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Abstract. Over the past few years, deep-learning-based attacks have emerged as a
de facto standard, thanks to their ability to break implementations of cryptographic
primitives without pre-processing, even against widely used counter-measures such
as hiding and masking. However, the recent works of Bronchain and Standaert
at Tches 2020 questioned the soundness of such tools if used in an uninformed
setting to evaluate implementations protected with higher-order masking. On the
opposite, worst-case evaluations may be seen as possibly far from what a real-world
adversary could do, thereby leading to too conservative security bounds. In this
paper, we propose a new threat model that we name scheme-aware benefiting from a
trade-off between uninformed and worst-case models. Our scheme-aware model is
closer to a real-world adversary, in the sense that it does not need to have access to
the random nonces used by masking during the profiling phase like in a worst-case
model, while it does not need to learn the masking scheme as implicitly done by an
uninformed adversary. We show how to combine the power of deep learning with
the prior knowledge of scheme-aware modeling. As a result, we show on simulations
and experiments on public datasets how it sometimes allows to reduce by an order
of magnitude the profiling complexity, i.e., the number of profiling traces needed to
satisfyingly train a model, compared to a fully uninformed adversary.
Keywords: Profiling Attacks · Side-Channel · Deep Learning · Gradient Descent ·
Masking · Scheme-Aware

1 Introduction
Context. The past few years have seen the emergence of new promising lines of research
in profiling Side-Chanel Analysis (SCA), which coincided with the recent advances in
Machine Learning (ML) during the 2010’s. Indeed, profiling attacks may be formalized as
a supervised learning problem. As an example, the Gaussian Templates (GTs) initially
proposed by Chari et al. in their seminal work [CRR03] are actually equivalent to a
Quadratic Discriminant Analysis (QDA) in the ML terminology [HTF09]. Hence a vast
investigation of relevant learning algorithms in the ML zoology, beyond those generative
models [HGD+11, BL12, HZ12, LBM14, LBM15, PHG17]. In particular, following the
remarkable performance of Deep Neural Networks (DNNs) in solving tasks in computer
vision, the SCA community has progressively drawn its interest on such models [GHO15,
MZ13, MDM16]. Nowadays, DNNs are known to be able to defeat most of the counter-
measures used to protect implementations against SCA, namely de-synchronization [CDP17,
KPH+19], shuffling [MDP19a, MS21] and more interestingly masking [MPP16, Tim19].
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The Uninformed-vs.-Worst-Case Dichotomy. Although the supervised attack threat
model introduced so far is nowadays widely adopted by the SCA community for security
evaluations, one technical detail of this scenario lacks some consensus. Indeed, there exists
a debate among SCA practitioners about what is known or unknown by the adversary
during the profiling phase, during which one builds the attack model upon traces measured
on an open clone device. In particular, whether one has access to the random nonces used
by the clone device during the encryption, as part of the profiling data. This question is not
trivial, since nowadays most of the counter-measures — like masking or shuffling — consist
in turning a deterministic cryptographic primitive into a non-deterministic implementation.
On the one hand, academia usually assumes the adversary to know the values of the
random nonces, in a so-called worst-case threat model [ABB+20]. This model trades off
some potentially conservative security levels against an easy-to-analyze evaluation approach
thanks to theoretical shortcuts [DDF14, DFS15]. On the other hand, practitioners such
as industrial developers and evaluators rather assume the adversary to not have access
to the random nonces used by the clone device during the encryption, hence the name of
uninformed threat model [MPP16, CLM20, PP20]. This scenario has the two advantages
of being closer to a real-world adversary, and to be fully automatized. As a drawback,
some current attacks in the uninformed settings can be much less efficient than worst-case
attacks [BS20].

To what extent one threat model or another better fits the security context of the
evaluation? The answer is not unique, and both threat models have their proponents
and opponents. As an example, scenarios with uninformed adversary may be considered
for good or bad reasons. On the one hand, it spares lots of human efforts and expertise
spent in pre-processing the traces, which are taken into account in the assessment of an
attack potential [SOGISS20]. On the other hand, developers may be tempted to artificially
restrict the access to random nonces on the clone device given for evaluation in order to
maximize the chances to pass certifications, although at the cost of a false sense of security.

Actually, both uninformed and worst-case models may be seen as the edges of a broad
scope of threat models ranging from weak adversaries in the uninformed model to stronger
ones in the worst-case model. Yet, realistic threat models often lie all along this spectrum.
As an example, the adversary may have access to the source code of the Target of Evaluation
(T.O.E.), without necessarily having the possibility to modify it. This typically covers
the threat models investigated by security evaluations of many T.O.E.s, such as native
platforms or applets [SOGISS20]. Moreover, for the security evaluation of open platforms,
the evaluator may assume the adversary to know the source code of the cryptographic
library,1 but the latter one cannot be assumed to have the rights to modify the code. Even
in the case where the developer is willing to collaborate with the evaluator by providing
modified versions of the T.O.E. for evaluation purposes, the evaluator is then reduced to
a characterization of the device, which differs from an attack as the latter one should be
fully realizable without such help from the developer [SOGISS20].

Likewise, the number of different masking schemes in the literature is restricted enough
so that it may be assumed to be known by the adversary. Surprisingly, to the best of
our knowledge, no ML approach leveraging weaker adversaries than worst-case but still
stronger than uninformed have been considered so far.2 Indeed, when profiling masked
implementations most of the Deep Learning (DL)-SCA literature focused on the choice of
DNN architectures and hyper-parameters [KPH+19, ZBHV19]. Hence the motivations of

1The code may be open-source, or at least based on an open-source implementation. See, e.g.,
the mbedTLS implementations: www.mbedTLS.com, or the Agence Nationale de la Sécurité des Systèmes
d’Information (ANSSI)’s protected Advanced Encryption Standard (AES): https://github.com/ANSSI-FR/
SecAESSTM32.

2Some previous works have proposed to inject the knowledge of additional information such as the
plaintext, under the form of an extra input feature to the model, additionally to the leakage trace [HHO20].
Yet, to the best of our knowledge, no study considered how to incorporate the knowledge of the masking
scheme inside the profiling model.
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this work:

How can we efficiently leverage the knowledge of the masking scheme in an
ML-based profiling attack, without relying on the knowledge of random nonces ?

The Scheme-Aware Modeling. To address this question, we investigate a new type of
SCA adversary that we name scheme-aware. In this threat scenario, the adversary is
supposed to have access to the source code of the target implementation. Concretely, this
means that the adversary knows the masking scheme and order used to protect the target.
Moreover, she is able to localize some Points of Interest (P.o.Is) precisely enough thanks
to a careful code analysis.

We explain how these assumptions can be taken into account in a DL model. To this
end, we introduce GroupRecombine, a simple neural network layer encoding the knowledge
of any group-based masking scheme, under the form of a discrete convolution. Contrary to
the convolutions layers used in Convolutional Neural Networks (CNNs), GroupRecombine
is parameter-free, and is applied as the last layer in our model. This new layer can replace
some of the upper layers of a DNN potentially carrying many learning parameters to
fit, without any loss of expressiveness of the resulting architecture, thanks to the prior
knowledge of the masking scheme. In addition, it can be efficiently implemented using
Walsh-Hadamard (in the case of Boolean masking) or Fourier transforms (in the case of
arithmetic or multiplicative masking), or a mix of both (in the case of affine masking). As
a result, any model equipped with the GroupRecombine no longer requires to learn how
to recombine the information gathered on each share, and may only focus on the joint
learning of the leakage models of each share.

We validate our approach on simulations and on public datasets. Our experiments on
the ANSSI’s SCA Databases (ASCAD) emphasize some use-cases with first-order Boolean
masking where very simple scheme-aware models lead to successful attacks, whereas their
uninformed counter-part fails. This suggests that a significant part of the efforts spent
by the SCA practitioner in an uninformed setting, e.g. by running huge hyper-parameter
grid searches, would actually be devoted to finding a DNN architecture that efficiently
captures the way to learn the masking scheme. Hence, using GroupRecombine may be seen
as an efficient surrogate to this issue. As an example, we also address the challenge left
by Bronchain and Standaert as a conclusion of their works at Tches 2020, by showing
on simulations how GroupRecombine could be used for profiling in presence of an affine
masking scheme, without knowing the random shares to train our model.

Finally, we conclude this paper by discussing how far the scheme-aware approach
could scale with an increasing masking order, by providing theoretical arguments and
experimental evidence. Actually, the potential limitations of GroupRecombine that we
emphasize are not restricted to our approach, and more generally cover at least any
non-worst-case model trained with gradient descent, leaving open the question whether
this also covers other types of profiling models in the same setting. Overall, we hope
that these questions will be received as a helpful contribution to the more general debate
regarding the choice of different evaluation methodologies in SCA.

2 Scheme-Aware Modeling and Application to Masking
In this section, we introduce the scheme-aware adversary. The idea behind this new threat
model is to properly separate what can be assumed to be known by the adversary — e.g.,
any algorithmic and implementation aspect — from what remains unknown and therefore
should be learned during the profiling phase — e.g., the device-dependent leakage model
of each share. We discuss hereafter two aspects of the prior knowledge on which any
scheme-aware adversary may rely, and how to leverage it.
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2.1 Hard-Encoding of the Discrete Convolution
Hereafter, we explain how to materialize the prior knowledge of the masking scheme into
our DNN. Recall that the true model to learn may be expressed as a convolution product
of elementary leakage models for each share, as stated hereafter.

Proposition 1 ([LPR+14, Sec. 6], extended). Let Y0, . . . , Yd ∈ Y be Independent and
Identically Distributed (i.i.d.) shares, uniformly drawn over the group (Y, ⋆). Let L =
(L0, . . . , Ld)⊺ be a random vector denoting the leakage, and let l = (l0, . . . , ld)⊺ be an
observation of L. Assume that any Li only depend on Yi, i.e., any Li is independent of
the (Lj)j ̸=i. Then, the posterior Probability Mass Function (p.m.f.) of Y = Y0 ⋆ . . . ⋆ Yd

can be formulated as a discrete convolution product:

pY (l) = pY0 (l0) ∗ . . . ∗ pYd
(ld) , (1)

where pYi
(li) = Pr (Yi | Li = li) denotes the conditional p.m.f. of the share Yi given the

realization li of the leakage random vector Li.

Lomné et al. have given a proof of a similar result at Ches 2014, for generative
models such as GTs. Proposition 1, that we prove in Appendix A, extends Lomné et al.’s
one to discriminative models. We may leverage Proposition 1 in a scheme-aware threat
model, provided that we know the inner law ⋆ of the group Y. This means that we know
the discrete convolution operator in Equation 1. In other words, we no longer require
to learn how to recombine the information extracted on the leakage corresponding to
each share: we are reduced to jointly learn the leakage models li 7→ pYi

(li) using some
corresponding estimators mθi

, i ∈ J0, dK respectively. Hence proposing the following model
for our scheme-aware attacks:

mθ (l) = mθ0 (l0) ∗ . . . ∗ mθd
(ld) . (2)

Said more concretely, we build a model where each branch mθi
maps its corresponding

sub-leakage to a |Y|-dimensional vector denoting a p.m.f. Then, all branches are combined
together by computing the discrete convolution. Figure 1 depicts the idea for a first-order
masking scheme: blue nodes denote branches, i.e. models with trainable parameters, whose
goal is to modelize the conditional p.m.f. pYi

(li) for each share. Vectors with shades of
red denote p.m.f.s over Y, and the “∗” node denotes the discrete convolution with respect
to the inner-law of the group Y.

∗ Ly

mθ0

mθ1

l0

l1

Figure 1: Scheme-aware model, with known P.o.Is for each share and a known masking scheme,
but unknown random shares.

It remains to explain how the branch models can be fine-tuned so that they fit the true
leakage models on each share. This can be done with Maximum Likelihood Estimation
(MLE), i.e. by minimizing a loss function Ly quantifying the dissimilarity between
the overall output p.m.f. returned by the model mθ(l) and the expected values of the
target variable, that are known during profiling (for both uninformed, scheme-aware, and
worst-case adversaries).

In a worst-case setting, the MLE is usually implemented by tuning of branch model
separately from each other by minimizing the loss functions Lyi

of each branch separately.
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mθ Ly

(a) Uninformed setting.

∗
Ly0

Ly1

Ly

mθ0

mθ1

(b) Worst-case setting.

Figure 2: Other adversaries, for comparison with scheme-aware model.

Once it is done, the fine-tuned branch models are combined together with the discrete
convolution. This is the approach used, e.g., by Bronchain et al. [BS20, BDMS22]. Similarly,
each branch model can compute its output p.m.f. using Gaussian Template (GT), and
by converting the generative model into a discriminative one with Bayes’ rule, as done
somehow by Ouladj et al. [OGGM21]. Unfortunately, these approaches require to know
the values of the shares during profiling, which we considered to be a strong assumption in
real-world evaluations.

In a scheme-aware model instead, the branch models are rather jointly tuned by directly
minimizing the overall loss function Ly, averaged over a training set of traces acquired
during the profiling phase. As depicted in Figure 1, computing and minimizing the overall
loss function Ly only requires as labels the values of the target variable during profiling,
which is allowed by definition of our scheme-aware adversary.

Therefore, the scheme-aware model depicted in Figure 1 relaxes the strong assumption
of random nonce knowledge during the profiling phase, but still encodes the knowledge of
the masking scheme, which is no longer needed to implicitly learn from the data, contrary to
the uninformed model depicted in Figure 2a. This approach sounds somewhat sub-optimal
if the scheme is already known. Hence, by introducing the scheme-aware adversary that is
stronger than the uninformed adversary, but weaker than the worst-case one, we expect to
get a closer emulation of the actual powers of a real-world adversary.

2.2 Localization of P.o.Is
In Subsection 2.1, we implicitly assumed for adversaries stronger-than-uninformed to know
how to localize the P.o.Is for each share in the traces, in order to properly separate the
leakages. We discuss this assumption in this section.

Usually, the P.o.I selection is done by computing some first-order statistics, such as
T-tests or Signal-to-Noise Ratios (SNRs). Without knowledge of the random nonces,
these tools cannot identify the right time samples, since by definition of masking, any
univariate sample should be independent of the target variable Y.3 This means that any
non-worst-case adversary cannot identify the P.o.Is thanks to statistical tools in presence
of masking.

Nevertheless, a P.o.I selection remains possible without access to the random nonces,
thanks to a visual analysis of the traces, combined with a careful study of the T.O.E.
source code. Indeed, a software implementation of a cryptographic primitive is typically
made of (nested) loops whose number of iterations are publicly known, in virtue of the
Kerckhoffs principle. This induces some sequences of (nested) patterns in the traces that
can be visually identified on the raw measurements by the adversary. Moreover, this
analysis can even be refined by counting the number of clock cycles for each executed
instructions, and combining them with the clock and sampling frequencies in order to
guess at which time sample each instruction should leak. As a consequence, it is still

3Ignoring glitches or transition leakages.
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possible to localize the leakage on each share, and the P.o.I selection through T-test or
SNR should actually be seen as a useful but non-necessary shortcut for the evaluator to
spare some time. The recent literature provides two examples of this approach. First,
Masure and Strullu reported a detailed code analysis of the assembly code of the ANSSI’s
secure software implementation of the AES on an ARM Cortex M4, in order to extract
15, 000 P.o.Is out of 1 million time samples in the raw traces, covering the leakages of
the three shares used by the affine masking scheme [MS21]. Second, Egger et al. verified
that the CPOI leakage detection method [DS16] could localize the same time windows as
with the analysis of the assembly code used in the ANSSI’s SCA Databases (ASCAD)-v1
dataset [EST+22, Fig. 4].

3 Scheme-Aware Modeling with DNNs

Now we have introduced the scheme-aware adversary in the case of masking and explained
the intuition behind its advantages, we discuss in this section how to concretely implement
it with Deep Neural Networks (DNNs). First, we discuss in Subsection 3.1 how to concretely
minimize the overall loss function with scheme-aware models, by introducing a new DNN
layer called GroupRecombine. Then, we explain in Subsection 3.2 how our approach can
be extended to many types of masking schemes. Finally, we argue in Subsection 3.3 why
we implemented our own version of GroupRecombine, instead of relying on native building
blocks of most DL frameworks.

3.1 Implementing the Backward Propagation

To optimize a function based on DNNs, the most widely used approach is to use Gradient
Descent (GD)-based optimizers. To this end, we need to compute the derivatives of
our model when using a recombination layer. These derivatives are computed with the
backward propagation algorithm [BPRS17], who leverages the chaining rule to reduce the
computation of the derivatives for a composed function to the computation of derivatives
for each elementary function. Our models being made of regular DNN layers for which
the backward propagation is already hard-coded, we are then reduced to specify how
to back-propagate the gradient through the discrete convolution only. We do this by
implementing GroupRecombine, a parameter-free DNN layer consisting in the discrete
convolution, augmented with backward propagation.

We briefly explain hereafter how the backward propagation can be computed in
GroupRecombine. Thanks to the convolution theorem, the discrete convolution layer can
itself be seen as a composition of a fast transform (and its inverse) and an element-wise
product of d + 1 vectors. Using the chaining rule, we are again reduced to compute the
backward propagation for each mapping in the composition. The (inverse) fast transform
is a linear mapping, so its differential coincides with the mapping itself. In other words,
the backward pass of the fast transform is the same as its forward pass. Regarding the
element-wise product, it is a multi-linear mapping whose backward pass is already hard-
coded in the DL frameworks such as Tensorflow or Pytorch. By putting things together,
we obtain the backward pass through our GroupRecombine.

Remark 1. The backward pass of the GroupRecombine layer can also be directly hard-coded
without decomposing with fast transforms. Interestingly, this approach coincides with
implementing the update rule “from functions to variables” in the Belief - Propagation
(BP) algorithm [BS21, Eq. (4)].
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3.2 Handling other Types of Masking
GroupRecombine works for any type of group-based masking scheme, e.g. Boolean [CJRR99,
GP99], arithmetical [CG00], or multiplicative masking [von01]. In the latter case, one
should recall that for any finite field (Y, ⊕, ×), the group (Y, ×) is in bijection with
(Z|Y|−1, +). In other words, the GroupRecombine for multiplicative masking can be im-
plemented by using the GroupRecombine for arithmetical masking, and to permuting the
entries of input and output vectors using discrete log / alog tables. As a result, it becomes
also straightforward to handle less common types of masking, such as affine [FMPR11], by
combining several types of GroupRecombine for different masking schemes. We will apply
GroupRecombine to affine masking in Subsection 4.2.

Although we did not test it yet, extending GroupRecombine to inner-product masking
schemes [BFG+17, BFG15] should be feasible as well. Indeed, inner-product masking
derives from Boolean masking by applying a public linear mapping, that could be handled
by hard-coding the corresponding permutation of the entries in the input and output
p.m.f.s, similarly to the transformation from arithmetical to multiplicative masking.

3.3 Using Native Convolutions in DL Frameworks?
We implemented our own version of the discrete convolution used in GroupRecombine.
Since discrete convolutions are widely used in DL, one might wonder why not using such
layers natively implemented in the main frameworks such as Tensorflow or Pytorch. There
are two main reasons for that.

First, for Boolean masking, the discrete convolution is not natively implemented in
DL frameworks like Pytorch [PGM+19], or Tensorflow [AAB+15]. Even for arithmetical
masking the discrete convolution must be circular, whereas the convolution layers used in
DL frameworks are usually not circular and use zero-padding to deal with side effects.

Second, even if circular padding were used, the convolution layers proposed in the DL
frameworks rely on a naive computation of the convolution product — i.e. not based on
fast transforms. The reason is that in computer vision-based DL, the filter size W is often
too small for the computation with fast transform — with complexity O (W · log2 (W )) —
to be significantly more efficient that the naive approach of complexity O

(
W 2) [VJM+15].4

In our context where the convolutions are often computed over W = 2n classes, where n
is the bit-size of the target, using a non-naive approach becomes more efficient than the
naive one.

That is why we implement GroupRecombine using fast transforms. For Boolean masking,
we use the Walsh-Hadamard (WH) transform, whereas for arithmetical masking, we use
the Fast Fourier Transform (FFT). Both WH and FFT can be implemented with Pytorch
on (General Purpose) Graphic Processing Unit (GPU) with a CUDA backend: the latter
one is natively implemented in the framework, while for the former one, we leverage the
implementation developed by Thomas et al. [TGD+18]. Overall, our GroupRecombine layer
results in a parameter-free layer that can be easily integrated into the Pytorch framework.5

4 Analyzing Performances of GroupRecombine
Now we introduced our GroupRecombine, we would like to compare its performances with
uninformed and worst-case settings. In this section, we show the advantages of using

4Computer vision applications of DL usually prefer filter sizes lower than 4, as it maximizes the ratio
between the size of receptive fields of the convolution layers and the number of parameters to train [SZ15].
This rational only holds for 2D (images) or 3D (videos) data, and no longer holds for 1D time series like
SCA traces.

5We illustrate this claim with some code snippet in the supplementary material of this submission.
Although we did not test, we expect the implementation to be as straightforward in Tensorflow or Keras
as it is in Pytorch.
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GroupRecombine, both on simulated experiments and on real experimental data. We first
describe the settings of our experiments in Subsection 4.1. Then, we report and discuss
results on simulations in Subsection 4.2, and on experiments in Subsection 4.3.

4.1 Settings for Comparison
For a fair comparison, we would like to show that all other things being equal, using
GroupRecombine leads to better performance. This requires to properly define the types
of adversaries against which we test GroupRecombine, and how to assess the comparison
between each model.

4.1.1 Spectrum of Adversaries under Test

To this end, we describe hereafter the different adversaries that we consider.

• Worst-case. This model is depicted in Figure 2b. Each branch model mθi
is learned

independently from each other, based on a restricted amount of corresponding
P.o.Is, and by minimizing the loss function Lyi based on the corresponding share
yi. Concretely, each branch model is instantiated with a one-hidden-layer Multi-
Layer Perceptron (MLP) with N = 1, 000 neurons, a Rectified Linear Unit (ReLU)
activation function on the hidden layer, and a softmax activation function on the
output layer. Following the standard practice in DL, Batch Normalization (BN)
is also applied before ReLU. Once all branch models are trained, they are passed
through GroupRecombine to infer on the validation traces.

• Scheme-aware. It is the same as the worst-case setting, but the trainings of the
branch models are done jointly, using the loss function Ly computed from the labels
of the target y, as the random nonces are no longer known. To better evidence the
advantages of our scheme-aware model, we decline three different versions:

– Known P.o.Is and scheme (SA). This corresponds to the model depicted in
Figure 1. Each branch model is only fed with the appropriate P.o.Is, and the
recombination is done with GroupRecombine.

– Known masking scheme only (SA \ P.o.Is). This corresponds to the
model depicted in Figure 3b. This is the same model as the previous one, except
that each branch model is fed with raw traces, instead of separate P.o.Is.

– Known P.o.Is only (SA \ Enc). This corresponds to the model depicted
in Figure 3a. The model is the same as with the one with known P.o.Is and
masking scheme, except that the GroupRecombine layer is replaced by another
one-hidden-layer MLP with N ′ = 100 neurons.

The two latter versions are downgraded compared to the former one. Therefore, if
our scheme-aware model is sound, it is expected to work better than its downgraded
versions.

• Uninformed setting. This model is depicted in Figure 2a. Since the adversary is
not assume to know neither the P.o.I location, nor the underlying masking scheme,
the uninformed setting is a one-hidden-layer MLP that is fed with raw traces.
For consistency with worst-case and scheme-aware models with known P.o.Is and
scheme, we keep the number of hidden neurons constant. Therefore, our MLP in the
uninformed setting has (d + 1) · N neurons.

Note that in GroupRecombine, the approximation error is null. This means that provided
that each branch model mθi

can exactly computes the true leakage model pYi
(li), then the

whole scheme-aware model using GroupRecombine exactly implements the true conditional
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mθ0,1 Ly

mθ0

mθ1

(a) Scheme-aware: known P.o.Is only.

∗ Ly

mθ0

mθ1

(b) Scheme-aware: known encoding only.

Figure 3: “Downgraded” scheme-aware models. In blue: blocks with trainable parameters.

p.m.f. of the target variable Y. On the contrary, since the discrete convolution is a
non-linear mapping, it cannot be exactly instantiated by a MLP with ReLU activation
function [Yar17, Thm. 6]. Nevertheless, the simulations of Masure et al. at Ches 2020
suggest that the approximation error can be made negligible with an architecture identical
to the one considered here for models in the uninformed setting [MDP19a]. Hence, the
comparison between uninformed models and the other ones remains fair. Following the
empirical study of Perin and Picek [PP20], we train all our models by minimizing the
Negative Log Likelihood (NLL) loss function, by using the Adaptive Moment Estimation
(Adam) optimizer [KB15], with a learning rate of 10−4.

4.1.2 Performance Metrics and Quantifying Complexity

To assess the quality of a model, we measure the Perceived Information (PI), as it has
been shown to be strongly related to the minimum number of traces required to succeed a
key recovery with a Maximum Likelihood Distinguisher (MLD) [MDP19a].6

Based on this, we can assess the profiling complexity. It is measured in terms of the
amount of profiling traces needed to reach the optimal value of PI. To this end, we plot
the learning curves depicting the evolution of the PI with respect to the number Np of
profiling traces used to train the model. More precisely, for each value of Np and for each
trained model we keep the model at the epoch when the training loss is minimal. The
dashed curve corresponds to the PI computed over the training set, whereas the plain
curve corresponds to the PI computed on a validation set. This is equivalent to assessing
the model’s quality when it is not combined with any other regularization technique, in
order to assess the sole effect of GroupRecombine. Since an adversary is likely to combine
the use of GroupRecombine with the use of a validation loss, we also plot a modified type
of learning curve, where we keep the trained model at the epoch when the validation loss

— instead of the training loss — is minimal.
Remark 2. For consistency when the number Np increases, we use optimizers with full-batch,
therefore one optimization step always equals one epoch.

4.2 Results on Simulation
In this subsection, we present the results of our simulations. We first describe hereafter the
simulation framework. For each trace, a (d + 1)-sharing (Y0, . . . , Yd) is drawn uniformly
from Yd+1, where Y = J0, 255K. Then, each sub-leakage is drawn as li = hw(Yi) + B ,
where hw stands for the function mapping a binary variable to its Hamming weight, and
where B is a Gaussian noise with standard deviation of σ. Meanwhile, the label Y is
computed as Y0 ⋆ . . . ⋆ Yd. Unless in Subsubsection 4.2.3, we consider Boolean masking,
i.e. ⋆ is the bit-wise addition ⊕.

6We also have the following relationship with the NLL loss function L(mθ) used for training:
PI (Y; L; mθ) = n − L(mθ), where n stands for the bit-size of the target variable Y.
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(a) W/o validation, SNR = 200.
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(b) W/o validation, SNR = 1.
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(c) W/o validation, SNR = 0.1.
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(d) With validation, SNR = 200.
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(e) With validation, SNR = 1.
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(f) With validation, SNR = 0.1.

Figure 4: Learning curves for models against a first-order Boolean masking.

Since the leakage model is known in our simulated framework, we can also compute a
Monte-Carlo (MC) estimation of the Mutual Information (MI), using the true Probability
Density Function (p.d.f.) used to sample the simulated traces. To this end, Nv = 200, 000
validation traces are simulated, leading to an unbiased estimation error of roughly 1√

Nv
.

4.2.1 First-Order Boolean Masking

The results for two 8-bit Boolean shares are depicted on Figure 4. We can see on Figure 4a,
that the light green curves (depicting the worst-case model) enjoy the fastest convergence
towards the black horizontal line denoting the MI, whereas the pink curves (depicting the
model in the uninformed setting) suffer from the slowest convergence. Between those curves,
the dark green, orange and blue curves denoting the different variants of scheme-aware
models enjoy convergence at an intermediate speed. The same sketch can also be observed
on Figure 4b and Figure 4c. Moreover, the same observation can be made when assuming
that the adversary has a validation set of traces in order to measure the PI in a non-biased
way, according to Figures 4d, 4e, 4f. This can be interpreted as the fact that, regardless
of the noise level, scheme-aware models enjoy a higher profiling complexity than that of
worst-case models, but still lower than that of models in the uninformed setting.

4.2.2 Second-Order Boolean Masking

We push our simulated experiments one step forward, adding a third Boolean share into the
leakage. The results are shown in Figure 5. When analyzing the learning curve in Figure 5a,
we may notice two main differences compared to the 2 share simulation. First, the pink,
blue and orange curves have been shifted to the right, meaning that their corresponding
profiling complexity has been increased by an order of magnitude. Interestingly, the
green curve denoting the best scheme-aware model has merely been shifted, meaning that
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(a) ML, SNR = 200.
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(b) ML, SNR = 1.
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(c) Adversarial, SNR = 200.
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(d) Adversarial, SNR = 1.

Figure 5: Learning curves for models against a second-order Boolean masking.

its profiling complexity did not change much compared when adding a third share into
the experiment. Nevertheless, as a second observation, it is noticeable that the green
learning curve seems less smooth than in the previous experiment. This may testify an
increasing optimization complexity, i.e. the fact that the minimizer encounters difficulties
to decrease the training loss. We will thoroughly discuss this phenomenon in Section 5.
But more generally, all our simulations so far show that the downgraded scheme-aware
models (depicted by blue and orange curves) perform less than the full scheme-aware
(denoted by dark green curves). This confirms the soundness of our approach, as the good
performance does not come from a side-effect. Hence, in the remaining of the paper, we
only focus on non-downgraded models for the scheme-aware adversary.

4.2.3 Affine Masking

We then move our simulation from a second order Boolean masking scheme to an affine
scheme. Hereupon, Bronchain and Standaert argued that learning an affine scheme with
an uninformed model turns out to be hard, as emphasized by their simulations [BS20].
There, the authors considered a slightly different leakage model for the multiplicative
share α of the affine sharing.7 Indeed, from their experimental measurements, they were
able to recover the multiplicative share with almost 100% accuracy with their worst-case
attack, meaning that the leakage model of the multiplicative share α was injective. This
can be explained by the fact that the concrete implementation of all affine schemes known
in the literature are table-based [FMPR11, MS21], meaning that the values x × α are
sequentially processed for x ∈ J1, 2n − 1K during the pre-computation phase, which may
leak a lot [TWO14].

7For completeness, we also provide in supplementary material the results of our simulation without
changing the leakage model. The conclusions remain the same.
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(a) Optimization curves for Np = 5 · 105.
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(b) Learning curves.

Figure 6: Comparison between models for an affine masking.

To take this into account in their subsequent simulations, Bronchain and Standaert
emulated the leakage of the multiplicative share α with an identity model. Nevertheless,
Cristiani et al. experimentally showed that learning such a leakage model with DNNs could
be hard [CLM20, Fig. 3], whereas replacing the identity by a one-hot encoding could make
the problem much easier. A similar experiment on images, conducted under the coordinate
transform problem terminology, led to similar conclusions [LLM+18]. This suggests that
beside not being physically realistic, the identity leakage model could make the problem
artificially much harder. That is why we revisit Bronchain and Standaert’s experiment by
changing the leakage model regarding the multiplicative share. Hereafter, additionally to
the leakages on the other shares, we consider that the adversary has access to the values
of hw(x × α), for x ∈ J1, 2n − 1K, where hw denotes the Hamming weight leakage model.8
The simulation results are presented in Figure 6. While our model in the uninformed
setting is not able to get a positive PI, as depicted by the pink curve on Figure 6a, we can
see that our scheme-aware model leveraging the knowledge of both P.o.Is and masking
scheme is able to get a validation loss below the 8-bit random threshold, denoting an
effective model. Even though it does not contradict the previous conclusions of Bronchain
and Standaert regarding the efficiency of models in the uninformed setting, the outcomes
of our scheme-aware model show that not having access to the random nonces does not
necessarily lead to an unsuccessful attack.

4.2.4 Does Each Branch Actually Learn True Leakage Distributions?

In view of the good results obtained by our GroupRecombine in our simulations, we may
wonder whether the intermediate output p.m.f.s returned by each branch in a scheme-aware
attack — in the known-P.o.Is setting — were also good estimates of the true p.m.f. of each
share. Can we compare the performance of our scheme-aware attacks against a worst-case
adversary on each share separately?

At first sight, there is no reason why it would be possible, since the mapping (p, p′) 7→
p ∗ p′ is not invertible. As an example, if τh denotes the translation operator, i.e., τh(p) =

8Note that this leakage model seems to behave similarly to a one-hot encoding, as it is possible to
guess the value of α by looking at the entry x of the leakage for which the leakage equal n. This would
denote the value x such that x × α = 2n − 1. Therefore, this leakage model somehow acts like a one-hot
encoding, up to a permutation of the encoding entries.
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Figure 7: Branch losses.

p[· ⋆ h], then the convolution product is known to be co-variant with translation, i.e.,
τh(p) ∗ p′ = τh(p ∗ p′). As a corollary, we have τh(p) ∗ τh−1(p′) = τh⋆h−1(p ∗ p′) = p ∗ p′. In
other words, even if our scheme-aware model could reach the optimal performance, the
leakage models on each share could at best be learned up to a shift of the probabilities.

But what about with affine masking? Here the additive and multiplicative shares do
not play the exact same role, so the argument about translation covariance no longer holds.
Does this mean that some branches could actually learn the true leakage model on their
respective share? To clarify this question, we also monitored the loss function on each
branch output against the labels of each share, during training. These branch losses were
computed over the validation set. We plot on Figure 7 such metrics, monitored during the
simulation in affine masking of Subsubsection 4.2.3. We notice in Figure 7a that the loss
for the branches of additive shares in orange and green diverge, as expected earlier. But
surprisingly, the loss on the multiplicative branch in blue goes below the 8-bit randomness
threshold before starting over-fitting. This means that the multiplicative branch may be
used in this case to infer on the value of the multiplicative share, despite not having known
at all the values of the multiplicative share during training. Interestingly, we also note
that the branch loss in blue escapes its plateau after 50 epochs, whereas at the same epoch
in Figure 6a, the overall training and validation losses for the scheme-aware model are still
stuck on the plateau. This denotes that at this epoch, the learning has somehow started,
even if this does not reflect in the value of the overall loss.

Actually, our observations should be slightly mitigated, as they seem to be leakage-
model-dependent. Indeed, we replicated our simulation, by replacing our injective leakage
model for the multiplicative share by a simpler (non-injective) Hamming weight leakage
model. The corresponding results shown on Figure 7b indicates this time that the
multiplicative branch is not able to reach a positive PI, so it cannot be used to infer on
the multiplicative share in this case. Still, we argued in Subsubsection 4.2.3 that the latter
leakage model is less representative than the former one.

4.3 Application on Experimental Data

Now we established the interest of GroupRecombine on simulations, we would like to test
it under experimental traces. To this end, we replicate the same experiments as with the
simulation described in Subsection 4.2 on some public datasets using masking.
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(a) ASCAD-v1: 8 bits, d = 1.
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(c) Spook: 2 bits, d = 2.

Figure 8: Learning curves (best validation loss).

4.3.1 Experiments on ASCAD-v1

We start with the ASCAD-v1 dataset, published in 2018 by Benadjila et al. [BPS+20]. It
deals with a first-order masked implementation of AES, with a Boolean scheme based on
table re-computation. The cryptographic primitive is implemented on an 8-bit ATMega8515
device on which the Electro-Magnetic (EM) field emanations are measured. Two versions
of the dataset are proposed: one so-called fixed with measurements acquired on a 700 time
samples window using a fixed encryption key, and a variable dataset with measurements
on a 1, 400 time samples window using a variable encryption key for profiling traces. Both
windows cover the look-up of the re-computed Sbox when applying the SubBytes operation
on the third byte of the AES state during the first round. Since on both datasets, the data
dimensionality is much higher than in our simulations whereas the number of profiling
traces remains of same order of magnitude as in our simulations, the DNNs used in our
simulations are more likely to over-fit. That is why we reduce the number of neurons in
the hidden layer of the branches from 1, 000 to 100.

Results on Fixed Dataset. We report hereafter the outcomes of our trainings on the fixed
dataset. When the threat model assumes to know the P.o.I location, the P.o.I selection
has been done by splitting the 700 time samples into two halves, the first 350 time samples
containing some leakages about the masked share while the second 350 time samples
containing leakages about the mask. This pre-processing is suboptimal compared to a
P.o.I selection with SNR, but reflects more what an adversary can do with a visual trace
analysis with the help of the source code, and can even be further refined with a thorough
code analysis, as argued in Subsection 2.2. The results are depicted on Figure 8a. First,
it can be seen that when using the full profiling trace set — i.e., Np = 50, 000 — the
validation loss eventually diverges, meaning that when using only shallow MLPs like in our
experiments, none of the different threat models would lead to an effective attack without
further pre-processing. Nevertheless, we can see that the validation losses in light green,
green and blue have their minimum value below the 8-bit threshold, meaning that selecting
the best model based on a validation loss would eventually lead to successful attacks.

Moreover, we can still observe the same hierarchy between the threat models as in the
simulations conducted in Subsubsection 4.2.1. The model in the worst-case setting leads
to a PI close to 0.2 bit, which is the highest lower bound of MI reported in the literature
on ASCAD-v1 [CLM20]. Then, the scheme-aware model leveraging both P.o.I location
and knowledge of the masking scheme reaches a PI of 0.05 bits, whereas the scheme-aware
model exploiting the knowledge of the masking scheme only obtains a PI of 0.02 bits.
Finally, the scheme-aware model leveraging the P.o.Is location only and the model in the
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uninformed setting cannot get a positive PI during the whole training.
We validate this observations by reproducing the trainings on a lower number of

profiling traces. For each of these trainings, the best PI on the validation loss is reported
on Figure 8a. As can be noticed, the previous observations regarding the hierarchy of the
threat models remains true.

Results on Variable Dataset. We repeated the same experiments on the variable dataset.
We first tried by splitting the traces into two contiguous parts of 700 points each, as with
the fixed dataset. Unfortunately, none of the non-worst-case models could succeed in
getting a positive PI, which suggests that our P.o.I selection method for our scheme-aware
attacks was not sufficient, at least for the amount of traces available in this public dataset.
Therefore, we refined the P.o.I selection, by narrowing the windows for the two shares. For
the share rout, we selected the range J0, 300K, whereas for the share Y ⊕ rout, we selected
the range J900, 1200K. This refined P.o.I selection is possible even without knowledge of
rout during profiling, thanks to a careful assembly code analysis, similar to the one recently
conducted by Egger et al. [EST+22, Fig. 4]. For consistency in our comparisons, we also
feed the model in the uninformed setting with the two restricted P.o.I windows, stacked
together.

We then report on Figure 8b the results obtained for this second attempt on the
variable dataset. Like with the fixed dataset, we can see that the model uninformed is
unable to get a positive PI with the 600 P.o.Is given as an input. On the contrary, it took
70, 000 profiling traces to get a positive PI for our best scheme-aware model (green curve
in Figure 8b). This is much more than for the worst-case model that only required 2, 000
profiling traces (light green curve). Still, the results obtained on both ASCAD-v1 datasets
confirm that it is possible to succeed an attack by using small MLPs, provided that the
recombination is cleverly done, e.g. with GroupRecombine.

4.3.2 Experiment for Second-Order Masking

Provided with the promising results presented in Figure 4 and Figure 6, and on the good
experimental verifications on the ASCAD-v1 datasets, we pushed our experiments one
step further by trying to extend our attacks to higher-order masking. To this end, we
report positive results on a second-order Boolean masking, and negative results on an
affine masking.

Results on Clyde. We first report our results obtained on a second-order Boolean masking.
To this end, we considered the CHES 2020 CTF dataset.9 More precisely, we considered
the traces depicting the software implementation of Clyde protected with a 3-sharing.
Clyde is a bit-slice SPN cipher, whose state is made of four 32-bit words, with a 4-bit Sbox.
The authors of the CTF provided the traces with a baseline attack recovering an 8-bit
secret chunk, by targeting two bits in each of the secret words. We propose hereafter to
replicate one the 2-bit key recovery with GroupRecombine. To this end, we target the 15th

and 16th bits of the first word. The dataset is made of 200, 000 traces from which we use
190, 000 of them for training and the remaining 10, 000 for validation. Using the training
traces, we first compute the SNR of each share. Then, we keep some contiguous windows
around the three main peaks of SNR for each share.10 This results in 248 P.o.Is for the
first share, 153 for the second and 131 for the third share. As argued in Subsection 2.2, we
assume that an adversary without access to the random shares during profiling could have
been able to select the same P.o.Is, thanks to a joint analysis of the traces and the source
code of the implementation.11 Then, these P.o.Is are fed to GroupRecombine, using the

9https://ctf.spook.dev/.
10The highest peak of SNR is around 0.3.
11The source code is available at https://git-crypto.elen.ucl.ac.be/spook/masked_spook_sw.
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same architecture for the branches as the ones used in our experiments on ASCAD-v1.
The results are reported in Figure 8c. It shows that the scheme-aware model is able to
get a positive PI with less than 20, 000 profiling traces, whereas the uninformed adversary
requires around 70, 000 profiling traces. In other words, a scheme-aware adversary can
spare some profiling complexity.

Attempt on ASCAD-v2. Provided with the promising results presented in Figure 6 on
the affine masking, and on the good experimental verifications on the ASCAD-v1 datasets,
we pushed our experiments one step further by trying to replicate the attack of affine
masking on an actual implementation of the affine masking. To this end, we used the
ASCAD-v2 dataset [MS21]. It is made of 500, 000 traces, each having 15, 000 time samples
coming from two contiguous parts of the raw power consumption traces acquired on an
STM32 Cortex-M3 device. There, the authors explain that the first window covers P.o.Is of
the multiplicative share only, whereas the second window covers P.o.Is of the additive share
and the masked data. Since the implementation also uses shuffling to protect the sensitive
data, we artificially deactivate the latter counter-measure, by relabeling the masked data
thanks to the knowledge of the random seeds used for permutation.

Unfortunately, we could not get effective attacks using scheme-aware models with simple
MLPs as branch models, whereas the same model trained in a worst-case scenario could
get a positive PI. This negative result should nevertheless been mitigated. Indeed, the
authors of [MS21] reported some successful worst-case attacks on the dataset, leveraging
the knowledge of at least one share during profiling, but did not succeed in attacking
the dataset with a model in the uninformed setting. To the best of our knowledge, no
successful attack has ever been reported using non-worst-case models, since the release of
the dataset in early 2021. We will discuss in Section 5 the potential reasons behind this
difficulty.

5 Discussion
We have seen that using scheme-aware adversaries could mitigate some drawbacks of
uninformed adversaries. In this section, we discuss some parts of our results. Subsection 5.1
argues that changing the type of DNN architecture in the branches of a scheme-aware
model should not affect the comparative advantage of GroupRecombine with respect to the
uninformed approach. Finally, Subsection 5.2 questions to what extent non-worst-case
approaches could efficiently work against higher-order masking schemes.

5.1 On the Choice of Architecture for the Branches
In our experiments involving scheme-aware attacks, we used the same architecture for the
branches of our GroupRecombine model, namely a one-hidden-layer MLP with 100 or 1, 000
neurons. Naturally, better performances could have been obtained by investigating other
types of DL architectures. As a consequence, our models in the uninformed setting are not
necessarily the best ones. Actually, our results report unsuccessful uninformed attacks with
one-hidden-layer MLPs on ASCAD, whereas the literature reports much better results on
this dataset, by using deeper MLPs — up to 6 layers according to Benadjila et al. [BPS+20]

— or CNNs [KPH+19, MDP19b].
Therefore, one might wonder whether our comparison is biased towards GroupRecombine.

Hereupon, we stress that all trainable models depicted in Figure 1 and in Figure 3 have
been instantiated with the simplest DNN architecture one may use. The fact that the
worst-case models instantiated with such simple branches reached the optimal performances
on our simulations, and reached levels of PI close to the state of the art on the ASCAD-v1
dataset. Naturally, it may be possible to use other branch models, such as CNNs, with
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GroupRecombine. But our experiments suggest that using shallow MLPs is often sufficient
for optimal leakage modeling — at least provided that other types of counter-measures are
ignored. In other words, this suggests that the main efforts spent by the DL practitioner
in designing more complex architectures in an uninformed setting would actually serve
at learning how to recombine the information gathered by the first layers of the DNN
on each share, according to the masking scheme. Hence, by hard-encoding the masking
scheme with GroupRecombine, we expect the DL practitioner to spare a significant amount
of time spent, e.g., in running exhaustive/random search of hyper-parameters, which is
acknowledged to be the bottleneck task in DL-based SCA [BPS+20, RWPP21, WPP20].

Likewise, no regularization technique — e.g., weight decay, dropout — have been
considered in this study, so adding them could have naturally improved the results.
However, we argue that the effect of regularization techniques is orthogonal to the effect
of using GroupRecombine. Indeed, beside being hyper-parameter-free contrary to other
types of regularization, our recombination layer does not act on the bias-variance trade-
off, as most of regularizers do [SB14, Chap. 5]. This means that, provided that the
assumed masking scheme is the right one, the regularization effect of the recombination
layer never degrades the approximation capacity of our model as argued at the end of
Subsubsection 4.1.1, contrary to what all other types of regularization are likely to do.

5.2 The Initial Plateau: An Effect of Masking
Although not noticeable from the learning curves, it turned out that in all our experiments
and simulations presented so far, the optimization curves — i.e. denoting the evolution
of the loss function through the epochs — depicted an initial plateau for both training
and validation loss. An example of such a plateau is shown in Figure 6a. Namely, when
targeting some leakage induced by masking, the Gradient Descent (GD)-based optimization
algorithm starts its procedure being stuck on a plateau whose level coincides with full
randomness. This plateau is not a simulation artifact, as it can be observed in many
other studies investigating uninformed adversaries against masking. See, e.g., the works
of Timon [Tim19, Fig. 5], Perin and Picek [PP20, Figs. 5b, 6b, 7, 8, 13], Cristiani et
al. [CLM20, Fig. 8], [CLM21, Fig. 3], and Lu et al. [LZC+21, Fig. 10 – 11, left]. Moreover,
some of these figures suggest that the higher the masking order, the longer the initial plateau.
As a more recent example, Gohr et al. also emphasized, in a similar context, some impact
of the masking order on the performance of trained models [GLS22, Fig. 6]. Interestingly,
the initial plateau barely happens when targeting unprotected implementations, or even
leakages protected by shuffling [MDP19a, Fig. 2, right] or de-synchronization [CDP17,
Fig. 8], [KPH+19, Fig. 10], [MBC+20, Fig. 6], suggesting this plateau is closely linked
to the use of masking. These intriguing observations call for further explanation and
verification: is this plateau really due to masking, and if so to what extent it affects the
optimization?

5.2.1 Empirical Verification on Exhaustive Datasets

To address these questions, we repeat our simulations for a Boolean masking, by using here
a noise-free, exhaustive dataset, i.e. for which the training and validation loss are equal —
which is made possible thanks to the discrete nature of our noise-free leakage model. Thus,
the profiling complexity is nullified, allowing to focus only on the optimization complexity.12

The setting of this simulation is voluntarily much simpler rather than realistic, so that
the optimization complexity may be seen as a lower bound of what a real-world adversary
could expect.

12This setting therefore emulates the common assumption of an adversary with unlimited profiling power.
The interested reader may find in Appendix B a discussion about how to efficiently emulate this case.
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In order to quantitatively measure the optimization complexity, we define the weak
learning threshold, set to L (θ) = n − ϵ. The weak learning threshold corresponds to an
adversary with an effective model, i.e. a model wit strictly positive PI, up to an ϵ-margin.
More concretely, the weak learning threshold can be used to measure the length of the
plateau in the optimization curve. We also define the strong learning threshold, set to
L (θ) = MI (Y; L) + ϵ. The strong learning threshold corresponds to an optimal adversary
from an information theoretic point of view, up to an ϵ-margin. Hence, the optimization
complexity can be measured in terms of the number of epochs required to reach the weak
and strong learning thresholds.

The results of our simulations with an exhaustive dataset are showed on Figure 9, for
ϵ = 0.05, and averaged over 5 different seeds. Note that here we fixed the number of
neurons in the uninformed setting, so the curves Figure 9a and Figure 9b are not directly
comparable with each other. For the scheme-aware model, we can observe that the green
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Figure 9: Number of epochs to get weak (plain curves) and strong (dotted curves) learning.

plain curve goes from 1 epoch for d = 0 to 4, 000 epochs for d = 4. This denotes an
exponential increase of the optimization complexity in weak learning with the masking
order. Since the optimization complexity in strong learning (denoted by the dotted curves)
is strictly higher than the one in weak learning, we can also deduce that the optimization
complexity in strong learning will follow an exponential trend.

For the uninformed model, we may also notice a dramatic increase of the optimization
complexity in weak learning, from one epoch without masking to 200 epochs with 6 shares.
Unfortunately, Figure 9 does not provide enough evidence to conclude in a sharp way on the
same exponential increase of the optimization complexity as observed with scheme-aware
models. Indeed, as the size of the exhaustive dataset also increases exponentially, it no
longer fits into our 48 GB Nvidia RTX A6000 GPU when d ≥ 6. Does this suggest that
uninformed models could efficiently scale with the masking order in terms of optimization
complexity, whereas scheme-aware models do not?

5.2.2 A Theoretical Argument that holds for Every Non-Worst-Case Model

Actually, we argue in this section that uninformed models should also face the exponential
increase of optimization complexity with respect to the masking order. Our point relies
on a theorem proved by Shalev-Shwartz et al., in an almost similar problem [SSS17].
There, the authors investigated to what extent some tasks may be learned in an “end-to-
end” manner — i.e. uninformed in our terminology —, or by “decomposition” in more
elementary learning problems — i.e. worst-case in our terminology — would be more
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efficient. They emphasized that some problems could be hard to learn with gradient
descent in the uninformed setting, as stated hereafter.

Theorem 1 ([SSS17, Thm. 3], informal). Let L denote a d-tuple (L1, . . . , Ld) of input
instances, and assume that each Li is i.i.d. standard Gaussian in Rp. Define the target
function hu (l) =

∏d
i=1 sign (u⊺li) , for some normalized hyperplane u ∈ Rp. Let mθ be a

predictor differentiable with respect to its parameter θ, such that E
L

[
∥∇θ mθ∥2

]
≤ G(θ)2,

and let L (θ) = E
L

[ℓ (mθ(L), hu(L))] be the loss function to minimize, for some smooth
function ℓ (·). Then,

E
u

[∥∥∥∇θL (θ) − E
u

[∇θL (θ)]
∥∥∥2
]

≤ G(θ)2 · O

(√
d log(p)

p

)d

. (3)

Let us interpret the meaning of this theorem from our SCA point of view. Consider one
bit, masked with d shares, and assume that the leakage distribution conditionally to each
share is noise-free and the same for each bit. Therefore, the leakage model to be learned is
denoted by the decision surface materialized by the hyperplane u, and the masked target
bit can be expressed as hu (l).13 Note that in a worst-case scenario where the adversary
has unlimited profiling powers, the true decision surface u is known, so the masked bit
would be successfully recovered in one trace in the attack phase.

Yet, what Theorem 1 tells us is that the success rate could be much worse for a
real-world adversary with limited computational powers using gradient descent. Indeed,
the authors of [SSS17] interpret the left hand-side of Equation 3 as a measure of the
feedback signal returned by the labels through the gradient of the loss function. Then,
this result tells us that this feedback signal decreases exponentially fast with the masking
order, provided that the dimensionality p of each sub-leakage is high enough.

As a result, the trajectory taken by the parameter θ during the gradient descent depends
less and less on the features of the target function to learn, denoted by the vector u, as
the masking order increases. Abbe et al. showed at Neurips’20 that this exponential
decrease in the feedback signal would result in an exponential growth in the number of
steps in the gradient descent needed to escape the initial plateau [AS20, Thm. 3, Cor. 2]. ,
[AKem+21, ACHM22]. This suggests that the non-exponential trend observed in Figure 9
can be regarded as a simulation artifact since we had p = 1, whereas in most non-worst-case
attacks the dimensionality p of each leakage is typically much higher, such that we have
d log(p)

p ≪ 1. Overall, we conclude that the hardness when tackling profiling attacks in
non-worst-case settings is mainly due to the optimization procedure, i.e. based on gradient
descent in this paper, than on the choice of models.

6 Is Profiling in a Non-Worst-Case Hard Anyway?
In this paper, we have shown how a real-world adversary could leverage some prior
knowledge from the source code of a target implementation, by substituting uninformed
attacks with scheme-aware adversaries. As a result, we evidenced how scheme-aware
modeling could dramatically improve the efficiency of a side-channel attack in the context
of masking, from a profiling complexity point of view. We also showed that the main
difficulty for the adversary is due to the drawbacks of GD-based optimization procedures,
rather than the selection procedure of the appropriate hyper-parameters of a model.
Interestingly, this difficulty is expected to increase with the masking order, which opens a
new fundamental question for the SCA developers:

13hu can be seen as the xor function, where the inputs are remapped over {−1, +1}.
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Is the conditional p.m.f. of an intermediate computation that is protected
against masking efficiently learnable in a non-worst-case setting?

On the one hand, our problem is somehow close to the well-known Learning Parity with
Noise (LPN) problem. This problem is cryptographically hard, as it is the root for some
lattice-based cryptographic primitives [GRS08, Pie12]. Yet, without noise this problem
becomes efficiently learnable, as it can be solved with Gaussian elimination. Nevertheless,
it has been shown that any GD-based approach would result in an exponential optimization
complexity [Tho96], [AS20, Thm. 6], [SSS17, Thm. 1]. This provides an example of easy
learning problem where GD-based learning can fail. In this respect, it might be interesting
to study to what extent the scattershot encoding introduced by Gohr et al. could be
an efficient solution [GLS22]. On the other hand, some recent results in learning theory
suggest that profiling masked implementations in non-worst-case settings could be hard
regardless of the nature of the learning algorithm used by the adversary. Indeed, under the
assumption that the leakage model has an additive Gaussian noise, the leakage distribution
can be expressed as a Gaussian mixture, with a number of modes increasing exponentially
with the masking order. Some recent works showed that there are some Gaussian mixtures
for which — under cryptographic assumptions — there is no learning algorithm able to
scale polynomially with the number of modes both in terms of computational and profiling
complexity [BRST21, GVV22]. In other words, any generative model used for profiling in
a non-worst-case setting, may be prone to fail when facing higher-order masking, regardless
of the profiling method used by the adversary. Whether this limitation also translates to
discriminative models like MLPs or CNNs is a great open question.

This open question naturally has strong impact on the understanding of side-channel
evaluation contexts [ABB+20]. If the problem is hard, then there is a gap between
the profiling complexity in the worst-case and uninformed contexts, increasing with the
number of shares. At the extreme, one could imagine that implementation security could
also rely on this complexity (i.e., claim an implementation secure if no model can be
learned in an uninformed context). On the one hand, this would give some theoretical
background to current evaluation approaches that consider attacks using implementation
knowledge as more critical. On the other hand, profiling remains a one-time effort and
is highly dependent on even mild assumptions that adversaries could make about the
implementations. So such an extreme view seems very risky and a more conservative
approach would then just be to consider that the possible gap between worst-case and
uninformed profiling offers some welcome security margin against very powerful attacks
which may help preserving implementation security in the longer term. If the problem is
not hard, then the worst-case approach becomes even more unavoidable, as it provides
a shortcut to the security level that will be reached even by practical adversaries. We
hope that the scheme-aware context can help illuminating this fundamental question in
the future. In this respect, the investigation of combined countermeasures (e.g., masking +
shuffling or desynchronization) appears as a natural target, and it would be interesting to
study how to adapt scheme-aware modeling to these more challenging contexts.
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A Duality between Masking and Convolutions
Proof of Proposition 1. Let pY(l)[y] denote the probability Pr (Y = y | L = l), and let Y
denote the d + 1 sharing of Y, namely Y = (Y0, . . . , Yd). By applying Bayes’ theorem we
get:

pY(l)[y] = Pr (Y = y)
Pr (L = l) Pr (L = l | Y = y) (4)

Denoting Pr (L = l | Y = y) by pL(y)[l], and using the total probabilities formula d times,
we expand the latter term as follows:

pL(y)[l] =
∑

y1,...,yd∈Y
Pr (L = l | (Y, Y1, . . . , Yd) = (y, y1, . . . , yd))·

d∏
i=1

Pr (Yi = yi) .

(5)

By noting y0 ≜ y ⋆ (y1 ⋆ . . . ⋆ yd)−1, and since the mapping (y, y1, . . . yd) 7→ (y0, y1, . . . yd)
is invertible we may reformulate the conditional probability as follows:

Pr (L = l | (Y, Y1, . . . , Yd) = (y, y1, . . . , yd)) = Pr
(
L = l | Y = (y0, . . . , yd)

)
.(6)

Moreover, according to assumption (b), we have:

Pr (L = l) =
d∏

i=0
Pr (Li = li) , (7)

Pr
(
L = l | Y = (y0, . . . , yd)

)
=

d∏
i=0

Pr (Li = li | Yi = yi) . (8)

Finally, we may use the uniform assumption to remark that: Pr (Y = y) = Pr (Y0 = y0) .
We may now combine Equations (4), (5), (6), (7), (8) and the latter fact:

pY(l)[y] =
∑

y1,...,yd∈Y
pY0(l0)

[
y ⋆ (y1 ⋆ . . . ⋆ yd)−1] pY1(l1)[y1] · . . . · pYd

(ld)[yd] .

B Optimizing Simulations in An Exhaustive Dataset
Even for a noise-free leakage, computing the loss function to minimize in a naive way
would become quickly intractable, as it would result in a sum over all possible sharings of
Y, i.e., 2n·(d+1) terms.

Hopefully, we can do much better in our simulated framework, as the conditional
probability distribution Pr (Y | L) and the marginal distribution of leakages Pr (L) can
be used to rephrase the terms in the loss function as follows:

L (θ) =
∑

l0

. . .
∑
ld

E
Pr(Y | L=(l0,...,ld))

[mθ(l0, . . . , ld)] ·
d∏

i=0
Pr (Li = li) . (9)

The sum to compute in Equation 9 contains |L|d+1 terms, where |L| denotes the leakage
space of one share. In the case where the leakage model is highly non-injective such as with
Hamming weights — i.e. |L| = n + 1 —, computing the latter sum turns out to be much
more efficient. For this model, and assuming that the shares are uniformly distributed,
the marginal distribution Pr (L) is a joint distribution of d binomial laws B(n, 1/2).
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