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Introduction: African Swine Fever (ASF) is a highly infectious disease of pigs, 

caused by African swine fever virus (ASFV). The lack of vaccines and drugs 

makes strict disinfection practices to be one of the main measurements to 

curb the transmission of ASF. Therefore, it is important to assess if all viruses 

are inactivated after disinfection or after long time exposure in their natural 

conditions. Currently, the infectivity of ASFV is determined by virus isolation and 

culture in a biosafety level 3 (BSL-3) laboratory. However, BSL-3 laboratories 

are not readily available, need skilled expertise and may be time consuming. 

Methods: In this study, a Triton X-100 assisted PMAxx-qPCR method was 

developed for rapid assessment of infectious ASFV in samples. PMAxx, an 

improved version of propidium monoazide (PMA), can covalently cross-link 

with naked ASFV-DNA or DNA inside inactivated ASFV virions under assistance 

of 0.1% (v/v) TritonX-100, but not with ASFV-DNA inside live virions. Formation 

of PMAxx-DNA conjugates prevents PCR amplification, leaving only infectious 

virions to be detected. Under optimum conditions, the limit of detection of 

the PMAxx-qPCR assay was 2.32log10HAD50/mL of infectious ASFV. Testing 

different samples showed that the PMAxx-qPCR assay was effective to evaluate 

intact ASFV virions after treatment by heat or chemical disinfectants and in 

simulated samples such as swine tissue homogenate, swine saliva swabs, and 

environmental swabs. However, whole-blood and saliva need to be diluted 

before testing because they may inhibit the PCR reaction or the cross-linking 

of PMAxx with DNA.

Conclusion: The Triton X-100 assisted PMAxx-qPCR assay took less than 3 h 

from sample to result, offering an easier and faster way for assessing infectious 

ASFV in samples from places like pig farms and pork markets.
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Introduction

African Swine Fever (ASF) is a highly contagious and 
epidemic disease of pigs caused by a large, icosahedral, enveloped, 
double-stranded DNA virus named African swine fever virus 
(ASFV), which is the sole member of the family Asfarviridae 
(Galindo and Alonso, 2017; Dixon et al., 2019). Different isolates 
of ASFV exhibit variable virulence (Portugal et al., 2015). ASFV 
in blood (Plowright and Parker, 1967), feces (Fischer et al., 2020a), 
urine (Davies et  al., 2017) and tissues (Mazur-Panasiuk and 
Wozniakowski, 2020) can survive in different environments for 
long time periods. Contaminated animal feed, pork, clothing, 
footwear, farming tools, equipment and vehicles etc. will increase 
the risk of ASFV transmission. Therefore, in the absence of 
commercial vaccines and therapeutic agents against ASFV (Teklue 
et al., 2020), culling infected pigs and strict disinfections are the 
main measurements for protecting the pig industry. It is therefore 
important to assess whether there exists infectious ASFV 
after disinfection.

The gold standard for evaluating the infectivity of ASFV after 
disinfection is virus isolation and culture. However, this method 
has some shortcomings: (1) A biosafety level 3 (BSL-3) laboratory 
and porcine primary macrophage cells are needed for ASFV 
isolation and culture, which are expensive and not available to 
standard microbiology labs; (2) It takes at least 5 days to determine 
infectivity; (3) Different sample pretreatments are needed to 
remove cell toxicity of the chemical disinfectants before virus 
culture; and  (4) well-trained personnel are needed to perform 
infectivity tests. Due to these strict and unfavorable conditions, 
rapid and regular monitoring of infectious ASFV is limited, 
especially for low resource settings.

Real time or conventional PCR assays are recommended by the 
World Organization for Animal Health (WOAH) for rapid 
screening and diagnosis of ASFV (Wang et al., 2020). However, 
these assays cannot determine viral infectivity of ASFV. Some 
viability dyes such as ethidium monoazide (EMA; Elizaquivel et al., 
2014), propidium monoazide (PMA; Sarmento et al., 2020), and an 
advanced version of PMA dye, PMAxx (Shirasaki et al., 2020), can 
penetrate damaged or destroyed viral capsids but not intact capsid 
(Lee et al., 2018) and intercalate covalently into the chains of the 
nucleic acid after photoactivation to prevent the PCR amplification 
of these nucleic acids (Li et al., 2015; Nyaruaba et al., 2022). These 
viability dyes combined with real time PCR (qPCR), have been 
successfully applied to discriminate infectious viruses from 
inactivated ones in various studies involving Hepatitis A virus 
(HAV; Randazzo et al., 2018), Hepatitis E virus (HEV; Schielke et al., 
2011), Human rotaviruses (HuRV; Coudray-Meunier et al., 2013), 
Human Norovirus (HuNoV; Razafimahefa et al., 2021), Porcine 
epidemic diarrhea coronavirus (PEDV; Puente et al., 2020), and the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 
Canh et al., 2021). Compared to virus culture, the qPCR-based 
viability assays overcome the requirements of a BSL-3 laboratory 
and cell culture for assessing viral infectivity. Additionally, the qPCR 
technology is widely and readily available even to low resource 

settings, making it an attractive option to the conventional 
culture technique.

In this study, we aimed to develop a qPCR assay combined with 
PMAxx pretreatment for rapid assessment of infectious ASFV in 
different bio-matrixes after chemical inactivation or heat-treatment. 
The technique is simple, fast, and can be easily adapted by normal 
molecular diagnostic laboratories to monitor infectious ASFV.

Materials and methods

Virus stocks and cell culture

Porcine alveolar macrophages (PAMs) were prepared from 
bronchoalveolar lavage and maintained in Roswell Park Memorial 
Institute (RPMI) 1640 medium (Gibco, United  States) 
supplemented with 10% fetal bovine serum (FBS, Sigma, 
United States), 100 U/ml penicillin, 100 μg/ml streptomycin and 
250 ng/ml amphotericin B (Beyotime Biotechnology, China) at 
37°C with 5% CO2. ASFV (CSTR: 16533.06. IVCAS 6.7494, 
genotype II) was stored at −80°C in the biosafety level 3 (BSL-3) 
facility of Wuhan Institute of Virology, Chinese Academy of 
Sciences (WIV-CAS). All the experiments involving infectious 
ASFV were performed in the BSL-3 laboratory. The titer of ASFV 
stocks were determined by the hemadsorbing (HAD) test. Briefly, 
4 × 104 cells/well of PAMs were seeded into 96-well plates and 
infected with 10-fold diluted ASFVs. After 1-day infection, 1% 
porcine erythrocyte cell suspensions stored in PBS (Gibco, 
United  States) were added into each well. The phenomena of 
hemadsorption were observed over 7 days by a microscope. The 
50% hemadsorbing dose (HAD50) was calculated by the Reed and 
Muench method (Zhao et al., 2019).

Reagents used and sources

Reagents used to develop the assays and perform viability 
experiments were purchased from different companies. In 
summary, the PMAxx (40,069, 20 mM in H2O) was purchased 
from Biotium (United States), TritonX-100 from Sigma-Aldrich 
(United States), Virkon™ S from DuPont (United States), and 
Disinfectant Basi containing 4.0–4.99% (w/v) chlorine from 
Yiheng (Dezhou, China). Primers and probes were synthesized by 
Sangon Biotech (Shanghai, China). All other chemical reagents 
used in the experiments were purchased from Sinopharm 
(Shanghai, China) except otherwise stated. Double distilled water 
was used in all experiments.

Virus inactivation and sample preparation

Heat inactivation of ASFV
A series of 10-fold gradient dilutions of ASFV suspensions 

were prepared by diluting the ASFV stock solution with 
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phosphate buffer solution (PBS, pH 7.4). Parts of the dilution 
series were aliquoted and inactivated at different temperatures 
(60°C, 70°C, and 95°C) for 20 min, respectively. After heat 
treatment, all the aliquots were centrifuged at 10,000 × g (4°C) 
for 5 min to obtain the supernatants which were then collected 
and stored on ice until use. Each step was performed 
in triplicate.

ASFV disinfection by chemicals
The chemical disinfectants and reaction conditions used in 

this study are summarized in Table  1. These chemicals were 
verified as ASFV disinfectants in previous studies (Krug et al., 
2018; Juszkiewicz et al., 2019, 2020; McCleary et al., 2021). Briefly, 
aliquots of 180 μl ASFV suspensions with 4.3log10HAD50/mL were 
mixed with either 20 μl of commercially purchased 84 surfactant 
[composed of sodium hypochlorite (NaClO) with the chloride 
concentration between 4 and 4.99% (w/v)], 25% (w/v) 
glutaraldehyde (GA), acetic acid (HAc), 8% (w/v) sodium 

hydroxide (NaOH), or 10% (w/v) Virkon (VK), respectively. After 
incubation at room temperature for 30 min, the disinfection was 
stopped by immediately adding the corresponding neutralizer and 
PBS to a total volume of 1 ml. NaOH and HAc were neutralized by 
0.2 M hydrogen chloride (HCl) and 0.2 M NaOH, respectively. 7% 
(w/v) glycine was used to stop the reaction of glutaraldehyde 
(Cheung and Brown, 1982). The neutralizer used for the NaClO 
and VK was 0.5% (w/v) sodium thiosulphate (Na2S2O3; Olmez-
Hanci et al., 2014; Sahebi et al., 2020). Finally, all the disinfected 
samples were centrifuged at 10,000 × g (4°C) for 5 min to get the 
supernatants prior to storage on ice until use. All the treatments 
were performed in triplicate.

Optimization of PMAxx and triton X-100 
pretreatment

Extracted ASFV DNA using the Blood viral DNA extraction 
kit (Qiagen, catalog 51104) and virus suspensions before and after 
inactivation at different conditions were used to optimize the 
conditions of the PMAxx-qPCR assay. As shown in Figure  1, 
PMAxx (0, 5, 10, 25, 50, and 100 μM) together with Triton X-100 
(5, 1, 0.1, 0.01%, and 0) were added into the samples. The mixtures 
were then incubated in the dark at room temperature (22–26°C) 
for 10 min. Subsequently, the mixtures were exposed to photolysis 
at different times (5, 10, 15, or 20 min) using a PMA-Lite™ LED 
photolysis device (Biotium, United  States). The photolyzed 
samples were heat treated at 95°C for 5 min prior to DNA 
extraction. Extracted DNA samples were finally detected by qPCR 
to determine the cycle threshold (Ct) values of the mixtures. 
Samples without PMAxx treatment served as positive controls. 
Each condition was performed in triplicate.

TABLE 1 Chemicals and corresponding neutralizers used for ASFV 
disinfection.

Chemicals
Disinfection conditions

Neutralizer
Method Time 

(min)
Temperature 

(°C)

0.4–0.499% (w/v) 

NaClO

Immersion 30 22–25 0.5% (w/v) 

Na2S2O3

2.5%(w/v) GA Immersion 30 22–25 7% (w/v) glycine

10% (v/v) HAc Immersion 30 22–25 0.2 M NaOH

0.8% (w/v) NaOH Immersion 30 22–25 0.2 M HCl

1% (w/v) VK Immersion 30 22–25 0.5% (w/v) 

Na2S2O3

FIGURE 1

Schematic diagram of the PMAxx-qPCR assay for discriminating infectious and inactivated ASFV. The schematic was produced on https://
biorender.com.
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A B C

FIGURE 2

Optimization conditions of the PMAxx-qPCR assay targeting the ASFV-P72 gene for discriminating inactivated ASFV and free DNA. (A) Effects of 
different amplicon sizes on Ct values of free ASFV DNA (samples treated with 10 μM PMAxx and 15 min photolysis time). (B) Effects of different 
PMAxx concentrations on Ct values of free ASFV DNA and ASFV in 100 times PBS-diluted swine plasma inactivated at 95°C for 20 min (each 
concentration was exposed to a photolysis time of 15 min). (C) Effects of photolysis time on Ct of free ASFV DNA and ASFV in 100 times PBS-diluted 
swine plasma inactivated at 95°Cfor 20 min (each sample was treated with a PMAxx concentration of 25 μM). Data were shown as mean ± SD of 
three independent repeats. Dotted plots represent no amplification after 40 cycles and the Ct is assigned to 40 in order to calculate ΔCt.

Quantitative real-time PCR assay

Nucleic acids of the samples were extracted using the Blood 
viral DNA extraction kit. The primer pairs and probes targeting 
the ASFV-P72 gene are listed in Table  2. The qPCR reaction 
system (total 20 μl) consisted of 5 μl template DNA, 10 μl 
2 × reaction mix (Luna® Universal Probe qPCR Master Mix, 
M3004S, NEB, United  States), 0.4 μM forward primer, 0.4 μM 
reverse primer, 0.2 μM probe, and DNase free water. The qPCR 
reaction was performed on a Biorad CFX96 Real-Time PCR 
System (Bio-Rad, United States) with a denaturation step at 95°C 
for 1 min, followed by 45 cycles of denaturation at 95°C for 15 s 
and annealing/extension at 60°C for 30 s.

Statistical analysis

The ΔCt value was used to estimate the risk and presence of 
infectious ASFV in tested samples. To obtain the ΔCt value, the 
average Ct value of a sample after PMAxx pretreatment was 
subtracted from the average Ct value of the same sample without 
PMAxx pretreatment. Resultant data was graphically presented 

and statistically analyzed by GraphPad Prism version 8 
(GraphPad software, United States) software. A t-test was used to 
test the impact of variables and determine the significant 
differences. Ordinary one-way ANOVA test was used to analyze 
the significant differences of the data among different groups. A 
P-Value of p < 0.05 was deemed significant.

Results

Optimization of the PMAxx-qPCR assay

Three main factors that may affect the ΔCt of the PMAxx-
qPCR assay include the PCR amplicon size, PMAxx concentration, 
and photolysis time. As shown in Figure 2A, ΔCt values of the free 
ASFV DNA amplified using the primer/probe set #3 (amplicon 
size 189) were higher than those of primer/probe sets #1 (amplicon 
size 75) or #2 (amplicon size 163), indicating that longer amplicons 
were better for discrimination. Therefore, the primer/probe set #3 
was used in further optimization experiments. Further tests on 
two types of samples (free DNA and PBS-diluted ASFV positive 
swine plasma) showed that PMAxx concentrations ranging from 

TABLE 2 Primers and probes used in the PMAxx-qPCR assay for detecting the P72 gene of ASFV.

Gene Name Sequence (5′-3′) Amplicon size (bp)

P72 #1-Forward TCCTGAAAGCTTATCTCTGCG 75

#1-Reverse AGATTGGCACAAGTTCGGAC

#1-Probe FAM-TGAGTGGGCTGCATAATGGCGTT-BHQ

P72 #2-Forward AAGGTAATCATCATCGCACC 163

#2-Reverse ATCCGATCACATTACCTATTAT

#2-Probe FAM-TCCGTAACTGCTCATGGTATCAATCTT-BHQ

P72 #3-Forward TTGATACCATGAGCAGTTACGG 189

#3-Reverse AGATTGGCACAAGTTCGGAC

#3-Probe FAM-TGAGTGGGCTGCATAATGGCGTT-BHQ
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5 μM to 100 μM (Figure 2B) and the photolysis time ranging from 
5 min to 20 min (Figure 2C) had no significant difference in the 
ΔCt values. However, considering the fact that large amounts of 
nucleic acids of other organisms may be  present in real life 
samples, a relatively high PMAxx concentration of 25 μM and 
longer photolysis time of 15 min was chosen for the following 
experiments. These conditions were also found not to have any 
significant interference with infectious virions when determined 
by cell culture as seen in Supplementary Table S1.

Determination of heat-inactivated ASFV 
by the triton X-100 assisted PMAxx-qPCR 
assay

Heat treatment is an important method of inactivating ASFV, 
and it has been reported that ASFV can be  inactivated after 

heating at temperatures higher than 60°C for 20 min (Mazur-
Panasiuk et al., 2019). Using this analogy, infectious ASFV samples 
were heat inactivated at temperatures ≥60°C, subjected to PMAxx, 
and results compared to their respective control samples (without 
heat treatment). Compared to the control, the ΔCt values were 1.6, 
2.19, 3 and 11.43 for the infectious sample and samples subjected 
to 60°C, 70°C and 95°C temperatures, respectively (Figure 3A). 
These results indicated that the PMAxx-qPCR assay could 
optimally determine inactivated viruses heated at higher 
temperatures of ≥95°C, but not at mild temperatures (60°C or 
70°C). The probable reason for this dismal performance at mild 
temperatures was thought to be related to the existence of intact 
ASFV capsid structures not easily broken by mild temperatures.

It has been reported that surfactants such as Triton X-100 
(Coudray-Meunier et al., 2013) and SDS (Hong et al., 2021) can 
increase the permeability of monoazide dyes to pathogenic viruses 
with intact viral capsids. Therefore, we attempted to add Triton 

A B

C D

FIGURE 3

Performance of the PMAxx-qPCR assay and the Triton X-100 assisted PMAxx-qPCR assay in detecting infectious ASFV and thermo-inactivated 
ASFV. (A) Ct values of infectious ASFV and their inactivated counterparts treated at three temperatures (60°C, 70°C, or 95°C) for 20 min and 
determined by qPCR (without PMAxx) and PMAxx-qPCR. (B) Effects of the Triton X-100 assisted PMAxx-PCR assay in detecting infectious or live 
ASFV (left) and their counterpart inactivated ASFV at 60°C for 20 min (right). (C) Linear curve fitting of the qPCR and the Triton X-100 assisted 
PMAxx-qPCR assay using serial dilutions of infectious ASFV with 0.1% Triton X-100. (D) Ct values of ASFV samples inactivated at 60°C for 20 min 
and detected using qPCR (without PMAxx) and Triton X-100 assisted PMAxx-qPCR. Dotted plots represent no amplification after 40 cycles and the 
Ct is assigned to 40 in order to calculate ΔCt. Data were shown as mean ± SD of three independent repeats. #, two of the three repeats were 
found to have no amplification after 40 cycles.
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X-100 to enhance the penetration of PMAxx into the intact ASFV 
virions inactivated at 60°C. As shown in Figure 3B (left), Triton 
X-100 (5, 1, 0.1, 0.01% (v/v)) did not promote PMAxx penetration 
into the control (infectious ASFV viruses without heat treatment), 
but it increased the PMAxx penetration into ASFV samples 
inactivated at 60°C (Figure 3B, right). Further analysis of the ΔCt 
values of inactivated samples showed that 0.1% Triton X-100 had 
the largest ΔCt value (Figure 3B, right) and was hence chosen as 
an assistant to the PMAxx-qPCR assay in the following tests.

Using this concentration, further testing on serial dilutions of 
infectious ASFV suspensions (Figure 3C) showed that there was no 
significant difference between the Triton X-100-qPCR alone 
(without PMAxx treatment) and the Triton X-100 assisted PMAxx-
qPCR. These results indicated that the Triton X-100 assisted 
PMAxx treatment had no effects on infectious ASFV. However, 
after heat treatment at 60°C for 20 min (Figure 3D), the Ct values 
of the qPCR did not change, but the Ct values of the Triton X-100 
assisted PMAxx-qPCR increased significantly (p < 0.001 for all 
groups), showing no amplification after 40 cycles except for the 
highest concentration of 5.7log10HAD50/mL (Ct value: 37.96 ± 1.83).

Application of the triton X-100 assisted 
PMAxx-qPCR assay

In order to verify if the Triton X-100 assisted PMAxx-qPCR 
assay could discriminate infectious ASFV in partially inactivated 
samples, a series of samples were prepared by mixing the 
infectious 5.32log10HAD50/mL ASFV and heat-inactivated 5.7 
log10HAD50/mL ASFV at different ratios. As shown in Table 3, an 
increase in the percentage of infectious ASFV in the samples led 
to a decrease in ΔCt values. Even at 1% infectious ASFV in the 
samples, the ΔCt values were significantly lower than those of the 
ΔCt values of 100% inactivated ASFV. The same trends were 
observed even with lower titers of ASFV mixtures. These results 
demonstrated the possibility of using the Triton X-100 assisted 
PMAxx-qPCR assay to determine small percentages of infectious 

ASFV in samples by comparing the difference between the ΔCt 
value of the sample before inactivation and that of the same 
sample inactivated at 60°C for 20 min.

Effects of different matrices on the triton 
X-100 assisted PMAxx-qPCR assay

The detection of ASFV varies in different bio-matrices, this 
may possibly affect the performance of Triton X-100 assisted 
PMAxx-qPCR assays. To determine this, samples with inactivated 
ASFV suspended in five bio-matrices [PBS, swine blood, swine 
tissue homogenate, pig saliva swab (SS), and environmental swabs 
(ES)] were tested using both qPCR (without PMAxx treatment) 
and Triton X-100 assisted PMAxx-qPCR. Compared to PBS at 1× 
concentration, late Ct values were observed in blood and saliva 
matrices when detected by qPCR (Table 4). However, after adding 
the inactivated ASFV into 4 × or 8 × PBS-diluted matrices, early Ct 
values were observed. These results indicated that these two 
matrices would affect either the efficacy of the DNA extraction kits 
or contain some inhibitors that might inhibit the qPCR reaction. 
Additionally, blood may also affect the PMAxx treatment process 
since a late Ct value was observed in the undiluted blood when 
detected by the Triton X-100 assisted PMAxx-qPCR assay. 
Therefore, blood and saliva samples need to be diluted with PBS 
at least 4× or 8× times before detection, while tissue homogenates 
and the environmental swabs do not need any dilutions.

Evaluating the efficacy of chemical 
disinfectants using the triton X-100 
assisted PMAxx-qPCR assay

In order to evaluate whether the Triton X-100 assisted 
PMAxx-qPCR assay is suitable for detecting viable ASFV after 
chemical disinfection, ASFV inactivated by five types of chemical 
disinfectants (NaClO, GA, HAc, NaOH, and VK) at different 

TABLE 3 Determining ΔCt values from mixtures of infectious and inactivated ASFV under different titers using qPCR (Ct(-PMAxx)) and Triton X-100 
assisted PMAxx-qPCR (Ct(+PMAxx)) assays. A decrease in ΔCt values positively correlated to an increase in the percentage of infectious virions across 
all titers tested. The assay could detect as low as 1% infectious virion in the samples tested with a significantly lower ΔCt value compared to 100% 
inactivated ASFV (i.e., 0% infectious ASFV).

Percentage of 
infectious 
ASFV%

High titer (5.32log10HAD50/ml 
infectious virus mixed with 

5.7log10HAD50/ml dead virus)

Middle titer (10 × dilution of high 
titer)

Low titer (100 × dilution of high 
titer)

Ct(-PMAxx) Ct(+PMAxx) ΔCt Ct(-PMAxx) Ct(+PMAxx) ΔCt Ct(-PMAxx) Ct(+PMAxx) ΔCt

0 23.37 ± 0.80 38.43 ± 0.76 15.06 26.50 ± 0.77 39.65† >13.15 29.60 ± 0.88 NA >10.40

1 23.12 ± 0.06 33.64 ± 0.37 10.52 27.07 ± 0.11 37.26 ± 0.91 10.19 29.95 ± 0.34 37.82† >7.87

10 22.49 ± 1.26 30.30 ± 0.74 7.81 27.53 ± 0.28 34.15 ± 0.11 6.62 29.99 ± 0.30 37.42 ± 0.27 7.43

25 23.46 ± 0.21 28.75 ± 0.76 5.29 26.53 ± 1.09 32.14 ± 0.95 5.61 30.15 ± 0.11 35.54 ± 0.76 5.39

50 24.17 ± 0.23 27.85 ± 0.06 3.68 27.59 ± 0.57 31.15 ± 0.20 3.56 31.47 ± 0.85 35.43 ± 0.05 3.96

90 25.39 ± 0.21 27.27 ± 0.16 1.88 28.68 ± 0.37 30.25 ± 0.31 1.57 31.81 ± 0.37 34.43 ± 1.07 2.62

100 25.35 ± 0.27 26.31 ± 0.94 0.96 29.54 ± 0.49 30.43 ± 0.08 0.89 32.41 ± 0.27 33.85 ± 0.12 1.44

†two of the three repeats were found to have no amplification after 40 cycles. NA represents no amplification after 40 cycles and the Ct is assigned to 40 in order to calculate ΔCt.
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concentrations was tested, with ddH2O treatment serving as a 
positive control. Cell culture was also used to determine if there 
remained infectious ASFV after the disinfections. As shown in 
Figure 4A, the cell culture revealed that only the H2O-treatment 
group contained the infectious ASFV and no growth of ASFV 
could be detected after the chemical disinfections. The Triton 
X-100 assisted PMAxx-qPCR assay also revealed that there 
existed infectious ASFV in the H2O-treatment group because the 
ΔCt value was only 0.37 (p < 0.05). However, for the chemical 
disinfection groups, the Ct values of qPCR (without PMAxx 
treatment) alone were significantly increased except for the 
NaOH-treated group (Figure 4B). The increase in Ct value may 
be  a result of the four chemical disinfectants degrading or 
covalently cross-linking with ASFV DNA, especially GA. After 
the Triton X-100 assisted PMAxx treatment, the Ct values of 
these chemical groups increased further to above 37 or no 
amplification after 40 cycles (Figure 4B). This signified that the 
chemicals were indeed active against ASFV.

Discussion

It has been shown that ASFV can remain viable in natural 
conditions for long time periods (Arzumanyan et al., 2021) and 
be directly transmitted by complex transmission routes such as 
contact between infected and susceptible pigs (Gaudreault et al., 
2020), consumption of infected pig meat (Ito et al., 2020), and 
bites from infected acari (Ornithodoros spp.; Pereira De Oliveira 
et al., 2020). In addition to the above primary routes, there are 
some potential routes for indirect transmission of ASFV through 
contact with virus contaminated objects and fluids such as blood, 
feces, urine, or saliva from infected pigs (Guinat et  al., 2014; 
Fischer et al., 2020b; Olesen et al., 2020; Health et al., 2021). Due 
to there being no drugs and vaccines against ASFV, strict 
disinfections are the main measurements to curb the transmission 
of ASFV. The gold standard cell culture method is not suitable for 
regular monitoring of the presence of infectious ASFV in natural 
environments and after disinfections.

The Triton X-100 assisted PMAxx-qPCR assay developed in 
this study may provide some advantages over cell culture. Firstly, 
it could not only be used to detect ASFV DNA, but also to assess 
the presence of infectious ASFV in samples within 3 h. By 
exploring the property of PMAxx which could not penetrate the 
capsid of infectious virions, the PMAxx-qPCR could discriminate 

live virus as low as 1% from dead virus (Table 3). Secondly, it is 
biologically safe to perform the test without the need of a BSL-3 
laboratory. By obviating the need for virus culture, the PMAxx 
treatment and DNA extraction can be  performed within a 
biosafety cabinet. This makes the assay scalable with a possibility 
of deployment to places with limited resources, such as pig farms. 
Additionally, PMA assays are said to be capable of detecting live 
but unculturable pathogens [according to the manufacturer’s 
instructions, and other literature (Zhong and Zhao, 2018; Ou 
et al., 2021; Zhao et al., 2022)]. Lastly, considering time, and labor 
costs of cell culture, it is more convenient to include the PMAxx-
qPCR in routine diagnosis to detect infectious ASFV.

However, validation tests need to be  performed before 
application of the Triton X-100 assisted PMAxx-qPCR assay for 
real-life samples. Similar to other PMA assays (Banihashemi et al., 
2012; Kragh et al., 2020; Van Holm et al., 2021), in this study, 
primers amplifying longer amplicons (>100 bp) for ASFV-P72 
performed optimally compared to shorter amplicons. Hence 
chosen for further tests. Despite the advantage of using longer 
amplicons, no clear guideline exists towards selecting and 
designing amplicon lengths for optimal PMA results (Van Holm 
et al., 2021). As shown in Table 4, sample matrices may affect the 
Ct values of the qPCR assay, as well as the Triton X-100 assisted 
PMAxx-qPCR assay. Not only should the effects of the matrices 
on the DNA extraction and amplification be checked, but also on 
the PMAxx-DNA crosslinking. Where applicable, measures such 
as dilution should be used to minimize the adverse effects of the 
matrices. Furthermore, chemical disinfectants may affect the Ct 
values of the qPCR and the Triton X-100 assisted PMAxx-qPCR 
assay. Disinfectants recommended by the WOAH against ASFV 
consist of detergents, oxidizing agents, alkalis, organic acids and 
glutaraldehyde (Juszkiewicz et al., 2020). Among them, NaClO, 
GA, HAc, NaOH, and VK are widely used to sanitize contaminated 
agricultural and veterinary facilities, especially in the farm settings 
(Turner and Williams, 1999; Kalmar et  al., 2018). However, 
different disinfectants may degrade DNA or covalently cross-link 
with ASFV DNA during disinfection, resulting in increased Ct 
values (Figure 4B). All these factors should be validated first to 
make sure that the PMAxx-qPCR assay can accurately 
discriminate infectious ASFV in samples.

In summary, a Triton X-100 assisted PMAxx-qPCR assay was 
developed to discriminate infectious ASFV from inactivated 
ASFV based on changes in Ct value (ΔCt). Under optimum 
conditions, the limit of detection of the PMAxx-qPCR assay was 

TABLE 4 Detection of inactivated ASFV suspended in different matrices by qPCR (Ct(-PMAxx)) and Triton X-100-PMAxx-qPCR (Ct(+PMAxx)) assays. 
Undiluted blood and saliva had later Ct values compared to PBS indicative of qPCR inhibition. These values improved after 4× and 8× dilution in 
PBS. Undiluted blood (1×) could also interfere with the Triton X-100-PMAxx-qPCR assay as an earlier Ct value was observed. Tissue homogenate 
and environmental swab had no effects on both assays.

Matrices PBS Dilution times of swine blood 
with PBS

Dilution times of pig saliva swab 
with PBS

Tissue 
homogenate

Environmental 
swab

Dilution 1 1 4 8 1 4 8 1 1

Ct(-PMAxx) 25.35 ± 0.38 27.42 ± 0.49 25.96 ± 0.62 25.64 ± 0.19 35.81 ± 0.09 29.93 ± 0.50 27.28 ± 0.25 24.01 ± 0.03 23.90 ± 0.01

Ct(+PMAxx) NA 31.83 ± 0.09 NA NA NA NA NA 37.14 ± 0.83 NA

Data was shown as mean ± SD of three independent repeats. NA represents no amplification after 40 cycles.
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2.32log10HAD50/mL of infectious ASFV. Testing different samples 
showed that the PMAxx-qPCR assay was effective in evaluating 
intact ASFV virions after treatment by heat or chemical 
disinfectants within 3 h. However, validation should be performed 
first to determine the ΔCt cutoff value for assessing the presence 
of infectious ASFV in different types of samples.
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