Young Investigator Award

Compound A, a Ginger Extract, Significantly Reduces Pressure Overload-induced Systolic Heart Failure in Mice

Yuto Kawase,¹ Kana Shimizu,^{1,2} Masafumi Funamoto,^{1,2} Yoichi Sunagawa,^{1,2,3} Yasufumi Katanasaka,^{1,2,3} Yusuke Miyazaki,^{1,2,3} Satoshi Shimizu,^{1,2} Koji Hasegawa^{1,2} and Tatuya Morimoto^{1,2,3}

University of Shizuoka, Shizuoka, Japan;
Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan;
Shizuoka General Hospital, Shizuoka, Japan

Citation: European Cardiology Review 2021;16:e57. DOI: https://doi.org/10.15420/ecr.2021.16.PO1

Open Access: This work is open access under the CC-BY-NC 4.0 License which allows users to copy, redistribute and make derivative works for non-commercial purposes, provided the original work is cited correctly.

Objectives: Cardiac remodelling is a compensatory mechanism associated with cardiomyocyte hypertrophy and cardiac fibrosis. This process eventually results in chronic heart failure. In this study, we screened a natural compound library for compounds that suppress both hypertrophic and fibrotic responses, and found compound A, a ginger extract. The purpose of this study is to investigate the effect of compound A on cardiomyocyte hypertrophy, cardiac fibrosis and the development of heart failure.

Materials and methods: First, primary cultured cardiomyocytes and cardiac fibroblasts were treated with 1 μ M compound A, then stimulated with phenylephrine or transforming growth factor- β (TGF- β), respectively. Immunofluorestaining and qPCR were performed on cardiomyocytes. Measurement of L-proline incorporation, qPCR and western blotting were carried out on cardiac fibroblasts. C57BL/6J mice were subjected to transverse aortic constriction (TAC) surgery, then given a daily oral

administration of 1 mg/kg compound A for 8 weeks. Echocardiographic analysis and measurement of heart weight to body weight (HW/BW) ratio were performed.

Results: In cultured cardiomyocytes, 1 μ M of compound A suppressed phenylephrine-induced increases in the surface area of cardiomyocytes and in the mRNA levels of ANF and BNP. In cultured cardiac fibroblasts, the compound also suppressed TGF- β -induced L-proline incorporation, and mRNA and protein levels of α -smooth muscle actin. In heart failure model mice, echocardiographic analysis showed that 1 mg/kg of compound A prevented a TAC-induced increase in posterior wall thickness and a decrease in systolic dysfunction. The compound also suppressed a TAC-induced increases in HW/BW ratio.

Conclusion: Compound A may be an effective agent for heart failure therapy. \Box