attack to recover the correct key with SEL masking.

380 HO-DCA Attacks on White-Box Implementations

Table 2: Multipliers for each variable in AND gadgets of (n, 1)-masking, for 1 ≤ i ≤ n.

Variable Multipliers Correlation (full set) Correlation (subset)

x̃0 ỹ1, {yi, r1,i} - Cor(y, ỹ1 ⊕
⊕n

i=1 yi) =
Cor(y,

⊕n
i=1 yi) = 1

2

x̃1 ỹ0, {x̃0yi ⊕ r0,iỹ0} - -
x1 ỹ0, {yi}

Cor(y, ỹ0 ⊕
⊕n

i=1 yi) = 1
2 Cor(y,

⊕n
i=1 yi) = 1

2x2 ỹ0, {yi}
x3 ỹ0, {yi}

ỹ0 x̃1, {r0,i, xi} - Cor(x, x̃1 ⊕
⊕n

i=1 xi) =
Cor(x,

⊕n
i=1 xi) = 1

2

ỹ1 x̃0, {ỹ0xi ⊕ r1,ix̃0} - -
y1 x̃0, {xi}

Cor(x, x̃0 ⊕
⊕n

i=1 xi) = 1
2 Cor(x,

⊕n
i=1 xi) = 1

2y2 x̃0, {xi}
y3 x̃0, {xi}

Table 3: Multipliers for each variable in AND gadgets of (n, 2)-masking, for 1 ≤ i ≤ n.

Variable Multipliers Correlation (full set) Correlation (subset)

x̃0

ỹ1, {x̃2(x̃1yi ⊕ r0,iỹ0)
- -⊕r1,ivỹ1, ỹ1(r1,ix̃2ỹ0

⊕r2,ix̃1ỹ2), r0,i}

x̃1
ỹ2, {yi, r2,iỹ2, - Cor(y, ỹ2 ⊕

⊕n
i=1 yi) = 1

4
r0,iỹ2(v ⊕ x̃2ỹ0)} Cor(y,

⊕n
i=1 yi) = 3

4

x̃2

ỹ0, {x̃1yi ⊕ r0,iỹ0,
- -r1,i, r0,iu, r1,iỹ0, ỹ0,

ỹ0(r0,ix̃0 ⊕ r1,iỹ1)}
x1 ỹ2, {yi}

Cor(y, ỹ2 ⊕
⊕n

i=1 yi) = 1
4 Cor(y,

⊕n
i=1 yi) = 3

4x2 ỹ2, {yi}
x3 ỹ2, {yi}

ỹ0

x̃2, {ỹ1(ỹ2xi ⊕ r1,ix̃2)
- -⊕r0,iux̃2, r0,i, r1,ix̃2,

x̃2, x̃2(r0,ix̃0 ⊕ r1,iỹ1)}

ỹ1

x̃0, {r1,iv, ỹ2xi ⊕ r1,ix̃2,
- -x̃0(r1,ix̃2ỹ0 ⊕ r2,ix̃1ỹ2),

r1,i}

ỹ2
x̃1, {xi, r2,ix̃1, - Cor(x, x̃1 ⊕

⊕n
i=1 xi) = 1

4
r0,ix̃1(v ⊕ x̃2ỹ0)} Cor(x,

⊕n
i=1 xi) = 3

4

y1 x̃1, {xi}
Cor(x, x̃1 ⊕

⊕n
i=1 xi) = 1

4 Cor(x,
⊕n

i=1 xi) = 3
4y2 x̃1, {xi}

y3 x̃1, {xi}

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 381

Algorithm 3 DetectCoOperands(C)
Input: A Boolean circuit C.
Output: An associative array M mapping a variable in C to a set of variables in C.

1: M ← empty associative array
2: T ← a mapping array from memory address to its value in C
3: A← memory address array for the left operands of AND gates in C
4: B ← memory address array for the corresponding right operands in C
5: for 0 ≤ i ≤ length(A) do
6: if M does not have key A[i] then
7: M [A[i]]← ∅
8: if M does not have key B[i] then
9: M [B[i]]← ∅

10: M [A[i]]←M [A[i]] ∪ T [B[i]]
11: M [B[i]]←M [B[i]] ∪ T [A[i]]
12: return M

0 1000 2000 3000 4000 5000 6000 7000
Node

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

(a) The correlation between data-dependency nodes and target bit of Sbox in (5, 1)-masking.

0 2000 4000 6000 8000
Node

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

(b) The correlation between data-dependency nodes and target bit of Sbox in (5, 2)-masking.

Figure 1: The correlation curve when computing the data-dependency nodes in the first
round and targeting the 8-th output bit of the first Sbox in the first round.

3.2.1 Targeting Inputs of AND Gates.

Deriving from the success of DCA, most of the attacks [BBMT18,RW19,GPRW20] select
the outputs of a first-round Sbox as a hypothesized value. Similarly, DDHO-DCA targets
an output bit of a first-round Sbox to compute the correlation with collected traces.
However, the nodes in data-dependency traces consist of the sum of multipliers, which are
correlated to the inputs of an AND gates in Sbox circuit. Let x denote a set of elements

382 HO-DCA Attacks on White-Box Implementations

(x1, · · · , x8) and x̄ be a set of secret shares. Figure 2 illustrates the relation among the
multipliers, AND gates, and AND gadgets. On the left side, each AND gate (plotted in
red) in the Sbox circuit is securely operated as an AND gadget in SEL masking. On the
right side, DDHO-DCA records the variables (plotted in red) which are the inputs to an
AND gate in AND gadgets. Since the obtained multipliers might contain the linear shares
(e.g., x1, · · · , xn of x̄), the sum of them corresponds to the sum of the linear shares. Thus,
the resulting sum is correlated to the inputs of AND gates in Sbox circuit.

ഥ𝒙 ഥ𝒚

ത𝒛

AND gadget ∧

⊕ … ⊕

⊕∧

∧ ⊕… …

S

𝑥0, … , 𝑥𝑑 , 𝑥1, … , 𝑥𝑛 𝑦0, … , 𝑦𝑑 , 𝑦1, … , 𝑦𝑛

ǁ𝑧0, … , ǁ𝑧𝑑 , 𝑧1, … , 𝑧𝑛

𝒙

𝒚

∧

⊕ … ⊕

⊕∧

∧⊕… …

𝑥1, … , 𝑥8

𝑦1, … , 𝑦8

Figure 2: The circuit of Sbox (left) and AND gadget (right).

BP Sbox circuit has 32 AND operations and thus has 64 input values of AND gates.
Among these inputs, some variables are operated repeatedly. Table 4 summarizes 36
various variables of the inputs and classifies them by their operating times. The results
show that t29 is the most frequently used operand. Based on the variables listed in Table
4 and the output variables computed by the equations in Appendix A, any output of
the Sbox is not directly assigned by any input of an AND gate. Table 8 in Appendix B
indicates the low correlation between an input variable of AND gate and an output of
Sbox circuit. For a successful attack, the hypothesized value of DDHO-DCA must be
replaced by one of the inputs of AND gates in Sbox circuit.

Table 4: Input variables of AND gates in Boyar and Peralta’s Sbox circuit [BP09].

Operating Variablestimes
1 t21, t23, t24, t25, t27, t30, t31, t35, t38

2
x8, y1, y2, y3, y4, y5, y6, y7, y8, y9
y10, y11, y12, y13, y14, y15, y16, y17
t33, t37, t40, t41, t42, t43, t44, t45

3 t29

Figure 3 demonstrates the effectiveness of such an improved DDHO-DCA to defeat
SEL masking when targeting the variable t29 in the first round. The correct key guess
(plotted in blue) can be distinguished from incorrect key guesses (in gray) for (5, 1)-masking.
Furthermore, the correlation curve has three peaks, which are corresponding to three times
of multiplying with t29. However, the situation is different at (5, 2)-masking. Although
the peak of the correct key in Figure 3(b) is higher than the one of the correct key in
Figure 1(b), it is not the highest peak among other candidates. This result implies a failed
key recovery for the degree-2 case. As analyzed in Table 3, the correlation between the
variable and the full set of its multipliers is 1

4 . The analysis might not be successful for this

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 383

0 1000 2000 3000 4000 5000 6000 7000
Node

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
rre

la
tio

n

(a) The correlation between data-dependency nodes and target bit of Sbox circuit in (5, 1)-masking.

0 2000 4000 6000 8000
Node

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

(b) The correlation between data-dependency nodes and target bit of Sbox circuit in (5, 2)-masking.

Figure 3: The correlation curve when computing the data-dependency nodes in the first
round and targeting t29 in the first Sbox in the first round.

Table 5: The vulnerable bits when targeting the input variables of AND gates for (5, 2)-
masking with a full set of multipliers.

Key byte Vulnerable variables Key byte Vulnerable variables
1 t31, t43, t45 9 t29, t30, t42, t44
2 t23, t27, t29, t37 10 t27, t29, t41, t43
3 t24, t25, t29, t37, t44 11 t24, t25, t31, t33, t38, t40, t41, t42, t43, t45
4 t23, t25, t37, t44 12 t31, t37, t41
5 t25, t29, t31, t33, t42 13 t21, t24, t25, t29, t33, t37, t42, t44
6 t38 14 t24, t29, t30, t41
7 t21, t24, t35, t43, t45 15 t29, t33, t35, t40, t41, t44
8 t35, t41, t42, t43 16 t25, t29, t35, t40, t41, t45

insignificant correlation. This leads us to target the subset of multipliers by combining the
elements in the full set. In the next section, an improved analysis is proposed to locate the
linear shares without the combination efforts. Our experiment on (5, 1)-masking explores
that all the variables in Table 4 are helpful to distinguish a correct key. For (5, 2)-masking,
there still exist vulnerable variables for an improved DDHO-DCA, which are summarized
in Table 5.

Application to Break Challenge #100 of WhibOx 2019. Goubin et al. [GRW20] applied
DDHO-DCA to the de-obfuscated challenge #100 for the full set of the multipliers. The
target variables are the 8 output bits of Sbox in the first round. This attack only recovers

384 HO-DCA Attacks on White-Box Implementations

7 of the 16 key bytes. The further data-dependency attack exploits the subsets of the set
of multipliers with cardinalities 2, 3, and 4. Using this attack, they recovered 8 more bytes
of key and exhaustively searched the last key byte to recover the full key. Our improved
DDHO-DCA which targets the inputs of an AND gate is more powerful to recover the
first-round key. Since the implementation details of #100 are not published, we attempt
to target the inputs of AND gates in BP Sbox. We note that an explicit input of AND
gates corresponding to #100 might be helpful to obtain a strong correlation to distinguish
the correct key. Table 6 hereafter illustrates the comparison on recovering 16 key bytes
between targeting the output bits of Sbox and targeting the variables listed in Table 4.
The variables in the table refer to the correct key guess ranked first in the correlation curve.
The results show that our improved DDHO-DCA can recover the full key bytes with the
full set of multipliers without the work factor on computing the subsets. Besides, for the
case of one vulnerable bit when targeting the outputs of Sbox, the 8 bits of Sbox reveal 8
different key guesses. Thus, it is hard to distinguish the correct key from the incorrect
keys. The worst case is that no bit of Sbox helps to obtain a correct key, while the attacker
still needs to verify this situation and recover these key bytes with an exhaustive search.
However, our experiment shows that for the target variables in Table 4, nearly half of them
return a correct key while the other variables compute 0x00 as a possible key candidate.
Hence, it is obvious to distinguish the correct key by our improved DDHO-DCA attack.

Table 6: The targeting vulnerable bits in DDHO-DCA and our improved attack.

Key byte Sbox outputs Input variables of AND gates
[GRW20] Different bits Common bits

1 - t30, t35, t41, t42
2 - t30, t35, t41, t42
3 s8 t30, t35, t41, t42
4 s4, s1 t30, t35, t41, t42
5 - t30, t35, t41, t42 t21, t23
6 s2 t30, t35, t41, t42 t24, t25
7 - t30, t35, t41, t42 t27, t29
8 s5, s4 t30, t35, t42 t31, t33
9 - t30, t35, t41, t42 t37, t38
10 s8 t30, t35, t41, t42 t40, t43
11 s3 t30, t35, t41, t42 t44, t45
12 - t30, t35, t41, t42
13 - t35, t41, t42
14 s8 t30, t35, t41, t42
15 - t30, t35, t41, t42
16 - t30, t41

3.2.2 Exploiting Variables with Same Multipliers

The previous section demonstrated that the sum of the full set of multipliers has a low
correlation with the target input of AND gates for (n, 2)-masking. Table 3 in Section 3.1
computes the theoretical correlation between a variable and its multipliers. The results
prove that the sum of the full set can only obtain the correlation value 1

4 , whilst combining
the linear shares in the subset can obtain the value 3

4 . The reason is that the full set of
multipliers contains a non-linear share. Thus, recovering the linear shares of (n, 2)-masking
helps to measure the leakage of a sensitive variable. A feasible way is to enumerate the
n elements among n + 1 elements in the full set. Before this process, the attacker needs
to confirm the variable xi or yi by counting the number of its multipliers. If the variable

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 385

has n + 1 multipliers, it could be a variable xi or yi. However, if the other variable in the
Boolean circuit has n + 1 multipliers, the work for the combination will fail. Hence, we
propose a new method to find the linear shares of a sensitive variable in SEL masking.

Table 3 depicted that the linear shares xi and yi have the same multipliers {ỹ2, (yi)1≤i≤n}
and {x̃1, (xi)1≤i≤n}. This observation implies that the multipliers of a linear share are
equal to the ones of other linear shares. It can be demonstrated by the AND operations in
line 14/16 and x̃1yj , ỹ2xj in And[n, 2] in Algorithm 2. We note that this situation also
holds for (n, 1)-masking. Thus, the linear shares in (n, 2)-masking multiply with the same
vectors. Algorithm 4 describes an effective method to detect the variables with the same
co-operands in a Boolean circuit. Since the multipliers of a variable consist of a set of
binary values, the algorithm counts the hamming weight of a set to determine whether the
two sets are equal or not. In each returned set, the variables have the same multipliers.
For each set N [i], the improved attack produces a new computation trace with the bitwise
sum of it (i.e.,

⊕
e∈N [i] e).

Algorithm 4 DetectSameCoOperands(C)
Input: A Boolean circuit C.
Output: A set list N where the variables in each set have the same co-operands.

1: T ← a mapping array from memory address to its value in C
2: M ← DetectCoOperands(C)
3: for each key i of M do
4: N [i]← ∅
5: for each key j of M and i < j do
6: if #M [i] = #M [j] and #0M [i] = #0M [j] and #1M [i] = #1M [j] then
7: N [i]← T [j]
8: M ←M −M [j]
9: if N [i] ̸= ∅ then

10: N [i]← T [i]
11: M ←M −M [i]
12: else
13: N ← N −N [i]
14: return N

Figure 4 illustrates this improvement on attacking (5, 2)-masking. The highest correla-
tion peak of the correct key (plotted in blue) is greater than 3

4 . This demonstrates that
the sum of the variables with the same multipliers is the sum of the linear shares. Thus, a
strong correlation can be obtained by the improved DDHO-DCA.

3.2.3 Tracing Second-Round Data-Dependency Nodes

Table 4 illustrated that the 8-th input bit x8 of Sbox is an input variable of the AND
gates in BP Sbox. Since the ShiftRows, MixColumns, and AddRoundKey operations are
byte-oriented, this implies that the 8-th output bit s8 of Sbox is correlated to the next-
round x8. Therefore, targeting the first-round s8 can obtain a correlation when tracing
the next-round input x8. Figure 5 depicts the correlation curve when targeting the 8-th
output bit of the first Sbox with the next-round data-dependency traces. We recall that
targeting any output of Sbox with the first-round data-dependency nodes cannot obtain
a distinguishable correlation curve. However, Figure 5 depicts that both (5, 1)-masking
and (5, 2)-masking can be defeated by tracing the data-dependency nodes in the next
round. Hence, when targeting the output bits of Sbox, the data-dependency traces shall
contain the nodes in the next round. We note that exploiting the sum of variables with
the same multipliers can compute a higher correlation peak for (5, 2)-masking. Our further

386 HO-DCA Attacks on White-Box Implementations

0 2000 4000 6000 8000
Node

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
rre

la
tio

n

Figure 4: The correlation curve when computing the sum of variables with the same
multiplies in the first round and targeting t29 in the first Sbox in the first round for
(5, 2)-masking.

0 1000 2000 3000 4000 5000 6000 7000
Node

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

(a) The correlation between data-dependency nodes and target bit of Sbox in (5, 1)-masking.

0 2000 4000 6000 8000
Node

0.0

0.1

0.2

0.3

0.4

0.5

Co
rre

la
tio

n

(b) The correlation between data-dependency nodes and target bit of Sbox in (5, 2)-masking.

Figure 5: The correlation curve when computing the data-dependency nodes in the second
round and targeting the 8-th output bit of the first Sbox in the first round.

experiment supports that targeting s1 with the second-round traces can also distinguish
the correct key for both (5, 1)-masking and (5, 2)-masking.

3.3 Generalization and Mitigation for Improved Attack
By targeting different variables and tracing the sum of intermediate vectors in the
first/second round, Table 7 summarizes the results of DDHO-DCA to defeat SEL masking.
Two strategies hereafter are summarized for the improvement of DDHO-DCA.

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 387

• Targeting the first-round inputs of AND gates in the Sbox circuit when computing
the sum of the variables with the same multipliers in the first round.

• Targeting the first-round outputs of Sbox when computing the sum of the variables
with the same multipliers in the second round.

The two improved data-dependency attacks can break degree-1/2 SEL masking with any
arbitrary order n. Let m denote the number of AND gadgets that the data-dependency
attack traces and s be the number of AND gates in each AND gadget. The time complexity
of the improved DDHO-DCA is O(ms) which is independent of the masking order and the
shuffling degree. It improves the time complexity over the generic HDHO-DCA attack. For
mitigating the improved attacks, two security notions gadget security and circuit security
are informally discussed for white-box cipher designers.

Table 7: The correlation when targeting various first-round variables and tracing different
data-dependency nodes in the first/second round of defeating SEL masking.

Target variables The sum of multipliers The sum of variables
with the same multipliers

First round Second round First round Second round
First-round DDHO-DCA strong (d = 1) failed strong (d = 1)

Sbox outputs failed (d=1/2) weak (d = 2) (d=1/2) strong (d = 2)
First-round inputs strong (d = 1) failed strong (d = 1) failed

of AND gates weak (d = 2) (d=1/2) strong (d = 2) (d=1/2)

Gadget Security. Since the data-dependency attack targets the variables in an AND
gadget, gadget security addresses the property against exploiting the information between
a variable and its multipliers to recover the linear shares. We note that the co-operands in
AND gadgets of SEL masking contain all linear shares of a sensitive variable. Thus, the
intermediate variable in a secure AND gadget shall not multiply with all the elements of
linear shares. Therefore, the multipliers have no leakage of linear shares. Moreover, the set
of variables with the same multipliers in SEL masking is equal to the set of linear shares.
Consequently, an attacker cannot distinguish a set of variables in a secure AND gadget
based on their co-operands.

Circuit Security. The sum of multipliers observed by data-dependency attacks is correlated
to an input variable of AND gates in the Sbox circuit. By targeting such variables in
BP Sbox, all key bytes of WhibOx 2019 challenge #100 can be extracted. Hence, the
intermediate variables, especially the inputs of AND gates, must be unpredictable in a
secure Sbox circuit. This inspires that using a secret Sbox circuit might prevent the key
leakage, although it might not follow Kerckhoffs’s principle. We note that targeting s8
(also the input variable x8 in BP Sbox) can only recover 3 key bytes of #100, which implies
that #100 might implement different Sbox circuits against the computational attack with
a single predicted value. Nevertheless, the input variables of AND gates in a secure Sbox
circuit must not be directly assigned by the Sbox inputs. In this case, the inputs of a
secure Sbox circuit must be processed by enough XOR gates before applying an AND gate.

4 Security Evaluation on Dummy Shuffling
This section analyzes HO-DCA attacks on a specific BU shuffling and the countermeasure
combined with SEL masking.

388 HO-DCA Attacks on White-Box Implementations

4.1 The Target Shuffling Implementation
BU shuffling is constructed with a single main slot and multiple dummy slots. It applies
several redundant computations to hide the real operation. The main slot computes the
function on the main input while the dummy slot computes the function on a pseudoran-
domly generated input. The output of a main slot is protected by a pseudorandom mask
while the output of a dummy slot is replaced with a mask. All masks will be XORed to
zero. Thus, it can retrieve the output of the main slot by an XOR phase.

Algorithm 5 The construction of an evaluated function
Input: g: an integer ≥ 1, the number of slots is h = 2g;

k ∈ Fn
2 : a key state;

S : Fn
2 → Fm

2 : an Sbox;
Gk1(x) : Fn

2 → Fg
2: a PRF instance with key k1;

Hk2(x) : Fn
2 → Fn

2 : a PRF instance with key k2;
Fk3 [x](h) : Fn

2 × Fg
2 → Fm

2 : a TZS-PRF instance with key k3.
Output: An evaluated function E(x) : Fn

2 → (Fm
2)h.

1: v̄ ← an array with h entries
2: x′ ← x

Input-shuffling:
3: for 1 ≤ i ≤ h do
4: if Gk1(x) = i then ▷ A main slot.
5: v̄[i]← x
6: else ▷ A dummy slot.
7: x′ ← Hk2(x′)
8: v̄[i]← x′

Evaluation slots:
9: for 1 ≤ i ≤ h do

10: v̄[i]← S(v̄[i]⊕ k)
11: m← Fk3 [x](i) ▷ Mask.
12: if Gk1(x) = i then ▷ A main slot.
13: v̄[i]← v̄[i]⊕m
14: else ▷ A dummy slot.
15: v̄[i]← m

16: E(x)← v̄[1]|| · · · ||v̄[h]
17: return E

However, BU shuffling does not provide an instance of the slot and does not reveal the
details about the combination of input-shuffling and evaluation slots phases. Hence, it is
implicit to implement BU shuffling. We note that a typical example of slot is the Sbox in
a block cipher which uses the same Sbox in each round. The function of Sbox might be
invoked multiple times independently in an implementation. Therefore, each slot in our
analysis consists of an Sbox with a key addition. We propose a specific BU shuffling that
protects each key-embedded Sbox with multiple dummy slots. Furthermore, an evaluated
function is proposed to combine the input-shuffling and evaluation slots phases. It contains
a cluster of slots, in which a main slot computes on the correct input while other slots
compute on random inputs. Thus, it requires the input of main slot and outputs the results
of main and dummy slots. Three parts of the evaluated function pseudorandomly depend
on the input, that are the generation of dummy inputs, the location of the main slot, and
the generation of masks. Hence, the construction requires three pseudorandom functions
(PRFs). One of them is a tweakable zero-sum PRF ([BU21], Definition 15) of which the
outputs sum to zero. The construction of an evaluated function is described in Algorithm 5.
The resulting function maps an input state x ∈ Fn

2 into t outputs {v̄[1], · · · , v̄[h]} ∈ (Fm
2)h.

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 389

Such a construction can be also implemented as a LUT to prevent the exposure of the index
of main slot. Figure 6 also depicts the evaluated function and the following output-selection
phase in the specific BU shuffling. The symbol $ denotes a dummy input. The dummy
slot outputs a mask mi while the output of the main slot is masked by mj for 1 ≤ i, j ≤ h
and i ̸= j. All masks will be XORed to zero.

…𝑆 𝑆 𝑆

⊕⊕ ⊕ 𝑘𝑘 𝑘

𝑥

$ $…

⊕𝑚ℎ𝑚1 𝑚2

𝑖=1

h

𝑚𝑖 = 0

input-shuffling

evaluation slots

output-selection ⊕

𝑆(𝑥 ⊕ 𝑘)

𝐻𝑘2(𝑥)

𝐺𝑘1(𝑥)

𝐹𝑘3[𝑥](𝑖)

evaluated function

Figure 6: An evaluated function and the following output-selection phase.

Based on this construction, each Sbox in a block cipher can be replaced by an evaluated
function. We note that the output-selection phase can be performed inside the following
layers of the cipher. A detailed definition of an evaluated function with the AES Sbox in
the specific BU shuffling is described as follows. Let v = {v1, · · · , vt} represent the outputs
of an evaluated function, where vi ∈ F2 for 1 ≤ i ≤ t. The outputs v can be split into h
subsets and the cardinality of each subset is 8 such that t = 8 · h. There exists a subset
v̄ = {vi, · · · , vi+7} for 1 ≤ i < i + 7 ≤ t with #v̄ = 8 consisting of consecutive bits that
are the results of masked main slot. Let x ∈ F8

2 denote an input state and E : F8
2 → Ft

2
be an evaluated function consisting of main and dummy slots. For 1 ≤ j ≤ h, mj ∈ F8

2
represent the masks satisfied

⊕h
j=1 mj = 0. Suppose that S : F8

2 → F8
2 represents the Sbox

substitution, k ∈ F8
2 denotes a key byte, and || is the concatenation of the bit strings. In

this case, v ← E(x) = v̄1|| · · · ||v̄j || · · · ||v̄h for 1 ≤ j ≤ h (h ≥ 2) and v̄j ← S(x⊕ k)⊕mj

when the j-th slot is a main slot. For other dummy slots v̄ℓ ← mℓ for ℓ ∈ [1, h]/j. Notably,
the output of a dummy slot is replaced by a mask. Thus, we only formalize the final
assignment of v̄ℓ. The output-selection phase indicates that

h⊕
j=1

v̄j = S(x⊕ k). (7)

Following the definitions of public dummy shuffling ([BU21], Definition 8, 9, and 10),
the attack model for HO-DCA on the specific BU shuffling is described as follows.

• The adversary is able to invoke the implementation many times with arbitrarily
chosen inputs.

• The adversary cannot fix the randomness inside the program and has no access to
shuffled permutation and output-selection phase.

• The adversary is capable of targeting the function of each slot but is hard to
distinguish the computation of main slot. Specifically, she can obtain the outputs of
a group of slots (e.g., an evaluated function) that contains a main slot protected by
several dummy slots.

390 HO-DCA Attacks on White-Box Implementations

We note that the attacker can track the returned values of the evaluated function by
choosing the inputs. In the following analysis, we assume that the attacker computes the
outputs of an evaluated function as computation traces and mounts HO-DCA attacks to
recover the secret key of the main slot.

4.2 Higher-Order DCA Attacks on Specific BU Shuffling
HO-DCA/Algebraic DCA on Specific BU Shuffling. Following the attack model, an
attacker can obtain the resulting sequence v = {v1, · · · , vt} by invoking the evaluated
function with chosen inputs. Let s1, · · · , s8 ∈ F2 denote the output variables of Sbox such
that {s1, · · · , s8} ← S(x⊕ k). There exist h bits vi, vi+8, · · · , vi+8(h−1) in v, which satisfy
the sum of them is si for 1 ≤ i ≤ 8. The main reason is that the masks XOR to zero.
Based on

⊕h
j=1 v̄j = S(x⊕ k), the sum of one bit of each v̄j is equal to the corresponding

bit of S(x⊕ k). This reduces the problem of identifying the dummy slots in shuffling to
retrieving the linear shares in masking. By combining h items among {v1, · · · , vt} to form
vi⊕vi+8⊕· · ·⊕vi+8(h−1) = si, HO-DCA computes a h-order traces consisting in

(
t
h

)
items.

For algebraic DCA, it solves a linear equation
⊕t

i=1 aivi = sj where 1 ≤ j ≤ 8. A solution
vector a = (a1, · · · , at) targets the j-th bit of each slot, where aj , aj+8, · · · , aj+8(h−1) = 1
and other variables are 0.

An example of HO-DCA/algebraic DCA is described as follows. Assuming that a main
slot is protected by 3 dummy slots such that h = 4 and t = 8 · 4 = 32. Within the output
sequence v = {v1, · · · , v32}, we have v1 ⊕ v9 ⊕ v17 ⊕ v25 = s1. HO-DCA computes

(32
4

)
items to extend the traces and recover s1. The solution vector of algebraic DCA is

a = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

Integrated HO-DCA on Specific BU Shuffling. By locating the output v of an evaluated
function, the attacker can compute the correlation between a predicted value

⊕8
ℓ=1 sℓ and

the sum of all samples of the obtained subtraces. Since the masks XOR to zero, the sum
of n elements in v is equal to the sum of the output bits of Sbox. Derived from Equation
(7), we have

t⊕
i=1

(v)i =
t⊕

i=1
vi =

8⊕
ℓ=1

(
h⊕

j=1
v̄j)ℓ =

8⊕
ℓ=1

(S(x⊕ k))ℓ =
8⊕

ℓ=1
sℓ. (8)

Thus, the adversary can obtain a strong correlation by targeting the sum of Sbox outputs
and computing the sum of traced function outputs. Moreover, evaluating all 16 inputs
also helps to obtain a strong correlation by targeting the j-th Sbox. Based on Lemma
1, if the obtained trace also contains other p nodes except for an evaluated function, the
correlation is reduced by a factor

√
p + 1.

Assume the attacker locates all 16 evaluations and records the corresponding outputs
vi for 1 ≤ i ≤ 16. Let ti denote the length of sequence output from each function. We note
that the number of slots in each evaluated function can be different. Based on Equation
(8), the sum of all evaluated functions is

t1⊕
i=1

(v1)i ⊕
t2⊕

i=1
(v2)i ⊕ · · · ⊕

t16⊕
i=1

(v16)i

=
8⊕

ℓ=1
s1

ℓ ⊕
8⊕

ℓ=1
s2

ℓ ⊕ · · · ⊕
8⊕

ℓ=1
s16

ℓ .

By enumerating the j-th input whilst fixing others, the result is the sum of the j-th Sbox
outputs with a constant c such that

⊕8
ℓ=1 s1

ℓ ⊕ · · · ⊕
⊕8

ℓ=1 s16
ℓ =

⊕8
ℓ=1 sj

ℓ ⊕ c. This result

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 391

is highly correlated to
⊕8

ℓ=1 sj
ℓ . Hence the j-th key byte can be recovered by targeting

the sum of j-th Sbox outputs and computing the sum of all evaluated outputs. To verify
this leakage, we exploit such a dummy shuffling implementation. The average number of
dummy slots in each function is 2. Figure 7 depicts the correlation of each key guess by
targeting the sum of the outputs of the first Sbox. Besides the results of combining the
outputs of the first evaluated function, it can also represent the combination of all outputs
of 16 evaluations. The correct key 0x56 ranks first with the correlation 1. Particularly,
an integrated HO-DCA utilizes the sum of evaluated function(s) such that the attacker
does not require the ability to split each slot within an evaluation. Thus, it also threatens
hidden dummy shuffling.

0 50 100 150 200 250
key guess

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Figure 7: The correlation curve when computing the sum of the first or all evaluated
function(s) and targeting the sum of the first Sbox outputs.

4.3 Attacks on The Combination of Masking and Shuffling
Section 4.2 investigated the vulnerability of a specific BU shuffling against HO-DCA
attacks. These attacks exploit the sum of (sub)traces to predict a sensitive variable. It can
work because the applied masks XOR to zero. The masked variable and the other masks
form the linear shares as in a masking scheme. Thus, the masks can be removed by an
addition among intermediate variables as HO-DCA against masking. A similar technique
of protecting a sensitive vector by XORing a mask was proposed by Lee and Kim [LK20].
Their scheme hides the sensitive variables by introducing random masks. Then it retrieves
the original result by an addition between masked value and masks. However, it cannot
resist the adaptive side-channel analysis [TGS+21]. To mitigate HO-DCA attacks, an
intuition is to combine the masking and shuffling. The main idea is to integrate two
independent countermeasures for more effective protection against HO-DCA attacks. This
section proposes a construction of combining SEL masking and the specific BU shuffling.
Moreover, HO-DCA is also analyzed against this combined countermeasure.

Target Implementation. We assume that the target implementation is a Boolean circuit
protected by SEL masking and the specific BU shuffling. For masking, the degree is
d + 1 and the order is e. The shuffling degree is h which implies that each evaluated
function has h slots. Each original variable is split into r = e + d + 1 shares satisfying
Equation (4). The evaluated function of Algorithm 5 maps input shares {x} ∈ (Fr

2)n into
h outputs {v̄[1], · · · , v̄[h]} ∈ ((Fr

2)m)h. It corresponds to n× r input shares and h×m× r
output shares. The Sbox is implemented as a bitsliced circuit. All the XOR and AND
operations between original variables are replaced by the secure XOR and AND gadgets.
The randomness in the evaluated function, e.g., dummy input shares, the location of the
main slot, masks, and the refresh of gadgets all depend on the input.

392 HO-DCA Attacks on White-Box Implementations

More precisely, the combined countermeasure implements each slot in the evaluated
function (following the specific BU shuffling) by applying secure gadgets (following SEL
masking). A detail definition of such an evaluated function with AES Sbox is described
as follows. Let v = {v1, · · · , vt} represent the outputs of an evaluated function, where
vi ∈ F2 for 1 ≤ i ≤ t. It can be split into h subsets and the cardinality of each
subset is 8r such that t = 8r · h. Every r variables v̄ = {v1, · · · , vr} correspond to the
shares of a protected output satisfying the SEL masking and r = e + d + 1 such that
v = {v̄1, · · · , v̄8h}. There exists a subset v̄ = {v̄i, · · · , v̄i+7} for 1 ≤ i < i + 7 ≤ 8h with
#v̄ = 8 consisting of consecutive shares that are the results of masked main slot. Let
x ∈ (Fr

2)8 denote the input shares, E : (Fr
2)8 → ((Fr

2)8)h be an evaluated function consisting
of main and dummy slots, and mj ∈ (Fr

2)8 for 1 ≤ j ≤ h represent the masks satisfied⊕h
j=1 mj = 0. Suppose that S : (Fr

2)8 → (Fr
2)8 represents the Sbox circuit protected by

SEL masking, k ∈ (Fr
2)8 denotes a key byte and G⊕ represents an XOR gadget. In this

case, v ← E(x) = v̄1|| · · · ||v̄j || · · · ||v̄h for 1 ≤ j ≤ h (h ≥ 2) and v̄j ← S(G⊕(x, k))⊕mj

while the j-th slot is a main slot. For other dummy slots v̄ℓ ← mℓ where ℓ ∈ [1, h]/j, the
output-selection phase implies that

h⊕
j=1

v̄j = S(G⊕(x, k)).

This XOR phase indicates that the sum of a set of nodes in the computation trace can
cancel the effect of dummy shuffling. Thus, it can retrieve the secret shares of masking.
We note that SEL masking is vulnerable to HO-DCA attacks as shown in Section 3.1.
Furthermore, HO-DCA combines the samples to recover the sensitive variable. Hence, the
combined masking and shuffling countermeasure inherently cannot resist HO-DCA attacks.

HDHO-DCA/HDDA on Combined Masking and Shuffling. Suppose that an attacker
obtains the resulting sequence v = {v1, · · · , vt} by invoking the evaluated function with
chosen inputs. HDHO-DCA and HDDA with (d + 1)-th degree and (hd+1 + eh)-th order
can directly break the combined countermeasure. Assume that e = 2, d = 1, h = 2, and
r = e + d + 1 = 4. A sensitive variable x = x̃0x̃1 ⊕ x1 ⊕ x2. Let mi (1 ≤ i ≤ r) denote the
mask of each share. The obtained trace v = {v1, · · · , vt} = {· · · , m1, m2, m3, m4, · · · , (x̃0⊕
m1), (x̃1⊕m2), (x1⊕m3), (x2⊕m4), · · · }. Let x̃0⊕m1 = a1, x̃1⊕m2 = a3, x1⊕m3 = a3, and
x2 ⊕m4 = a4 such that v = {v1, · · · , vt} = {· · · , m1, m2, m3, m4, · · · , a1, a2, a3, a4, · · · }.
We note that x can be unmasked as x = (m1 ⊕ a1)(m2 ⊕ a2) ⊕ m3 ⊕ a3 ⊕ m4 ⊕ a4 =
m1m2 ⊕m1a2 ⊕ a1m2 ⊕ a1a2 ⊕m3 ⊕ a3 ⊕m4 ⊕ a4. The attacking steps of HDHO-DCA
are illustrated as follows.

• Degree-(d + 1) extension. Multiplying all d + 1 = 2 tuples in v and extending it as
v′ = {· · · , m1, m2, m3, m4, · · · , a1, a2, a3, a4, · · · , m1m2, m1a2, · · · , a1m2, a1a2, · · · }.
The higher-degree traces consist of q =

(
t

d+1
)

items.

• Order-(hd+1 + eh) extension. Computing the sum of every hd+1 + eh = 8 items in v′.
The higher-order traces consist of

(
t+q

hd+1+eh

)
nodes. The computing elements might

contain the set {m3, m4, a3, a4, m1m2, m1a2, a1m2, a1a2} such that x = m1m2 ⊕
m1a2 ⊕ a1m2 ⊕ a1a2 ⊕m3 ⊕ a3 ⊕m4 ⊕ a4 can be recovered.

Since HDDA has the same degree-(d + 1) extension as HDHO-DCA, it solves the linear
system on the traces v′. Therefore, the time complexity of HDDA is O(|K| · (t + q)2.8).

For each node in the computation trace, since the masks XOR to zero, there exist other
h− 1 samples such that the sum of the h nodes is equal to a share of the main output. A
pre-processing step can be executed to defeat the XOR phase of BU shuffling. It consists of
a combination of all h nodes in v resulting in p =

(
t
h

)
items formed in vi1 ⊕ · · · ⊕ vih

where

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 393

1 ≤ i1 ≤ · · · ≤ ih ≤ t. This process removes the masks and exposes the shares of SEL
masking. The following HDHO-DCA and HDDA attacks are similar to the analysis of SEL
masking. We note that the multiplication phase of HDHO-DCA is the same as the one of
HDDA. As the application of SEL masking, there exist d + 1 nodes in {p} of which the
product is the non-linear part of a sensitive variable. Thus, the degree-(d + 1) computation
trace consists of g =

(
p

d+1
)

items. Consequently, the pre-processing {p} is extended with
degree-(d + 1) trace {g}. There exist e + 1 nodes corresponding to the linear shares of SEL
masking. For HDHO-DCA, the sum of every e + 1 nodes is computed. Thus, the sensitive
variable is retrieved as a node in the trace. The overall time complexity of HDHO-DCA
is O

((
p+g
e+1

))
. Suppose that t = 10, e = 2, d = 1, and h = 2, the computation times of

the higher-order traces for a direct HDHO-DCA are
(

t+q
hd+1+eh

)
=1,217,566,350. However,

with the pre-processing step, the computation times can be reduced to
(

p+g
e+1

)
=184,251,045.

Figure 8 depicts the correlation of each key guess when mounting HDHO-DCA with a
pre-processing step on such a combined countermeasure. For this attack, the degree is 2
and the order is 3. The correct key 0x56 ranks first with a correlation greater than 0.4.
For HDDA, the linear shares can be recovered by solving the linear system with the time
complexity O(|K| · (p + g)2.8).

0 50 100 150 200 250
key guess

0.0

0.1

0.2

0.3

0.4

Co
rre

la
tio

n

Figure 8: The correlation curve of degree-2 and order-3 HDHO-DCA on analyzing a key
byte in the combined masking and shuffling.

Improved DDHO-DCA on Combined Masking and Shuffling. Because of the application
of SEL masking, the improved DDHO-DCA will collect the multipliers of each variable in
each slot computation. Consequently, it computes the traces corresponding to h slots in
each evaluated function. Due to the specific BU shuffling, the trace of the main slot is
shuffled with other dummy traces. Thus, it fails in calculating the correlations of main
slots. But the outputs of dummy slots are replaced by masks. If a gate value is flipped
in the dummy slot, it would not affect its final output. Furthermore, the ciphertext is
also constant even if such a single fault has been injected in a dummy slot. After locating
the main slot, the improved DDHO-DCA can defeat the SEL masking with the time
complexity O(ms) (see Section 3.3) of computing higher-order traces. We note that the
mask of the main output is independent of the gate values which DDHO-DCA tracks.

Integrated HO-DCA on Combined Masking and Shuffling. Integrated HO-DCA com-
putes the sum of the samples of the obtained trace v. Since the applied masks of the
specific BU shuffling XOR to zero, this integrated process removes the masks. The resulting
value is equal to the sum of the output shares of the main slot. This implies that the
integrated HO-DCA is also applicable on the combined masking and shuffling. Suppose
that the output shares of the main slot are c = {c1, · · · , cmr} where m corresponds to an

394 HO-DCA Attacks on White-Box Implementations

Sbox S : Fn
2 → Fm

2 (m = 8 for the AES Sbox) and r = e + d + 1. The elements in c contain
the linear shares of a sensitive variable. Based on Lemma 1 and 2, the correlation between
the prediction and the sum of linear shares is reduced by a factor

√
mr − e.

5 Conclusion
This paper investigates the possibility of HO-DCA attacks on SEL masking and BU
shuffling which are the state-of-the-art countermeasures for white-box implementations.
To recover the non-linear shares, HDHO-DCA is introduced as a generic attack against
masking. The improved DDHO-DCA demonstrates the vulnerabilities of SEL masking
and enhances the attack results of the challenge #100 in WhibOx 2019. Since the XOR
phase can be reduced to the linear masking, we showcase that a specific BU shuffling
cannot resist HO-DCA attacks. Furthermore, the results support that the combination
of SEL masking and the specific BU shuffling still cannot defeat our HDHO-DCA and
improved DDHO-DCA attacks. It is still challenging to construct countermeasures for
resisting these improved HO-DCA techniques. Future work consists in extending the
improved DDHO-DCA to a higher-degree context and applying it to the combined masking
and shuffling implementations. Another interesting research direction is to improve BU
shuffling to avoid using the vulnerable XOR phase.

Acknowledgments
We thank the anonymous reviewers for their insightful comments. This work was by
the National Key R&D Program of China (Grant No.2020AAA0107703), National Nat-
ural Science Foundation of China (62072192), National Defense Technology 173 Basic
Improvement Project (2121-JCJQ-JJ-0931), National Cryptography Development Fund
(MMJJ20180206) and CCF Tencent Open Fund.

References
[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerregaard

Jepsen. Analysis of software countermeasures for whitebox encryption. IACR
Trans. Symmetric Cryptol., 2017(1):307–328, 2017.

[BBMT18] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff.
On the ineffectiveness of internal encodings - revisiting the DCA attack on
white-box cryptography. In Bart Preneel and Frederik Vercauteren, editors,
Applied Cryptography and Network Security - 16th International Conference,
ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume 10892 of
Lecture Notes in Computer Science, pages 103–120. Springer, 2018.

[BCD06] Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. White box
cryptography: Another attempt. Cryptology ePrint Archive, Paper 2006/468,
2006. https://eprint.iacr.org/2006/468.

[BGE04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a
white box AES implementation. In Helena Handschuh and M. Anwar Hasan,
editors, Selected Areas in Cryptography, 11th International Workshop, SAC
2004, Waterloo, Canada, August 9-10, 2004, Revised Selected Papers, volume
3357 of Lecture Notes in Computer Science, pages 227–240. Springer, 2004.

https://eprint.iacr.org/2006/468

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 395

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differen-
tial computation analysis: Hiding your white-box designs is not enough. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 215–236. Springer, 2016.

[BP09] Joan Boyar and Rene Peralta. New logic minimization techniques with
applications to cryptology. Cryptology ePrint Archive, Paper 2009/191, 2009.
https://eprint.iacr.org/2009/191.

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang.
Higher-order DCA against standard side-channel countermeasures. In Ilia
Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis and
Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in
Computer Science, pages 118–141. Springer, 2019.

[BT20] Estuardo Alpirez Bock and Alexander Treff. Security assessment of white-
box design submissions of the CHES 2017 CTF challenge. In Guido Marco
Bertoni and Francesco Regazzoni, editors, Constructive Side-Channel Analysis
and Secure Design - 11th International Workshop, COSADE 2020, Lugano,
Switzerland, April 1-3, 2020, Revised Selected Papers, volume 12244 of Lecture
Notes in Computer Science, pages 123–146. Springer, 2020.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for white-
box designs. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume 11273 of
Lecture Notes in Computer Science, pages 373–402. Springer, 2018.

[BU21] Alex Biryukov and Aleksei Udovenko. Dummy shuffling against algebraic
attacks in white-box implementations. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part II, volume 12697 of Lecture Notes in Computer Science, pages 219–248.
Springer, 2021.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
power analysis in the presence of hardware countermeasures. In Çetin Kaya
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2000, Second International Workshop, Worcester, MA,
USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in
Computer Science, pages 252–263. Springer, 2000.

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, Selected Areas in Cryptography, 9th Annual Inter-
national Workshop, SAC 2002, St. John’s, Newfoundland, Canada, August
15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Computer
Science, pages 250–270. Springer, 2002.

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,

https://eprint.iacr.org/2009/191

396 HO-DCA Attacks on White-Box Implementations

editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised
Papers, volume 2696 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2002.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[FMIS+] Yunsi Fei, Vincent Mooney III, Patrick Schaumont, Andrey Bogdanov, Stefan
Kölbl, Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang.
CHES 2019 capture the flag challenge - the WhibOx contest edition 2.
https://whibox.io/contests/2019/.

[GPRW20] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How to
reveal the secrets of an obscure white-box implementation. J. Cryptogr. Eng.,
10(1):49–66, 2020.

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating state-of-the-art
white-box countermeasures with advanced gray-box attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(3):454–482, 2020.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[Kar10] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, Information Security and
Cryptology - ICISC 2010 - 13th International Conference, Seoul, Korea,
December 1-3, 2010, Revised Selected Papers, volume 6829 of Lecture Notes
in Computer Science, pages 278–291. Springer, 2010.

[KHL11] HeeSeok Kim, Seokhie Hong, and Jongin Lim. A fast and provably secure
higher-order masking of AES s-box. In Bart Preneel and Tsuyoshi Takagi,
editors, Cryptographic Hardware and Embedded Systems - CHES 2011 -
13th International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 95–107.
Springer, 2011.

[LK20] Seungkwang Lee and Myungchul Kim. Improvement on a masked white-box
cryptographic implementation. IEEE Access, 8:90992–91004, 2020.

[MRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the xiao -
lai white-box AES implementation. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, 19th International Conference, SAC
2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers,
volume 7707 of Lecture Notes in Computer Science, pages 34–49. Springer,
2012.

[MRP13] Yoni De Mulder, Peter Roelse, and Bart Preneel. Revisiting the bge attack on
a white-box aes implementation. Cryptology ePrint Archive, Paper 2013/450,
2013. https://eprint.iacr.org/2013/450.

https://whibox.io/contests/2019/
https://whibox.io/contests/2019/
https://eprint.iacr.org/2013/450

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 397

[MWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a per-
turbated white-box AES implementation. In Guang Gong and Kishan Chand
Gupta, editors, Progress in Cryptology - INDOCRYPT 2010 - 11th Interna-
tional Conference on Cryptology in India, Hyderabad, India, December 12-15,
2010. Proceedings, volume 6498 of Lecture Notes in Computer Science, pages
292–310. Springer, 2010.

[PCY+] Emmanuel Prouff, Chen-Mou Cheng, Bo-Yin Yang, Thomas Baignères,
Matthieu Finiasz, Pascal Paillier, and Matthieu Rivain. CHES 2017 capture
the flag challenge - the WhibOx contest, an ecrypt white-box cryptography
competition. https://whibox.io/contests/2017/.

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking
and shuffling for software implementations of block ciphers. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer
Science, pages 171–188. Springer, 2009.

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):225–255, 2019.

[SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box masking
scheme resisting computational and algebraic attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(2):61–105, 2021.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug 1969.

[TGS+21] Yufeng Tang, Zheng Gong, Tao Sun, Jinhai Chen, and Fan Zhang. Adaptive
side-channel analysis model and its applications to white-box block cipher
implementations. In Yu Yu and Moti Yung, editors, Information Security and
Cryptology - 17th International Conference, Inscrypt 2021, Virtual Event,
August 12-14, 2021, Revised Selected Papers, volume 13007 of Lecture Notes
in Computer Science, pages 399–417. Springer, 2021.

[XL09] Yaying Xiao and Xuejia Lai. A secure implementation of white-box AES. In
2009 2nd International Conference on Computer Science and its Applications,
pages 1–6. IEEE, 2009.

[ZMAB19] Mohamed Zeyad, Houssem Maghrebi, Davide Alessio, and Boris Batteux.
Another look on bucketing attack to defeat white-box implementations. In Ilia
Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis and
Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in
Computer Science, pages 99–117. Springer, 2019.

https://whibox.io/contests/2017/

398 HO-DCA Attacks on White-Box Implementations

A The Circuit Definition of AES Sbox

The circuit definition of AES Sbox proposed by Boyar and Peralta [BP09] consists
of following equations. The inputs and outputs of Sbox are x1, x2, · · · , x8 ∈ F2 and
s1, s2, · · · , s8 ∈ F2, respectively. For 1 ≤ i ≤ 21, 0 ≤ j ≤ 67, and 0 ≤ ℓ ≤ 17, the
intermediate variables are yi, tj , zℓ ∈ F2.

y14 = x4 ⊕ x6 y13 = x1 ⊕ x7 y9 = x1 ⊕ x4

y8 = x1 ⊕ x6 t0 = x2 ⊕ x3 y1 = t0 ⊕ x8

y4 = y1 ⊕ x4 y12 = y13 ⊕ y14 y2 = y1 ⊕ x1

y5 = y1 ⊕ x7 y3 = y5 ⊕ y8 t1 = x5 ⊕ y12

y15 = t1 ⊕ x6 y20 = t1 ⊕ x2 y6 = y15 ⊕ x8

y10 = y15 ⊕ t0 y11 = y20 ⊕ y9 y7 = x8 ⊕ y11

y17 = y10 ⊕ y11 y19 = y10 ⊕ y8 y16 = t0 ⊕ y11

y21 = y13 ⊕ y16 y18 = x1 ⊕ y16

t2 = y12 · y15 t3 = y3 · y6 t4 = t3 ⊕ t2

t5 = y4 · x8 t6 = t5 ⊕ t2 t7 = y13 · y16

t8 = y5 · y1 t9 = t8 ⊕ t7 t10 = y2 · y7

t11 = t10 ⊕ t7 t12 = y9 · y11 t13 = y14 · y17

t14 = t13 ⊕ t12 t15 = y8 · y10 t16 = t15 ⊕ t12

t17 = t4 ⊕ t14 t18 = t6 ⊕ t16 t19 = t9 ⊕ t14

t20 = t11 ⊕ t16 t21 = t17 ⊕ y20 t22 = t18 ⊕ y19

t23 = t19 ⊕ y21 t24 = t20 ⊕ y18

t25 = t21 ⊕ t22 t26 = t21 · t23 t27 = t24 ⊕ t26

t28 = t25 · t27 t29 = t28 ⊕ t22 t30 = t23 ⊕ t24

t31 = t22 ⊕ t26 t32 = t31 · t30 t33 = t32 ⊕ t24

t34 = t23 ⊕ t33 t35 = t27 ⊕ t33 t36 = t24 · t35

t37 = t36 ⊕ t34 t38 = t27 ⊕ t36 t39 = t29 · t38

t40 = t25 ⊕ t39

t41 = t40 ⊕ t37 t42 = t29 ⊕ t33 t43 = t29 ⊕ t40

t44 = t33 ⊕ t37 t45 = t42 ⊕ t41 z0 = t44 · y15

z1 = t37 · y6 z2 = t33 · x7 z3 = t43 · y16

z4 = t40 · y1 z5 = t29 · y7 z6 = t42 · y11

z7 = t45 · y17 z8 = t41 · y10 z9 = t44 · y12

z10 = t37 · y3 z11 = t33 · y4 z12 = t43 · y13

z13 = t40 · y5 z14 = t29 · y2 z15 = t42 · y9

z16 = t45 · y14 z17 = t41 · y8

Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie 399

t46 = z15 ⊕ z16 t47 = z10 ⊕ z11 t48 = z5 ⊕ z13

t49 = z9 ⊕ z10 t50 = z2 ⊕ z12 t51 = z2 ⊕ z5

t52 = z7 ⊕ z8 t53 = z0 ⊕ z3 t54 = z6 ⊕ z7

t55 = z16 ⊕ z17 t56 = z12 ⊕ t48 t57 = t50 ⊕ t53

t58 = z4 ⊕ t46 t59 = z3 ⊕ t54 t60 = t46 ⊕ t57

t61 = z14 ⊕ t57 t62 = t52 ⊕ t58 t63 = t49 ⊕ t58

t64 = z4 ⊕ t59 t65 = t61 ⊕ t62 t66 = z1 ⊕ t63

s1 = t59 ⊕ t63 s7 = t56 ⊕ t62 s8 = t48 ⊕ t60

t67 = t64 ⊕ t65 s4 = t53 ⊕ t66 s5 = t51 ⊕ t66

s6 = t47 ⊕ t65 s2 = t64 ⊕ s4 s3 = t55 ⊕ t67

400 HO-DCA Attacks on White-Box Implementations

B The Correlations amongst Intermediates and Outputs
of Sbox

Figure 8 illustrates the computed correlation between an input variable of AND gate and
an output of Sbox circuit. The low correlations imply that targeting the outputs of Sbox
will result in a failed DDHO-DCA attack.

Table 8: The correlations amongst the input variables of AND gates and the outputs of
BP Sbox.

Input variables Sbox outputs
of AND gates s1 s2 s3 s4 s5 s6 s7 s8

y12 0.0313 0.1094 0.0156 0.0781 0.0625 0.0156 0.0938 0.0156
y15 0.0156 0.1094 0.0313 0.0469 0.0156 0.0938 0.0313 0.0625
y3 0.0313 0.0469 0.0938 0.0469 0.0781 0.0000 0.0625 0.0938
y6 0.0156 0.0469 0.0000 0.0781 0.0156 0.0469 0.0313 0.0313
y4 0.0000 0.0313 0.0156 0.0625 0.0781 0.0469 0.0313 0.0469
x8 0.0938 0.0313 0.0313 0.0625 0.0938 0.1094 0.0000 0.0938
y13 0.0781 0.0938 0.0313 0.0469 0.0938 0.0469 0.0000 0.0469
y16 0.0000 0.0938 0.0781 0.0938 0.0000 0.0156 0.0469 0.0156
y5 0.0781 0.0313 0.0313 0.1094 0.1094 0.1094 0.0469 0.0000
y1 0.0313 0.0313 0.0625 0.0313 0.0313 0.0938 0.1094 0.0469
y2 0.0625 0.0625 0.0000 0.0313 0.0469 0.0313 0.0156 0.0156
y7 0.0313 0.0625 0.0781 0.0625 0.0313 0.0156 0.0938 0.0938
y9 0.0938 0.0000 0.1094 0.0313 0.0000 0.0469 0.0469 0.0625
y11 0.0938 0.0000 0.0156 0.0938 0.0938 0.0625 0.0625 0.0313
y14 0.0156 0.0156 0.0469 0.0938 0.0313 0.0938 0.0625 0.0938
y17 0.1094 0.0156 0.0156 0.0469 0.1094 0.0781 0.0156 0.0469
y8 0.0156 0.0469 0.0938 0.0625 0.0313 0.0156 0.0781 0.0313
y10 0.0469 0.0469 0.0938 0.0156 0.0469 0.0781 0.0156 0.1094
t21 0.0313 0.0313 0.0626 0.0626 0.0313 0.0313 0.0313 0.0626
t23 0.0626 0.0313 0.0313 0.0313 0.0626 0.0313 0.1252 0.0313
t25 0.0626 0.0313 0.0313 0.1252 0.0626 0.0313 0.0626 0.0313
t27 0.0000 0.0626 0.0000 0.0313 0.0000 0.0626 0.0000 0.0000
t31 0.1252 0.0313 0.0939 0.1566 0.1252 0.0313 0.0313 0.0939
t30 0.0313 0.0626 0.0313 0.0313 0.0313 0.0626 0.1252 0.0313
t24 0.0313 0.0313 0.0626 0.0626 0.0313 0.0313 0.0626 0.0626
t35 0.0798 0.1436 0.0160 0.0160 0.0798 0.1436 0.0479 0.0160
t29 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t38 0.0000 0.0939 0.0313 0.1252 0.0000 0.0939 0.0626 0.0313
t44 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t37 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t33 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t43 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t40 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t42 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t21 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626 0.0626
t45 0.1094 0.0156 0.0156 0.0469 0.1094 0.0781 0.0156 0.0469
t41 0.0469 0.0469 0.0938 0.0156 0.0469 0.0781 0.0156 0.1094

	Introduction
	Preliminaries
	Computational and Algebraic Attacks
	Higher-Order DCA Attacks
	Masking and Shuffling Countermeasures

	Security Evaluation on Combined Masking
	Higher-Order DCA Attacks on SEL Masking
	Improved Data-Dependency HO-DCA
	Generalization and Mitigation for Improved Attack

	Security Evaluation on Dummy Shuffling
	The Target Shuffling Implementation
	Higher-Order DCA Attacks on Specific BU Shuffling
	Attacks on The Combination of Masking and Shuffling

	Conclusion
	The Circuit Definition of AES Sbox
	The Correlations amongst Intermediates and Outputs of Sbox

