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Atrial Fibrillation

In AF patients, the initiation and progression of AF depend on the 
underlying arrhythmogenic substrates, genetics and concomitant risk 
factors, which may impact the clinical presentation of the arrhythmia and 
manifestation in different characteristic AF patterns. Current research 
projects focus on the development of several diagnostic techniques for 
the assessment of arrhythmogenic substrates in patients with AF 
(diagnostic translation). Additionally, multidisciplinary teams (collaborative 
translation) try to describe genetic mechanisms, molecular pathways, 
electrophysiological characteristics and concomitant risk factors with the 
goal to provide a more mechanism-tailored classification of AF with the 
potential to improve AF treatment in subgroups of patients.

However, despite emerging evidence of the prognostic value of several 
new techniques and the potential utility to guide AF management, most of 
these strategies have not yet been implemented in the clinic. In this 
article, current approaches for AF substrate characterisation, analysis of 
genes potentially involved in AF and strategies for AF risk factor 
assessment are summarised. We discuss challenges and obstacles to 
clinical translation and implementation into clinical practice. 

AF Pathogenesis
Large-animal models of AF have been of great importance in 
understanding the pathogenesis of AF. Seminal early studies demonstrated 

that AF is a self-perpetuating arrhythmia because it causes proarrhythmic 
remodelling of the atria, both electrical and structural.1 Electrical 
remodelling is a relatively fast process, complete within 1–2 days of AF 
onset.2 It is characterised by a shortening of the atrial action potential and 
a corresponding reduction in the atrial refractory period, allowing higher 
fibrillation frequencies. As such, it is a pivotal factor in the early stabilisation 
of AF, when anti-arrhythmic drugs are still effective. Structural remodelling, 
which is thought to be responsible for the further progression of AF, 
develops over a much slower time course of months to years and is 
typified by myocyte hypertrophy, deposition of fibrous tissue and 
expansion of adipocytes.3,4

Atrial electrical and structural remodelling occur not only as a result of AF, 
but also due to factors increasing the risk for AF. Atrial remodelling has 
been studied in large animal models of, e.g. congestive heart failure (CHF), 
valvular disease, hypertension, sleep apnoea and obesity.5–9 In a goat 
model of ‘lone AF’, increased complexity of fibrillatory conduction and a 
loss of efficacy of anti-arrhythmic drugs was associated with the 
development of endomysial fibrosis, i.e. increased thickness of collagen 
septa between myocytes within bundles (also called reactive or interstitial 
fibrosis) and typically occurring in the absence of myocyte death.10,11 In 
contrast, a dog model of heart failure did show myocyte death and a 
corresponding pattern of replacement fibrosis.12 In a direct comparison 
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with a dog model of lone AF, the CHF model showed relatively simple 
fibrillation patterns and a higher efficacy of pharmacological cardioversion.13 
This strongly suggests that the exact pattern of fibrosis, rather than the 
overall amount of fibrous tissue, determines AF complexity and stability, in 
a manner reminiscent of the relationship between fibrosis pattern and 
conduction abnormalities observed in the ventricle.14,15 In aggregate, 
evidence from diverging studies illustrates the complex interplay between 
anatomy, fibre architecture, patterns of fibrosis and other types of structural 
remodelling and their effect on AF pattern. For example, larger areas of 
(replacement) fibrosis may serve as an ‘anchor point’ for spiral waves and 
other macroreentrant patterns, whereas endomysial fibrosis with loss of 
side-to-side connections may precipitate microreentry or ‘zig-zag’ 
conduction even in relatively small tissue areas.16–18

Obstacles to Clinical Translation Related 
to the Description of AF Pathogenesis
In contrast to the controlled circumstances and limited duration of 
pathogenic stimuli in animal models, AF patients often have several risk 
factors (including ageing) that may have progressed over a prolonged 

time span, contributing to the ‘translational gap’ between insights from 
animal model and clinical practice (Figure 1).19 One important aspect of AF 
pathogenesis in patients that has not been replicated in animal models is 
the occurrence of spontaneous AF episodes originating in the pulmonary 
vein region. Whether this results from differences in anatomy, tissue 
architecture, or pathogenesis, as mentioned above, is currently unclear, 
but the lack of large animal models showing spontaneous AF paroxysms 
limits our understanding of the underlying mechanisms of this important 
manifestation of AF in patients. 

The ‘translational gap’ between animal studies on AF pathogenesis and 
patient studies extends to diverging methods used for electrophysiological 
mapping of the AF substrate. Most mapping studies in animals were 
performed in open chest situations with epicardial arrays of unipolar 
electrodes. Although some mapping studies in patients implemented 
similar techniques during cardiac surgery, most were performed using 
either bipolar endocardial electrodes or non-contact mapping.20,21 
Unipolar electrograms allow more precise determination of local 
activation times and provide information on the degree of fractionation 
without sensitivity to the direction of propagation.22,23 Moreover, epicardial 
access provides higher spatiotemporal resolution and, therefore, more 
accuracy in the reconstruction of the complex fibrillation patterns that are 
associated with AF progression.

In animal models, tissue samples for the detailed analysis of structural 
remodelling can be obtained under controlled conditions at different 
time points. In general, studies in human atrial samples remain essential 
to study the consequences of clinically relevant disease-related 
remodelling in patients. For example, recent work identified the 
proarrhythmic molecular and cellular mechanisms contributing to AF in 
patients with heart failure and sleep apnoea.24–26 However, human 
atrial samples are only available from patients undergoing cardiac 
surgery, who likely have a risk factor profile that is dominated by 
ischaemic heart disease and/or valve disease and may not be 
representative for all AF patients. Furthermore, atrial samples are often 
restricted to right or left atrial appendages, which may undergo 
remodelling distinct from regions that are considered more relevant for 
AF maintenance (e.g. the pulmonary veins and the left-atrial free wall). 
Nonetheless, right-atrial sources for AF are increasingly reported.27,28 
Most importantly, human atrial samples can only provide a single 
snapshot of the cumulative effect of all AF risk factors, ignoring their 
complex temporal dynamics.29

As an alternative to histological analysis, several surrogate parameters 
have been developed for imaging of atrial tissue characteristics. These 
methods have an intrinsically lower resolution and are limited by the 
thinness of the atrial wall. Thus, imaging of fatty deposits does not allow 
the distinction of epicardial fat from intramyocardial fatty infiltrates.30 As a 
measure for fibrosis, imaging of regions with delayed enhancement of 
gadolinium has been used increasingly in recent years.31,32 Although this 
method has been validated histologically for large infarct scars in the thick 
ventricular wall, direct histological validation of delayed enhancement 
imaging in the atrium has been very limited.33 Therefore, the exact type 
and distribution of fibrous tissue (i.e. reactive versus replacement fibrosis) 
detected using this technique remains uncertain. Nevertheless, areas 
with delayed enhancement have been correlated to regions with low-
voltage electrograms, and are predictive of clinical outcome.34,35 Most 
notably, patient-specific mathematical models incorporating information 
from delayed enhancement imaging have been successfully used to 
guide ablation strategies.35

Figure 1: Obstacles to Translation of Results 
from Large-animal Models of AF
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A: In animal models, pathogenic stimuli are applied at high intensity for a relatively short duration 
to young healthy animals. AF patients are often elderly and have an extensive history of 
underlying risk factors for AF. B: In animal studies, the availability of tissue samples allows detailed 
characterisation of tissue properties, including the distribution of various types of fibrosis. In 
patients, delayed enhancement imaging of the thin atrial wall has been used to visualise the 
distribution of fibrosis as a binary parameter (scar versus normal myocardium).11,33 C: In open-chest 
animal studies, high-density epicardial mapping of unipolar electrograms has allowed detailed 
reconstruction of complex fibrillation patterns, whereas (sequential) voltage mapping using bipolar 
electrograms in patients offers a less detailed view.33,95 DE = delayed enhancement. 
Sources: B: Adapted from Weber et al. 1989.11 Used with permission from Elsevier. 
B and C: Adapted from Chen et al. 2019.33 Used with permission from Oxford University Press. 
C: Adapted from Verheule et al. 2010.95 Used with permission from Wolters Kluwer Health.
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Another strategy might be collection of blood biomarkers, representing 
different pathological pathways to evaluate the progression of atrial 
cardiomyopathy.36 Although not specific to atrial myocardial disease, 
various biomarkers characterising myocyte injury, inflammation and 
fibrosis have been linked to the occurrence and outcomes in AF. From 
an electrophysiological and pathophysiological point of view, 
biomarkers that characterise the atrial substrate may be more indicative 
of AF burden rather than the seemingly random time point at which AF 
is first documented.37

AF Genetics
Over the previous few decades, tremendous strides were made in 
elucidating the genetic underpinnings of AF.38 Family-based methods, 
primarily linkage and fine-mapping successfully detected numerous loci 
leading to Mendelian forms of AF. At least eighteen forms of monogenetic 
AF are described, including those resulting from mutations in genes that 
code for potassium voltage gated channels (KCNQ1, KCNE2, KCNA5 and 
KCNJ2) and sodium voltage-gated channel subunits (SCN1B, SCN2B, 
SCN3B, SCN4B and SCN5A), natriuretic peptides (NPPA), gap junctions 
(GJA5), nucleoporins (NUP155), ATP binding cassette transporters (ABCC9) 
and myosin light chains (MYL4).39–41 Causal genes have not been located 
for a number of other implicated regions.42 These findings generally 
involve rare, highly penetrant mutations with large effect sizes, but small 
population level risk.

The mutations identified in family-based studies demonstrate the 
fundamental importance of two ion handling groups of proteins that can 
influence AF aetiology through a variety of related molecular mechanisms. 
The potassium handling family of genes, for example, is involved in 
multiple facets of potassium induced current flows, particularly delayed 
rectifier outward currents (KCNQ1, KCNE2, KCNA5) and inward rectifier 
currents (KCNJ2, ABCC9).43,44 Mutations in β subunits of the voltage-gated 
sodium channels (SCN1B, SCN2B, SCN3B, SCN4B) have often been 
associated with decreases in sodium current density and/or late sodium 
currents, while those in α subunits, including SCN5A, lead to decreased 
channel expression and inactivation abnormalities and are associated 
with a considerable degree of phenotypic variability.45,46 Variants in the 
genes coding for both protein families alter cardiac action potentials.

Genome-wide association studies (GWAS) of AF, by contrast, delineated 
numerous common polymorphisms with generally small effect sizes, but 
affecting larger segments of the population in individuals of European 
ancestry and others.47–55 These GWAS have been supplemented by whole 
exome sequencing and exome-chip analyses that have identified 
additional pertinent loci.56,57

Obstacles to Clinical Translation 
Related to AF Genetics
Despite the success of these studies in locating a large number of loci 
associated with AF and AF endophenotypes, substantial progress in 
translating this information into clinically relevant knowledge has largely 
not been realised to date. In familial settings, characterising mutations in 
currently unaffected individuals may lead to the prospective identification 
of cases. These data have also proven useful in terms of helping to 
characterise mechanisms that contribute to the development of AF. 
Nevertheless, given the rarity of these mutations, family-based data 
typically finds limited applicability in the general population.

GWAS, in contrast, has identified many common genetic AF susceptibility 
variants throughout the genome. Polygenic risk scores derived from 

these can be used to successfully predict a person’s risk of developing 
AF.58 The authors of that study suggest that, “the identification of 
individuals at high risk should facilitate the design of efficient natural-
history studies to discover early markers of disease onset and clinical 
trials to test prevention strategies.”

However, direct translation of GWAS data, outside of this domain has 
been complicated by a number of factors. These include the difficulty in 
determining the causal variant and the gene it affects, at most loci due to 
the effects of linkage disequilibrium, the fact that most GWAS variants are 
intergenic and the cost, in terms of both money and manpower, of 
following up on the large number of GWAS findings. 

These problems are exacerbated by the typically small effect sizes of 
these variants, which complicates the task of prioritisation for follow-up. 
However, it is worth noting that variants with small effects may implicate 
genes which may be potent therapeutic targets. An excellent example is 
the 3-hydroxy-3-methylglutaryl-coA reductase (HMGCR) gene. Common 
GWAS variants in this gene are associated with LDL cholesterol levels, 
albeit with a comparatively modest effect size of ~0.06 mmol/l.59 The 
statin drugs, which act by inhibiting the protein product of the HMGCR 
gene, on the other hand, have large effects on serum LDL.60 This example 
– and others – suggests that validation and functional characterisation of 
GWAS findings may provide both mechanistic and clinically actionable 
insights into AF. 

Moreover, the value of GWAS, as well as genome- and exome-wide DNA 
sequencing studies, can be further exploited in several ways. The first is 
to use more precisely defined clinical phenotypes to discern genetic 
variants that may be associated with etiologically distinct forms of AF. The 
second is to perform genome-wide studies on novel endophenotypes, 
such as tissue characteristics (i.e. fibrosis, capillary rarefaction and fatty 
infiltration), sequential voltage mapping, unexplored ECG parameters, 
etc. Although it may not be feasible to ascertain sample sizes on the same 
scale as previously studied traits, these studies may yield findings that 
help to elucidate the genetic complexities of AF.

Other forms of analysis may also shed light on AF. An important branch of 
emerging research examines the transcriptomics involved, either causally 
or in response to AF. Previous studies have suggested that transcriptional 
profiles are associated with AF; however, these studies have typically 
been hampered by the use of microarrays, in lieu of next-generation RNA 
sequencing, small sample sizes, limited analysis of selected transcripts 
and lack of replication.61 On-going studies, involving large numbers of 
atrial biopsies and state-of-the-art RNA sequencing methods, will allow 
unprecedented opportunities to evaluate the transcriptional landscape of 
AF, related endophenotypes (such as PR interval and P wave 
characteristics), markers of atrial remodelling and AF risk factors. As 
evidence continues to accumulate implicating the crucial role of non-
coding RNA (including long non-coding RNA, microRNA, circular RNA, 
small nucleolar RNA and other species) on transcriptional regulation, RNA 
sequencing should yield considerable insight into not just genes involved 
in AF but the mechanisms of their control. These analyses will provide 
valuable information on the causes and consequences of AF, AF aetiology 
and AF biomarkers.

RNA sequencing data will also provide valuable clues to the role of AF-
associated genetic variants.62 Moreover, the integration of genomic and 
transcriptomic data will allow for more precise classification of AF patients 
– a goal considered crucial in the field.63 The application of machine-
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learning methods, such as random forests, will also yield more precise 
phenotypes for further genomic and transcriptomic discovery (Figure 2). 

AF Risk Factors
Several cardiovascular risk factors contribute to AF initiation and 
progression (see the AF Pathogenesis section). In the current guidelines 
of the European Society of Cardiology for AF diagnosis and management, 
the importance of identification and management of established AF-
promoting risk factors and unhealthy lifestyle is addressed and clearly 
recommended.63 In addition to non-modifiable factors such as advancing 
age and sex, hypertension, obesity, excessive alcohol consumption, 

sleep apnoea and endurance exercise, in particular, are separately 
mentioned.64 For all these modifiable AF risk factors, meta-analyses of 
observational studies or randomised intervention studies support the 
recommendations for clinical management of these conditions.65–69 
Aggressive management of AF risk factors combined with lifestyle 
changes has been shown to control sinus rhythm in AF patients.65 
Despite these described positive responses to risk factor management 
programmes in AF, other studies could not confirm these beneficial 
effects, suggesting, that there are potentially non-weight responsive 
forms of AF in some patients.70–73

Previous work showed that idiopathic AF patients develop cardiovascular 
disease more often, at a younger age and with a more severe disease 
profile compared to healthy sinus rhythm controls, suggesting the 
presence of subclinical comorbidities.74 Similarly, in a recent retrospective 
study of young AF patients (mean age 46 years), only 11% of patients were 
free of AF risk factors or comorbidities, whereas 44% had hypertension 
and 25% had a family history of AF.75

Despite the available evidence and the recommendations in current AF 
guidelines, the optimal approach to assess AF risk factors and specific 
lifestyle components remains unclear. In clinical practice, the presence of 
AF risk factors is generally considered a binary variable. However, AF risk 
factors (with the exception of the genetic component) may be dynamic, 
which results in a temporally variable exposure of the organism to 
arrhythmogenic conditions that may contribute to variability in the 
frequency, duration and timing of paroxysmal AF episodes.76 In addition to 
the structural remodelling process, which generally develops and 
progresses slowly, the exposure to variable AF risk factors may also 
contribute to temporal patterns of paroxysmal AF episodes by transient 
acute arrhythmogenic mechanisms.77 This may result in fluctuations in 
triggers and components of the substrate that can be rapidly modified 
such as post-translational modifications of proteins or autonomic nervous 
system activation, etc.19 The concept of a dynamic substrate for AF is 
summarised in Figure 3. 

Each AF risk factor has different dynamic components with distinct time 
courses. Advancing age is a slowly progressive AF-risk factor. Long-term 
untreated hypertension also has a strong progressive component. 
Frequent alcohol intake is an important risk factor for new-onset AF. 
Furthermore, binge drinking, can also trigger paroxysmal AF episodes, 
known as the ‘holiday heart syndrome’.78

Intense activity, sleep apnoea, excessive alcohol intake and surgery have 
major transient AF-promoting components that are due to modulation of 
systemic regulators such as activation of the autonomic nervous system in 
the case of exercise, intrathoracic pressure changes in sleep apnoea or 
inflammation following cardiac surgery. 8,79,80 These transient effects are 
partially or fully reversible and are modulated by variability in risk-factor 
severity. 

The VARIOSA-AF study is an example how transient AF-promoting factors 
can influence AF patterns: there is considerable night-to-night variability 
in sleep apnoea severity, which impacts AF risk associated with sleep 
apnoea severity in the preceding night.81,82 Additionally, over time these 
variable risk factors may also promote progressive structural remodelling 
processes. In rats, cumulative exposure to transient sleep apnoea-related 
conditions resulted in AF-substrates and was associated with increased 
AF-susceptibility.83 Of note, AF risk is not just determined by risk factors 
with clinical manifestation but also by variability in sub-clinical risk factors. 

Figure 2: Leveraging Data Analysis and Integration 
to Elucidate AF Mechanisms and Classify Patients
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Figure 3: A Complex and Dynamic Substrate 
for AF Impacting AF Patterns
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In AF patients without overt risk factors, the inter-visit variability of 
metabolic parameters showed a close association with AF risk.84 
Additionally, the combination of risk factors may be important as well. For 
example, rats with spontaneous hypertension and obesity show more 
pronounced structural remodelling and AF susceptibility than lean 
hypertensive rats.85

A binary assessment of AF risk factors, as currently practised clinically, 
may not adequately reflect the contribution of the respective risk factor 
on AF mechanisms and progression. Under circumstances of variable risk 
factors, the development of the AF substrate will depend critically on the 
cumulative exposure to the arrhythmogenic conditions (the risk factor 
burden represents the time exposed to a particular risk factor). 

Despite convincing evidence of the need for risk factor management in 
AF patients, it remains unclear how best to assess substrates and risk 
factors and guide treatment, risk factor management and lifestyle 
modification.64 Established risk factors are often assessed only once in 
a structured way at the time point when patients present for the first 
time in the AF-clinic (spot-assessment of risk factors). However, several 
AF risk factors may show a high visit-to-visit or even day-to-day 
variability and lifestyle components, such as physical activity, diet and 
sleep behaviours, may be variable over time. Therefore, clinically 
relevant risk factors will be missed if the assessment is only performed 
once. Importantly, this variability does not just complicate the detection 
of AF risk factors but may also have a prognostic implication. High visit-
to-visit variability in risk factors is associated with increased risk of 
incident new-onset AF, worse cardiovascular outcome and increased 
mortality.86 Additionally, lifestyle components are often self-reported or 

assessed once by questionnaires. Lifestyle, though, may vary (such as 
seasonal variation), again resulting in a dynamic exposure to lifestyle-
related conditions which may critically impact the timepoint and extent 
of incident AF episodes (Figure 4). 

Risk factor assessment, therefore, requires a longitudinal and remote 
structured monitoring infrastructure. Additionally, longitudinal 
documentation of risk factors during a modification programme may allow 
monitoring of the response to the intervention and adaptation and 
guidance, as required, to optimise the results. Recent technological 
advances have considerably expanded the options for non-invasive, 
longitudinal assessment of AF and potential underlying risk factors. 
Implantable loop recorders and a variety of wearables enable longitudinal 
or (near) continuous AF monitoring, making it possible to directly link 
specific clinical conditions to the occurrence of AF. Furthermore, 
longitudinal risk factor monitoring is becoming increasingly feasible. For 
example, some pacemakers can perform continuous monitoring of sleep 
disordered breathing, and implantable pulmonary arterial pressure 
monitors provide haemodynamic information that is used in remote 
monitoring of HF patients.74,87 Finally, some blood-based biomarkers have 
been associated with AF.37 Repeated biomarker collection could 
potentially provide information about progressive atrial remodelling, 
although at present there are no biomarkers that specifically reflect 
individual AF mechanisms.

mHealth apps and smart technologies, such as activity trackers, Bluetooth-
linked balances, blood pressure devices and apps to assess diet, may 
allow a widespread and affordable infrastructure for longitudinal risk 
factor identification and monitoring (Figure 4).88 Several mHealth 

Figure 4: mHealth Technology Infrastructure and Assessment of Lifestyle Components
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mHealth technologies could provide a promising infrastructure for a more objective and longitudinal assessment of lifestyle components.
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applications are available for the management of AF.89 In addition to the 
assessment of risk factors, mHealth infrastructures and apps can also be 
helpful in applying dedicated in-app coaching to improve lifestyle and 
control risk factors by behavioural changes.90–93

Obstacles to Clinical Translation 
Related to AF Risk Factors
Implementation of infrastructure for longitudinal assessment of variables 
such as risk factors, lifestyle components, or rate and rhythm information 
require adaptation of existing care coordination and clinical pathways.94 
An important element for embedding mHealth in clinical practice is the 
accessibility of the recordings by other healthcare professionals. For this, 
a connection with the patients’ electronic healthcare record is crucial. 
Additionally, many available devices and apps lack scientific validation 
and are written at excessively high reading-grade levels challenging users 
with limited health literacy. 

Although technologies for longitudinal monitoring of lifestyle components 
and AF risk factors are available and may represent an interesting tool in 
future research projects, legal considerations and missing reimbursement 
models are still blocking wide implementation in existing clinical pathways. 
A multidisciplinary effort by regulatory agencies, healthcare organisations 
and app sellers is required to improve relevance, scientific validity and 
readability of AF apps for AF patients. Additionally, discussions with 
insurance companies about reimbursement of mHealth infrastructures 
and with different stakeholders to agree on security and privacy 
regulations are initiated in different countries. 

Bridging the Translation Gap 
Successful translation to develop a mechanism-tailored classification of 
AF with the potential to improve treatment in subgroups of patients will 
require translational research approaches on various levels (Figure 5). 

Diagnostic translation involves development of clinical diagnostic tools 
allowing the identification of mechanisms of AF. Examples are 
biomarkers for fibrosis or non-invasive electrophysiological markers of 
the degree of electrophysiological changes in the atria. Additionally, 
several large ongoing studies are attempting to establish associations 
between the clinical profile of AF patients derived from deep 
phenotyping with leading AF mechanisms identified on the tissue level. 
This approach requires multidisciplinary teams studying genetic 
mechanisms, molecular pathways and electrophysiological 
characteristics on the tissue level in clinically well characterised patients 
(collaborative translation). Such approaches recently became feasible 
with advances in non-invasive or minimally invasive characterisation of 
AF patients (non-invasive electrophysiology, longitudinal risk factor 
assessment, AF-burden and patterns using mHealth technologies, 
wearables or implantable loop recorders) and the development of high 
throughput histological techniques and -omics approaches, such as 
RNA sequencing. 

The development of a new mechanism-tailored classification AF will be 
essentially an iterative process, where particular investigational steps 
informed by initial outcomes are repeated to refine the classification. The 
application of machine learning methods will result in more precise 
phenotypes for further clinical investigations. This will, in turn, lead to a 
more exact AF taxonomy. Both diagnostic and collaborative translation 
aim at the development of a mechanism-based subclassification of AF 
potentially allowing for better treatment of subclasses of AF patients. 
Supplementing these efforts with other current technological innovations, 
such as epigenetic sequencing, proteomics, metabolomics and 
microbiomics, will further the goal of developing mechanistic insights into 
AF pathology. The implementation of these methods, especially in 
conjunction with genomic and transcriptomic data, will further aid efforts 
to define molecular sub-types of AF aetiology and pathology. 

Figure 5: Translation from Experimental and Clinical Research to Mechanism-tailored AF Treatment
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Clinical Perspective
•	 The best way how to assess substrates, genetics and risk factors in patients with AF remains unclear.
•	 A successful translation of research focussing on atrial arrhythmogenic mechanisms has the potential to provide a mechanism-tailored 

classification and to support personalised treatment approaches in patients with AF.
•	 The clinical uptake and clinical implementation of new diagnostic techniques and treatment strategies require translational research 

approaches.
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