
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 1, pp. 193–237. DOI:10.46586/tches.v2023.i1.193-237

RISC-V Instruction Set Extensions for
Lightweight Symmetric Cryptography

Hao Cheng1, Johann Großschädl1, Ben Marshall2, Dan Page3 and
Thinh Pham3

1 DCS and SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
{hao.cheng,johann.groszschaedl}@uni.lu

2 PQShield Ltd, Oxford, UK.
ben.marshall@pqshield.com

3 Department of Computer Science, University of Bristol, Bristol, UK.
{daniel.page,th.pham}@bristol.ac.uk

Abstract. The NIST LightWeight Cryptography (LWC) selection process aims to
standardise cryptographic functionality which is suitable for resource-constrained
devices. Since the outcome is likely to have significant, long-lived impact, careful
evaluation of each submission with respect to metrics explicitly outlined in the call
is imperative. Beyond the robustness of submissions against cryptanalytic attack,
metrics related to their implementation (e.g., execution latency and memory footprint)
form an important example. Aiming to provide evidence allowing richer evaluation
with respect to such metrics, this paper presents the design, implementation, and
evaluation of one separate Instruction Set Extension (ISE) for each of the 10 LWC
final round submissions, namely Ascon, Elephant, GIFT-COFB, Grain-128AEADv2,
ISAP, PHOTON-Beetle, Romulus, Sparkle, TinyJAMBU, and Xoodyak; although we
base the work on use of RISC-V, we argue that it provides more general insight.
Keywords: ISA, ISE, lightweight cryptography

1 Introduction
The LWC selection process. In a detailed survey of various examples, Bernstein [Ber20]
notes that modern, open cryptographic selection processes (or contests) are not without
their issues. Set within the broader context of standardised cryptographic functionality,
however, they represent an undeniably important and influential mechanism: modulo
imperfections stemming from the non-trivial technical and non-technical challenges involved,
they act to motivate and organise collaborative effort, and, at best, produce more robust
outcomes as a result.

After a series of exploratory workshops in 2015 and 2016 and a report [MBTM17]
summarising the context and goals, NIST initiated a selection process for LightWeight
Cryptography (LWC) via an associated call [SCA18c] released in 2018. The process
scope involves two specific forms of cryptographic functionality, with each submission
specifying a suite of algorithms with required support for an Authenticated Encryption
with Associated Data (AEAD) API [SCA18c, Section 3.1], plus optional support for a
hash function API [SCA18c, Section 3.2]. Although the term is open to interpretation
more generally, the call defines lightweight to mean “tailored for resource-constrained
devices” [SCA18c, Section 1]. This implies said algorithms should, e.g., be 1) efficient on
constrained hardware and software platforms (versus existing standards), 2) efficient for
short messages, and 3) amenable to countermeasures against implementation attacks.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-07-15 Accepted: 2022-09-15 Published: 2022-11-29

https://doi.org/10.46586/tches.v2023.i1.193-237
mailto:hao.cheng@uni.lu, johann.groszschaedl@uni.lu
mailto:ben.marshall@pqshield.com
mailto:daniel.page@bristol.ac.uk, th.pham@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/


194 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

The 56 round 1 submissions accepted were reduced to 32 round 2 submissions in
2019 [TMcc+19], and then again to 10 round 3 or final round submissions in 2021 [TMC+21].
The (ongoing) final round is expected to last approximately 12 months, implying a
conclusion to the process in 2022. Beyond application of the minimum acceptability
requirements [SCA18c, Section 3], a range of factors mean that objective comparison
between and then selection of submissions in each round, the final round perhaps most
importantly, is a significant challenge. First, even in the final round, there are a large
number of submissions and variants thereof. Second, there are a large number of relevant
implementation technologies: these include hardware-oriented (e.g., FPGA, ASIC) and
software-oriented (e.g., micro-controller) instances. Third, there are a large number
of relevant evaluation criteria [SCA18c, Section 4]: focusing on implementation-related
examples, and so ignoring the complex, stand-alone challenge of cryptanalytic evaluation,
these span at least cost [SCA18c, Section 4.3] (e.g., area and/or memory footprint1),
efficiency [SCA18c, Section 4.3] (e.g., latency, throughput), and resilience to implementation
(e.g., side-channel and fault) attack [SCA18c, Section 4.2]. The product of these and
other factors demands significant effort be invested, in part due to the design space of
implementation techniques (spanning representation of data, and computation with it)
and technologies which must be explored.

ISE-supported software implementation. Within said design space, Instruction Set
Extensions (ISEs) attempt to add domain-specific support (e.g., state, instructions) to an
otherwise general-purpose base Instruction Set Architecture (ISA). Although applicable to
many domains, the study of cryptographic ISEs [BGM09, HV11, RI16] spans at least a 25
year period; work by Nahum et al. [NOOS95] is among the first identifiable instances.

As a fundamental and long-lived computer systems interface, the design and extension
of an ISA demands careful consideration (cf. [Gue09, Section 4]) and must deliver quantified
improvement for the workload of interest to be viable. ISEs often are viable, however,
because, for example, they represent a hybrid between use of hardware or software alone.
This is particularly true with respect to the constrained platforms and evaluation metrics
of relevance to the LWC selection process: a well designed ISE can result in lower memory
footprint and latency than a software-only implementation, and greater flexible and
efficiency (with respect to improvement per additional logic gate) than a hardware-only
implementation.

ISEs were not (explicitly) considered during the AES selection process, but, after it con-
cluded in 2002, were added to almost every major ISA; at the time of writing, these include
(at least) x86 [SCA18a, Section 12.13] (see also [Gue09, DGK19]), POWER [SCA18b,
Section 6.11.1], ARMv8-A [SCA20, Section A2.3], SPARC [SCA16, Sections 7.3+7.4], and
RISC-V [SCA22, Sections 2.4+2.5] (see also [MNP+21]). Using this fact as motivation,
we argue that considering ISEs during the LWC selection process is important because
doing so offers 1) improved understanding and concrete evidence which can inform the
LWC process itself, and 2) preparatory analysis which can inform ISA designers seeking to
support the LWC process outcome.

Contributions. As such, this paper makes two central contributions:
1. Based on careful analysis, we present the design, implementation, and evaluation of one

separate ISE for each of the 10 LWC final round submissions; for most submissions, our
work represents the first exploration of implementations supported by domain-specific
ISEs.
1Whereas the term memory footprint includes, e.g., static and dynamic data, we focus on instruction

(or code) throughout: instruction footprint is the amount of memory required to house the instructions for
a given implementation, which is a proxy for the number of instructions required.



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 195

2. We present a number of novel software-only (i.e., without requiring an ISE) techniques
and implementations. For most submissions, our work represents the first exploration
of implementations supported by special-purpose, cryptographic Zbkb and Zbkx bit
manipulation extensions, an approach which is particularly effective for Elephant (Sec-
tion 3.3) and GIFT-COFB (Section 3.4); in the latter case, for example, we demonstrate
how to optimise bit-sliced implementations of GIFT-128 (as used in GIFT-COFB) using
Zbkb, rendering it more efficient than either standard or fix-sliced alternatives for short
plaintexts/ciphertexts.

Note that all material associated with the paper, e.g., documentation and source code
relating to all hardware and software implementations, are openly available2 under an
open source license: we expect this material to evolve throughout the remainder of the
LWC process and beyond.

Organisation. The paper is organised as follows. In Section 2 we present various back-
ground information, including a definition of the scope of and basis for our work. In
Section 3 we analyse the LWC final round submissions, and produce associated ISE
designs for RISC-V. Then, in Section 4 and Section 5 respectively, we discuss the imple-
mentation and evaluation of those designs based on instances of the RISC-V compliant
Rocket [AAB+16] core.

2 Background
Scope. In part to cope with the large design space considered, and thus engineering effort
required, we fix the scope of our work in the following ways:
1. For each submission, we only consider the primary algorithm; each such algorithm is

based on a “building block” component or kernel which dominates computation. We
only consider intra-kernel ISEs, i.e., ISEs for use within a given kernel: the definition of a
kernel implies that any extra-kernel opportunities for ISEs have at best a marginal impact,
so are not considered viable. Furthermore, we only consider partial implementation of a
given kernel where appropriate. Romulus is based on the Skinny-128-384+ kernel, for
example, but only uses it to encrypt data; we do not consider support for decryption,
therefore, although it would clearly be possible to do so if it were more generally useful.

2. We do not consider the hash function API: focusing on the the AEAD API alone seems
sufficient, because, for each submission, use of the same kernel is evident across the
algorithms which support both APIs.

3. We only consider a 32-bit ISA (and also ISEs for it therefore). Although consideration
of a wider set of ISAs is more generally useful, we rationalise this decision by noting it
aligns with the (implied) scope of the LWC process: the NIST call outlines a requirement
to consider “8-bit, 16-bit and 32-bit microcontroller architectures” [SCA18c, Section 3.4],
for example, meaning a 64-bit ISA is deemed out of scope.

4. Although some discussion of the topic is included for completeness in Section 5, we do
not consider support in the ISA nor ISEs for countermeasures against implementation
attacks (other than their ability to deliver data-independent execution latency). We
rationalise this decision by noting it aligns with the (implied) scope of the RISC-V scalar
cryptographic extensions [SCA22]: for example, the Zkne and Zknd extensions [SCA22,
Sections 2.4+2.5] for AES do not consider interaction with masking-based countermea-
sures against DPA-like attacks [KJJ99, MOP07].

5. For most submissions, we considered multiple ISE design variants. However, we only
present results for the single ISE design variant we deem most effective, i.e., that which
2See https://github.com/scarv/lwise.

https://github.com/scarv/lwise


196 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

offers the greatest improvement in execution latency per additional logic gate. We stress
that the results are therefore a “snapshot”, rather than exhaustive exploration of the
(large) design space.

RISC-V. RISC-V (see, e.g., [Wat16]) is an open ISA specification. It adopts strongly
RISC-oriented design principles (so is similar to MIPS) and can be implemented, modified,
or extended by anyone with neither licence nor royalty requirements (so is dissimilar to
MIPS, ARM, and x86). A central tenet of the ISA is modularity: a general-purpose
ISA can be augmented with a set of special-purpose, standard or non-standard (i.e.,
custom) extensions. As a result of these features, coupled with the surrounding community
and availability of supporting infrastructure such as compilation tool-chains, a range of
(typically open-source) RISC-V implementations exist.

In line with our scope, we focus on use of the unextended ISA RV32GC [SCA19,
Chapter 2] as a starting point. We define the base ISA, i.e., a baseline for our work,
as the unextended ISA plus Zbkb and Zbkx: it therefore includes the 32-bit integer ISA
plus the general-purpose M (multiplication) [SCA19, Chapter 7], A (atomic) [SCA19,
Chapter 8], F (single-precision floating-point) [SCA19, Chapter 11], D (double-precision
floating-point) [SCA19, Chapter 12], and C (compressed) [SCA19, Chapter 16] exten-
sions, plus the special-purpose, cryptographic Zbkb (a subset of K for bit manipulation
instructions) [SCA22, Section 2.1] and Zbkx (a subset of K for crossbar permutation
instructions) [SCA22, Section 2.2] extensions. We define an extended ISA as then
capturing our work, i.e., the base ISA extended with support for an LWC-specific ISE.

Notation. Let x(b) denote an x expressed in radix- or base-b; the base may be omitted,
in which case it is safe to assume b = 10. Let MEM[i]b denote a b-byte access to some
byte-addressable memory, using the address i; note that where b = 1, the access granularity
may be omitted. Let GPR[i], for 0 ≤ i < 32, denote the i-th entry of the general-purpose
register file. Note that GPR[0] is fixed to 0, in the sense reads from it always yield 0
and writes to it are ignored. Let x ≪ y and x ≪ y (resp. x ≫ y and x ≫ y) denote
left-shift and left-rotate (resp. right-shift and right-rotate) of x by y bits respectively.
Let x ∥ y denote concatenation of x and y, and xh...l denote extraction of bits h (the
high, or more-significant index) through l (the low, or less-significant index) inclusive from
some x. RISC-V uses XLEN to denote the word size. We adopt same approach, meaning
XLEN = 32 because the context is RV32GC.

3 Design
NIST are careful to use “algorithm(s)” throughout [SCA18c, Section 5], presumably to at
least allow selection of a suite of rather than a single algorithm. Although one could conclude
that multi-algorithm ISEs, i.e., ISEs which support more than one algorithm, are attractive
therefore, focusing on them is arguably premature until the outcome is clear. In this section,
we therefore adopt a 2-step design process. First, we focus on independently developing an
ISE design for each algorithm: each of the following subsections acts to summarise such
a design at a high level, with any lower-level technical detail (e.g., instruction encoding,
semantics, etc.) deferred to an associated appendix. We use a uniform structure in each
such subsection by presenting 1) an overview of the submission, 2) an overview of the
kernel within said submission that we focus on, 3) implementation options (including
related work, e.g., implementation results), then, finally, 4) a description of the ISE design.
Second, and based on the above, Section 3.12 concludes with a broader discussion of
opportunities relating to design of ISAs, ISEs, and the algorithms themselves; by taking a
broader perspective, this second step therefore highlights if and where multi-algorithm
ISEs can be extracted from the single-algorithm ISE designs.



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 197

3.1 Constraints
In their study of support for AES in RISC-V, Marshall et al. [MNP+21, Section 3] codify
a set of ISE requirements to guide their subsequent design process. We adopt the same
requirements, which, for completeness, we reproduce here (numbered to match, noting we
omit their AES-specific requirement 1):

Requirement 2. The ISE must align with the wider RISC-V design principles. This
means it should favour simple building-block operations, and use instruction encodings with
at most 2 source register addresses and 1 destination register address.

Requirement 3. The ISE must use the RISC-V general-purpose scalar register file to
store operands.

Requirement 4. The ISE must not introduce special-purpose architectural state, nor rely
on special-purpose micro-architectural state.

On one hand, we recognise that adopting these constraints means potential ISE designs
might be ignored; this fact potentially renders our results sub-optimal, at least versus a
more permissive alternative where the constraints are not adhered to. A pertinent example
is the approach of Steinegger and Primas [SP21], which captures the 320-bit Ascon state
within 10 general-purpose registers then used as input and output by a tightly-coupled
accelerator for an entire round. This approach may be reasonable for a specific use-cases,
and variants of it are in fact viable for all the LWC candidates. However, the approach
violates Requirement 2: although a useful option in the overall design space, our approach
(namely a focus on more traditional, RISC-like ISEs) is fundamentally different.

On the other hand, we argue that the same constraints maximise potential utility of
our ISE designs. For example, within the context of RISC-V they 1) support multiple
implementation options, including a more traditional integrated approach or via the in-
development Custom Function Unit (CFU)3 specification, and 2) offer an easier route
to standardisation and deployment as a result of limiting impact on other aspects of
the ISA. Beyond this, the constraints also permit extrapolation to other ISAs, e.g., via
the ARMv8-M custom instruction mechanism [CP20]; doing so would be more difficult
otherwise.

3.2 Ascon
Submission overview. The Ascon [DEMS21] submission specifies the AEAD algorithms
[DEMS21, Section 2.4] Ascon-128, Ascon-128a, and Ascon-80pq, and the hash function
algorithms [DEMS21, Section 2.5] Ascon-Hash and Ascon-Hasha. We focus on the
primary algorithm Ascon-128, and, more specifically therefore, a kernel represented by
the pa and pb permutations [DEMS21, Section 2.6] (a single permutation p, often referred
to as Ascon-p, with a and b rounds respectively).

Kernel overview. The Ascon-p permutation manipulates a 320-bit state, which is
organized in five 64-bit words, by iteratively applying a round function p. This round
function is essentially a Substitution-Permutation Network (SPN) and comprises three
parts: (i) the addition of an 8-bit round constant cr to a 64-bit state-word, (ii) a substitution
layer that operates across the five words of the state and implements an affine equivalent of
the S-box in the χ mapping of Keccak, and (iii) a permutation layer consisting of linear
functions that are similar to the Σ functions in SHA2 and performed on each state-word
individually. The S-box maps five input bits to five output bits and is applied to each
column of the state, whereby the five state-words are arranged vertically.

3https://cfu.readthedocs.io

https://cfu.readthedocs.io


198 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Implementation options. The substitution layer is normally implemented in a bit-sliced
fashion using logical ANDs, XORs, and NOTs. On the other hand, the permutation layer
performs an operation of the form x = x⊕ (x ≫ n)⊕ (x ≫ m) on each 64-bit word x
of the state. On 32-bit architectures, the Ascon-p permutation is usually implemented
in a Bit-Interleaved (BI) fashion, which means each 64-bit word of the state is split up
into two 32-bit words, one containing the bits at even positions and the other the bits
at odd positions. This representation has the advantage that one can perform a 64-bit
rotation through two 32-bit rotations, which is particularly beneficial on 32-bit ARM
Cortex-M microcontrollers due to their “free” rotations. Even though bit-interleaving has
the potential to speed up the linear functions of Ascon-p on any 32-bit platform (including
RV32), one has to take into account that this performance gain for the permutation comes
at the expense of conversions between the BI representation and normal representation
whenever data is injected into or extracted from the state.

ISE description. The substitution layer consists of logical operations on 64-bit words,
which can be split up into two operations on 32-bit chunks. An optimized implementation
of the S-box requires 17 native RV32GC instructions [CJL+20], which can be reduced to
15 with the help of two Zbkb instructions. The permutation layer can achieve a more
significant speed-up since its operations of the form x = x⊕ (x ≫ n)⊕ (x ≫ m) map
naturally to two custom sigma instructions that use the upper and lower part of a 64-bit
state-word as input and produce either the upper or lower part of the result. The rotation
amounts can be specified through immediate values. In this way, the instruction-count
of the full permutation layer can be reduced from 80 (i.e., 16 per-word) to only 10. This
reduction of the number of instructions to 10 is independent of whether bit-interleaving is
applied or not, which means that using the BI representation has actually an adverse impact
on the overall performance due to the conversions between BI and normal representation.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix A.

3.3 Elephant
Submission overview. The Elephant [BCDM21] submission specifies the AEAD algorithms

Dumbo = Elephant-Spongent-π[160]
Jumbo = Elephant-Spongent-π[176]

Delirium = Elephant-Keccak-f [200]

We focus on the primary algorithm Dumbo, and, more specifically therefore, a kernel
represented by the Spongent-π[160] permutation (see also [BKL+13]).

Kernel overview. Spongent-π[160] used in Dumbo is a 80-round Spongent permutation
[BKL+13] (essentially a PRESENT-type permutation [BKL+07]). It operates on a 160-bit
state and consists of three layers in each round: 1) XORing the state with two round
constants, of which one is computed by a 7-bit LFSR ICounter160, i.e., 0153 ∥ ICounter160(i),
while the other one is rev (0153 ∥ ICounter160(i)), where i denotes the round index and
rev is a function reversing the order of the bits of its input; 2) sBoxLayer160, a 4-bit
S-box applied 40 times in parallel; 3) pLayer160, moving the bit j of state to bit position
40 · j mod 159 while the bit 159 keeps unmoved.

Implementation options. We developed the pure-software implementation of Spongent-
π[160] from scratch by ourselves, in which we presented several optimisation techniques
based on our base ISA. The 160-bit state is stored in five 32-bit words S0, S1, S2, S3,



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 199

and S4, where each Si stores bits 32i to 32i + 31 of the state. First, we precompute all
the round constants so that the first layer is simplified to require only few instructions
to load/prepare the constants plus then two XOR instructions. Second, Zbkx provides a
dedicated instruction for the parallel 4-bit S-box, namely xperm4, which is very beneficial
for sBoxLayer160. Concretely, the xperm-style look-up table for sBoxLayer160 is construct
with three registers before Spongent-π[160] starts:
li rl , 0xF4120BDE ; the lower half of S- box look -up table
li rh , 0x63C958A7 ; the higher half of S- box look -up table
li rm , 0x88888888 ; the mask used in xperm - style S- box

Each 32-bit word Si (stored in rx) can perform eight 4-bit S-boxes simultaneously with
two xperm4 and two XOR instructions via
xperm4 ry , rl , rx
xor rx , rx , rm
xperm4 rx , rh , rx
xor rx , rx , ry

so in each round the whole sBoxLayer160 needs 20 instructions in total. Last, we divide
the pLayer160 into two steps: 1) for each word Si, we firstly apply the unzip instruction
(from Zbkb) twice and thus make Si be a form shown in the 3rd row of Figure 1; 2) we
then take advantage of eight SWAPMOVE operations (SWAPMOVE will be explained in detail in
Section 3.12) to swap the bits between different words, i.e.,

SWAPMOVE(S0, S1, 0x000000FF, 8);
SWAPMOVE(S0, S3, 0x000000FF, 24);
SWAPMOVE(S1, S4, 0x000000FF, 24);
SWAPMOVE(S2, S4, 0x0000FF00, 16);

SWAPMOVE(S0, S2, 0x000000FF, 16);
SWAPMOVE(S1, S2, 0x0000FF00, 8);
SWAPMOVE(S2, S3, 0x0000FF00, 8);
SWAPMOVE(S3, S4, 0x00FF0000, 8);

and, afterwards, we use three rori instructions (for right-rotation, also from Zbkb) to
make S1, S2, and S3 correctly-aligned.

ISE description. At first, we designed a custom instruction for the parallel 4-bit S-box,
where we integrated the first step of pLayer160 (i.e., two “unzip” instructions) at the end.
Moreover, we designed two instructions for the specific SWAPMOVE operations used in our
second step of pLayer160. Because each of our custom instruction has 1 destination register
and each SWAPMOVE swaps bits between two different words, so 2 custom instructions are
therefore required to perform one complete SWAPMOVE here. We also integrated the final
three right-rotations into the custom instruction to further reduce the latency.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix B.

3.4 GIFT-COFB
Submission overview. The GIFT-COFB [BCI+21] submission specifies an eponymous
AEAD algorithm. We focus on this, the only and therefore primary algorithm, and, more
specifically therefore, a kernel represented by the GIFT-128 block cipher (see also [BPP+17]).

Kernel overview. GIFT-128, belonging to GIFT block cipher family, is based on a SPN
with a key length and a block size of both 128 bits. It is a 40-round block cipher with
an identical round function that consists of three steps, namely SubCells, PermBits, and
AddRoundKey. A typical technique to implement GIFT-128 is bit-slicing [BPP+17], where
the 128-bit cipher state is expressed as four 32-bit slices S0, S1, S2, and S3. SubCells is
essentially a 4-bit S-box, which needs 11 bitwise logical operations in bit-slicing. PermBits
has a special property that bits in Si remain in the same slice through the permutation.



200 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

31 27 23 19 15 11 7 3 30 26 22 18 14 10 6 2 29 25 21 17 13 9 5 1 28 24 20 16 12 8 4 0

28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

unzip

unzip

rev8

Figure 1: PermBits using instructions from Zbkb. The numbers denote the bit indices of
the input 32-bit state slice.

AddRoundKey includes three sub-steps: add round key (to S1 and S2), add round constant
(to S3), and key state update (with a main operation of two 16-bit word-wise rotations).
We refer readers to [BPP+17] or the GIFT-COFB specification [BCI+21] for more details.

Implementation options. In addition to naive bit-slicing, a new representation for GIFT-
128, namely the fix-slicing, is proposed in [ANP20]. In this work, we considered both
different types of state representation for GIFT-128. According to [ANP20], fix-slicing
is faster on 32-bit ARM Cortex-M microcontrollers in relation to the naive bit-slicing.
However, thanks to Zbkb instructions, we are able to execute the PermBits very efficiently,
which makes naive bit-slicing outperform fix-slicing on our base ISA. In detail, only three or
four instructions are required in order to permute a 32-bit state slice Si in each PermBits
operation (we save the last rori for S3):
unzip rx , rx
unzip rx , rx
rev8 rx , rx
rori rx , rx , imm

Figure 1 illustrates how unzip and rev8 permute bits (of a single Si) during PermBits,
from which we observe that the output of rev8 is already the output for S3 [BCI+21,
Table 2.2]. For S0, S1, and S2, we just further rotate the resulting state slice to the right
(using rori) with the corresponding offset (i.e., 24, 16, and 8 respectively).

Furthermore, Zbkb can also speed up the key state update operation. Concretely,
we assume a 32-bit key state word W6 ∥ W7 (stored in rx). With the help of pack
instruction, we can quickly obtain W6 ≫ 2 ∥ W7 ≫ 12 through
pack ry , rx , rx ; ry = ( W7 ) || ( W7 )
rori rx , rx , 16 ; rx = ( W7 ) || ( W6 )
pack rx , rx , rx ; rx = ( W6 ) || ( W6 )
rori ry , ry , 12 ; ry = ( W7 >>> 12 ) || ( W7 >>> 12 )
rori rx , rx , 2 ; rx = ( W6 >>> 2 ) || ( W6 >>> 2 )
pack rx , ry , rx ; rx = ( W6 >>> 2 ) || ( W7 >>> 12 )

ISE description. We implemented both the fix-slicing and the naive bit-slicing implemen-
tation of GIFT-128 on the base ISA, and designed ISE for each of them. The fix-slicing
implementation separates the computation of round key-update from the main GIFT-128
and uses an efficient round key pre-computation to align with the fix-slicing representa-
tion. On the other hand, the ISE for the bit-slicing implementation includes only two
instructions to accelerate PermBits and the key state update, respectively. In essence,
the ISE for fix-slicing include an instruction for the so-called SWAPMOVE operation (which



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 201

will be discussed in detail in Section 3.12), three instructions for the rotation of nibbles,
bytes, and halfwords in a 32-bit register, whereby the rotation amount is encoded as
an immediate value, and three further instructions for the key-update function. The
latter three instructions perform a sequence of SWAPMOVEs and operations that consist of
rotations of 32-bit words, logical ANDs with a constant, and logical ORs. Each of the
three key-update instructions operates on a single 32-bit word.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix C.

3.5 Grain-128AEADv2

Submission overview. The Grain-128AEADv2 [HJM+21] submission specifies an epony-
mous AEAD algorithm. We focus on this, the only and therefore primary algorithm, and,
more specifically therefore, a kernel represented by the keystream-generation function of
the underlying Grain-128a stream cipher (see also [HJM07, rHJM11]).

Kernel overview. Grain-128a is based on (a variant of) the “original” stream cipher
Grain, which was a candidate of the eSTREAM competition and selected for the final
eSTREAM portfolio. The kernel is a function that computes a 32-bit word of the keystream
using an internal state of a size of 256 bits. This state consists of a 128-bit Linear Feedback
Shift Register (LFSR) and a 128-bit Nonlinear Feedback Shift Register (NFSR). The kernel
consists of three major sub-functions: one to update the LFSR (called f function), and
one to update the NFSR (called g function) and one to compute the 32-bit output word
(called h function).

Implementation options. A naive implementation of the sub-functions to update the
LFSR and NFSR consists of a large number of bit-level operations. It is therefore
more efficient to implement the sub-functions such that they operate on 32-bit words,
in which case the kernel basically consists of shifts, ANDs, and XORs. The kernel of
Grain-128AEADv2 is simpler (and, therefore, faster) than the kernel of the other NIST
finalists, but this simplicity comes at the expense that the kernel is executed more often.
Another specific property of this kernel is that the instructions provided by Zbkb/x (e.g.
rotations) are not capable to reduce the execution time significantly.

ISE description. The kernel can be accelerated through a set of ten custom instructions,
the most important of which is an instruction to extract a 32-bit word that lies at a certain
position within a 64-bit word (held in two source registers). Furthermore, the set includes
two instructions for the f function, three instructions for the g function, and four for the
h function. Each of these instruction gets two state-words as input and computes the
contribution of these two state-words to the result of f , g, and h, respectively. Finally, all
the contributions have to be XORed together.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix D.

3.6 ISAP
Submission overview. The ISAP [DEM+21] submission specifies a family of permutation-
based AEAD algorithms [DEMS21, Section 2.5] consisting of Isap-A-128a, Isap-K-128a,
Isap-A-128, and Isap-K-128. We focus on the primary algorithm Isap-A-128a, and, more



202 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

specifically therefore, a kernel represented by the Ascon-p permutation (see [DEMS21]
and Section 3.2).

Kernel overview. The main distinguishing feature of the ISAP family is their built-in
mode-level countermeasures against passive side-channel attacks. However, from a kernel
perspective, the main instance Isap-A-128a uses exactly the same Ascon-p permutation
as the Ascon family of AEAD algorithms. Isap-A-128a evaluates this permutation over
either one, six, or 12 rounds, depending on the concrete (sub-)operation the permutation
is part of. As already explained in Section 3.2, Ascon-p operates over a 320-bit state and
consists of (i) a round-constant addition, (ii) a substitution layer based on a bit-sliced
5-bit S-box, and (iii) a linear layer performing XORs and rotations of 64-bit words.

Implementation options. Similar to Ascon, optimized implementation of Isap-A-128a
for 32-bit platforms can take advantage of bit-interleaving to speed up the linear layer of the
permutation. However, as explained in Section 3.2, bit-interleaving has actually a negative
effect on the overall performance when the linear layer is accelerated through a small set of
custom instructions. This is because an ISE-supported implementation of the linear layer
always consists of only 10 instructions, regardless of whether bit-interleaving is applied
or not, which means the conversions between bit-interleaved and normal representation
actually slow down the execution.

ISE description. The ISE described in Section 3.2 for Ascon-p can re-used for Isap-A-
128a.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix E.

3.7 PHOTON-Beetle
Submission overview. The PHOTON-Beetle [BCD+21] submission specifies the AEAD algo-
rithm family PHOTON-Beetle-AEAD [BCD+21, Section 3.2] and the hash function algorithm
family PHOTON-Beetle-Hash [BCD+21, Section 3.3]. We focus on the primary algorithm
PHOTON-Beetle-AEAD[128], and, more specifically therefore, a kernel represented by the
PHOTON256 permutation (see also [GPP11]).

Kernel overview. The PHOTON256 permutation operates on an internal state of 256 bits,
organised into an (8 × 8)-element matrix of 4-bit nibbles. The permutation is SPN-
like, consisting of 12 rounds that each apply 4 round functions: these are AddConstant,
SubCells, ShiftRows, and MixColumnsSerial. Per [GPP11, Section 2.2], the 4-bit
PRESENT S-box is used in SubCells; in contrast to the AES MixColumns round function,
MixColumnsSerial is specifically optimised to facilitate a serial application of operations
in F24 .

Implementation options. As reflected by the submission, 3 implementation techniques
are applicable to PHOTON256; in line with the similar SPN-like structure, and, at least to
some extent, round functions, said techniques to analogous to those for AES. First, one
can focus on online computation. Doing so mirrors the algorithmic description, whereby
each round function is computed; this potentially includes arithmetic in F24 , bar small
look-up tables, e.g., for the S-box. Second, one can focus on offline pre-computation. Doing
so mirrors the AES T-tables technique: the action of SubCells and MixColumnsSerial
is pre-computed using a look-up table, careful indexing into which can also cater for
ShiftRows. Third, and finally, one can use bit-slicing.



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 203

ISE description. The ISE design assumes a column-packed representation, and consists of
1 instruction: the second implementation strategy above is followed, but the look-up table
that would normally be computed offline is instead computed online (in hardware). Given
an input column, the instruction computes 1 nibble of the output column by applying
SubCells and MixColumnsSerial. This allows 8 such instructions to compute an entire
output column (including AddConstant and ShiftRows, the latter realised simply through
indexing of the columns); 64 such instructions can be used to compute an entire round.
In a sense, this approach is similar to the design adopted by RISC-V [SCA22, Sections
2.4+2.5] for AES (as documented in [MNP+21], stemming from work by Nadehara et
al. [NIK04] and Saarinen [Saa20]).

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix F.

3.8 Romulus
Submission overview. The Romulus [GIK+21] submission specifies the AEAD algorithms
Romulus-N [GIK+21, Section 2.4.3], Romulus-M [GIK+21, Section 2.4.4], and Romulus-
T [GIK+21, Section 2.4.5], and the hash function algorithm Romulus-H [GIK+21, Section
2.4.6]. We focus on the primary algorithm Romulus-N, and, more specifically therefore,
a kernel represented by the Skinny-128-384+ tweakable block cipher (which is a reduced
round variant of Skinny-128-384; see also [BJK+16]).

Kernel overview. Skinny-128-384 is an SPN-based tweakable block cipher that uses a
compact S-box, a very sparse diffusion layer, and a very light key schedule. Due to the high
security margin of Skinny, the Romulus designers decided to use a Skinny variant with a
reduced number of rounds, namely 40 instead of 56. Skinny-128-384 operates on an internal
state of a size of 128 bits that can be viewed as a (4× 4)-element matrix of bytes, similar
to the AES. The round function is composed of five operations in the following order:
SubCells, AddConstants, AddRoundTweakey, ShiftRows, and MixColumns. SubCells
applies an 8-bit S-box, which can be efficiently implemented in hardware, to every byte of
the state. The AddConstants operation XORs some round-dependent constants to the
first column of the state. AddRoundTweakey extracts eight bytes from the tweakey state
and XORs them to the state, whereby the bytes are permuted and updated with simple
LFSRs. ShiftRows rotates the bytes of the state row-wise to the right by 0, 1, 2, and
3 positions, similar to the ShiftRows transformation of the AES. Finally, MixColumns
multiplies each byte-column of the state by a binary matrix.

Implementation options. The most efficient software implementations of Skinny-128-
384 for 32-bit platforms are based on the fix-slicing technique, which can be seen as a
special form of bit-slicing [AP20a]. In this work, we considered both the straightforward
implementation that uses a look-up table for S-box as well as the fix-slicing implementation.

ISE description. For the table-based implementation, the ISE design assumes a row-
packed representation of the state matrix, and can be described as supporting 1) update
and use of the round constant (which involves application of an LFSR), 2) update of
the tweak key (which involves application of an LFSR), and 3) application of the round
functions. Using a row-packed representation, MixColumns can be realised via a short
sequence of XORs; this allows the latter aspect of the ISE to focus on the remaining, row-
oriented round functions, i.e, SubCells, ShiftRows, and AddRoundTweakey. Application
of SubCells across an entire packed row of the state matrix is rationalised by the low cost
S-box design: even if 4 parallel S-box instances are used, the cost in terms of area is still



204 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

low in relative terms. For the fix-slicing implementation, the ISE includes instructions for
MixColumns, specific SWAPMOVE operations, and round key pre-computation (e.g., LFSR,
key permutation, and key update).

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix G.

3.9 Sparkle
Submission overview. The Sparkle [BBdS+21] submission specifies the AEAD algo-
rithm family Schwaemm [BBdS+21, Section 2.3] and the hash function algorithm family
Esch [BBdS+21, Section 2.2]. We focus on the primary algorithm Schwaemm256-128 and,
more specifically therefore, a kernel represented by the Sparkle permutation [BBdS+21,
Section 2.1] (see also [BBdS+20b], noting underlying use of the Alzette [BBdS+20a] ARX-
box).

Kernel overview. The Sparkle permutation consists of three basic building blocks,
namely (i) a non-linear layer that is composed of six parallel instances of the ARX-box
Alzette, (ii) a simple linear diffusion layer, (iii) the addition of a step counter and round
constant to the 384-bit state. Alzette can be seen as a small 64-bit block cipher that
operates on two 32-bit words and performs three additions and four XORs whereby one
of the operands is rotated by a fixed distance, as well as one ordinary addition and four
ordinary XORs. On the other hand, the linear layer is, in essence, a Feistel round with a
linear Feistel function, followed by a swap of the left and right half of the state.

Implementation options. An ARM Cortex-M implementation of Alzette consists of only
12 instructions when exploiting the “free” rotation of the second operand. On the other
hand, when Alzette is implemented using the base RV32GC instruction set, a total of 33
arithmetic/logical instruction are necessary, which can be reduced to 19 instructions when
the bit-manipulation extension Zbkb is available. The linear layer consists of two rotations
of 32-bit words (which are part of the so-called ℓ operation) and a number of xor and
register-move (i.e., mv) instructions. Using the base-ISA, the linear layer consists of 32
instructions, among which are six mv instructions. However, these mv instructions can be
avoided when the permutation is fully unrolled, thereby reducing the instruction count of
the linear layer to 24. A further reduction by four instructions is possible when using the
rotation instructions from Zbkb.

ISE description. There are two basic options for speeding up Alzette with the help
of custom instructions. The first is to define instructions for operations of the form
x = x⊕ (y ≫ n) and x = x + (y ≫ n), where x and y are two 32-bit words and n is a
fixed rotation amount, which can be encoded as an immediate value. In this case, a single
instance of Alzette consists of 12 instructions and is very similar to an ARM Cortex-M
implementation. A more speed-optimized ISE would consist of two custom instructions, of
which one computes the x word of the output and the other the y word. Each of these
instructions can be encoded with two source register addresses, one destination register
address, and an immediate value specifying one of six 32-bit constants. In this case, Alzette
consists of only two instructions. The instruction count of the linear layer can be reduced
from 24 to 16 with the help of a custom instruction for the ℓ operation.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix H.



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 205

3.10 TinyJAMBU
Submission overview. The TinyJAMBU [WH21] submission specifies an eponymous
AEAD algorithm family. We focus on the primary algorithm TinyJAMBU-128 [WH21,
Section 3.3], and, more specifically, a kernel represented by the keyed permutation Pn,
which is iterated either n = 640 times (P640) or n = 1024 times (P1024).

Kernel overview. The permutation P is based on a 128-bit non-linear feedback shift
register whose feedback path consists of four bit-wise XORs and a bit-wise NAND, which
is the only non-linear operation of TinyJAMBU. One can easily identify the state-update
function as the most performance-critical operation; it gets besides the 128-bit state and
the number of rounds also a key as input. However, TinyJAMBU does not involve a
key-schedule. The permutation Pn distinguishes itself from the permutations of other
finalists like Ascon, Sparkle, and Xoodyak by an extremely small state size the fact
that it is keyed (i.e., Pn is a non-public permutation). Furthermore, the number of rounds
is much higher, which is compensated by an extremely simple round function (basically
just a shift of the 128-bit state along with five bit-operations).

Implementation options. On a 32-bit processor, it is possible to compute 32 instances
of the permutation simultaneously, which means the XOR and NAND operations are
performed on 32-bit words. One of them is a word of the state, one a word from the key
and the other four are extracted from the state at certain positions. The latter boils down
to extracting a 32-bit word from two adjacent 32-bit state-words through an operation of
the form w = (Si ≫ n) ∧ (Sj ≪ (32− n)).

ISE description. Extracting a 32-bit words from two state-words can be done with three
native RV32GC instructions. However, this operation can be easily mapped to a custom
instruction (which we call fsri) that reads two 32-bit words from registers and gets the
position of the word to extract through an immediate value. Even though fsri saves only
two instructions, it still improves the execution time of TinyJAMBU significantly since
these word-extractions account for about 80% of the execution time of the state-update
operation.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix I.

3.11 Xoodyak
Submission overview. The Xoodyak [DHM+21] submission specifies an eponymous
algorithm, which supports both AEAD and hash function modes. We focus on this, the
only and therefore primary algorithm, and, more specifically therefore, a kernel represented
by the Xoodoo[12] permutation (see also [DHAK18]).

Kernel overview. The state of the Xoodoo[12] permutation has the form of a (3× 4)-
element matrix of 32-bit words, which can be visualized via three horizontal 128-bit planes
(one above the other), each consisting of four 32-bit lanes. It is also possible to view the
384-bit state as 128 columns of three bits lying upon another (i.e., each bit belongs to
a different plane). As its name indicates, Xoodoo[12] executes 12 iterations of a round
function consisting of five steps: a column-parity mixing layer θ, a non-linear layer χ, two
plane-shifting layers (ρwest and ρeast) between them, and a round-constant addition. Both ρ
layers move bits horizontally and perform lane-wise rotations of planes as well as rotations
of lanes by 11, 1, and 8 bits to the left. On the other hand, in the parity-computation part



206 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

of θ and in the χ layer, state-bits interact only vertically, i.e. within 3-bit columns. The θ
layer mainly executes XORs and left-rotations by 5 and 14 bits. Finally, the non-linear
layer χ applies a 3-bit S-box to each column of the state, which can be computed using
logical ANDs, XORs, and bitwise complements.

Implementation options. An optimised implementation of Xoodoo[12] permutation
on RV32IMAC was proposed in [CJL+20]. This implementation takes advantage of a
technique known as lane complementing, which allows one to reduce the number of bitwise
complements that have to be carried out in the χ transformation from 12 per round to
three. However, this optimisation is not necessary on our base ISA, due to the andn
instruction provided by Zbkb. andn combines a logical AND with a bitwise complement of
the second operand, which benefits the implementation of χ to be more straightforward
and more efficent on our base ISA.

ISE description. When adhering to the requirements for custom instructions mentioned
in Section 2, then the only opportunity to speed up Xoodoo[12] is the manipulation
of the parity-plane (i.e., three 32-bit parity-lanes) through an operation of the form
e = (p ≪ 5) ⊕ (p ≪ 14). We call the custom instruction implementing this operation
xorrol.

ISE design. Note that additional, more detailed material relating to the ISE design for
this candidate can be found in Appendix J.

3.12 Discussion
Observations regarding ISA design.
• There are several algorithms (e.g., Sparkle) where operations of the form

GPR[rd]← GPR[rs1]⊙ (GPR[rs2] ⊡ imm)

for ⊙ ∈ {⊕, +,−, . . .} and ⊡ ∈ {≪,≫,≪,≫} are useful. Consider, without loss of
generality, an example operation where ⊙ = ⊕ and ⊡ =≪ is realised using the base ISA
by the 2-instruction sequence
slli rx , ry , imm
xor rx , rx , rz

One could imagine two different approaches to improving this starting point. The
arguably more CISC-like approach (see [CDPA16, Section V]) would be to add a
dedicated “shift-then-XOR” instruction to the base ISA; more general-purpose instances
of this same approach include the ARM Cortex-M “flexible second operand” mechanism.
The arguably more RISC-like approach (see [CDPA16, Section VI]) would be to retain the
original instructions (resp. micro-ops) only, but implement a mechanism by which they
can be fused (or combined, into a macro-op). By using compressed instructions [SCA19,
Chapter 16], for example, one can express a similar operation as
c.slli ry , imm
c.xor ry , rz

Celio et al. [CDPA16] argue that by fusing these 2 instructions in the micro-architecture
front-end, the same (effective) instruction throughput is achieved as use of the 1 non-
compressed, dedicated instruction, but, crucially, without “bloating” the base ISA.
However, a micro-architecture which supports fusion is more complex as a result;
for resource-constrained devices, support for dynamic, run-time fusion is potentially
unattractive therefore. A conceptual alternative would be static, compile-time fusion. If



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 207

there were a way to “merge” 2 compressed instructions into 1 non-compressed instruction,
their fused semantics could be expressed at compile-time and executed by a less complex
micro-architecture.

• There are several algorithms which use 32-bit (e.g., Sparkle) or 64-bit (e.g., Ascon)
rotation. This fact relates to a more general challenge of selecting an n-bit natural word
size for an algorithm: one could say that a larger n can be a positive for base ISAs with
a large word size (e.g., allowing more effective use of the data-path) but a negative for
base ISAs with a small word size (e.g., because n-bit operations need to be synthesised
by a sequence of m-bit alternatives, for m < n), and vice versa. Put another way, choice
of an n somewhat biases how efficient an implementation of the algorithm can be when
using a given base ISA.
The other dimension to this choice, however, is how well a particular ISA supports
a particular n. There is precedent in RISC-V for supporting 32-bit operations when
XLEN = 64 (e.g., rorw in Zbkb [SCA22, Section 3.26] and similar), but not 64-bit
operations when XLEN = 32. Following a RISC-like design philosophy, the argument
would likely be that the latter, e.g., 64-bit rotation, can and so therefore should be
synthesised using a sequence of 32-bit instructions. That said, and although total
orthogonality is clearly unrealistic, it seems there are some opportunities along similar
lines. A pertinant example is a family of so-called funnel shift instructions, which
appeared in drafts4 of the B extension but not the ratified B (i.e., Zba, Zbb, Zbc, and
Zbs) nor Zbkb extensions. Although counterarguments (e.g., their ternary, 4-address
format) exist, one could view their omission as a missed opportunity: a general-purpose
funnel shift eliminates the need for bit-interleaving (where relevant) without needing a
further, special-purpose ISE.

Observations regarding ISE design.
• For some algorithms, an ISE design for RV32GC is harder to scale (or generalise) into one

for RV64GC than for other algorithms. PHOTON-Beetle uses PHOTON256, for example, which
uses an (8× 8)-element state matrix of 4-bit nibbles. Where XLEN = 32 it is possible
to pack 1 column into each 32-bit word; where XLEN = 64, the natural generalisation is
to pack 2 columns into each 64-bit word. However, this natural generalisation of the
representation renders the associated implementation more difficult, e.g., with respect
to the ShiftRows round function.
On one hand, this does not seem a significant problem; it is already true of support
for AES in RISC-V (cf. aes32esi versus aes64es in Zkne [SCA22, Section 2.5]), for
example. On the other hand, however, one could also argue that scalability is an
attractive property and so favour designs which facilitate it.

• There are several algorithms (e.g., Elephant and Romulus) where “small” n-bit LFSRs,
for n < XLEN, are used. Although the LFSR update is typically dominated by other
components of a given algorithm, an associated ISE could plausibly offer incremental
improvement over use of the base ISA alone; if it were parameterisable (e.g., with respect
to the tap sequence), such an ISE could represent a somewhat general-purpose primitive.

• There are several algorithms (e.g., GIFT and Romulus) where the implementation tech-
nique of fix-slicing [ANP20, AP20b] is applicable; this fact is specifically highlighted
and explored by Adomnicai and Peyrin [AP20a]. Where fix-slicing is applied, an im-
plementation will often make use of a primitive termed SWAPMOVE. May et al. [MPC00,
Section 3.1] are among the first5 to define and make use of this primitive: the basic
idea is that some bits in an operand x are swapped with some bits in another operand
4See, e.g., Section 2.9.3 of version 0.93 via https://github.com/riscv/riscv-bitmanip.
5Their goal is efficient software implementation of permutations, such as those used by DES; they cite

some prior art, e.g., noting “[t]his technique is utilised in versions of DES available from the Internet (for
example Eric Young’s libdes)”.

https://github.com/riscv/riscv-bitmanip


208 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

y, with n and m controlling which bits. As such, SWAPMOVE has 3 inputs of XLEN bits
(x, y, and m), 1 input of ⌈log2 XLEN⌉ bits (n), and 2 outputs of XLEN bits (x and
y). In various ISE designs, we cope with the number and type of inputs and outputs
through specialisation, e.g., employing 1) a 1-operand variant that involves only x, and
2) a small, hard-coded set of n and m. Given a more general-purpose ISE for SWAPMOVE
is more attractive, however, it seems useful to carefully explore the trade-off between
general- and special-purpose. For example, through careful inter-algorithm analysis, it
might be possible to identify a somewhat general-purpose set of n and m which afford a
compact and so viable encoding.

Observations regarding algorithm design.
• For some algorithms, a change to the interface could plausibly yield more efficient

implementations. PHOTON-Beetle uses PHOTON256 for example, which initialises an (8× 8)-
element state matrix of 4-bit nibbles from a 16-element array of 8-bit bytes using a
row-major ordering. Use of a column-oriented representation of the state matrix can
imply a significant conversation overhead therefore, which could be reduced by changing
the interface to allow a column-major ordering (although doing so clearly then penalises
row-oriented representation in the same way).

• For some algorithms, a change to the parameterisation could plausibly yield more efficient
implementations. PHOTON-Beetle, uses PHOTON256 for example, which, per [GPP11,
Section 2.2], implies use of the 4-bit PRESENT S-box. A different parameterisation
is possible, however, which implies use of the 8-bit AES S-box: although reasonable
counterarguments also exist, one could argue that opting for the latter will maximise
overlap with existing ISEs and so minimise the additional hardware components required
(e.g., by using an AES S-box shared with Zkne [SCA22, Section 2.5], if that extension
were also supported).

4 Implementation
In the same way as the ISA, a given ISE design represents an interface between hardware
and software. In this section we consider both sides of said interface, as defined in
Section 3: Section 4.1 considers the hardware-oriented side, i.e., how the ISE is realised,
then Section 4.2 considers the software-oriented side, i.e., how the ISE is utilised. Doing
so shifts our focus from abstract design to concrete implementation, which then represents
the basis for evaluation in Section 5.

4.1 Hardware
Host core. To realise each ISE design, we use the highly configurable, RISC-V compliant
Rocket [AAB+16] host core. At a high level, the core executes instructions using a 5-stage,
in-order pipeline; support is included within the core for a branch prediction mechanism,
and in the wider system for a 16 kB instruction cache and a 16 kB data cache.

To support the execution of associated instructions, two modifications are made
to the host core for each ISE design. First, an ISE-specific Functional Unit (FU) is
integrated into the host core. At least two different approaches are possible, namely
1) an internal integration, where the FU is integrated directly into the pipeline, and 2)
an external integration, which integrates the FU using the Rocket Custom Coprocessor
(RoCC) [AAB+16, Section 4] interface. Although it requires less micro-architectural
modification, using the RoCC interface locates the FU in the commit stage; this can
degrade performance, due to inefficiency resulting from how forwarding is implemented.
Our ISE designs are intended to permit single-cycle execution, which means the efficiency of
forwarding is important. As such, we opt for the former approach, which allows location of



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 209

R0
Instruction

cache
R1

Instruction
decode

Register
file

R2

Mul/Div

Zbkb/x FU

LWC FU

R3
Data
cache

R4

+4

BTB

Fetch Decode Execute Memory Commit

Figure 2: A block diagram highlighting features in our hardware implementation (e.g.,
integration of the Zbkb/x and LWC FUs) in red. Note that Ri denotes the i-th pipeline
register, the component labelled Mul/Div supports multiplication and division, and a
Branch Target Buffer (BTB) is shown toward the left-hand end of the pipeline.

the FU in the execute stage. Second, ISE-specific modifications are made to the instruction
decoder, which, e.g., allow it to correctly provide input operands to the FU, control the
FU so it performs the required computation, and accept output operands from the FU.

What we term the unextended core, i.e., Rocket as is, supports RV32GC only. In
line with our definition of base ISA, we define the base core, i.e., a baseline for our work,
as the unextended core plus additional6 support for Zbkb and Zbkx. We then further
extend this base core with support for an LWC-specific ISE, yielding what we term an
extended core. Figure 2 illustrates the outcome, with our modifications highlighted in
red. Note that the Zbkb/x FU realises the Zbkb and Zbkx extensions, so is fixed across all
ISE designs; the LWC FU realises a given ISE design, so is different for each ISE design
therefore. Also note that neither the Zbkb/x FU nor any of the LWC FU extend the
existing critical path, so have no impact on the clock frequency. As such, and by design,
the associated instructions have a 1 cycle execution latency.

LWC FU. The implementation of each LWC FU stems fairly directly from the associated
ISE definition; each such definition uses pseudo-code which is intentionally similar to the
openly available7 Register Transfer Language (RTL) implementation used.

Experimental platform. To produce an experimental platform which permits evaluation of,
e.g., area and cycle-accurate execution latency, we make use of the SASEBO-GIII [HKSS12]:
this includes two FPGAs, namely a Xilinx Kintex-7 (model xc7k160tfbg676) target FPGA,
and a Xilinx Spartan-6 (model xc6slx45) support FPGA. We use the former exclusively,
synthesising stand-alone designs for it using Xilinx Vivado 2019.1; default synthesis settings
are used, with no effort invested in synthesis or post-implementation optimisation. The
FPGA uses a 200 MHz external clock input, which is adjusted into a 50 MHz internal clock
signal for use by the host core itself.

4.2 Software
High-level strategy. To utilise each ISE design, we developed a software implementation
which can be executed by the associated extended core. For a given algorithm, we start with
a base implementation. This is the source code8 submitted for a given algorithm. The base

6Per Section 2, recall that although Zbkb and Zbkx represent extensions to RV32GC, for example, they
form part of the defined base ISA. Viewed from the perspective of the unextended core, however, they
represent unsupported extensions and thus need an associated implementation.

7See https://github.com/scarv/lwise.
8For submission X, use of a base implementation Y typically means use of source code located in

X/Implementations/crypto_aead/Y within the submission archive X.zip.

https://github.com/scarv/lwise


210 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Table 1: A per-algorithm summary of the base and kernel implementations.
Submission Base implementation Kernel implementation

Ascon ascon128v12/ref P[6|12]
Elephant elephant160v2/ref permutation

GIFT-COFB giftcofb128v1/ref giftb128
Grain-128AEADv2 grain128aeadv2/x64 grain_keystream32

ISAP isapa128av20/ref Ascon_Permute_Nrounds
PHOTON-Beetle photonbeetleaead128rate128v1/ref PHOTON_Permutation

Romulus romulusn/[ref|fixslice_opt32] Skinny[_128_384_plus_enc|128_384_plus]
Sparkle schwaemm256128v2/opt Sparkle_opt

TinyJAMBU tinyjambu128v2/opt state_update
Xoodyak xoodyakround3/ref Xoodoo_Permute_12rounds

implementation is used as is, with one exception: the submission for Grain-128AEADv2
was ported from C++ to C, then adapted to cope with, e.g., assumptions around unaligned
access to memory. Using appropriate C pre-processor directives, we make minor alterations
to the base implementation so the kernel implementation is selectable between the original
and a compatible replacement developed by us; Table 1 summarises this information on a
per-algorithm basis. We try to be consistent, using the most efficient parameterisation of
and implementation strategy for the base implementation which is compatible with our
replacement kernel.

We view this approach as effective, in the sense it 1) allows focus on the kernel in
question (so limits the volume of work involved), but, equally, 2) allows evaluation of the
ISE design within a algorithm-wide rather than kernel-only context (so maximises utility
of the outcomes).

Low-level strategy. We use a RISC-V capable instance of the GNU tool-chain9 to
compile each software implementation. Each replacement kernel implementation is written
in assembly language. Rather than modify the tool-chain, instances of the .insn directive
are used to generate ISE-based instructions.
• Each replacement kernel implementation is captured in a single, leaf function; there is

no further opportunity for, e.g., function inlining. We respect the ABI, in the sense
that a function prologue and epilogue are careful to preserve and restore any callee-save
registers by using the stack.

• Use of an ISE almost always reduces the number of instructions required to implement a
replacement kernel, meaning loop overhead which stems from iteration, e.g., over rounds
within it, can become more prominent.
To address this while providing at least some consistency, we support either partial, 2-fold
unrolling or full, n-fold unrolling (for an appropriate n) of rounds within a replacement
kernel. The former is often useful, for example, to avoid unnecessary copying of state
output by an i-th round for use as input by the subsequent, (i + 1)-th round.

5 Evaluation
In this section, we present the result of evaluating our ISEs designs from both hardware
and software perspectives. As a non-LWC comparison point, we consider an existing10 ISE-
supported implementation of AES-GCM [SCA07]. We attempt to align said implementation
as closely as possible with the API used, by 1) “upgrading” it to support additional data,
and 2) parameterising it using a 128-bit key. A set of results, limited to the relevant,
extended ISA case only, are included for reference alongside those for LWC candidates.

9Use of the Rocket core demands a specific tool-chain version; we used commit
b468107e701433e1caca3dbc8aef8d40e0c967ed of https://github.com/riscv/riscv-gnu-toolchain,
yielding, e.g., a working GCC whose version was 9.2.0.

10https://github.com/rvkrypto/rvkrypto-fips

b468107e701433e1caca3dbc8aef8d40e0c967ed
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/rvkrypto/rvkrypto-fips


Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 211

Note throughout that, within the context of GIFT-COFB, we use FS and BS to refer
to implementations based on fix-slicing and bit-slicing respectively; within the context of
Romulus, we use FS and TB to refer to implementations based on fix-slicing and look-up
tables respectively.

Hardware. Table 2 presents a summary of synthesis results for each ISE design. Reflecting
the constraints in Section 3.1, note that all ISE design require combinational logic only,
i.e., no state, so we report the number of FPGA Look-up Tables (LUTs) only. We measure
(cumulative) overhead relative to the unextended core alone, and so exclude the wider
system: doing so seems more representative, in that, e.g., the caches, would dominate
otherwise. For example, the ISE for Sparkle (resp. TinyJAMBU) demands the most
(resp. least) area: implementation of the Zbkb/x and LWC FUs produce a 14% and
10% (resp. 3%) overhead respectively, meaning 24% (resp. 17%) cumulative versus the
unextended core.

For comparison, the ISE-supported implementation of AES-GCM makes use of Zbkc (for
carryless multiplication) [SCA22, Section 2.2], Zbnd (for AES decryption) [SCA22, Section
2.4] and Zbne (for AES encryption) [SCA22, Section 2.5]. Our synthesis results show
implementation of these extensions requires 567 additional LUTs, meaning an overhead of
31% cumulative versus the unextended core.

Software: kernel. Table 3 presents a summary of low-level results, focusing on the
kernels in isolation. For each kernel, we report both absolute results i.e., execution latency
(measured in clock cycles) and instruction footprint (measured in bytes), and relative
results i.e., increase/decrease factor versus use of the base ISA alone. Note that for some
kernels, e.g., GIFT and Romulus, we use auxiliary functions relating to pre-computation of
round keys. For clarity, and because our ISEs can be used within them, we include these
in addition to the kernel itself.

For comparison, single-block encryption via aes128_enc_ecb_rvk32 (resp. decryption
via aes128_dec_ecb_rvk32) using the ISE-supported implementation of AES-GCM re-
quires 324 (resp. 321) cycles; the encryption key schedule via aes128_enc_key_rvk32
(resp. decryption key schedule via aes128_dec_key_rvk32) requires 264 (resp. 719) cy-
cles; the GHASH function (dominated by a multiplication in F2128) via ghash_mul_rv32
requires 135 cycles.

Software: API. Table 4, Table 5, and Table 6 present a summary of high-level results,
focusing on the kernels in context, i.e., as invoked via the API using the aead_encrypt
and aead_decrypt functions for a 16, 128, and 1024 byte plaintext (resp. ciphertext)
respectively. This is important, because one kernel may represent a different proportion of
the associated algorithm than another, and thus yield different overall improvements. We
consider a range of cases, constrained such that the associated data and plaintext/ciphertext
lengths are equal: counterarguments clearly exist (e.g., one might expect common use-
cases to require a short(er), fixed length associated data, and a longer, variable length
plaintext/cipher), but adopting this approach aligns with the NIST micro-controller
benchmarking framework11 and so allows easier comparison of results.

For comparison, multi-block encryption via aes128_enc_gcm (resp. decryption via
aes128_dec_vfy_gcm) using the ISE-supported implementation of AES-GCM requires
2144, 7566, and 50742 (resp. 2309, 7716, and 50896) cycles for a 16, 128, and 1024 byte
plaintext (resp. ciphertext).

11See, e.g., https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking, and results
in [TMC+21, Section 4 + Appendix A]: note that although the data format allows “x bytes of associated
data and y bytes of message”, the data itself has x = y in all cases.

https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking


212 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Table 2: Hardware-oriented evaluation, i.e., realisation of each ISE design: area measured
in FPGA LUTs (plus increase/decrease factor versus unextended core in parentheses).

Submission Unextended core:
RV32GC

Base core:
RV32GC

+
Zbkb/x

Extended core:
RV32GC

+
Zbkb/x + ISE

Ascon

3303 (1.000×) 3764 (1.140×)

4234 (1.282×)
Elephant 3938 (1.192×)

GIFT-COFB (BS) 3906 (1.183×)
GIFT-COFB (FS) 4370 (1.323×)
Grain-128AEADv2 4271 (1.293×)

ISAP 4234 (1.282×)
PHOTON-Beetle 3892 (1.178×)
Romulus (TB) 3998 (1.210×)
Romulus (FS) 4205 (1.273×)

Sparkle 4097 (1.240×)
TinyJAMBU 3863 (1.170×)

Xoodyak 3814 (1.155×)
AES-GCM 4331 (1.311×)

Table 3: Software-oriented evaluation, i.e., utilisation of each ISE design: latency measured
in clock cycles and instruction footprint measured in bytes (plus increase/decrease factor
versus base ISA in parentheses) for direct kernel use.

Submission Kernel Metric

Replacement
kernel

implementation
Base ISA:
RV32GC

+
Zbkb/x

Extended ISA:
RV32GC

+
Zbkb/x + ISE

Ascon P6 latency 700 (1.00×) 280 (2.50×)
footprint 2718 (1.00×) 1050 (2.59×)

Elephant permutation latency 15804 (1.00×) 1944 (8.13×)
footprint 25662 (1.00×) 7702 (3.33×)

GIFT-COFB (BS) giftb128 latency 1481 (1.00×) 842 (1.76×)
footprint 5770 (1.00×) 3210 (1.80×)

GIFT-COFB (FS)
giftb128 latency 1386 (1.00×) 972 (1.43×)

footprint 4888 (1.00×) 3412 (1.43×)
precompute_rkeys latency 1306 (1.00×) 251 (5.20×)

footprint 4830 (1.00×) 768 (6.29×)

Grain-128AEADv2 grain_keystream32 latency 235 (1.00×) 86 (2.73×)
footprint 858 (1.00×) 262 (3.27×)

ISAP Ascon_Permute_Nrounds latency 736 (1.00×) 316 (2.33×)
footprint 5980 (1.00×) 2364 (2.53×)

PHOTON-Beetle PHOTON_Permutation latency 67035 (1.00×) 1473 (45.51×)
footprint 82486 (1.00×) 3466 (23.80×)

Romulus (TB) Skinny_128_384_plus_enc latency 14268 (1.00×) 1502 (9.50×)
footprint 23508 (1.00×) 4612 (5.10×)

Romulus (FS)

Skinny128_384_plus latency 6208 (1.00×) 2156 (2.88×)
footprint 17402 (1.00×) 7274 (2.39×)

precompute_rtk1 latency 867 (1.00×) 200 (4.34×)
footprint 2814 (1.00×) 610 (4.61×)

precompute_rtk2_3 latency 3402 (1.00×) 1557 (2.18×)
footprint 11290 (1.00×) 5186 (2.18×)

Sparkle Sparkle_opt latency 1647 (1.00×) 525 (3.14×)
footprint 5908 (1.00×) 1816 (3.25×)

TinyJAMBU state_update (P1024) latency 575 (1.00×) 319 (1.80×)
footprint 2208 (1.00×) 1184 (1.86×)

Xoodyak Xoodoo_Permute_12rounds latency 873 (1.00×) 777 (1.12×)
footprint 3394 (1.00×) 3010 (1.13×)

AES-GCM

aes128_enc_ecb_rvk32 latency 324
footprint 556

aes128_dec_ecb_rvk32 latency 321
footprint 570

aes128_enc_key_rvk32 latency 264
footprint 266

aes128_dec_key_rvk32 latency 719
footprint 348

ghash_mul_rv32 latency 135
footprint 252



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 213

Table 4: Software-oriented evaluation, i.e., utilisation of each ISE design: latency measured
in clock cycles (plus increase/decrease factor versus unextended ISA in parentheses) for
indirect kernel use via AEAD API (with 16 B plaintext, ciphertext, and associated data).

Submission Functionality

Original
kernel

implementation

Replacement
kernel

implementation
Unextended ISA:

RV32GC
Base ISA:
RV32GC

+
Zbkb/x

Extended ISA:
RV32GC

+
Zbkb/x + ISE

Ascon aead_encrypt 14801 (1.00×) 7839 (1.89×) 4059 (3.65×)
aead_decrypt 14523 (1.00×) 7862 (1.85×) 4083 (3.56×)

Elephant aead_encrypt 3487575 (1.00×) 87596 (39.81×) 14209 (245.45×)
aead_decrypt 3487689 (1.00×) 87608 (39.81×) 14262 (244.54×)

GIFT-COFB (BS) aead_encrypt 118062 (1.00×) 6957 (16.97×) 5082 (23.23×)
aead_decrypt 118058 (1.00×) 6926 (17.05×) 5050 (23.38×)

GIFT-COFB (FS) aead_encrypt 118062 (1.00×) 7957 (14.84×) 5664 (20.84×)
aead_decrypt 118058 (1.00×) 7919 (14.91×) 5626 (20.98×)

Grain-128AEADv2 aead_encrypt 15471 (1.00×) 15025 (1.03×) 9962 (1.55×)
aead_decrypt 15389 (1.00×) 14988 (1.03×) 9917 (1.55×)

ISAP aead_encrypt 374476 (1.00×) 74480 (5.03×) 45521 (8.23×)
aead_decrypt 198129 (1.00×) 42721 (4.64×) 25305 (7.83×)

PHOTON-Beetle aead_encrypt 1407143 (1.00×) 203088 (6.93×) 5224 (269.36×)
aead_decrypt 1407742 (1.00×) 203254 (6.93×) 5227 (269.32×)

Romulus (TB) aead_encrypt 161068 (1.00×) 33293 (4.84×) 5287 (30.46×)
aead_decrypt 161103 (1.00×) 33453 (4.82×) 5318 (30.29×)

Romulus (FS) aead_encrypt 29686 (1.00×) 36613 (0.81×) 7104 (4.18×)
aead_decrypt 30093 (1.00×) 36458 (0.83×) 7186 (4.19×)

Sparkle aead_encrypt 13141 (1.00×) 5829 (2.25×) 2424 (5.42×)
aead_decrypt 13166 (1.00×) 5818 (2.26×) 2449 (5.38×)

TinyJAMBU aead_encrypt 7908 (1.00×) 6690 (1.18×) 3891 (2.03×)
aead_decrypt 7978 (1.00×) 6761 (1.18×) 3951 (2.02×)

Xoodyak aead_encrypt 57766 (1.00×) 4191 (13.78×) 3921 (14.73×)
aead_decrypt 57775 (1.00×) 4200 (13.76×) 3905 (14.80×)

AES-GCM aes128_enc_gcm 2144
aes128_dec_vfy_gcm 2309

Table 5: Software-oriented evaluation, i.e., utilisation of each ISE design: latency measured
in clock cycles (plus increase/decrease factor versus unextended ISA in parentheses) for
indirect kernel use via AEAD API (with 128 B plaintext, ciphertext, and associated data).

Submission Functionality

Original
kernel

implementation

Replacement
kernel

implementation
Unextended ISA:

RV32GC
Base ISA:
RV32GC

+
Zbkb/x

Extended ISA:
RV32GC

+
Zbkb/x + ISE

Ascon aead_encrypt 43005 (1.00×) 32316 (1.33×) 16775 (2.56×)
aead_decrypt 43414 (1.00×) 32694 (1.33×) 17159 (2.53×)

Elephant aead_encrypt 16044010 (1.00×) 401543 (39.96×) 65118 (246.38×)
aead_decrypt 16044075 (1.00×) 402787 (39.83×) 65079 (246.53×)

GIFT-COFB (BS) aead_encrypt 687611 (1.00×) 42048 (16.35×) 31018 (22.17×)
aead_decrypt 687543 (1.00×) 42093 (16.33×) 30887 (22.26×)

GIFT-COFB (FS) aead_encrypt 687611 (1.00×) 41884 (16.42×) 33763 (20.36×)
aead_decrypt 687543 (1.00×) 41749 (16.47×) 33642 (20.44×)

Grain-128AEADv2 aead_encrypt 87682 (1.00×) 85826 (1.02×) 64083 (1.37×)
aead_decrypt 86656 (1.00×) 84897 (1.02×) 63148 (1.37×)

ISAP aead_encrypt 489529 (1.00×) 135851 (3.60×) 77577 (6.31×)
aead_decrypt 285242 (1.00×) 88894 (3.21×) 48138 (5.93×)

PHOTON-Beetle aead_encrypt 8065027 (1.00×) 1149521 (7.02×) 29372 (274.58×)
aead_decrypt 8063672 (1.00×) 1150013 (7.01×) 29407 (274.21×)

Romulus (TB) aead_encrypt 1018364 (1.00×) 213180 (4.78×) 32880 (30.97×)
aead_decrypt 1017990 (1.00×) 213444 (4.77×) 33049 (30.80×)

Romulus (FS) aead_encrypt 177043 (1.00×) 203476 (0.87×) 40351 (4.39×)
aead_decrypt 177326 (1.00×) 203444 (0.87×) 41257 (4.30×)

Sparkle aead_encrypt 30033 (1.00×) 12883 (2.33×) 5218 (5.76×)
aead_decrypt 30053 (1.00×) 12910 (2.33×) 5268 (5.70×)

TinyJAMBU aead_encrypt 39851 (1.00×) 33574 (1.19×) 19118 (2.08×)
aead_decrypt 40432 (1.00×) 34033 (1.19×) 19562 (2.07×)

Xoodyak aead_encrypt 192338 (1.00×) 14579 (13.19×) 13616 (14.13×)
aead_decrypt 192149 (1.00×) 14397 (13.35×) 13429 (14.31×)

AES-GCM aes128_enc_gcm 7566
aes128_dec_vfy_gcm 7716



214 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Table 6: Software-oriented evaluation, i.e., utilisation of each ISE design: latency measured
in clock cycles (plus increase/decrease factor versus unextended ISA in parentheses) for
indirect kernel use via AEAD API (with 1024 B plaintext, ciphertext, and associated data).

Submission Functionality

Original
kernel

implementation

Replacement
kernel

implementation
Unextended ISA:

RV32GC
Base ISA:
RV32GC

+
Zbkb/x

Extended ISA:
RV32GC

+
Zbkb/x + ISE

Ascon aead_encrypt 270239 (1.00×) 228119 (1.18×) 118500 (2.28×)
aead_decrypt 271095 (1.00×) 230828 (1.17×) 121209 (2.24×)

Elephant aead_encrypt 109520728 (1.00×) 2749081 (39.84×) 444374 (246.46×)
aead_decrypt 109520760 (1.00×) 2746736 (39.87×) 444425 (246.43×)

GIFT-COFB (BS) aead_encrypt 5221431 (1.00×) 322059 (16.21×) 238677 (21.88×)
aead_decrypt 5220757 (1.00×) 322841 (16.17×) 237408 (21.99×)

GIFT-COFB (FS) aead_encrypt 5221431 (1.00×) 312881 (16.69×) 258136 (20.23×)
aead_decrypt 5220757 (1.00×) 312008 (16.73×) 257072 (20.31×)

Grain-128AEADv2 aead_encrypt 663938 (1.00×) 650688 (1.02×) 495442 (1.34×)
aead_decrypt 655304 (1.00×) 642831 (1.02×) 487569 (1.34×)

ISAP aead_encrypt 1504643 (1.00×) 631668 (2.38×) 337357 (4.46×)
aead_decrypt 1029262 (1.00×) 461594 (2.23×) 232652 (4.42×)

PHOTON-Beetle aead_encrypt 61215512 (1.00×) 8718676 (7.02×) 221919 (275.85×)
aead_decrypt 61215428 (1.00×) 8717466 (7.02×) 222088 (275.64×)

Romulus (TB) aead_encrypt 7587976 (1.00×) 1600969 (4.74×) 246905 (30.73×)
aead_decrypt 7579477 (1.00×) 1605325 (4.72×) 249031 (30.44×)

Romulus (FS) aead_encrypt 1282828 (1.00×) 1442806 (0.89×) 286404 (4.48×)
aead_decrypt 1287633 (1.00×) 1441150 (0.89×) 294374 (4.37×)

Sparkle aead_encrypt 185179 (1.00×) 78316 (2.36×) 30688 (6.03×)
aead_decrypt 185202 (1.00×) 78346 (2.36×) 30720 (6.03×)

TinyJAMBU aead_encrypt 295003 (1.00×) 248622 (1.19×) 140980 (2.09×)
aead_decrypt 299601 (1.00×) 251993 (1.19×) 144338 (2.08×)

Xoodyak aead_encrypt 1307532 (1.00×) 98574 (13.26×) 92139 (14.19×)
aead_decrypt 1306193 (1.00×) 96744 (13.50×) 90319 (14.46×)

AES-GCM aes128_enc_gcm 50742
aes128_dec_vfy_gcm 50896

Asc
on

Elep
ha

nt

GIFT
-COFB

Gr
ai

n-
12

8A
EA

Dv
2
IS

AP

PH
OT

ON
-Beet

le

Rom
ulu

s

Spa
rkle

Tiny
JA

MBU

Xoodya
k

AES-G
CM

0
1,

00
0

2,
00

0
3,

00
0

C
yc

le
s

pe
r

by
te

1024 byte
128 byte
16 byte

(a) Encryption using aead_encrypt.

Asc
on

Elep
ha

nt

GIFT
-COFB

Gr
ai

n-
12

8A
EA

Dv
2
IS

AP

PH
OT

ON
-Beet

le

Rom
ulu

s

Spa
rkle

Tiny
JA

MBU

Xoodya
k

AES-G
CM

0
1,

00
0

2,
00

0
3,

00
0

C
yc

le
s

pe
r

by
te

1024 byte
128 byte
16 byte

(b) Decryption using aead_decrypt.

Figure 3: Two graphs summarising the data in Table 4, Table 5, and Table 6, with respect
to encryption (left) and decryption (right): for each algorithm, we select the most efficient
ISE variant (with respect to execution latency) and plot the normalised cycles per byte
across all parameterisations considered (i.e., 16 B, 128 B, and 1024 B plaintext, ciphertext,
and associated data).



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 215

Finally, Figure 3 presents a similar summary of the data to that used by NIST: for each
algorithm, we select the most efficient ISE variant (with respect to execution latency) and
plot the normalised cycles per byte across all parameterisations considered (i.e., 16 B, 128 B,
and 1024 B plaintext, ciphertext, and associated data). As well as more clearly illustrating
relative execution latency, including for the AES-GCM case, the graphs highlight cases
where the overhead of initialisation is more (resp. less) effectively amortised for large (resp.
small) inputs.

The results for the ISE-supported kernels show that the more hardware-oriented designs
(e.g. Elephant, PHOTON-Beetle, Romulus (TB)) are generally accelerated by a larger extent
than the more software-oriented designs, such as Ascon, Sparkle, and Xoodyak, which
were already relatively efficient with only the base-ISA. Among the latter three algorithms,
Sparkle achieves a much higher speed-up than Xoodyak, which is mainly because the
ARX-box Alzette can be implemented with only two custom instructions since it operates
on 64-bit parts of the state (i.e. two 32-bit words). On the other hand, Xoodyak is not
particularly well-suited for ISE because it does not contain many operations that can be
mapped to custom instructions with two source registers and one destination register.

An additional benefit of the ISE-supported implementations is their significantly smaller
code size, which is mainly due to the reduced footprint of the kernels. Such size reductions
are often downplayed and only seen as a minor side benefit of ISE, but such a view
neglects the fact that a size reduction can yield a non-negligible reduction of execution
time on processors with a small instruction cache. For example, according to Table 3, the
base-ISA implementations of the kernels of Elephant, PHOTON-Beetle, and Romulus (TB)
have a footprint of more than 16 kB and exceed the instruction-cache size of our Rocket
core, thereby slowing down the execution due to cache misses. On the other hand, all
ISE-supported kernels fit conveniently into the instruction cache.

Comparison with related work: hardware. Strictly limited to cases based on RISC-V, and
presented in chronological order, various elements of related work yield useful comparison
points.

Tehrani et al. [TGSMD20] describe an ISE for RV32 to support a range of lightweight,
64-bit block ciphers including GIFT-64-128 and Skinny-64-128, implementing and evaluating
it using the VexRiscv core. First, they support computation of the substitution layer
using a general-purpose instruction for nibble-wise table look-up; doing so is achieved by
capturing the table (i.e., S-box) in 3 CSRs, and then applying it nibble-wise to a 32-bit
input word supplied in GPR[rs1]. Second, they support computation of the permutation
layer. For GIFT-64-128 this takes the form of a special-purpose instruction, whereas for
Skinny-64-128, a general-purpose instruction for nibble-wise matrix-vector multiplication is
used; doing so is achieved by capturing a (constant) matrix in 8 CSRs, then applying it to
a 64-bit input vector supplied in GPR[rs1] and GPR[rs2] (with two instructions required
to compute the most- and least-significant 32-bit half of the result). We do not present a
comparison with this work, because the ISE cannot be used12 for either GIFT-128-128 or
Skinny-128-384+ so is not applicable to GIFT-COFB or Romulus.

Altınay and Örs [AO21] describe an ISE for RV32 to support Ascon-p, implementing
and evaluating it using the spike instruction set simulator. Their ISE includes two
instructions. First, they support general-purpose rotation; similar instructions are now
available via the standard B (bit manipulation) [SCA21, Section 1.3] and K (cryptogra-
phy) [SCA22, Section 2.1] extensions. Second, they support special-purpose computation
of the S-box. Their instruction for doing so is CISC-like, in the sense it operates on
data resident in memory: using an input register address rs1, it loads five 32-bit inputs
xi ← MEM[GPR[rs1] + 4 · i]4, applies the S-box to produce outputs ri from the inputs xi,

12This is due to, e.g., the diffing substitution and permutation layers used, a fact which stems from the
different block size (per [BPP+17, Section 2] and [BJK+16, Section 2]).



216 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

then stores five 32-bit outputs MEM[GPR[rs1] + 4 · i]4 ← ri, where 0 ≤ i < 5 throughout.
We do not present a comparison with this work, because 1) the ISE falls outside our
constraints as outlined in Section 3.1, and, moreover, 2) no non-simulated evaluation
results (i.e., area overhead, and cycle accurate execution latency) are available for it.

Steinegger and Primas [SP21] describe an ISE for RV32 to support Ascon-p, imple-
menting and evaluating it using the RI5CY core. Their ISE includes one instruction, which
essentially supports computation of an entire Ascon-p round in hardware. Implementation
therefore demands tight integration with the core (e.g., using 10 hard-wired general-purpose
registers to store the state), which, although delivering performance, arguably renders it
more akin to a tightly-coupled accelerator than traditional ISE. Although the ISE falls
outside our constraints as outlined in Section 3.1, it does represent a competitive trade-off:
modulo differences with respect to the core used, [SP21, Table 1 + Section 4] demonstrate
that a factor of 1.1 area overhead permits a significant, factor of 50 improvement in
execution latency for Ascon. For certain use-cases, this trade-off can be argued as more
attractive than one based on a more hardware-oriented (e.g., purely using an IP core)
or more software-oriented (i.e., using a more tightly constrained ISE, as in our work)
alternative.

Comparison with related work: software. Strictly limited to cases based on RISC-V, and
presented in chronological order, various elements of related work yield useful comparison
points.

Jellema [Jel19] presents an optimised implementation of Ascon, based on use of an
E31 (supporting RV32IMAC) core; [Jel19, Figure 10] suggests a measured 6 · 118 = 708
cycle execution latency for the 6-round Ascon-p permutation. Modulo the different core,
this can be compared with the base ISA and extended ISA columns of Table 3, where we
measure 700 and 280 cycles respectivly. At face value one might expect use of Zbkb/x
to offer greater improvement, but in fact this result is expected: although we can use
andn and orn within the substitution layer, we cannot use rol or ror within the diffusion
layer (because XLEN = 32, so 64-bit rotation is not supported). Alternatively, [Jel19,
Figure 11] suggests a measured 552076 cycle execution latency for the encryption of a
4096 byte plaintext and (inferred) 0 byte associated data; for this parameterisation, our
implementation takes 479764 cycles using the base ISA or 263043 cycles using the extended
ISA, i.e., the LWC-specific ISE.

Lemmen [Lem20] presents an optimised implementation of Elephant, based on use of
an E31 (supporting RV32IMAC) core. We do not present a comparison with this work,
because it focuses on the non-primary parameterisation Elephant-Keccak-f [200] so falls
outside our scope.

Campos et al. [CJL+20] present a limited study of LWC algorithms, with the goal of
assessing the impact of selecting assembly language versus C for their implementation.
Per [CJL+20, Section 2], their work is based on use of an E31 (supporting RV32IMAC)
or VexRiscv (supporting RV32IM) core; we ignore use of the riscvOVPsim simulator,
because, as they explain, it may not produce representative results. Modulo the different
core, can be compared with the base ISA and extended ISA columns of Table 3. For
Ascon, [CJL+20, Table 7] suggests a measured 750 cycle execution latency for the 6-round
Ascon-p permutation; per Table 3, use of Zbkb/x means our implementation takes 700
cycles, or 280 with an LWC-specific ISE. For Sparkle, [CJL+20, Section 3.2] suggests an
approximated 1708 cycle execution latency for the Sparkle-384 permutation; per Table 3,
use of Zbkb/x means our implementation takes 1647 cycles, or 525 with an LWC-specific
ISE. For Xoodyak, [CJL+20, Section 3.2] suggests an approximated 1596 cycle execution
latency for the 12-round Xoodoo permutation; per Table 3, use of Zbkb/x means our
implementation takes 873 cycles, or 777 with an LWC-specific ISE.

Renner et al. [RPM20] present a hardware-in-the-loop benchmarking framework for



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 217

the LWC process; since their focus is the framework, they use the source code submitted
for a given algorithm. Their work is based on use of a Kendryte K210 core. Modulo the
different core, their results can be compared with the unextended ISA column of Table 4,
Table 5, and Table 6.

Resilience against implementation attack. For constrained platforms of relevance to the
LWC selection process, countermeasures against implementation attack are often classified
as being either based on hiding [MOP07, Chapter 7] and/or masking [MOP07, Chapter
10]. Although we do not consider such countermeasures per se, some discussion of how our
ISEs interact with them may still be useful:
• The principle of constant-time implementation (i.e., that which exhibits data-independent

execution latency) is important; delivering it acts as a hiding-based countermeasure
against certain forms of attack, and is generally easier for ISE-supported than software-
only implementations. We note that all our replacement kernel implementations are
constant-time, in certain cases13 representing an improvement to the base implementation
considered.

• Other hiding countermeasures instrumented at the ISA level, e.g., temporal skewing
or shuffling, typically apply to ISE-supported implementation much like software-only
implementations. That said, however, one can debate whether they are as effective. For
example, an ISE-supported implementation will typically comprise fewer instructions,
meaning less Instruction Level Parallelism (ILP) to harness through shuffling, and lower
diversification. In turn, this acts to limit the security improvement possible.

• The situation for masking-based countermeasures is more involved. For a linear operation,
our ISEs can be used on a share-wise basis. For a non-linear operation, this is not
possible: one would need to redefine the ISE to accept masked inputs and outputs, and
augment the associated FU so it is mask-aware. We note that our adherence to 3-address
instruction formats means [GGM+21] would be one way to accommodate this for n = 2
shares, whereas [MP21] would be another way to do so more generally, i.e., for n > 2
shares.

• It is important to note that ISAP is a somewhat special case, in the sense it delivers
inherent mitigation for selected side-channel and fault attacks; since this is achieved at
the mode level and our ISE applies at the kernel level (i.e., the Ascon-p permutation),
we do not expect any negative interaction between said ISE and any security argument
for ISAP.
That said, it is important to keep this functionality in mind when interpreting perfor-
mance results. Although inefficient in relative terms, ISAP includes by-design mitigation
that other candidates would have to deliver via post-design means: the resulting overhead
is costed into ISAP already, complicating any direct comparison.

6 Conclusion
Summary. ISEs to support standard cryptographic algorithms, e.g., AES, have now been
included in almost every major ISA. Anticipating the LWC process will yield an outcome
that warrants similar support, this paper investigated ISEs for each of the 10 LWC final
round submissions. Through careful analysis of the constituent algorithms, and following
a set of principled constraints (e.g., alignment with the wider RISC-V design principles,
such as use of 3-address instructions), we first developed ISE designs for Ascon, Elephant,
GIFT-COFB, Grain-128AEADv2, ISAP, PHOTON-Beetle, Romulus, Sparkle, TinyJAMBU,
and Xoodyak, then implemented said designs using the RISC-V compliant Rocket core.

13It might be an unfair criticism given the overtly explanatory goal, but, for example, the reference
implementation of PHOTON-Beetle involves multiplication in F24 whose execution latency is data-dependent.



218 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Broadly speaking, comparison with software-only alternatives shows that 1) the ISEs
overhead in hardware is low, 2) the ISEs allow a reduction in execution latency, the degree
of which is algorithm-dependent but significant in some cases, and, at the same time, 3) the
ISEs allow constant-time execution, and a reduction in instruction footprint. Put together,
these features highlight the value of ISEs within the context of resource-constrained devices
and therefore the LWC process.

Observations. Based on our work, several high-level observations seem important to
stress. First, and particularly when carefully paired with implementation techniques such
as fix-slicing, our results demonstrate software-only implementations using Zbkb/x can be
significantly more efficient than using RV32GC alone. This fact paints Zbkb/x (and so
also Zbb) in a positive light with respect to general-purpose support: implementations
and benchmarking for RISC-V which do not consider Zbkb/x (or Zbb) disadvantage it
versus, e.g., ARM. Second, our results highlight a difference in relative improvement
between algorithms that are more hardware-oriented versus more software-oriented. Put
simply, ISEs for the former (e.g., Elephant, PHOTON-Beetle, Romulus) typically offer a greater
improvement than for the latter (e.g., Ascon, Sparkle, Xoodyak): although the most
efficient software-only implementations remain so when ISE support is considered, the
difference between most and least efficient algorithms is significantly smaller. Stemming
from the hybrid nature of ISE-supported software, this fact could be read as complicating
the classification of hardware- versus software-oriented algorithms; either way, it highlights
the need to consider use of ISEs as part of their evaluation. Third, our results act as
evidence that ISEs which target an implementation technique (e.g., fix-slicing) are typically
more general-purpose but less efficient, whereas ISEs which target an algorithm are typically
less general-purpose but more efficient. Although a somewhat obvious statement, this
suggests that once an outcome from the LWC process is known, the latter approach is
more sensible in the longer term.

Acknowledgements
We would like to thank the anonymous reviewers for their helpful and constructive
comments. This work has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme. The second author has been
supported in part by the Fonds National de la Recherche (FNR) Luxembourg via grant
C19/IS/13641232 (“Analysis and Protection of Lightweight Cryptographic Algorithms”).

References
[AAB+16] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,

H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller,
D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto,
A. Ou, D.A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and
A. Waterman. The rocket chip generator. Technical Report UCB/EECS-
2016-17, EECS Department, University of California, Berkeley, 2016. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[ANP20] A. Adomnicai, Z. Najm, and T. Peyrin. Fixslicing: A new GIFT repre-
sentation: Fast constant-time implementations of GIFT and GIFT-COFB
on ARM Cortex-M. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), 2020(3):402–427, 2020. https://doi.org/10.
13154/tches.v2020.i3.402-427.

http://www.ukrise.org
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.13154/tches.v2020.i3.402-427
https://doi.org/10.13154/tches.v2020.i3.402-427


Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 219

[AO21] Ö. Altınay and B. Örs. Instruction extension of RV32I and GCC back end
for Ascon lightweight cryptography algorithm. In International Conference
on Omni-Layer Intelligent Systems (COINS), pages 1–6, 2021. https://doi.
org/10.1109/COINS51742.2021.9524190.

[AP20a] A. Adomnicai and T. Peyrin. Fixslicing - application to some
NIST LWC round 2 candidates. In 4-th Lightweight Cryptog-
raphy Workshop, 2020. https://csrc.nist.gov/Events/2020/
lightweight-cryptography-workshop-2020.

[AP20b] A. Adomnicai and T. Peyrin. Fixslicing AES-like ciphers: New bitsliced
AES speed records on ARM-Cortex M and RISC-V. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2021(1):402–425,
2020. https://doi.org/10.46586/tches.v2021.i1.402-425.

[BBdS+20a] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, and Q. Wang. Alzette: a 64-bit ARX-box
(feat. CRAX and TRAX). In Advances in Cryptology (CRYPTO), LNCS
12172, pages 419–448. Springer-Verlag, 2020. https://doi.org/10.1007/
978-3-030-56877-1_15.

[BBdS+20b] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, and Q. Wang. Lightweight AEAD and hashing
using the Sparkle permutation family. IACR Transactions on Symmet-
ric Cryptology, 2020(S1):208–261, 2020. https://doi.org/10.13154/tosc.
v2020.iS1.208-261.

[BBdS+21] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, Amir
Moradi, L. Perrin, A.R. Shahmirzadi, A. Udovenko, V. Velichkov, and
Q. Wang. Schwaemm and esch: Lightweight authenticated encryp-
tion and hashing using the sparkle permutation family. Submission
to NIST (version 1.2), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/sparkle-spec-final.pdf.

[BCD+21] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, and
K. Yasuda. PHOTON-beetle. Submission to NIST, 2021. https://csrc.nist.
gov/CSRC/media/Projects/lightweight-cryptography/documents/
finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf.

[BCDM21] T. Beyne, Y.L. Chen, C. Dobraunig, and B. Mennink. Elephant. Submission
to NIST (version 2.0), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/elephant-spec-final.pdf.

[BCI+21] S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin,
Y. Sasaki, S.M. Sim, and Y. Todo. GIFT-COFB. Submission to
NIST (version 1.1), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/gift-cofb-spec-final.pdf.

[Ber20] D.J. Bernstein. Cryptographic competitions. Cryptology ePrint Archive,
Report 2020/1608, 2020. https://eprint.iacr.org/2020/1608.

https://doi.org/10.1109/COINS51742.2021.9524190
https://doi.org/10.1109/COINS51742.2021.9524190
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://doi.org/10.46586/tches.v2021.i1.402-425
https://doi.org/10.1007/978-3-030-56877-1_15
https://doi.org/10.1007/978-3-030-56877-1_15
https://doi.org/10.13154/tosc.v2020.iS1.208-261
https://doi.org/10.13154/tosc.v2020.iS1.208-261
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://eprint.iacr.org/2020/1608


220 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

[BGM09] S. Bartolini, R. Giorgi, and E. Martinelli. Instruction set extensions for
cryptographic applications. In Ç.K. Koç, editor, Cryptographic Engineer-
ing, chapter 9, pages 191–233. Springer, 2009. https://doi.org/10.1007/
978-0-387-71817-0_9.

[BJK+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S.M. Sim. The SKINNY family of block ciphers and its
low-latency variant MANTIS. In Advances in Cryptology (CRYPTO), LNCS
9815, pages 123–153. Springer-Verlag, 2016. https://doi.org/10.1007/
978-3-662-53008-5_5.

[BKL+07] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight
block cipher. In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 4727, pages 450–466. Springer-Verlag, 2007. https://doi.org/10.
1007/978-3-540-74735-2_31.

[BKL+13] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
SPONGENT: The design space of lightweight cryptographic hashing. IEEE
Transactions on Computers, 62(10):2041–2053, 2013. https://doi.org/10.
1109/TC.2012.196.

[BPP+17] S. Banik, S.K. Pandey, T. Peyrin, Y. Sasaki, S.M. Sim, and Y. Todo.
GIFT: A small present - towards reaching the limit of lightweight encryp-
tion. In Cryptographic Hardware and Embedded Systems (CHES), LNCS
10529, pages 321–345. Springer-Verlag, 2017. https://doi.org/10.1007/
978-3-319-66787-4_16.

[CDPA16] C. Celio, P. Dabbelt, D.A. Patterson, and K. Asanović. The renewed case
for the reduced instruction set computer: Avoiding ISA bloat with macro-op
fusion for RISC-V. CoRR, abs/1607.02318, 2016. https://arxiv.org/abs/
1607.02318.

[CJL+20] F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, and B. Viguier.
Assembly or optimized C for lightweight cryptography on RISC-V? In
Cryptology and Network Security (CANS), LNCS 12579, pages 526–545.
Springer-Verlag, 2020. https://doi.org/10.1007/978-3-030-65411-5_
26.

[CP20] L. Choquin and F. Piry. Arm custom instructions: Enabling innovation
and greater flexibility on Arm. Technical report, Arm Ltd., 2020. https:
//www.arm.com/why-arm/technologies/custom-instructions.

[DEM+21] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas,
and T. Unterluggauer. ISAP. Submission to NIST (version 2.0), 2021. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/isap-spec-final.pdf.

[DEMS21] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon. Submis-
sion to NIST (version 1.2), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/ascon-spec-final.pdf.

[DGK19] N. Drucker, S. Gueron, and V. Krasnov. Making AES great again: The
forthcoming vectorized AES instruction. In Information Technology New
Generations (ITNG), AISC 800, pages 37–41. Springer-Verlag, 2019. https:
//doi.org/10.1007/978-3-030-14070-0_6.

https://doi.org/10.1007/978-0-387-71817-0_9
https://doi.org/10.1007/978-0-387-71817-0_9
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1109/TC.2012.196
https://doi.org/10.1109/TC.2012.196
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://arxiv.org/abs/1607.02318
https://arxiv.org/abs/1607.02318
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-65411-5_26
https://www.arm.com/why-arm/technologies/custom-instructions
https://www.arm.com/why-arm/technologies/custom-instructions
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://doi.org/10.1007/978-3-030-14070-0_6
https://doi.org/10.1007/978-3-030-14070-0_6


Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 221

[DHAK18] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. The design of Xoodoo
and Xoofff. IACR Transactions on Symmetric Cryptology, 2018(4):1–38, 2018.
https://doi.org/10.13154/tosc.v2018.i4.1-38.

[DHM+21] J. Daemen, S. Hoffert, S. Mella, M. Peeters, G. van Assche, and
R. van Keer. Xoodyak, a lightweight cryptographic scheme. Submission
to NIST (version 2.0), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/xoodyak-spec-final.pdf.

[GGM+21] S. Gao, J. Großschädl, B. Marshall, D. Page, T. Pham, and F. Regaz-
zoni. An instruction set extension to support software-based mask-
ing. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (TCHES), 2021(4):283–325, 2021. https://doi.org/10.46586/tches.
v2021.i4.283-325.

[GIK+21] C. Guo, T. Iwata, M. Khairallah, K. Minematsu, and T. Peyrin. Ro-
mulus. Submission to NIST (version 1.3), 2021. https://csrc.nist.
gov/CSRC/media/Projects/lightweight-cryptography/documents/
finalist-round/updated-spec-doc/romulus-spec-final.pdf.

[GPP11] J. Guo, T. Peyrin, and A. Poschmann. The PHOTON family of
lightweight hash functions. In Advances in Cryptology (CRYPTO), LNCS
6841, pages 222–239. Springer-Verlag, 2011. https://doi.org/10.1007/
978-3-642-22792-9_13.

[Gue09] S. Gueron. Intel’s new AES instructions for enhanced performance and
security. In Fast Software Encryption (FSE), LNCS 5665, pages 51–66.
Springer-Verlag, 2009. https://doi.org/10.1007/978-3-642-03317-9_4.

[HJM07] M. Hell, T. Johansson, and W. Meier. Grain: a stream cipher for constrained
environments. International Journal of Wireless and Mobile Computing,
2(1):86–93, 2007. https://doi.org/10.1504/IJWMC.2007.013798.

[HJM+21] M. Hell, T. Johansson, A. Maximov, W. Meier, J. Sön-
nerup, and H. Yoshida. Grain-128AEADv2. Submission to
NIST (version 2.0), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/grain-128aead-spec-final.pdf.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012. https://doi.
org/10.1109/GCCE.2012.6379944.

[HV11] A. Hakkala and S. Virtanen. Accelerating cryptographic protocols: A review
of theory and technologies. In Communication Theory, Reliability, and
Quality of Service (CTRQ), pages 103–109, 2011.

[Jel19] L. Jellema. Optimizing Ascon on RISC-V. BSc thesis, Radboud University,
2019. https://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___
4388747___Optimizing_Ascon_on_RISC-V.pdf.

[KJJ99] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances
in Cryptology (CRYPTO), LNCS 1666, pages 388–397. Springer-Verlag, 1999.
https://doi.org/10.1007/3-540-48405-1_25.

https://doi.org/10.13154/tosc.v2018.i4.1-38
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://doi.org/10.46586/tches.v2021.i4.283-325
https://doi.org/10.46586/tches.v2021.i4.283-325
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1504/IJWMC.2007.013798
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://doi.org/10.1109/GCCE.2012.6379944
https://doi.org/10.1109/GCCE.2012.6379944
https://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
https://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
https://doi.org/10.1007/3-540-48405-1_25


222 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

[Lem20] M. Lemmen. Optimizing Elephant for RISC-V. BSc thesis, Radboud
University, 2020. https://www.cs.ru.nl/bachelors-theses/2020/Mauk_
Lemmen___4798937___Optimizing_Elephant_for_RISC-V.pdf.

[MBTM17] K. McKay, L. Bassham, M.S. Turan, and N. Mouha. Report on lightweight
cryptography. Technical report, 2017. https://doi.org/10.6028/NIST.IR.
8114.

[MNP+21] B. Marshall, G.R. Newell, D. Page, M.-J.O. Saarinen, and C. Wolf. The design
of scalar AES instruction set extensions for RISC-V. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2021(1):109–136,
2021. https://doi.org/10.46586/tches.v2021.i1.109-136.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007. https://doi.org/10.1007/
978-0-387-38162-6.

[MP21] B. Marshall and D. Page. SME: Scalable Masking Extensions. Cryptology
ePrint Archive, Paper 2021/1416, 2021. https://eprint.iacr.org/2021/
1416.

[MPC00] L. May, L. Penna, and A. Clark. An implementation of bitsliced DES on
the Pentium MMXTM processor. In Australasian Conference on Information
Security and Privacy (ACISP), LNCS 1841, pages 112–122. Springer-Verlag,
2000. https://doi.org/10.1007/10718964_10.

[NIK04] K. Nadehara, M. Ikekawa, and I. Kuroda. Extended instructions for the
AES cryptography and their efficient implementation. In Signal Processing
Systems (SIPS), pages 152–157, 2004. https://doi.org/10.1109/SIPS.
2004.1363041.

[NOOS95] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. Towards high
performance cryptographic software. In High Performance Communication
Subsystems (HPCS), pages 69–72, 1995. https://doi.org/10.1109/HPCS.
1995.662009.

[rHJM11] M. Ågren, M. Hell, T. Johansson, and W. Meier. Grain128a: a new version
of Grain-128 with optional authentication. International Journal of Wireless
and Mobile Computing, 5(1):48–59, 2011. https://doi.org/10.1504/IJWMC.
2011.044106.

[RI16] F. Regazzoni and P. Ienne. Instruction set extensions for secure applications.
In Design, Automation, and Test in Europe (DATE), pages 1529–1534, 2016.

[RPM20] S. Renner, E. Pozzobon, and J. Mottok. A hardware in the loop benchmark
suite to evaluate NIST LWC ciphers on microcontrollers. In International
Conference on Information and Communications Security (ICICS), LNCS
12282, pages 495–509. Springer-Verlag, 2020. https://doi.org/10.1007/
978-3-030-61078-4_28.

[Saa20] M.-J.O. Saarinen. A lightweight ISA extension for AES and SM4. 2020.
https://ascslab.org/conferences/secriscv/program.html.

[SCA07] Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. National Institute of Standards and Technology (NIST)
Special Publication 800-38D, 2007.

https://www.cs.ru.nl/bachelors-theses/2020/Mauk_Lemmen___4798937___Optimizing_Elephant_for_RISC-V.pdf
https://www.cs.ru.nl/bachelors-theses/2020/Mauk_Lemmen___4798937___Optimizing_Elephant_for_RISC-V.pdf
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://eprint.iacr.org/2021/1416
https://eprint.iacr.org/2021/1416
https://doi.org/10.1007/10718964_10
https://doi.org/10.1109/SIPS.2004.1363041
https://doi.org/10.1109/SIPS.2004.1363041
https://doi.org/10.1109/HPCS.1995.662009
https://doi.org/10.1109/HPCS.1995.662009
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1007/978-3-030-61078-4_28
https://doi.org/10.1007/978-3-030-61078-4_28
https://ascslab.org/conferences/secriscv/program.html


Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 223

[SCA16] Oracle SPARC architecture 2011. Technical Report D1.0.0,
Oracle Corp., 2016. https://www.oracle.com/technetwork/
server-storage/sun-sparc-enterprise/documentation/
140521-ua2011-d096-p-ext-2306580.pdf.

[SCA18a] Intel 64 and IA-32 architectures – software developer’s manual (volume
1: Basic architecture). Technical Report 325383-067US, Intel Corp., 2018.
http://software.intel.com/en-us/articles/intel-sdm.

[SCA18b] Power ISA. Technical Report 2.07 B, IBM, 2018. https://ibm.ent.box.
com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u.

[SCA18c] Submission requirements and evaluation criteria for the lightweight
cryptography standardization process, 2018. https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf.

[SCA19] The RISC-V instruction set manual. Technical Report Volume I: User-
Level ISA (version 20190608-Base-Ratified), 2019. http://riscv.org/
specifications.

[SCA20] Arm architecture reference manual: Armv8, for Armv8-A architecture pro-
file. Technical report, 2020. https://static.docs.arm.com/ddi0487/fa/
DDI0487F_a_armv8_arm.pdf.

[SCA21] RISC-V bit-manipulation ISA-extensions (version 1.0.0). Technical report,
2021. https://github.com/riscv/riscv-bitmanip.

[SCA22] RISC-V cryptographic extension proposals. Technical Report Volume I:
Scalar & Entropy Source Instructions (version 1.0.1), 2022. https://github.
com/riscv/riscv-crypto.

[SP21] S. Steinegger and R. Primas. A fast and compact RISC-V accelerator for
Ascon and friends. In Smart Card Research and Advanced Applications
(CARDIS), LNCS 12609, pages 53–67. Springer-Verlag, 2021. https://doi.
org/10.1007/978-3-030-68487-7_4.

[TGSMD20] E. Tehrani, T. Graba, A. Si-Merabet, and J.-L. Danger. RISC-V extension
for lightweight cryptography. In Euromicro Conference on Digital System
Design (DSD), pages 222–228, 2020. https://doi.org/10.1109/DSD51259.
2020.00045.

[TMC+21] M.S. Turan, K. McKay, D. Chang, Ç. Çalık, L. Bassham, J. Kang, and
J. Kelsey. Status report on the second round of the NIST lightweight
cryptography standardization process. Technical report, 2021. https:
//doi.org/10.6028/NIST.IR.8369.

[TMcc+19] M.S. Turan, K. McKay, Ç. Çalık, D. Chang, and L. Bassham. Status report
on the first round of the NIST lightweight cryptography standardization
process. Technical report, 2019. https://doi.org/10.6028/NIST.IR.8268.

[Wat16] A. Waterman. Design of the RISC-V Instruction Set Architecture. PhD
thesis, University of California at Berkeley, 2016. https://people.eecs.
berkeley.edu/~krste/papers/EECS-2016-1.pdf.

[WH21] H. Wu and T. Huang. TinyJAMBU. Submission to NIST
(version 2.0), 2021. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/tinyjambu-spec-final.pdf.

https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
http://software.intel.com/en-us/articles/intel-sdm
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://riscv.org/specifications
http://riscv.org/specifications
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://doi.org/10.1007/978-3-030-68487-7_4
https://doi.org/10.1007/978-3-030-68487-7_4
https://doi.org/10.1109/DSD51259.2020.00045
https://doi.org/10.1109/DSD51259.2020.00045
https://doi.org/10.6028/NIST.IR.8369
https://doi.org/10.6028/NIST.IR.8369
https://doi.org/10.6028/NIST.IR.8268
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf


224 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

A Additional ISE design detail: Ascon

A.1 Additional notation
Define the look-up tables
ROT_0 = { 19, 61, 1, 10, 7 }
ROT_1 = { 28, 39, 6, 17, 41 }

A.2 ISE definition
012345678910111213141516171819202122232425262728293031

00 imm rs2 rs1 111 rd 0101011 ascon.sigma.lo
01 imm rs2 rs1 111 rd 0101011 ascon.sigma.hi

• ascon.sigma.lo rd, rs1, rs2, imm

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 x ← x_hi || x_lo
4 r ← x ^ ( x >>> ROT_0 [ imm ] ) ^ ( x >>> ROT_1 [ imm ] )
5 GPR[rd] ← r_ {31.. 0}

• ascon.sigma.hi rd, rs1, rs2, imm

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 x ← x_hi || x_lo
4 r ← x ^ ( x >>> ROT_0 [ imm ] ) ^ ( x >>> ROT_1 [ imm ] )
5 GPR[rd] ← r_ {63..32}

B Additional ISE design detail: Elephant

B.1 Additional notation
Let SBOX denote the 4-bit Spongent S-box per [BKL+13]. Define the functions
SWAPMOVE32 (x, m,n) {

t ← x ^ ( x >> n )
t ← t & m
t ← t ^ ( t << n )
x ← t ^ x

return x
}

SWAPMOVE32_X (x,y,m,n) {
t ← y ^ ( x >> n )
t ← t & m
x ← x ^ ( t << n )

return x
}

SWAPMOVE32_Y (x,y,m,n) {
t ← y ^ ( x >> n )
t ← t & m
y ← y ^ ( t )

return y
}

i.e., variants of SWAPMOVE [MPC00, Section 3.1].



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 225

B.2 ISE definition
012345678910111213141516171819202122232425262728293031

0000 imm rs2 rs1 111 rd 0001011 elephant.pstep.x
0001 imm rs2 rs1 111 rd 0001011 elephant.pstep.y
0010 imm 00000 rs1 110 rd 0001011 elephant.sstep

• elephant.pstep.x rd, rs1, rs2, imm
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 0 ) {
5 r ← SWAPMOVE32_X ( x, y, 0x000000FF , 8 )
6 }
7 else if ( imm == 1 ) {
8 r ← SWAPMOVE32_X ( x, y, 0x000000FF , 16 )
9 }

10 else if ( imm == 2 ) {
11 r ← SWAPMOVE32_X ( x, y, 0x000000FF , 24 )
12 }
13 else if ( imm == 3 ) {
14 r ← SWAPMOVE32_X ( x, y, 0x0000FF00 , 8 )
15 }
16 else if ( imm == 4 ) {
17 r ← SWAPMOVE32_X ( x, y, 0x000000FF , 24 ) >>> 24
18 }
19 else if ( imm == 5 ) {
20 r ← SWAPMOVE32_X ( x, y, 0x0000FF00 , 16 ) >>> 16
21 }
22 else if ( imm == 6 ) {
23 r ← SWAPMOVE32_X ( x, y, 0x00FF0000 , 8 ) >>> 8
24 }
25
26 GPR[rd] ← r

• elephant.pstep.y rd, rs1, rs2, imm
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 0 ) {
5 r ← SWAPMOVE32_Y ( x, y, 0x000000FF , 8 )
6 }
7 else if ( imm == 1 ) {
8 r ← SWAPMOVE32_Y ( x, y, 0x000000FF , 16 )
9 }

10 else if ( imm == 2 ) {
11 r ← SWAPMOVE32_Y ( x, y, 0x000000FF , 24 )
12 }
13 else if ( imm == 3 ) {
14 r ← SWAPMOVE32_Y ( x, y, 0x0000FF00 , 8 )
15 }
16 else if ( imm == 4 ) {
17 r ← SWAPMOVE32_Y ( x, y, 0x000000FF , 24 )
18 }
19 else if ( imm == 5 ) {
20 r ← SWAPMOVE32_Y ( x, y, 0x0000FF00 , 16 )
21 }
22 else if ( imm == 6 ) {
23 r ← SWAPMOVE32_Y ( x, y, 0x00FF0000 , 8 )
24 }
25
26 GPR[rd] ← r

• elephant.sstep rd, rs1
1 x ← GPR[rs1]
2
3 r ← SBOX[ x_ {31..28} ] || SBOX[ x_ {27..24} ] ||
4 SBOX[ x_ {23..20} ] || SBOX[ x_ {19..16} ] ||
5 SBOX[ x_ {15..12} ] || SBOX[ x_ {11.. 8} ] ||
6 SBOX[ x_{ 7.. 4} ] || SBOX[ x_{ 3.. 0} ]
7



226 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

8 r ← SWAPMOVE32 ( r, 0x0A0A0A0A , 3 )
9 r ← SWAPMOVE32 ( r, 0x00CC00CC , 6 )

10 r ← SWAPMOVE32 ( r, 0x0000F0F0 , 12 )
11 r ← SWAPMOVE32 ( r, 0x0000FF00 , 8 )
12
13 GPR[rd] ← r

C Additional ISE design detail: GIFT-COFB
C.1 Additional notation
Define the function
SWAPMOVE32 (x,m,n) {

t ← x ^ ( x >> n )
t ← t & m
t ← t ^ ( t << n )
x ← t ^ x
return x

}

i.e., a variant of SWAPMOVE [MPC00, Section 3.1].

C.2 ISE definition (for fix-sliced implementation)
012345678910111213141516171819202122232425262728293031

00 imm rs2 rs1 111 rd 0001011 gift.swapmove
01 imm 00000 rs1 110 rd 0001011 gift.rori.n
10 imm 00000 rs1 110 rd 0001011 gift.rori.b
11 imm 00000 rs1 110 rd 0001011 gift.rori.h
00 imm 00000 rs1 110 rd 0101011 gift.key.reorg
01 00000 00000 rs1 110 rd 0101011 gift.key.updstd
10 imm 00000 rs1 110 rd 0101011 gift.key.updfix

• gift.swapmove rd, rs1, rs2, imm
1 x ← GPR[rs1]
2 m ← GPR[rs2]
3 r ← SWAPMOVE32 ( x, m, imm )
4 GPR[rd] ← r

• gift.rori.n rd, rs1, imm
1 x_7 ← GPR[rs1]_ {31..28}
2 x_6 ← GPR[rs1]_ {27..24}
3 x_5 ← GPR[rs1]_ {23..20}
4 x_4 ← GPR[rs1]_ {19..16}
5 x_3 ← GPR[rs1]_ {15..12}
6 x_2 ← GPR[rs1]_ {11.. 8}
7 x_1 ← GPR[rs1]_{ 7.. 4}
8 x_0 ← GPR[rs1]_{ 3.. 0}
9 r ← ( x_7 >>> imm ) || ( x_6 >>> imm ) ||

10 ( x_5 >>> imm ) || ( x_4 >>> imm ) ||
11 ( x_3 >>> imm ) || ( x_2 >>> imm ) ||
12 ( x_1 >>> imm ) || ( x_0 >>> imm )
13 GPR[rd] ← r

• gift.rori.b rd, rs1, imm
1 x_3 ← GPR[rs1]_ {31..24}
2 x_2 ← GPR[rs1]_ {23..16}
3 x_1 ← GPR[rs1]_ {15.. 8}
4 x_0 ← GPR[rs1]_{ 7.. 0}
5 r ← ( x_3 >>> imm ) || ( x_2 >>> imm ) ||
6 ( x_1 >>> imm ) || ( x_0 >>> imm )
7 GPR[rd] ← r



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 227

• gift.rori.h rd, rs1, imm
1 x_1 ← GPR[rs1]_ {31..16}
2 x_0 ← GPR[rs1]_ {15.. 0}
3 r ← ( x_1 >>> imm ) || ( x_0 >>> imm )
4 GPR[rd] ← r

• gift.key.reorg rd, rs1, imm
1 x ← GPR[rs1]
2
3 if ( imm == 0 ) {
4 r ← SWAPMOVE32 ( x, 0x00550055 , 9 )
5 r ← SWAPMOVE32 ( r, 0x00003333 , 18 )
6 r ← SWAPMOVE32 ( r, 0x000F000F , 12 )
7 r ← SWAPMOVE32 ( r, 0x000000FF , 24 )
8 }
9 else if ( imm == 1 ) {

10 r ← SWAPMOVE32 ( x, 0x11111111 , 3 )
11 r ← SWAPMOVE32 ( r, 0x03030303 , 6 )
12 r ← SWAPMOVE32 ( r, 0x000F000F , 12 )
13 r ← SWAPMOVE32 ( r, 0x000000FF , 24 )
14 else if ( imm == 2 ) {
15 r ← SWAPMOVE32 ( x, 0x0000AAAA , 15 )
16 r ← SWAPMOVE32 ( r, 0x00003333 , 18 )
17 r ← SWAPMOVE32 ( r, 0x0000F0F0 , 12 )
18 r ← SWAPMOVE32 ( r, 0x000000FF , 24 )
19 else if ( imm == 3 ) {
20 r ← SWAPMOVE32 ( x, 0x0A0A0A0A , 3 )
21 r ← SWAPMOVE32 ( r, 0x00CC00CC , 6 )
22 r ← SWAPMOVE32 ( r, 0x0000F0F0 , 12 )
23 r ← SWAPMOVE32 ( r, 0x000000FF , 24 )
24 }
25
26 GPR[rd] ← r

• gift.key.updstd rd, rs1
1 x ← GPR[rs1]
2
3 r ← ( ( x >> 12 ) & 0 x0000000F )
4 r ← r | ( ( x & 0 x00000FFF ) << 4 )
5 r ← r | ( ( x >> 2 ) & 0 x3FFF0000 )
6 r ← r | ( ( x & 0 x00030000 ) << 14 )
7
8 GPR[rd] ← r

• gift.key.updfix rd, rs1, imm
1 x ← GPR[rs1]
2
3 if ( imm == 0 ) {
4 r ← SWAPMOVE32 ( x, 0x00003333 , 16 )
5 r ← SWAPMOVE32 ( r, 0x55554444 , 1 )
6 }
7 else if ( imm == 1 ) {
8 r ← ( ( x & 0 x33333333 ) >>> 24 )
9 r ← r | ( ( x & 0 xCCCCCCCC ) >>> 16 )

10 r ← SWAPMOVE32 ( r, 0x55551100 , 1 )
11 }
12 else if ( imm == 2 ) {
13 r ← ( ( x >> 4 ) & 0 x0F000F00 ) | ( ( x & 0 x0F000F00 ) << 4 )
14 r ← r | ( ( x >> 6 ) & 0 x00030003 ) | ( ( x & 0 x003F003F ) << 2 )
15 }
16 else if ( imm == 3 ) {
17 r ← ( ( x >> 6 ) & 0 x03000300 ) | ( ( x & 0 x3F003F00 ) << 2 )
18 r ← r | ( ( x >> 5 ) & 0 x00070007 ) | ( ( x & 0 x001F001F ) << 3 )
19 }
20 else if ( imm == 4 ) {
21 r ← ( ( x & 0 xAAAAAAAA ) >>> 24 )
22 r ← r | ( ( x & 0 x55555555 ) >>> 16 )
23 }
24 else if ( imm == 5 ) {
25 r ← ( ( x & 0 x55555555 ) >>> 24 )
26 r ← r | ( ( x & 0 xAAAAAAAA ) >>> 20 )
27 }
28 else if ( imm == 6 ) {
29 r ← ( ( x >> 2 ) & 0 x03030303 ) | ( ( x & 0 x03030303 ) << 2 )



228 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

30 r ← r | ( ( x >> 1 ) & 0 x70707070 ) | ( ( x & 0 x10101010 ) << 3 )
31 }
32 else if ( imm == 7 ) {
33 r ← ( ( x >> 18 ) & 0 x00003030 ) | ( ( x & 0 x01010101 ) << 3 )
34 r ← r | ( ( x >> 14 ) & 0 x0000C0C0 ) | ( ( x & 0 x0000E0E0 ) << 15 )
35 r ← r | ( ( x >> 1 ) & 0 x07070707 ) | ( ( x & 0 x00001010 ) << 19 )
36 }
37 else if ( imm == 8 ) {
38 r ← ( ( x >> 4 ) & 0 x0FFF0000 ) | ( ( x & 0 x000F0000 ) << 12 )
39 r ← r | ( ( x >> 8 ) & 0 x000000FF ) | ( ( x & 0 x000000FF ) << 8 )
40 }
41 else if ( imm == 9 ) {
42 r ← ( ( x >> 6 ) & 0 x03FF0000 ) | ( ( x & 0 x003F0000 ) << 10 )
43 r ← r | ( ( x >> 4 ) & 0 x00000FFF ) | ( ( x & 0 x0000000F ) << 12 )
44 }
45
46 GPR[rd] ← r

C.3 ISE definition (for bit-sliced implementation)
012345678910111213141516171819202122232425262728293031

01 00000 00000 rs1 110 rd 0101011 gift.key.updstd
11 imm 00000 rs1 110 rd 0101011 gift.permbits.step

• gift.key.updstd rd, rs1
1 x ← GPR[rs1]
2
3 r ← ( ( x >> 12 ) & 0 x0000000F )
4 r ← r | ( ( x & 0 x00000FFF ) << 4 )
5 r ← r | ( ( x >> 2 ) & 0 x3FFF0000 )
6 r ← r | ( ( x & 0 x00030000 ) << 14 )
7
8 GPR[rd] ← r

• gift.permbits.step rd, rs1, imm
1 x ← GPR[rs1]
2
3 r ← SWAPMOVE32 ( x, 0x0A0A0A0A , 3 )
4 r ← SWAPMOVE32 ( r, 0x00CC00CC , 6 )
5 r ← SWAPMOVE32 ( r, 0x0000F0F0 , 12 )
6 r ← SWAPMOVE32 ( r, 0x000000FF , 24 )
7 r ← r >>> imm
8
9 GPR[rd] ← r

D Additional ISE design detail: Grain-128AEADv2

D.1 ISE definition
012345678910111213141516171819202122232425262728293031

00 imm rs2 rs1 111 rd 0001011 grain.extr
0000 000 rs2 rs1 111 rd 0101011 grain.fln0
0001 000 rs2 rs1 111 rd 0101011 grain.fln2
0010 000 rs2 rs1 111 rd 0101011 grain.gnn0
0011 000 rs2 rs1 111 rd 0101011 grain.gnn1
0100 000 rs2 rs1 111 rd 0101011 grain.gnn2
0101 000 rs2 rs1 111 rd 0101011 grain.hnn0
0110 000 rs2 rs1 111 rd 0101011 grain.hnn1
0111 000 rs2 rs1 111 rd 0101011 grain.hnn2
1000 000 rs2 rs1 111 rd 0101011 grain.hln0



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 229

• grain.extr rd, rs1, rs2, imm
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← x >> imm
5 GPR[rd] ← r_ {31.. 0}

• grain.fln0 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x_lo ) ^ ( x >> 7 )
5 GPR[rd] ← r_ {31.. 0}

• grain.fln2 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x_hi ) ^ ( x >> 6 ) ^ ( x >> 17 )
5 GPR[rd] ← r_ {31.. 0}

• grain.gnn0 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x_lo ) ^ ( x >> 26 ) ^ ( ( x >> 11 ) & ( x >> 13 ) ) ^
5 ( ( x >> 17 ) & ( x >> 18 ) ) ^
6 ( ( x >> 22 ) & ( x >> 24 ) & ( x >> 25 ) )
7 GPR[rd] ← r_ {31.. 0}

• grain.gnn1 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x >> 24 ) ^ ( ( x >> 8 ) & ( x >> 16 ) )
5 GPR[rd] ← r_ {31.. 0}

• grain.gnn2 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x_hi ) ^ ( x >> 27 ) ^ ( ( x >> 4 ) & ( x >> 20 ) ) ^
5 ( ( x >> 24 ) & ( x >> 28 ) & ( x >> 29 ) & ( x >> 31 ) ) ^
6 ( ( x >> 6 ) & ( x >> 14 ) & ( x >> 18 ) )
7 GPR[rd] ← r_ {31.. 0}

• grain.hnn0 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x >> 2 ) ^ ( x >> 15 )
5 GPR[rd] ← r_ {31.. 0}

• grain.hnn1 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x >> 4 ) ^ ( x >> 13 )
5 GPR[rd] ← r_ {31.. 0}

• grain.hnn2 rd, rs1, rs2
1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x_lo ) ^ ( x >> 9 ) ^ ( x >> 25 )
5 GPR[rd] ← r_ {31.. 0}

• grain.hln0 rd, rs1, rs2



230 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← ( x >> 13 ) & ( x >> 20 )
5 GPR[rd] ← r_ {31.. 0}

E Additional ISE design detail: ISAP
The ISE for ISAP is the same as for Ascon, which can be found in Appendix A.

F Additional ISE design detail: PHOTON-Beetle
F.1 Additional notation
Let SBOX denote the 4-bit PHOTON S-box per [GPP11], and GF2N_MUL denote multiplication
in the PHOTON finite field. Define a look-up table
M = { { 0x2 , 0x4 , 0x2 , 0xB , 0x2 , 0x8 , 0x5 , 0x6 },

{ 0xC , 0x9 , 0x8 , 0xD , 0x7 , 0x7 , 0x5 , 0x2 },
{ 0x4 , 0x4 , 0xD , 0xD , 0x9 , 0x4 , 0xD , 0x9 },
{ 0x1 , 0x6 , 0x5 , 0x1 , 0xC , 0xD , 0xF , 0xE },
{ 0xF , 0xC , 0x9 , 0xD , 0xE , 0x5 , 0xE , 0xD },
{ 0x9 , 0xE , 0x5 , 0xF , 0x4 , 0xC , 0x9 , 0x6 },
{ 0xC , 0x2 , 0x2 , 0xA , 0x3 , 0x1 , 0x1 , 0xE },
{ 0xF , 0x1 , 0xD , 0xA , 0x5 , 0xA , 0x2 , 0x3 } }

to configure the MixColumnsSerial round function.

F.2 ISE definition
012345678910111213141516171819202122232425262728293031

0000 imm rs2 rs1 111 rd 1011011 photon.step

• photon.step rd, rs1, rs2, imm
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 t ← SBOX[ ( y >> ( 4 * imm ) ) & 0xF ]
5 r ← 0
6
7 for( int i = 0; i < 8; i++ ) {
8 r ← r | ( ( GF2N_MUL ( M[ i ][ imm ], t ) ) << ( 4 * i ) )
9 }

10
11 r ← r ^ x
12
13 GPR[rd] ← r

G Additional ISE design detail: Romulus
G.1 Additional notation
Let SBOX denote the 8-bit Skinny S-box per [BJK+16]. Define the functions
RC_LFSR_FWD ( x ) {

return x_4 || x_3 || x_2 || x_1 || x_0 || ( x_5 ^ x_4 ^ 1 )
}

RC_LFSR_REV ( x ) {
return ( x_5 ^ x_0 ^ 1 ) || x_4 || x_3 || x_2 || x_1 || x_0

}



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 231

TK2_LFSR_FWD ( x ) {
return x_6 || x_5 || x_4 || x_3 || x_2 || x_1 || x_0 || ( x_5 ^ x_7 )

}

TK2_LFSR_REV ( x ) {
return ( x_6 ^ x_0 ) || x_6 || x_5 || x_4 || x_3 || x_2 || x_1 || x_0

}

TK3_LFSR_FWD ( x ) {
return ( x_6 ^ x_0 ) || x_7 || x_6 || x_5 || x_4 || x_3 || x_2 || x_1

}

TK3_LFSR_REV ( x ) {
return x_6 || x_5 || x_4 || x_3 || x_2 || x_1 || x_0 || ( x_5 ^ x_7 )

}

Define the functions
SWAPMOVE32 (x, m,n) {

t ← x ^ ( x >> n )
t ← t & m
t ← t ^ ( t << n )
x ← t ^ x

return x
}

SWAPMOVE32_X (x,y,m,n) {
t ← y ^ ( x >> n )
t ← t & m
x ← x ^ ( t << n )

return x
}

SWAPMOVE32_Y (x,y,m,n) {
t ← y ^ ( x >> n )
t ← t & m
y ← y ^ ( t )

return y
}

i.e., variants of SWAPMOVE [MPC00, Section 3.1].

G.2 ISE definition (for table-based implementation)
012345678910111213141516171819202122232425262728293031

0000 000 00000 rs1 110 rd 0001011 romulus.rc.upd.enc
0010 000 rs2 rs1 111 rd 0001011 romulus.rc.use.enc.0
0011 000 rs2 rs1 111 rd 0001011 romulus.rc.use.enc.1
0001 imm rs2 rs1 111 rd 0101011 romulus.tk.upd.enc.0
0010 imm rs2 rs1 111 rd 0101011 romulus.tk.upd.enc.1
0000 imm rs2 rs1 111 rd 1011011 romulus.rstep.enc

• romulus.rc.upd.enc rd, rs1
1 x ← GPR[rs1]
2 r ← LFSR_RC ( x )
3 GPR[rd] ← r

• romulus.rc.use.enc.0 rd, rs1, rs2
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← y ^ x_ {3..0}
4 GPR[rd] ← r

• romulus.rc.use.enc.1 rd, rs1, rs2



232 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← y ^ x_ {6..4}
4 GPR[rd] ← r

• romulus.tk.upd.enc.0 rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 1 ) {
5 r ← y_ {15.. 8} || x_{ 7.. 0} ||
6 y_ {31..24} || x_ {15.. 8}
7 }
8 else if( imm == 2 ) {
9 r ← LFSR_TK2 ( y_ {15.. 8} ) || LFSR_TK2 ( x_{ 7.. 0} ) ||

10 LFSR_TK2 ( y_ {31..24} ) || LFSR_TK2 ( x_ {15.. 8} )
11 }
12 else if( imm == 3 ) {
13 r ← LFSR_TK3 ( y_ {15.. 8} ) || LFSR_TK3 ( x_{ 7.. 0} ) ||
14 LFSR_TK3 ( y_ {31..24} ) || LFSR_TK3 ( x_ {15.. 8} )
15 }
16
17 GPR[rd] ← r

• romulus.tk.upd.enc.1 rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 1 ) {
5 r ← x_ {31..24} || y_{ 7.. 0} ||
6 y_ {23..16} || x_ {23..16}
7 }
8 else if( imm == 2 ) {
9 r ← LFSR_TK2 ( x_ {31..24} ) || LFSR_TK2 ( y_{ 7.. 0} ) ||

10 LFSR_TK2 ( y_ {23..16} ) || LFSR_TK2 ( x_ {23..16} )
11 }
12 else if( imm == 3 ) {
13 r ← LFSR_TK3 ( x_ {31..24} ) || LFSR_TK3 ( y_{ 7.. 0} ) ||
14 LFSR_TK3 ( y_ {23..16} ) || LFSR_TK3 ( x_ {23..16} )
15 }
16
17 GPR[rd] ← r

• romulus.rstep.enc rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 2 ) {
5 y ← 2
6 }
7 else if( imm == 3 ) {
8 y ← 0
9 }

10
11 t ← SBOX[ x_ {31..24} ] || SBOX[ x_ {23..16} ] ||
12 SBOX[ x_ {15.. 8} ] || SBOX[ x_{ 7.. 0} ]
13
14 t ← t ^ y
15
16 if ( imm == 0 ) {
17 r ← t <<< 0
18 }
19 else if( imm == 1 ) {
20 r ← t <<< 8
21 }
22 else if( imm == 2 ) {
23 r ← t <<< 16
24 }
25 else if( imm == 3 ) {
26 r ← t <<< 24
27 }
28
29 GPR[rd] ← r



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 233

G.3 ISE definition (for fix-sliced implementation)
012345678910111213141516171819202122232425262728293031

0000 imm 00000 rs1 110 rd 1111011 romulus.mixcolumns
0001 imm rs2 rs1 111 rd 1111011 romulus.swapmove.x
0010 imm rs2 rs1 111 rd 1111011 romulus.swapmove.y
0100 imm 00000 rs1 110 rd 0101011 romulus.permtk
0101 imm 00000 rs1 110 rd 0101011 romulus.tkupd.0
0110 imm 00000 rs1 110 rd 0101011 romulus.tkupd.1
0100 000 rs2 rs1 111 rd 0001011 romulus.lfsr2
0101 000 rs2 rs1 111 rd 0001011 romulus.lfsr3

• romulus.mixcolumns rd, rs1, imm
1 x ← GPR[rs1]
2
3 if ( imm == 0 ) {
4 r ← x ^ ( ( ( x >>> 24 ) & 0 x0C0C0C0C ) >>> 30 )
5 r ← r ^ ( ( ( r >>> 16 ) & 0 xC0C0C0C0 ) >>> 4 )
6 r ← r ^ ( ( ( r >>> 8 ) & 0 x0C0C0C0C ) >>> 2 )
7 }
8 else if ( imm == 1 ) {
9 r ← x ^ ( ( ( x >>> 16 ) & 0 x30303030 ) >>> 30 )

10 r ← r ^ ( ( ( r ) & 0 x03030303 ) >>> 28 )
11 r ← r ^ ( ( ( r >>> 16 ) & 0 x30303030 ) >>> 2 )
12 }
13 else if ( imm == 2 ) {
14 r ← x ^ ( ( ( x >>> 8 ) & 0 xC0C0C0C0 ) >>> 6 )
15 r ← r ^ ( ( ( r >>> 16 ) & 0 x0C0C0C0C ) >>> 28 )
16 r ← r ^ ( ( ( r >>> 24 ) & 0 xC0C0C0C0 ) >>> 2 )
17 }
18 else if ( imm == 3 ) {
19 r ← x ^ ( ( ( x ) & 0 x03030303 ) >>> 30 )
20 r ← r ^ ( ( ( r ) & 0 x30303030 ) >>> 4 )
21 r ← r ^ ( ( ( r ) & 0 x03030303 ) >>> 26 )
22 }
23
24 GPR[rd] ← r

• romulus.swapmove.x rd, rs1, rs2, imm
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 0 ) {
5 r ← SWAPMOVE32_X ( x, y, 0x55555555 , 1 )
6 }
7 else if ( imm == 1 ) {
8 r ← SWAPMOVE32_X ( x, y, 0x30303030 , 2 )
9 }

10 else if ( imm == 2 ) {
11 r ← SWAPMOVE32_X ( x, y, 0x0C0C0C0C , 4 )
12 }
13 else if ( imm == 3 ) {
14 r ← SWAPMOVE32_X ( x, y, 0x03030303 , 6 )
15 }
16 else if ( imm == 4 ) {
17 r ← SWAPMOVE32_X ( x, y, 0x0C0C0C0C , 2 )
18 }
19 else if ( imm == 5 ) {
20 r ← SWAPMOVE32_X ( x, y, 0x03030303 , 4 )
21 }
22 else if ( imm == 6 ) {
23 r ← SWAPMOVE32_X ( x, y, 0x03030303 , 2 )
24 }
25 else if ( imm == 7 ) {
26 r ← SWAPMOVE32 ( x, 0x0A0A0A0A , 3 )
27 }
28
29 GPR[rd] ← r



234 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

• romulus.swapmove.y rd, rs1, rs2, imm
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if ( imm == 0 ) {
5 r ← SWAPMOVE32_Y ( x, y, 0x55555555 , 1 )
6 }
7 else if ( imm == 1 ) {
8 r ← SWAPMOVE32_Y ( x, y, 0x30303030 , 2 )
9 }

10 else if ( imm == 2 ) {
11 r ← SWAPMOVE32_Y ( x, y, 0x0C0C0C0C , 4 )
12 }
13 else if ( imm == 3 ) {
14 r ← SWAPMOVE32_Y ( x, y, 0x03030303 , 6 )
15 }
16 else if ( imm == 4 ) {
17 r ← SWAPMOVE32_Y ( x, y, 0x0C0C0C0C , 2 )
18 }
19 else if ( imm == 5 ) {
20 r ← SWAPMOVE32_Y ( x, y, 0x03030303 , 4 )
21 }
22 else if ( imm == 6 ) {
23 r ← SWAPMOVE32_Y ( x, y, 0x03030303 , 2 )
24 }
25
26 GPR[rd] ← r

• romulus.permtk rd, rs1, imm
1 x ← GPR[rs1]
2
3 if ( imm == 0 ) {
4 r ← ( ( ( x >>> 14 ) & 0 xCC00CC00 ) )
5 r ← r | ( ( ( x ) & 0 x000000FF ) << 16 )
6 r ← r | ( ( ( x ) & 0 xCC000000 ) >> 2 )
7 r ← r | ( ( ( x ) & 0 x0033CC00 ) >> 8 )
8 r ← r | ( ( ( x ) & 0 x00CC0000 ) >> 18 )
9 }

10 else if ( imm == 1 ) {
11 r ← ( ( ( x >>> 22 ) & 0 xCC0000CC ) )
12 r ← r | ( ( ( x >>> 16 ) & 0 x3300CC00 ) )
13 r ← r | ( ( ( x >>> 24 ) & 0 x00CC3300 ) )
14 r ← r | ( ( ( x ) & 0 x00CC00CC ) >> 2 )
15 }
16 else if ( imm == 2 ) {
17 r ← ( ( ( x >>> 6 ) & 0 xCCCC0000 ) )
18 r ← r | ( ( ( x >>> 24 ) & 0 x330000CC ) )
19 r ← r | ( ( ( x >>> 10 ) & 0 x00003333 ) )
20 r ← r | ( ( ( x & 0 x000000CC ) << 14 )
21 r ← r | ( ( ( x & 0 x00003300 ) << 2 )
22 }
23 else if ( imm == 3 ) {
24 r ← ( ( ( x >>> 24 ) & 0 xCC000033 ) )
25 r ← r | ( ( ( x >>> 8 ) & 0 x33CC0000 ) )
26 r ← r | ( ( ( x >>> 26 ) & 0 x00333300 ) )
27 r ← r | ( ( ( x ) & 0 x00333300 ) >> 6 )
28 }
29 else if ( imm == 4 ) {
30 r ← ( ( ( x >>> 8 ) & 0 xCC330000 ) )
31 r ← r | ( ( ( x >>> 26 ) & 0 x33000033 ) )
32 r ← r | ( ( ( x >>> 22 ) & 0 x00CCCC00 ) )
33 r ← r | ( ( ( x ) & 0 x00330000 ) >> 14 )
34 r ← r | ( ( ( x ) & 0 x0000CC00 ) >> 2 )
35 }
36 else if ( imm == 5 ) {
37 r ← ( ( ( x >>> 8 ) & 0 x0000CC33 ) )
38 r ← r | ( ( ( x >>> 30 ) & 0 x00CC00CC ) )
39 r ← r | ( ( ( x >>> 10 ) & 0 x33330000 ) )
40 r ← r | ( ( ( x >>> 16 ) & 0 xCC003300 ) )
41 }
42 else if ( imm == 6 ) {
43 r ← ( ( ( x >>> 24 ) & 0 x0033CC00 ) )
44 r ← r | ( ( ( x >>> 14 ) & 0 x00CC0000 ) )
45 r ← r | ( ( ( x >>> 30 ) & 0 xCC000000 ) )
46 r ← r | ( ( ( x >>> 16 ) & 0 x000000FF ) )
47 r ← r | ( ( ( x >>> 18 ) & 0 x33003300 ) )
48 }



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 235

49
50 GPR[rd] ← r

• romulus.tkupd.0 rd, rs1, imm
1 x ← GPR[rs1]
2
3 if ( imm == 0 ) {
4 r ← ( ( x >>> 26 ) & 0 xC3C3C3C3 )
5 }
6 else if ( imm == 1 ) {
7 r ← ( ( x >>> 16 ) & 0 xF0F0F0F0 )
8 }
9 else if ( imm == 2 ) {

10 r ← ( ( x >>> 10 ) & 0 xC3C3C3C3 )
11 }
12
13 GPR[rd] ← r

• romulus.tkupd.1 rd, rs1, imm
1 x ← GPR[rs1]
2
3 if ( imm == 0 ) {
4 r ← ( ( x >>> 28 ) & 0 x03030303 )
5 r ← r | ( ( x >>> 12 ) & 0 x0C0C0C0C )
6 }
7 else if ( imm == 1 ) {
8 r ← ( ( x >>> 14 ) & 0 x30303030 )
9 r ← r | ( ( x >>> 6 ) & 0 x0C0C0C0C )

10 }
11 else if ( imm == 2 ) {
12 r ← ( ( x >>> 12 ) & 0 x03030303 )
13 r ← r | ( ( x >>> 28 ) & 0 x0C0C0C0C )
14 }
15 else if ( imm == 3 ) {
16 r ← ( ( x >>> 30 ) & 0 x30303030 )
17 r ← r | ( ( x >>> 22 ) & 0 x0C0C0C0C )
18 }
19
20 GPR[rd] ← r

• romulus.lfsr2 rd, rs1, rs2
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← x ^ ( ( y & 0 xAAAAAAAA ) )
4 r ← ( ( ( r ) & 0 xAAAAAAAA ) >> 1 ) |
5 ( ( ( r << 1 ) & 0 xAAAAAAAA ) )
6 GPR[rd] ← r

• romulus.lfsr3 rd, rs1, rs2
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← x ^ ( ( y & 0 xAAAAAAAA ) >> 1 )
4 r ← ( ( ( r ) & 0 xAAAAAAAA ) >> 1 ) |
5 ( ( ( r << 1 ) & 0 xAAAAAAAA ) )
6 GPR[rd] ← r

H Additional ISE design detail: Sparkle
H.1 Additional notation
Define the look-up tables
ROT_0 = { 31, 17, 0, 24 }
ROT_1 = { 24, 17, 31, 16 }

RCON = { 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 ,
0xBB1185EB , 0x4F7C7B57 , 0xCFBFA1C8 , 0 xC2B3293D }

Define the function



236 RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

ELL( x ) {
return ( x ^ ( x << 16 ) ) >>> 16

}

H.2 ISE definition
012345678910111213141516171819202122232425262728293031

0000010 rs2 rs1 111 rd 1111011 sparkle.ell
0000 imm rs2 rs1 110 rd 1011011 sparkle.rcon
1000 imm rs2 rs1 111 rd 1011011 sparkle.whole.enci.x
1001 imm rs2 rs1 111 rd 1011011 sparkle.whole.enci.y

• sparkle.ell rd, rs1, rs2

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← ELL( x ^ y )
4 GPR[rd] ← r

• sparkle.rcon rd, rs1, imm

1 x ← GPR[rs1]
2 r ← x ^ RCON[imm]
3 GPR[rd] ← r

• sparkle.whole.enci.x rd, rs1, rs2, imm

1 xi ← GPR[rs1]
2 yi ← GPR[rs2]
3 ci ← RCON[imm]
4 xi ← xi + ( yi >>> 31 )
5 yi ← yi ^ ( xi >>> 24 )
6 xi ← xi ^ ci
7 xi ← xi + ( yi >>> 17 )
8 yi ← yi ^ ( xi >>> 17 )
9 xi ← xi ^ ci

10 xi ← xi + ( yi >>> 0 )
11 yi ← yi ^ ( xi >>> 31 )
12 xi ← xi ^ ci
13 xi ← xi + ( yi >>> 24 )
14 yi ← yi ^ ( xi >>> 16 )
15 xi ← xi ^ ci
16 GPR[rd] ← xi

• sparkle.whole.enci.y rd, rs1, rs2, imm

1 xi ← GPR[rs1]
2 yi ← GPR[rs2]
3 ci ← RCON[imm]
4 xi ← xi + ( yi >>> 31 )
5 yi ← yi ^ ( xi >>> 24 )
6 xi ← xi ^ ci
7 xi ← xi + ( yi >>> 17 )
8 yi ← yi ^ ( xi >>> 17 )
9 xi ← xi ^ ci

10 xi ← xi + ( yi >>> 0 )
11 yi ← yi ^ ( xi >>> 31 )
12 xi ← xi ^ ci
13 xi ← xi + ( yi >>> 24 )
14 yi ← yi ^ ( xi >>> 16 )
15 xi ← xi ^ ci
16 GPR[rd] ← yi



Hao Cheng, Johann Großschädl, Ben Marshall, Dan Page and Thinh Pham 237

I Additional ISE design detail: TinyJAMBU
I.1 ISE definition

012345678910111213141516171819202122232425262728293031

00 00000 rs2 rs1 111 rd 1111011 jambu.fsr.15
00 00001 rs2 rs1 111 rd 1111011 jambu.fsr.6
00 00010 rs2 rs1 111 rd 1111011 jambu.fsr.21
00 00011 rs2 rs1 111 rd 1111011 jambu.fsr.27

• jambu.fsr.15 rd, rs1, rs2
1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← ( x_hi || x_lo ) >>> 15
4 GPR[rd] ← r_ {31.. 0}

• jambu.fsr.6 rd, rs1, rs2
1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← ( x_hi || x_lo ) >>> 6
4 GPR[rd] ← r_ {31.. 0}

• jambu.fsr.21 rd, rs1, rs2
1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← ( x_hi || x_lo ) >>> 21
4 GPR[rd] ← r_ {31.. 0}

• jambu.fsr.27 rd, rs1, rs2
1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← ( x_hi || x_lo ) >>> 27
4 GPR[rd] ← r_ {31.. 0}

J Additional ISE design detail: Xoodyak
J.1 ISE definition

012345678910111213141516171819202122232425262728293031

01 00000 rs2 rs1 111 rd 0101011 xoodyak.xorrol

• xoodyak.xorrol rd, rs1, rs2
1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← ( x <<< 5 ) ^ ( y <<< 14 )
4 GPR[rd] ← r


	Introduction
	Background
	Design
	Constraints
	
	
	-
	
	
	-
	
	
	
	
	Discussion

	Implementation
	Hardware
	Software

	Evaluation
	Conclusion
	Additional ISE design detail: 
	Additional notation
	ISE definition

	Additional ISE design detail: 
	Additional notation
	ISE definition

	Additional ISE design detail: -
	Additional notation
	ISE definition (for fix-sliced implementation)
	ISE definition (for bit-sliced implementation)

	Additional ISE design detail: 
	ISE definition

	Additional ISE design detail: 
	Additional ISE design detail: -
	Additional notation
	ISE definition

	Additional ISE design detail: 
	Additional notation
	ISE definition (for table-based implementation)
	ISE definition (for fix-sliced implementation)

	Additional ISE design detail: 
	Additional notation
	ISE definition

	Additional ISE design detail: 
	ISE definition

	Additional ISE design detail: 
	ISE definition


