# Calculation of steering system parameters of a military training aircraft

Bogdan Adrian NICOLIN\*,1, Ilie NICOLIN1

\*Corresponding author <sup>1</sup>INCAS – National Institute for Aerospace Research "Elie Carafoli", B-dul Iuliu Maniu 220, Bucharest 061126, Romania, nicolin.adrian@incas.ro\*, nicolin.ilie@incas.ro

DOI: 10.13111/2066-8201.2022.14.4.18

*Received: 21 September 2022/ Accepted: 24 October 2022/ Published: December 2022* Copyright © 2022. Published by INCAS. This is an "open access" article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

**Abstract:** The mechanical-hydraulic steering system of a military training aircraft is a technical problem for specialized engineers and it must be investigated and solved in a scientific manner using theoretical knowledge, calculus programs such as Mathcad, and CAD applications for design such as CATIA V5 which allows the preservation of practical experience and favors its dissemination for future similar calculation. The scope of this calculus is to demonstrate that the active moment developed by the two hydraulic cylinders is always bigger than the resisting moment opposing the steering action of the nose landing gear wheel generated by the frictional forces between the wheel and the running way.

**Key Words:** mechanical-hydraulic steering system, calculation of the parameters, military training aircraft

# 1. THE KINEMATICS OF THE MECHANICAL-HYDRAULIC STEERING SYSTEM

The steering system of the nose landing gear and the nose landing gear itself is presented in numerous papers [1 - 8]. The steering device for the military training aircraft IAR 99NG is operated by two hydraulic cylinders (left and right) that are interchangeable. The two actuator hydraulic cylinders work in tandem to steer the rotating subassembly of the nose landing gear: one cylinder extends and the other compresses, after which the rollers are reversed [5], as shown in Figure 1.

Initially, the two hydraulic cylinders are in a neutral position (steering angle is zero) and they have a neutral length of 223.5 mm. Steering angles of  $\pm 45^{\circ}$  and constructive geometric data are shown in Figure 1.

The end of the rod of each hydraulic cylinder, named the front end, (the center of the ball joint, as shown in Figure 2 moves on a circle with a radius of 70 mm, and the opposite end of each hydraulic cylinder, named rear end, moves on a circle with a radius of 115.6 mm).

When the steering angle is  $+ 45^{\circ}$  (maximum right steering) the hydraulic cylinder on the left has an extended length of 270.9 mm, and the hydraulic cylinder on the right has a retracted length of 171.9 mm. If the steering angle is  $-45^{\circ}$  (maximum left steering) the hydraulic cylinder on the left has a retracted length of 171.9 mm, and the hydraulic cylinder on the right has an extended length of 270.9 mm.



Fig. 1 Kinematics of the actuation of the steering device with two hydraulic cylinders



Fig. 2 Lengths and strokes of the hydraulic actuator cylinder

Consequently, the working stroke of the extension is 270.9 - 223.5 = 47.4 mm which is less than the maximum stroke of extension, which means that at the front end of the cylinder there will remain a reserve stroke of 48, 8 - 48.1 = 0.7 mm. The working travel of the hydraulic cylinder rod retraction is 223.5 - 171.9 = 51.6 mm, which means that a reserve stroke of 52.3 - 51.6 = 0.7 mm will remain at the rear end of the cylinder.

End-of-stroke reserves are required to avoid physical contact between the piston and the hydraulic cylinder ends. During this time, the lack of reserves at the end of the stroke would generate damage to parts that would have physical contact at the end of the stroke.

## 2. CALCULATION OF HYDRAULIC AND MECHANICAL PARAMETERS

The results of the hydraulic parameters calculation are presented in table 1.

| Parameter                                                     | Value                                       |
|---------------------------------------------------------------|---------------------------------------------|
| The pressure drop on load $\Delta p_s$                        | 13.8 MPa                                    |
| The pressure drop on the two hydraulic cylinders $\Delta p_c$ | 6.9 MPa                                     |
| Nominal pressure p <sub>n</sub>                               | 20.7 MPa                                    |
| Total volumic flow Q (100%)                                   | 16666.7 mm <sup>3</sup> /s                  |
| Flow coefficient C <sub>D</sub>                               | 0.07452 [Ns <sup>2</sup> /mm <sup>8</sup> ] |
| Flow rate per load Q <sub>s</sub>                             | 13.608 [mm <sup>3</sup> /s]                 |
| The nominal outer diameter of the piston d <sub>c</sub>       | 25 mm                                       |
| Large piston surface A <sub>1</sub>                           | 490.62 mm <sup>2</sup>                      |
| The nominal outer diameter of the hydraulic cylinder rod dt   | 15 mm                                       |
| The annular surface of the piston $A_2$                       | 314 mm <sup>2</sup>                         |

Table 1. Calculation of hydraulic parameters

The available moment relative to the rotation axis of the movable body of the nose landing gear  $M_D$  can be calculated as follows [5]:

$$M_D = F_1 d_1 + F_2 d_2 = \Delta p_s \cdot (A_1 d_1 + A_2 d_2) = (p_n - \Delta p_v) \cdot (A_1 d_1 + A_2 d_2)$$
(1)

or

$$M_D = p_n \cdot (A_1 d_1 + A_2 d_2) - C_D \omega_A^2 \cdot (A_1 d_1 + A_2 d_2)^3$$
(2)

where  $\omega_A$  is the angular speed, F<sub>1</sub>, F<sub>2</sub>, d<sub>1</sub>, and d<sub>2</sub> are defined in figure 3. The units of measurement of physical quantities are:

$$C_D\left[\frac{Ns^2}{m^2}\right], \omega_A[s^{-1}], A[mm^2], d[mm] and p_n\left[\frac{N}{mm^2}\right]$$

Using those above units of measurement, it results:

$$M_D = 10^{-2} \cdot (A_1 d_1 + A_2 d_2) \tag{3}$$

To calculate the dynamic parameters, the equation of motion of the mobile assembly of the nose landing gear is used [9]:

$$I_o \frac{d\omega_A}{dt} = M_T - M_D \tag{4}$$

where  $I_o[Nms^2]$  is the moment of inertia of the rotating subassembly of the nose landing gear to its axis of rotation [9].

The angular acceleration of the rotating subassembly of the nose landing gear  $\varepsilon_A$  is calculated by the following equation:



Fig. 3 Calculation scheme for the arms of hydraulic forces  $d1(\gamma)$  and  $d2(\gamma)$ 

The relationship of equality between the resistance moment to steering  $M_R$  and the total moment  $M_T$  is as follows:

$$M_R = M_T[Nm] \tag{6}$$

and from equation (3) it successively results:

$$M_D - M_R = 10^{-2} \cdot (A_1 d_1 + A_2 d_2) \tag{7}$$

$$K_M = [10^{-2} \cdot p_n \cdot (A_1 d_1 + A_2 d_2) - M_T]$$
(8)

$$k = 10^{-2} \cdot C_D \tag{9}$$

and the equation of motion of the mobile assembly of the nose landing gear becomes:

$$I_o \frac{d\omega_A}{dt} = K_{\Delta t} - k \cdot \omega_A^2 \tag{10}$$

INCAS BULLETIN, Volume 14, Issue 4/ 2022

It is noted that:

$$d \cdot (K_{\Delta t} - k \cdot \omega_A^2) = -2 \cdot k \cdot \omega A \cdot d\omega A = -2 \cdot k \cdot \frac{d\omega}{dt} \cdot d\omega A = -2 \cdot k \cdot \frac{d\omega A}{dt} \cdot d\gamma$$
(11)

and the ratio  $d\omega/dt$  is expressed as follows:

$$\frac{d\omega A}{dt} = \frac{-1}{2 \cdot k \cdot \omega \cdot d\gamma} \cdot d \cdot (K_M - k \cdot \omega_A^2)$$
(12)

Substituting  $d\omega/dt$  in the equation of motion of the mobile assembly of the nose landing gear and after processing, result:

$$d\gamma = \frac{-I_0}{2k} \cdot \frac{d(K_M - k \cdot \omega A^2)}{(K_M - k \cdot \omega A^2)}$$
(13)

and by integration results:

$$\gamma = \frac{-I_0}{2k} \cdot \ln(K_M - k\omega A^2) + C \tag{14}$$

where the integration constant C is determined from the condition  $\gamma = 0$  when  $\omega_A = 0$ , so:

$$C = \frac{I_0}{2k} \cdot \ln K_M \tag{15}$$

and the equation for the calculation of the steering angle becomes:

$$\gamma = \frac{I_0}{2k} \cdot \frac{\ln K_M}{(K_M - k\omega^2)} \tag{16}$$

From equation (16) we can calculate  $\omega_A$ , knowing  $K_M$  and k for each value of the steering angle  $\gamma$ :

$$\omega_A = \sqrt{\frac{K_M}{k} \left(1 - e^{\frac{-2k}{I_0} \cdot \gamma}\right)} \tag{17}$$

Next, the arms of the hydraulic forces  $d_1(\gamma)$  for  $F_1$  and  $d_2(\gamma)$  for  $F_2$  used in equations (1) and (2) must be calculated, as shown in figure 3.

The known initial data are:  $d_{ref} = 80$  mm;  $h_{ref} = 85$  mm;  $h_0 = 107$  mm;  $h = h_0 - h_{ref} = 22$  mm; R = 70 mm. The steering angle  $\gamma$  takes values from 0 to 45°.

The distance  $d_0$  is determined from the following equation:

$$d_o = \sqrt{(R^2 - h^2)} \, [\text{mm}]$$
 (18)

and  $\alpha_0$  for ( $\gamma = 0$ ) is calculated with the following equation:

$$\alpha_o = \arcsin{\binom{h_o}{R}} \cdot \frac{180}{\pi} \quad [\text{angular degrees}] \tag{19}$$

The value of the angle  $\alpha(\gamma)$  is determined according to the equation:

$$\alpha(\gamma) = \alpha_o + \gamma \quad [\text{angular degrees}] \tag{20}$$

The height  $h_o$  for ( $\gamma = 0$ ) is calculated with the following equation:

$$h_o = h_{ref} + h \ [mm], \tag{21}$$

and  $h_1(\gamma)$  is determined from the equation that follows:

$$h_1(\gamma) = h_0 + R \cdot \cos\left(\frac{\pi}{2} - \alpha(\gamma) \cdot \frac{\pi}{180}\right) \quad [mm], \tag{22}$$

and  $h_2(\gamma)$  is calculated with the following equation:

$$h_2(\gamma) = h_1(-\gamma) \ [mm],$$
 (23)

The distance  $d(\gamma)$  is calculated with the relation below:

$$d(\gamma) = R \cdot \sin\left(\frac{\pi}{2} - \alpha(\gamma) \cdot \frac{\pi}{180}\right) \ [mm], \tag{24}$$

and the angle  $\beta(\gamma)$  with the following equation:

$$\beta(\gamma) = \operatorname{arctg}\left(\frac{h(\gamma)}{d_{ref} - d(\gamma)}\right) \cdot \frac{180}{\pi} \quad [\text{angular degrees}] \tag{25}$$

Finally, the hydraulic force arm  $F_1$ , denoted  $d_1(\gamma)$  is calculated with the following equation:

$$d_1(\gamma) = R \cdot \sin\left(\pi - \alpha(\gamma) \cdot \frac{\pi}{180} - \beta(\gamma) \cdot \frac{\pi}{180}\right) \ [mm], \tag{26}$$

and the hydraulic force arm F<sub>2</sub>, denoted  $d_2(\gamma)$  is calculated using equation:

$$d_2(\gamma) = d_1(-\gamma) \ [mm] \tag{27}$$

Therefore, the value of the angular velocity of the rotating subassembly of the previous landing gear  $\omega_A$  is now known, as a function of the steering angle  $\gamma$ , for the range ±45° and the parameters  $K_M$  (8) and k (9), calculated above.

## 3. CALCULATION AND PRESENTATION OF FUNCTIONAL PARAMETERS

At the beginning, the geometric parameters shown in Figure 1 are calculated as explained in equations (18) ... (27) [5], using the Mathcad application.

In table 2, the values of parameters  $h_1(\gamma)$  and  $h_2(\gamma)$  are presented, depending on the variation of the steering angle  $\gamma = 0 \dots 45^\circ$ , calculated with equations (22) and (23).

| γ [deg.] | $h_1(\gamma)$ [mm] | $h_2(\gamma)$ [mm] |
|----------|--------------------|--------------------|
| 0        | 107                | 107                |
| 1        | 108.156            | 105.837            |
| 2        | 109.306            | 104.667            |
| 3        | 110.448            | 103.492            |
| 4        | 111.582            | 102.311            |
| 5        | 112.708            | 101.125            |
| 6        | 113.826            | 99.933             |
| 7        | 114.935            | 98.737             |
| 8        | 116.034            | 97.537             |
| 9        | 117.125            | 96.334             |
| 10       | 118.205            | 95.126             |
| 11       | 119.276            | 93.916             |
| 12       | 120.336            | 92.703             |
| 13       | 121.385            | 91.487             |

Table 2. Values of parameters  $h_1(\gamma)$  and  $h_2(\gamma)$ 

| 14 | 122.423        | 90.27  |
|----|----------------|--------|
| 15 | 123.45         | 89.051 |
| 16 | 124.465        | 87.831 |
| 17 | 125.468        | 86.61  |
| 18 | 126.458        | 85.388 |
| 19 | 127.436        | 84.166 |
| 20 | 128.401        | 82.945 |
| 21 | 129.353        | 81.724 |
| 22 | 130.292        | 80.504 |
| 23 | 131.216        | 79.286 |
| 24 | 132.127        | 78.069 |
| 25 | 133.023        | 76.855 |
| 26 | 133.905        | 75.642 |
| 27 | 134.771        | 74.433 |
| 28 | 135.623        | 73.227 |
| 29 | 136.459        | 72.025 |
| 30 | 137.279        | 70.826 |
| 31 | 138.084        | 69.632 |
| 32 | 138.872        | 68.442 |
| 33 | 139.644        | 67.258 |
| 34 | 140.399        | 66.079 |
| 35 | 141.137        | 64.905 |
| 36 | 141.858        | 63.738 |
| 37 | 142.562        | 62.578 |
| 38 | 143.249        | 61.424 |
| 39 | 143.917        | 60.277 |
| 40 | 144.568        | 59.138 |
| 41 | 145.201 58.007 |        |
| 42 | 145.815        | 56.883 |
| 43 | 146.411        | 55.769 |
| 44 | 146.988        | 54.663 |
| 45 | 147.546        | 53.567 |

The graphical representation of parameters  $h_1(\gamma)$  and  $h_2(\gamma)$ , depending on the steering angle  $\gamma = 0 \dots 45^\circ$ , is presented in figure 4.





The arms of the hydraulic forces  $F_1$  and  $F_2$ , (figure 1), denoted  $d_1(\gamma)$ , and  $d_2(\gamma)$ , respectively, are calculated with equations (26) and (27), depending on the variation of the steering angle  $\gamma = 0 \dots 45^\circ$ , as shown in Table 3.

| γ [deg.] | d1(γ) [mm]    | $d_2(\gamma)$ [mm] |  |
|----------|---------------|--------------------|--|
| 0        | 68.69         | 68.69              |  |
| 1        | 68.477        | 68.889             |  |
| 2        | 68.251        | 69.073             |  |
| 3        | 68.011        | 69.242             |  |
| 4        | 67.759        | 69.396             |  |
| 5        | 67.494        | 69.534             |  |
| 6        | 67.216        | 69.655             |  |
| 7        | 66.927        | 69.759             |  |
| 8        | 66.627        | 69.846             |  |
| 9        | 66.315        | 69.914             |  |
| 10       | 65.993        | 69.962             |  |
| 11       | 65.659        | 69.991             |  |
| 12       | 65.316        | 70                 |  |
| 13       | 64.962        | 69.987             |  |
| 14       | 64.599        | 69.952             |  |
| 15       | 64.225        | 69.893             |  |
| 16       | 63.843        | 69.811             |  |
| 17       | 63.451        | 69.703             |  |
| 18       | 63.05         | 69.569             |  |
| 19       | 62.641        | 69.407             |  |
| 20       | 62.222        | 69.217             |  |
| 21       | 61.796        | 68.997             |  |
| 22       | 61.361        | 68.745             |  |
| 23       | 60.918        | 68.461             |  |
| 24       | 60.467        | 68.142             |  |
| 25       | 60.008        | 67.787             |  |
| 26       | 59.542        | 67.395             |  |
| 27       | 59.068        | 66.963             |  |
| 28       | 58.587        | 66.489             |  |
| 29       | 58.098        | 65.972             |  |
| 30       | 57.603        | 65.409             |  |
| 31       | 57.101        | 64.799             |  |
| 32       | 56.592        | 64.138             |  |
| 33       | 56.076        | 63.424             |  |
| 34       | 55.554        | 62.655             |  |
| 35       | 55.026        | 61.828             |  |
| 36       | 54.491        | 60.94              |  |
| 37       | 53.95         | 59.989             |  |
| 38       | 53.403        | 58.9/1             |  |
| 39       | 52.85         | 57.883             |  |
| 40       | 52.291        | 55.497             |  |
| 41       | 51.726 55.487 |                    |  |
| 42       | 50.50         | 52 779             |  |
| 43       | 50.58         | 51.207             |  |
| 44       | 49.999        | 51.29/             |  |
| 45       | 49.413        | 49.73              |  |

Table 3. Values of parameters  $d_1(\gamma)$  and  $d_2(\gamma)$ 

The graphical representation of parameters  $d_1(\gamma)$  and  $d_2(\gamma)$  depending on the variation of the steering angle  $\gamma = 0 \dots 45^{\circ}$  is presented in figure 5.





From equations  $(1) \dots (5)$  it results:

- $\Delta p_c = 6.9$  MPa, pressure drop on each of the two hydraulic cylinders;
- $\Delta p_{sR} = 13.8$  MPa, pressure drop on the recommended load;
- $C_D = 0,07452 \text{ [Ns}^2/\text{ mm}^8 \text{] flow coefficient;}$
- $Q_s = 13,608 \text{ [mm^3/s]}$  load flow;
- $A_1 = 490,625 \text{ mm}^2$  large piston surface;
- $A_2 = 314 \text{ mm}^2$  the annular surface between the piston and the hydraulic cylinder rod.

The moment of inertia of the rotating subassembly of the nose landing gear relative to its axis of rotation is provided by the CATIA V5 design software:

•  $Io = 0,375 \text{ [kgm^2]}.$ 

The friction moment that opposes the steering is the steering friction moment and it is calculated as:

$$M_T = M_{rv} = 393,15 \text{ [Nm]}$$
(28)

The value of the active torque for steering  $M_D$  calculated with equation (1) for Pn = 20.7MPa, the value of friction torque at steering  $M_{\rm rv}$  and the angular velocity during steering  $\omega_{\rm A}$  (17) are shown in Table 4, depending on the variation of steering angle  $\gamma = 0 \dots 45^{\circ}$ .

It is very clear that the value of the calculated active torque is at least twice the value of the steering moment, both in Table 4 and in Figure 6.

| γ [deg.] | $M_D(\gamma)$ [Nm] | M <sub>rv</sub> [Nm] | ω <sub>A</sub> [rad/sec] | ω <sub>A</sub> [deg./sec] |
|----------|--------------------|----------------------|--------------------------|---------------------------|
| 0        | 1.14E+03           | 393.15               | 0                        | 0.0000                    |
| 1        | 1.14E+03           | 393.15               | 0.30919                  | 17.7243                   |
| 2        | 1.14E+03           | 393.15               | 0.30964                  | 17.7501                   |
| 3        | 1.14E+03           | 393.15               | 0.31018                  | 17.7810                   |
| 4        | 1.14E+03           | 393.15               | 0.31082                  | 17.8177                   |
| 5        | 1.14E+03           | 393.15               | 0.31155                  | 17.8596                   |
| 6        | 1.14E+03           | 393.15               | 0.31239                  | 17.9077                   |
| 7        | 1.13E+03           | 393.15               | 0.31332                  | 17.9610                   |
| 8        | 1.13E+03           | 393.15               | 0.31436                  | 18.0206                   |
| 9        | 1.13E+03           | 393.15               | 0.3155                   | 18.0860                   |
| 10       | 1.13E+03           | 393.15               | 0.31674                  | 18.1571                   |
| 11       | 1.12E+03           | 393.15               | 0.3181                   | 18.2350                   |
| 12       | 1.12E+03           | 393.15               | 0.31956                  | 18.3187                   |

Table 4. Values of the parameters  $M_D(\gamma)$ ,  $M_{rv}$  and  $\omega_A(\gamma)$ 

| 13 | 1.12E+03 | 393.15 | 0.32115 | 18.4099 |
|----|----------|--------|---------|---------|
| 14 | 1.11E+03 | 393.15 | 0.32285 | 18.5073 |
| 15 | 1.11E+03 | 393.15 | 0.32468 | 18.6122 |
| 16 | 1.10E+03 | 393.15 | 0.32663 | 18.7240 |
| 17 | 1.10E+03 | 393.15 | 0.32872 | 18.8438 |
| 18 | 1.09E+03 | 393.15 | 0.33096 | 18.9722 |
| 19 | 1.09E+03 | 393.15 | 0.33334 | 19.1087 |
| 20 | 1.08E+03 | 393.15 | 0.33588 | 19.2543 |
| 21 | 1.08E+03 | 393.15 | 0.33858 | 19.4090 |
| 22 | 1.07E+03 | 393.15 | 0.34146 | 19.5741 |
| 23 | 1.06E+03 | 393.15 | 0.34452 | 19.7496 |
| 24 | 1.06E+03 | 393.15 | 0.34777 | 19.9359 |
| 25 | 1.05E+03 | 393.15 | 0.35124 | 20.1348 |
| 26 | 1.04E+03 | 393.15 | 0.35493 | 20.3463 |
| 27 | 1.04E+03 | 393.15 | 0.35885 | 20.5710 |
| 28 | 1.03E+03 | 393.15 | 0.36304 | 20.8112 |
| 29 | 1.02E+03 | 393.15 | 0.36749 | 21.0663 |
| 30 | 1.01E+03 | 393.15 | 0.37224 | 21.3386 |
| 31 | 1.00E+03 | 393.15 | 0.37731 | 21.6292 |
| 32 | 991.621  | 393.15 | 0.38273 | 21.9399 |
| 33 | 981.745  | 393.15 | 0.38852 | 22.2718 |
| 34 | 971.443  | 393.15 | 0.39471 | 22.6267 |
| 35 | 960.7    | 393.15 | 0.40135 | 23.0073 |
| 36 | 949.498  | 393.15 | 0.40848 | 23.4161 |
| 37 | 937.82   | 393.15 | 0.41613 | 23.8546 |
| 38 | 925.647  | 393.15 | 0.42437 | 24.3269 |
| 39 | 912.963  | 393.15 | 0.43324 | 24.8354 |
| 40 | 899.747  | 393.15 | 0.44282 | 25.3846 |
| 41 | 885.982  | 393.15 | 0.45318 | 25.9785 |
| 42 | 871.65   | 393.15 | 0.4644  | 26.6217 |
| 43 | 856.731  | 393.15 | 0.47659 | 27.3204 |
| 44 | 841.208  | 393.15 | 0.48984 | 28.0800 |
| 45 | 825.064  | 393.15 | 0.50429 | 28.9083 |

The variation of the maximum active torque  $M_D(\gamma)$  to perform the steering depending on the steering angle  $\gamma = 0 \dots 45^\circ$  and the value of the constant friction torque  $M_{rv}$  are shown in figure 6. The variation of the angular velocity during the steering  $\omega_A(\gamma)$  expressed in radians per second and degrees per second, as a function of the steering angle  $\gamma = 0 \dots 45^\circ$  is shown in figure 7.





222

INCAS BULLETIN, Volume 14, Issue 4/ 2022



Fig. 7 Graphical representation of angular velocity  $\omega_A(\gamma)$  expressed in radians per second and degrees per second

#### 4. CONCLUSIONS

The method presented above contains the presentation of the kinematics of the mechanicalhydraulic steering system, calculation of the hydraulic actuation parameters, and calculation and graphical representation of functional parameters such as  $h_1(\gamma)$  and  $h_2(\gamma)$ , the arms of hydraulic forces  $F_1$  and  $F_2$ , denoted  $d_1(\gamma)$ , and  $d_2(\gamma)$ , the friction moment that opposes the steering  $M_T = M_{rv}$ , the value of the active torque for steering  $M_D(\gamma)$ , and the variation of the angular velocity during the steering  $\omega_A(\gamma)$  expressed in radians per second and degrees per second.

It is very clear that the value of the calculated active torque for steering  $M_D(\gamma)$  is at least twice the value of the steering moment that opposes the steering  $M_T = M_{rv}$ . The results presented above will be verified by experimental research soon.

#### ACKNOWLEDGEMENT

This article is an extension of the paper presented at *The International Conference of Aerospace Sciences, "AEROSPATIAL 2022"*, 13 – 14 October 2022, Bucharest, Romania, Hybrid Conference, Section 6 – Experimental Investigations in Aerospace Sciences and carried out within the project NUCLEU, contract no. 8N/07.02.2019, Additional Act no. 11/2022, supported by the Romanian Ministry of Research, Innovation and Digitization.

### REFERENCES

- [1] D. Baran, et all., Preliminary Estimation Methods for the Definition of the Landing Gear, *INCAS BULLETIN*, Volume 10, Issue 3, pp. 187 – 197 (P), ISSN 2066-8201, (E) ISSN 2247-4528, https://doi.org/10.13111/2066-8201.2018.10.3.16, 2018.
- [2] G. De Stefano, et all., Computational Evaluation of Aerodynamic Loading on Retractable Landing-Gears, *Aerospace 2020*, **7**, 68; doi:10.3390/aerospace7060068.
- [3] L. Hailiang, W. Lixin, Assessment of Landing Gear Design based on the Virtual Testing and Evaluation Methodology, *Procedia Engineering* 99, 898 – 904, 2015.
- [4] M. Zhang, et all., Design and Test of Dual Actuator Nose Wheel Steering System for Large Civil Aircraft, *International Journal of Aerospace Engineering*, Volume 2016, Article ID 1626015, 14 pages. http://dx.doi.org/10.1155/2016/1626015.
- [5] B. A. Nicolin, *Scientific report no. 5,* "Politehnica" University Bucharest, Doctoral School of Industrial Engineering and Robotics, 2022.
- [6] E. A. Ossa, Failure analysis of a civil aircraft landing gear, *Engineering Failure Analysis*, 13, 1177–1183 doi:10.1016/j.engfailanal.2005.04.008, 2006.
- [7] A. Rajesh and B. T. Abhay, Design and Analysis Aircraft Nose and Nose Landing Gear, J Aeronaut Aerospace Eng 4: 144. doi: 10.4172/2168-9792.1000144.
- [8] B. Setyono et all., Design Steering System with Independent Front Wheel Drive of The Hybrid Vehicle-Air Pressure and Electrical, The 1st International Conference on Advanced Engineering and Technology, IOP Conf. Series: Materials Science and Engineering 462 (2019) 012013 doi:10.1088/1757-899X/462/1/012013.
- [9] N. Vasiliu, D. Vasiliu, Hydraulic and pneumatic actuation, Volume I, Bucharest, 2004.