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Abstract: To accurately predict the amount of fuel needed by an aircraft for a given flight, a 
performance model must account for engine and airframe degradation. This paper presents a 
methodology to identify an aero-propulsive model to predict the fuel flow of an aircraft in cruise, while 
considering initial modeling uncertainties and performance variation over time due to degradation. 
Starting from performance data obtained from a Research Aircraft Flight Simulator, an initial aero-
propulsive model was identified using different estimation methods. The estimation methods studied in 
this paper were polynomial interpolation, thin-plate splines, and neural networks. The aero-propulsive 
model was then structured using two lookup tables: one lookup table reflecting the aerodynamic 
performance, and another table reflecting the propulsive performance. Subsequently, an adaptative 
technique was developed to locally and then globally, adapt the lookup tables defining the aero-
propulsive model using flight data. The methodology was applied to the Cessna Citation X business jet 
aircraft, for which a highly qualified level D research aircraft flight simulator was available. The results 
demonstrated that by using the proposed aero-propulsive performance model, it was possible to predict 
the aerodynamic performance with an average relative error of 0.99%, and the propulsive performance 
with an average relative error of 3.38%. These results were obtained using the neural network 
estimation method. 

Key Words: Aero-Propulsive Performance, Neural Network, Adaptative Lookup Tables, Fuel Economy 

1. INTRODUCTION 
The aviation industry is again experiencing a surge in air traffic following the COVID-19 
pandemic crisis during the last two years. In a report published by the ICAO in October 2021, 
it was shown that the capacity in the number of seats worldwide was 40% lower in 2021 
compared to 2019, and 50% lower in 2020 compared to 2019 [1]. This data reopens the 
discussion on a subject that is of concern to the population during several years: the climate 
impact of the aviation industry. An ICAO report shows that a significant development in air 
traffic is expected over the next few decades. Indeed, the increase in world trade, the 
importance of the tourism sector and the increase in population lead researchers to believe that 
there will be 3.3 times more flights in 2045 compared to 2015 [2]. Since the publication of the 
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report of the Intergovernmental Panel on Climate Change (IPCC) in 1999, the harmful effects 
of various chemicals have been identified: 𝐶𝐶𝑂𝑂2 input into the atmosphere causing global 
warming, while 𝑁𝑁𝑂𝑂𝑥𝑥 and 𝑆𝑆𝑂𝑂𝑥𝑥 emissions weakening the ozone. The ATAG estimated that in 
2019, 915 million tons of 𝐶𝐶𝑂𝑂2 were released into the atmosphere due to aviation, which 
represented 2% of the total production of this greenhouse gas worldwide [3]. This is more than 
the worst-case scenario predicted in the IPCC report in 1999, which predicted 500 to 600 
million tons per year during the same period [4]. Several strategies are currently being explored 
to address this problem, such as the use of sustainable fuels, the development of hydrogen 
engines, and the improvement of existing fuel-saving technologies. 

Aircraft trajectory optimization is another promising solution for reducing aircraft fuel 
consumption and its associated emissions. Indeed, studies conducted by Dancila and Botez [5-
7] and by Murrieta et al. [8], have shown that significant fuel savings can be achieved by 
optimizing the flight trajectory of an aircraft during the cruise phase. Since emissions are 
related to the amount of fuel burned by aircraft engines [9], a reduction in fuel consumption 
necessarily leads to a reduction in emissions. Nevertheless, it is important to specify that the 
quality of the results of the optimization process depends mainly on the quality of the 
mathematical model used to predict the trajectory of the aircraft. It is therefore crucial to have 
a reliable mathematical model that reflects the performance of the aircraft with a high degree 
of accuracy, otherwise the optimization results could be compromised. 

Many studies have been conducted at the LARCASE laboratory to model the propulsive 
performance of an aircraft. For example, Rodriguez and Botez [10] and Ghazi and Botez [11] 
presented different techniques for developing a model to predict engine thrust and fuel flow. 
Dancila and Botez [12] proposed a new algorithm to predict engine thrust and fuel burn by 
considering the aircraft’s center of gravity position in cruise. Hamel et al. [13] developed a 
method for identifying the flight dynamics of an aircraft using identification techniques, while 
Ghazi et al. [14] proposed a new methodology for identifying an aircraft performance model 
for Flight Management System (FMS) applications. 

Although the results obtained in these studies were very good, none of them considered 
the aging (degradation) of the aircraft components over time. Indeed, it was estimated that an 
aircraft can increase its fuel consumption by approximately 2% every 5 years [15]. This 
statistic becomes less and less certain over time, which means that aircraft crews tend to 
overestimate the amount of fuel required for each flight, following the lack of an accurate 
picture of the current performance of the aircraft. This overvaluation causes significant 
economic losses for airlines, which assign about a quarter of their annual budget for fuel 
expenses. This overvaluation also has environmental issues since an increased use of fuel is 
synonymous with an increase in greenhouse gases in the atmosphere. 

In this paper, we propose a new model representing the aerodynamic and propulsive 
performance of an aircraft. The study is a continuation of a previous work conducted by Ghazi 
et al. [16], in which only the aerodynamic model was adapted to account for initial modeling 
uncertainties and aircraft degradation. In this study, we propose to extend the work of Ghazi 
et al. [16] by considering the possibility of adapting the aerodynamic and propulsive model. 
This aspect allows to better monitor the global performance of the aircraft, thus enabling to 
detect whether the degradation comes from the airframe (i.e., aerodynamic) or the engine (i.e., 
propulsive). This new methodology was applied to the well-known Cessna Citation X business 
jet, for which a Research Aircraft Flight Simulator (RAFS) was available. The RAFS was 
designed and manufactured by CAE Inc. and has the lightest level-D qualification for its flight 
dynamics and propulsion models. Figure 1 shows a picture of the RAFS, while Table 1 lists 
several specifications of the Cessna Citation X. 
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The remainder of this paper is as follows: Section 2 explains the development of the initial 
aerodynamic and propulsive performance models, Section 3 details how the algorithm uses 
flight data to locally adapt the performance models, Section 4 gives with the global adaptation 
of the performance models. Finally, the paper ends with a conclusion and remarks. 

2. INITIAL PERFORMANCE MODEL 
The first step in the methodology was to create an initial performance model for predicting the 
aero-propulsive parameters of the Cessna Citation X. 

The strategy consisted in designing the performance model, and in dividing it into two 
separate and independent sub-models, including: one sub-model reflecting the aerodynamic 
performance of the aircraft, and another sub-model reflecting the propulsive characteristics. In 
addition, it was decided to create the two sub-models using adaptive lookup tables. Indeed, as 
the linearity of the aerodynamic and propulsive performances is not guaranteed, lookup tables 
are a good approach to represent the data without having a mathematical equation. Another 
advantage of lookup tables is the computational time required to obtain an output. Their 
disadvantage, on the other hand, is the storage space and memory that they might require. 

However, in this paper, both performance models consider only two input variables. 
Therefore, the two lookup tables have relatively simple two-dimensional structures, and do 
not require much memory for data storage. The aerodynamic model is based on the simplified 
free-body diagram of an aircraft in cruise as shown on Fig. 2. 

 
Figure 2: Forces acting on an aircraft in cruise phase 

 
Figure 1: Cessna Citation X Research Aircraft Flight 

Simulator (RAFS) 

Table 1: Main dimensions and specifications of 
the Cessna Citation X 

Aircraft caracteristics Value 
Height 5.85 m 
Width 21.1 m 
Length 22.43 m 
Wing area 48.9 m2 
Wing sweep 37 degrees 
Maximum weight at take-
off 

16602 kg 

Maximum altitude 15545 m 
Maximum Speed  Mach 0.935 
Engine type (2) Rolls-Royce 

AE3007C2 
Maximum takeoff thrust 30.09 kN 
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By assuming that in cruise the angle of attack (𝛼𝛼), as well as the engine inclination angle 
(𝜙𝜙𝑇𝑇), are very small, it can be considered that the drag (𝐷𝐷) is equal to the thrust (𝐹𝐹𝑁𝑁). This 
simplification allows to postulate the main relationship that drives the aerodynamic 
performance model, namely: 

𝐷𝐷 = 𝐹𝐹𝑁𝑁 (1) 

Another important relationship is the one between the drag and the lift. Figure 3 shows 
the typical variation of the drag coefficient as a function of the lift coefficient and Mach 
number [17]. Mathematically, the following relationship can be therefore written: 

𝐶𝐶𝐷𝐷𝑠𝑠 = 𝑓𝑓1(𝐶𝐶𝐿𝐿𝑠𝑠,𝑀𝑀) (2) 

where 𝐶𝐶𝐷𝐷𝑠𝑠 is the drag coefficient, 𝐶𝐶𝐿𝐿𝑠𝑠 is the lift coefficient, 𝑀𝑀 is the Mach number, and 𝑓𝑓 is 
an unknown function to be determined from available flight data. 

The third relationship to consider is the one between the thrust and the fan speed (𝑁𝑁1). For 
this purpose, Figure 4 shows the typical variation of the corrected thrust as function of the 
corrected fan speed and Mach number [17]. Based on the data shown in this figure, and the 
work done by Ghazi and Botez in [18], the following mathematical relationship can be defined: 

𝐹𝐹𝑁𝑁
𝛿𝛿

= 𝑓𝑓2 �
𝑁𝑁1
√𝜃𝜃

,𝑀𝑀� (3) 

where 𝑁𝑁1 is the engine fan speed, 𝛿𝛿 and 𝜃𝜃 are the pressure and temperature ratios, respectively. 
By combining the three relationships in Eqs. (1) to (3), the following relationships can be 

obtained: 
𝑁𝑁1
√𝜃𝜃

= 𝑓𝑓3(𝐶𝐶𝐿𝐿𝑠𝑠,𝑀𝑀) (4) 

where the lift coefficient 𝐶𝐶𝐿𝐿𝑠𝑠 can be estimated as follows: 

𝐶𝐶𝐿𝐿𝑠𝑠 =
𝑊𝑊

0.5𝜌𝜌𝑆𝑆𝑉𝑉𝑇𝑇2
 (5) 

where 𝑊𝑊 is the aircraft weight, 𝜌𝜌 is the air density, 𝑆𝑆 is the aircraft wing area, and 𝑉𝑉𝑇𝑇 is the 
aircraft true airspeed. 
 

  
Figure 3: Illustration of the dependency between the 

drag coefficient and the lift coefficient 
Figure 4: Illustration of the dependency between 

the thrust and the fan speed of an engine 

It should be noted that Eq. (4) involves the fan speed 𝑁𝑁1, which is actually an engine 
parameter. However, since the main assumption is that the drag is equal to the thrust, it can be 
therefore considered that the fan speed 𝑁𝑁1 can be a good estimator of the amount of drag 
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needed to balance the aircraft in cruise. To complete the aero-propulsive model, it is necessary 
to add another relationship to describe the performance of the engine. In general, for the cruise 
phase, the engine performance of interest is primarily the fuel flow. According to  ESDU [19] 
and to Ghazi and Botez [18], the fuel flow of a turbofan engine can be approximated in 
corrected form using the following relationship: 

𝑊𝑊𝐹𝐹

𝛿𝛿√𝜃𝜃
= 𝑓𝑓4 �

𝑁𝑁1
√𝜃𝜃

,𝑀𝑀� (6) 

where 𝑊𝑊𝐹𝐹 is the engine fuel flow, and 𝑊𝑊𝐹𝐹/𝛿𝛿√𝜃𝜃 is the corrected engine fuel flow. 
Finally, the aero-propulsive performance model explained in the rest of this paper can be 

summarized by the two following equations:  

  
𝑁𝑁1
√𝜃𝜃

= 𝑓𝑓(𝐶𝐶𝐿𝐿𝑠𝑠,𝑀𝑀)    ← Aerodynamic Performance (7a) 

𝑊𝑊𝐹𝐹

𝛿𝛿√𝜃𝜃
= 𝑓𝑓 �

𝑁𝑁1
√𝜃𝜃

,𝑀𝑀�  ← Propulsive Performance      (7b) 

Once the core equations describing the aircraft aero-propulsive model were defined, the 
next step was to identify the mathematical functions defining the model, and then to restructure 
these functions into a lookup table. 

The data chosen to identify the functions in Eqs. (7a) and (7b) and then create the aero-
propulsive lookup tables was obtained from the Cessna Citation X Flight Crew Operating 
Manual (FCOM). The FCOM is one of the aircraft flight manuals, and contains data describing 
the fuel flow required to operate the aircraft in cruise for a wide range of flight conditions, and 
by assuming zero degradation. Thus, using the data published in FCOM, and combining them 
with the equations (7a) and (7b), the two data sets shown in Fig. 5 were obtained. Figure 5(a) 
shows the variation of the corrected fan speed as a function of the lift coefficient and the Mach 
number, while Fig. 5(b) shows the variation of the corrected fuel flow as a function of the 
corrected fan speed and the Mach number. 

  
a) Corrected fan speed as function of lift coefficient 

and Mach number 
b) Corrected engine fuel flow as function of corrected 

fan speed and Mach number 

Figure 5: FCOM flight data for aerodynamic and propulsive models 

Three methods were tested and compared to interpolate the data presented in Fig. 5(a) and 
5(b), and thus obtain the initial performance model. These methods were: (1) polynomial 
interpolation, (2) thin-plate spline, and (3) neural networks. 
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Based on a statistical comparison, the polynomial equation used to create the two lookup 
tables was of order 2 for each input variable. 

It should be noted that attempts to fit the FCOM data with high polynomial orders led to 
better results, but the obtained surfaces were irregular (i.e., not smooth), which was a sign of 
overfitting. 

For the neural network interpolation, the following parameters were used to train the 
network: 

• A total of 926 sets of data were used to train both neural networks (one for the 
aerodynamic model, and one for the propulsive model). In addition, 70% of this is 
considered for the training, and 30% for the test. 

• The activation function used for both neural networks was the sigmoid function. 
• Each neural network consisted of a single hidden layer. This choice was made based 

on the principle that a neural network with a single hidden layer was enough to model 
all continuous functions on a specific domain, as long as this hidden layer had enough 
nodes (i.e., neurons) [20].  

• The optimal number of nodes on the hidden layer was found by increasing the number 
of nodes from 1 to 15, and by computing the resulting relative error, as shown in 
Figure 6. As can be seen on this figure, the bests results were obtained for 4 nodes for 
the aerodynamic model, and for 8 nodes for the propulsive model.  

 

 
Figure 6: Evolution of average relative error for the initial performance models  

depending on the number of nodes in the hidden layer 

Table 2 presents the mean relative error obtained by comparing the reference data 
published in the FCOM with that calculated from the lookup tables created for the initial aero-
propulsive model using the three interpolation methods. 

It should be noted that in the combined model is not an aerodynamic and propulsive model 
combination. 

The 𝑁𝑁1/√𝜃𝜃 value for the propulsive model is coming from the aerodynamic lookup table, 
instead of coming from the data published in the FCOM. 
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Table 2: Comparison between average relative error obtained through three  
estimation methods to create the initial lookup tables 

Method Performance Model Mean Relative Error 

Polynomial interpolation 
Aerodynamic 0.99% 

Propulsive 2.01% 
Combined 4.30% 

Thin-plate spline 
Aerodynamic 0.34% 

Propulsive 1.26% 
Combined 1.40% 

Neural Network 
Aerodynamic 0.36% 

Propulsive 1.30% 
Combined 1.50% 

 

From these results, we can conclude that the combined performance model is highly 
impacted by the aerodynamic and the propulsive model. Since the combined model, which is 
a propulsive performance lookup table, uses data provided by the aerodynamic lookup table 
and by the propulsive model (except for 𝑁𝑁1/√𝜃𝜃 ), it is normal that its mean relative error will 
be much higher than that of the two models on which it is based on. Also, the neural network 
and the thin-plate spline are the estimation methods that gave the closest results to the FCOM 
data. With a very low mean relative error for the aerodynamic model and propulsive one, the 
resulted combined model mean relative error can be as low as 1.40% and 1.50%, compared to 
the 4.3% generated with the polynomial interpolation.  

Finally, two additional lookup tables were created to keep track of each node, and of the 
number of times a node was modified. These lookup tables reflect a confidence coefficient 𝜆𝜆, 
which is set as an initial value of 1 (𝜆𝜆𝑥𝑥,𝑦𝑦 = 1,∀{𝑥𝑥,𝑦𝑦}). The value of the confidence coefficient 
is updated with every iteration of an adaptation of a node. 

3. LOCAL ADAPTATION OF LOOKUP TABLES 
Once the initial lookup tables were created, the next step was to develop an algorithm to adapt 
them “locally” by using flight test data. 

The data used to develop this algorithm was generated from the RAFS available at the 
LARCASE laboratory. For this purpose, several cruise tests were performed with the RAFS, 
and a total of 10,113 data sets were collected for a wide range of operating conditions to cover 
as much as possible the aircraft's flight envelope. The data was then filtered and averaged to 
obtain the cruise performance of the aircraft, using the method described by  Ghazi, et al. [16]. 
Finally, the lookup tables can be locally adapted, as illustrated in Figure 7, and using the 
procedure described in the following paragraph. 

Before starting the adaptation process, it is necessary to determine which lookup table 
needs to be adapted. Indeed, always adapting the aerodynamic and propulsive lookup table is 
not necessarily the best strategy to maintain the accuracy of the entire model. In this paper, a 
logic based on 6 situations is proposed to determine the accuracy of each lookup table, and 
then to identify which one should be adapted: 

• Situation 1: Adapting only the aerodynamic performance model; 
• Situation 2: Adapting only the propulsive performance model; 
• Situation 3: Adapting both performance models at any time; 
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• Situation 4: Adapting the model with the largest relative error; 
• Situation 5: Adapting the lookup tables only when a relative error is higher than 1% 

(for aerodynamic model) and 2% (for propulsive model) is detected. These limits were 
set based on the initial performance models mean relative errors compared to the 
FCOM data; 

• Situation 6: Adapting the lookup tables based on the Specific Range Method (SRM). 
This method is based on a study made by Airbus, describing a performance monitoring 
technique using the Specific Range parameters [21]: 

𝑆𝑆𝑆𝑆 =
𝑎𝑎0 �𝑀𝑀

𝐿𝐿
𝐷𝐷�

�𝑆𝑆𝐹𝐹𝐶𝐶
√𝜃𝜃

�𝑚𝑚𝑚𝑚
=

𝑉𝑉𝑇𝑇 �
𝐿𝐿
𝐷𝐷�

�𝑆𝑆𝐹𝐹𝐶𝐶
√𝜃𝜃

�𝑚𝑚𝑚𝑚
=
𝑉𝑉𝑇𝑇
𝑊𝑊𝑓𝑓

 (8) 

where 𝑆𝑆𝑆𝑆 is the specific range, 𝑎𝑎0 is the speed of sound at sea level, 𝑆𝑆𝐹𝐹𝐶𝐶 is the specific fuel 
consumption, and 𝑚𝑚 is the aircraft’s mass. 

This equation is interesting because it combines both aerodynamic (𝑀𝑀𝐿𝐿/𝐷𝐷) and 
propulsive �𝑆𝑆𝐹𝐹𝐶𝐶/√𝜃𝜃� parameters. The SR can also be written as follows: (𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑇𝑇/𝑊𝑊𝐹𝐹). As 
the True Airspeed (𝑉𝑉𝑇𝑇)remains constant in cruise, it is possible to correlate the aircraft 
performance (𝑆𝑆𝑆𝑆) with the fuel flow (𝑊𝑊𝑓𝑓). 
 

 
Figure 7: Example of local adaptation for the aerodynamic lookup table 

In addition, the aircraft fuel flow for a given flight condition can be determined in three ways: 
• Through flight test data (i.e., measured); 
• Through the propulsive lookup table by using interpolation with the measured 𝑁𝑁1 (i.e., 

calculated); 
• By using the interpolated 𝑁𝑁1 from the aerodynamic performance model as an input to 

the propulsive lookup table (i.e., theorical). 
By comparing the three different fuel flow values (i.e., measured, calculated, and 

theorical), it is possible to conclude where the deterioration is coming from, based on the 
following procedure: 

1. Discrepancy between the measured and calculated fuel flows means a deterioration of 
the engines (i.e., propulsive model) & propulsive model should be adapted; 

2. Discrepancy between the calculated and theorical fuels flows means a deterioration 
of the airframe (i.e., aerodynamic model) and aerodynamic model should be adapted; 

3. Discrepancy between the theorical and measured fuels flows means a possible global 
deterioration of the aircraft, and both performance models should be adapted. 
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These situations determine which performance model will be locally adapted for every 
iteration of the following algorithm. The mathematical algorithm developed to locally adapt 
the lookup table is shown in Algorithm 1. 

Algorithm 1: Local adaptation method 

1. Extract a flight point {𝑥𝑥,𝑦𝑦, 𝑧𝑧} from the RAFS (where {𝑥𝑥,𝑦𝑦, 𝑧𝑧} = {𝑁𝑁1/√𝜃𝜃,𝑀𝑀,𝐶𝐶𝐿𝐿𝑠𝑠} for 
the aerodynamic model, and {𝑥𝑥, 𝑦𝑦, 𝑧𝑧} = {𝑁𝑁1/√𝜃𝜃,𝑀𝑀,𝑊𝑊𝐹𝐹/𝛿𝛿√𝜃𝜃} for the propulsive 
model design. 

2. Perform a bilinear interpolation to find the lookup table value for the function 𝑓𝑓 at the 
point {𝑥𝑥,𝑦𝑦}. The bilinear interpolation is defined as follows: 

𝑓𝑓(𝑥𝑥,𝑦𝑦) =
1

(𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦1)
[𝑥𝑥2 − 𝑥𝑥 𝑥𝑥 − 𝑥𝑥1] �

𝑓𝑓(𝑥𝑥1,𝑦𝑦1) 𝑓𝑓(𝑥𝑥1,𝑦𝑦2)
𝑓𝑓(𝑥𝑥2,𝑦𝑦1) 𝑓𝑓(𝑥𝑥2,𝑦𝑦2)� (9) 

where the 𝑥𝑥1 and 𝑥𝑥2 are the breakpoints on the 𝑥𝑥 −axis that surround the input flight data, 𝑦𝑦1 
and 𝑦𝑦2 values are the breakpoints on the 𝑦𝑦-axis that surround the input flight test data, and 
𝑓𝑓(𝑥𝑥{1,2},𝑦𝑦{1,2}) are the values of the lookup table for the four nodes surrounding the input flight 
test data. 

3. Compute the Euclidian distance between the flight test data and the node breakpoints 
with the following formula: 

𝑑𝑑[𝑖𝑖,𝑗𝑗] = �(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + �𝑦𝑦 − 𝑦𝑦𝑗𝑗�
2 (10) 

where 𝑖𝑖 = {1,2} and 𝑗𝑗 = {1,2}. 
4. Normalize the Euclidian distance by dividing the diagonal of the quadrilateral created 

by the 4 nodes (𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗) around the flight test data (𝑥𝑥,𝑦𝑦), as follows: 

𝛿𝛿[𝑖𝑖,𝑗𝑗] =
𝑑𝑑[𝑖𝑖,𝑗𝑗]

� (𝑥𝑥2 − 𝑥𝑥1) 2 + (𝑦𝑦2 − 𝑦𝑦1)2
 (11) 

5. Compute the new node value 𝑧𝑧+ based on the flight test data 𝑧𝑧, and the on current 
node value 𝑧𝑧−, using the following rule: 

𝑧𝑧+  = 𝑘𝑘𝑐𝑐𝑧𝑧− + 𝑘𝑘𝑎𝑎𝑧𝑧 (12) 
where 𝑘𝑘𝑐𝑐 and 𝑘𝑘𝑎𝑎 are the conservative and adaptive gain, respectively. These two gains are 
calculated using the following relationships: 

𝑘𝑘𝑐𝑐 = �
𝛿𝛿𝑖𝑖,𝑗𝑗 − 𝛿𝛿𝑖𝑖,𝑗𝑗

𝜆𝜆𝑖𝑖,𝑗𝑗

1 − 𝛿𝛿𝑖𝑖,𝑗𝑗
𝜆𝜆𝑖𝑖,𝑗𝑗

�      and    𝑘𝑘𝑎𝑎 = �
1 − 𝛿𝛿𝑖𝑖,𝑗𝑗
1− 𝛿𝛿𝑖𝑖,𝑗𝑗

𝜆𝜆𝑖𝑖,𝑗𝑗
� (13) 

These gains represent the proportion of the old value that is kept (conservative) and the 
proportion of the new value that is considered (adaptative gain). The sum of 𝑘𝑘𝑐𝑐 and 𝑘𝑘𝑎𝑎 is 
always equal to 1. 

6. Finally, the confidence coefficient is updated with this equation: 𝜆𝜆𝑖𝑖,𝑗𝑗+ = 𝜆𝜆𝑖𝑖,𝑗𝑗− +
�1 − 𝛿𝛿𝑖𝑖,𝑗𝑗�. 

With the procedure describe in Algorithm 1, the closer a flight test data is to a node 
coordinates, the greater the adaptative gain and the closer the new node value will be to the 
flight test data. This algorithm is repeated each time a new data set is obtained from the RAFS. 
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4. GLOBAL ADAPTATION OF LOOKUP TABLES 
In the previous section, a method for locally fitting the lookup tables defining the aero-
propulsive model was presented. This method fits the models by locally deforming the surface 
corresponding to each lookup table. Although very effective, this method unfortunately 
introduces irregularities that result in a non-smooth surface (as shown in Figure 7). Thus, to 
correct the result, a global 
adaptation is necessary. 
Basically, the global adaptation 
method uses nodes that have 
already been locally adapted to 
adjust the general trend of the rest of 
the lookup table. The number of 
locally adapted nodes relative to the 
total number of nodes must be 
greater than 10% for the global 
adaptation process to be completed. 
Below this threshold, there is not 
enough collected data to generalize 
the adaptation to the entire lookup 
table data. In the same way as for the 
design of the initial model, in 
Section 2, three estimation methods were used to perform the global adaptation: (1) 
polynomial interpolation, (2) thin-plate spline, and (3) neural networks. For the polynomial 
interpolation, weights can be attributed to every node that has been locally adapted. These 
weights are the values of the confidence coefficients (𝜆𝜆) associated to each node. When 𝜆𝜆 =
1, for which a node has not been adapted, this node has less impact in the overall adaptation 
process than a node that has already been adapted (𝜆𝜆 > 1). In the neural network method, the 
weights are introduced as input values to the training process, along with the input values, as 
shown in Figure 8. The neural network parameters are the same as those used to develop the 
initial performance model in Section 2. The lookup tables produced by all three estimation 
methods have close values. Figure 9 illustrates an example of lookup tables obtained by the 
neural network estimation method. Figure 9(a) shows the aerodynamic model, and Figure 9(b) 
presents the propulsive model. 

  
a) Aerodynamic model b) Propulsive model 

Figure 9 : Adapted lookup tables through the neural network estimation method 

Figure 8: Neural network architectures for the global adaptation of 
the aerodynamic and propulsive lookup tables 
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Table 3 gives the mean relative error for each adaptation situation considered in the 
polynomial interpolation method. For the other estimation methods, the results are considered 
fairly similar. In addition, the polynomial interpolation method has the lowest computing time 
among all three methods. 

Table 3: Mean relative error for the aero-propulsive performance models after  
doing a global adaptation using polynomial interpolation 

 Mean Relative Error [%] Computing Time [s] 

Situation Aerodynamic  
Model 

Propulsive  
Model 

Aero-Propulsive  
Combined Model 

 

Initial model 12.11 10.00 32.18 N/A 
Situation 1 1.13 10.00 12.35 101.27 
Situation 2 12.11 4.74 33.37 123.01 
Situation 3 0.99 4.11 6.66 52.44 
Situation 4 0.99 4.02 5.32 77.84 
Situation 5 0.99 3.99 6.56 48.31 
Situation 6 0.99 4.11 6.65 50.84 

 

As shown in Table 3, the adaptation situations giving the best results are the situations 4 
and 5, i.e., the adaptation of the lookup table with the largest mean relative error and the 
adaptation of the lookup tables with a relative error greater than 1% (for the aerodynamic 
model) or 2% (for the propulsive model). 

5. VALIDATION AND RESULTS 
This section presents several analyses and comparisons for the validation of the proposed 
methodology to adapt locally and globally the two lookup tables defining the aero-propulsive 
model. 

5.1 Validation of the Methodology 

The validation of the methodology was done using datasets obtained from the Cessna Citation 
X RAFS in cruise flight. The conditions are the same as the ones for the datasets used in the 
adaptation algorithm. The input data used for the validation is shown in Fig. 10. Thus, each 
input data collected from the RAFS was fed into Algorithm 1 to adapt the two lookup tables 
defining the performance model. This adaptation process led to the two new lookup tables 
shown in Fig. 9. 

  
Figure 10: Input data for aerodynamic and propulsive models used for validation of algorithm 
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The criteria used to compare the estimation methods for all 3 situations, as well as to 
validate the whole adaptation algorithm was the mean relative error. 

Figure 11 presents this information for every performance model for situation 3 to 6. 
Using the neural network method, the best results were expressed in terms of the mean relative 
error which in the situation 5 is the lowest. In addition, the obtained surfaces are smoother 
using this method than thin-plate splines and polynomial interpolation. 
 

 
Figure 11: Mean relative error using neural networks for situations 3 through 6 and their percentage of 

improvement compared to the initial performance models 

5.2 Influence of the Initial Model Uncertainties 

The second analysis consisted in verifying the efficiency of the adaptation algorithm according 
to the accuracy of the initial model. The objective was to validate that the adaptation algorithm 
can produce results close to the actual aircraft performance regardless of the initial discrepancy 
between the initial lookup tables and the flight test data. For this purpose, constant values were 
added to the initial lookup tables to bias them. Thus, different bias values ranging from 0 to 
10% RPM in 2% RPM steps were simulated for the aerodynamic model, and between 0 lb/h 
and 1000 lb/h with a 200 lb/h steps for the propulsive model. 
 

 
Figure 12: Mean relative error with different initial bias on initial  

performance models (using polynomial interpolation) 

Figure 12 shows the impact of adding an initial bias on the mean relative error for the 
aero-propulsive combined model with the polynomial interpolation estimation method. 

The mean error for the initial lookup table increases linearly with the value of the added 
bias. This was expected, as increasing the value of the bias means shifting the values of the 

Initial FCOM
% % %

% improv.
%

% improv.
%

% improv.
%

% improv.
Average relative error 
(aerodynamic model)

11.11 0.36 1.01 90.94 1.07 90.36 0.99 91.05 1.01 90.94
Average relative error 
(propulsive model) 11.26 1.30 3.75 66.68 4.01 64.39 3.38 69.95 3.75 66.68
Average relative error ( 
combined model) 36.61 1.50 6.25 82.92 6.05 83.48 6.25 82.93 6.25 82.92

Situation 3 Situation 4 Situation 5 Situation 6
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lookup table upward. A similar observation can be made for situations 1 and 2, which can be 
explained by the fact that for these two situations, one of the two lookup tables is never 
adapted. However, it is interesting to mention that the average error increases much more in 
situation 2 than in situation 1. This aspect highlights the fact that the model is more sensitive 
to uncertainties on its propulsive part than on its aerodynamic part. 

For the other situations, the mean relative error remains constant regardless of the bias’s 
values introduced on the initial model. This result proves that the adaptation algorithm was 
able to correct the uncertainties of the initial model despite biases up to 10%RPM and 1000 
lb/hr. This result was expected, and it was the same obtained using all three estimation methods 
and for all models (i.e., aerodynamic, propulsive, and combined). 

Influence of the Number of Nodes for Local Adaptation 

The third analysis that may be interesting to perform concerns the size of the area (i.e., the 
number of nodes) that is modified during the local adaptation process. Indeed, as explained in 
Section 3, the local adaptation process typically consists in modifying the four nodes of a 
lookup table that surrounds a flight condition. As a result, the area of the lookup table that is 
modified is delimited by four nodes. It may therefore be interesting to examine how the 
number of nodes (i.e., the size of the area) may affect the adaptation process. Thus, for this 
analysis, results obtained for three number of nodes were compared: 4 nodes, 16 nodes and 36 
nodes. 

Figure 13 presents a comparison between the mean relative error for an area of adaptation 
of 4, 16 and 36 nodes. It should be noted that this comparison was done for all three estimation 
methods, however, for the sake of clarity, only the results for the thin plate are presented in 
this figure. The same results were obtained for the other two estimation methods. 

 
Figure 13: Average relative error depending on area of adaptation after global adaptation using polynomial 

interpolation 

In Figure 13, the larger the adaptation area, the higher is the mean relative error. This 
result can be explained by the fact that increasing the area to be adapted allows more nodes to 
be impacted in the lookup table. 

However, this adaptation adds a penalty, which results in less changes of the lookup table 
values at the adapted nodes. 

Therefore, even if the table is modified, the modification is not sufficient to allow a more 
accurate result. 

Based on this analysis, it can be concluded that the area of adaptation should correspond 
to 4 nodes. 
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5.3 Influence of the Number of Breakpoints 

Finally, the last analysis consisted in evaluating the influence of the number of breakpoints. 
Indeed, the number of breakpoints is an important parameter because it defines the size of a 
lookup table grid. In general, it is important to have a grid that is fine enough to have a good 
fit that will correspond to the actual flight data, but also coarse enough to have a low 
computation time. For this purpose, the number of breakpoints was varied in this study from 
30 to 80 for every adaptation situation and every estimation method. An example, of results 
for the propulsive model using thin-plate spline is given in Figure 14. 
 

 
Figure 14: Mean relative error depending on number of breakpoints on an axis after a global adaptation using 

thin-plate spline 

As expected, the more breakpoints there are, the finer is the grid and the relative error 
generally decreases more. At each step of 10, the average relative error decreases by about 1% 
on average. This aspect means that the size of the grid is an important factor influencing the 
algorithm results. Since the number of nodes increases with the number of breakpoints, but the 
number of flight data sets is the same, less information is used in the local adaptation process 
per node. Therefore, every set of flight data has a higher impact on an adaptation iteration. 
This impact is directly linked to the confidence coefficient, which increases with a local 
adaptation iteration, which allows the next iteration to have smaller impact on the result. 

6. CONCLUSIONS 
We present in this research an algorithm making the aerodynamic and propulsive performance 
prediction of a Cessna Citation X aircraft. Indeed, following this performance degradation 
over time, it becomes difficult to predict the quantity of fuel necessary in flight. This 
degradation model concluded through this research needs three stages to obtain its final 
performance prediction engine model. 

This research presents a new approach to performance monitoring and prediction by 
targeting the causes of performance deterioration. Indeed, by use of two different models for 
the aerodynamic and propulsive performances, we are able not only to tell that the fuel 
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consumption is increasing, but also to point to the culprit, which is done through three different 
estimation methods: polynomial interpolation, thin-plate spline and neural networks. The best 
results were obtained using the neural network method, with a mean relative error of 0.99% 
for the aerodynamic model, 3.38% for the propulsive model and 6.25% for the combined 
model. The data used to obtain these results are provided by a Cessna Citation X flight 
simulator. 

For future work, it would be interesting to explore methods for estimating lookup tables, 
more specifically during the ‘’global adaptation process’’. Indeed, the first data having the 
most impact on the local adaptation of a node were also given as the inputs to the algorithm 
(refer to Section 2 for the mathematical algorithm). The data with the highest influence on the 
results should always be the last data to enter the algorithm since it is the most representative 
of the current performance of the aircraft. 
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