
Kamodo’s model-agnostic
satellite flythrough: Lowering the
utilization barrier for heliophysics
model outputs

Rebecca Ringuette1,2*, Darren De Zeeuw2,3, Lutz Rastaetter2,
Asher Pembroke 4, Oliver Gerland4 and
Katherine Garcia-Sage 2

1ADNET Systems Inc, Bethesda, MD, United States, 2The Community Coordinated Modeling Center,
NASA Goddard Space Flight Center, Greenbelt, MD, United States, 3Catholic University of America,
Washington, D.C., DC, United States, 4Ensemble Government Services LLC, Hyattsville, MD,
United States

Heliophysics model outputs are increasingly accessible, but typically are not

usable by the majority of the community unless directly collaborating with the

relevant model developers. Prohibitive factors include complex file output

formats, cryptic metadata, unspecified and often customized coordinate

systems, and non-linear coordinate grids. Some pockets of progress exist,

giving interfaces to various simulation outputs, but only for a small set of

outputs and typically not with open-source, freely available packages.

Additionally, the increasing array of tools built upon these sporadic

interfaces are typically model-specific. We present Kamodo’s model-

agnostic satellite flythrough capabilities as the solution to the utilization

barrier for heliophysics model outputs. Developed at the Community

Coordinated Modeling Center, these flythrough capabilities are built in

Python upon a network of model-agnostic interfaces developed in

collaboration with model developers, providing interpolation results the

community can trust. Kamodo’s flythrough capabilities present the user with

a growing variety of flythrough tools based upon a rapidly expanding library of

heliophysics model outputs in several domains, currently including a variety of

Ionosphere-Thermosphere-Mesosphere and global magnetosphere model

outputs. Each capability is designed to be easily accessible via simplistic

model-agnostic syntax, with the entire package freely available in the cloud

on Github. Here, we describe the tools developed, include several sample

applications for common science questions, demonstrate interoperability with

selected packages, and summarize ongoing developments.

KEYWORDS

data, heliophysics, python (programming language), simulation, model-data
comparisons, ensemble modeling, flythrough, data functionalization

OPEN ACCESS

EDITED BY

Angeline G. Burrell,
United States Naval Research
Laboratory, United States

REVIEWED BY

Bruce Fritz,
United States Naval Research
Laboratory, United States
Scott England,
Virginia Tech, United States

*CORRESPONDENCE

Rebecca Ringuette,
Rebecca.ringuette@gmail.com

SPECIALTY SECTION

This article was submitted to Space
Physics,
a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 28 July 2022
ACCEPTED 02 November 2022
PUBLISHED 05 December 2022

CITATION

Ringuette R, De Zeeuw D, Rastaetter L,
Pembroke A, Gerland O and
Garcia-Sage K (2022), Kamodo’smodel-
agnostic satellite flythrough: Lowering
the utilization barrier for heliophysics
model outputs.
Front. Astron. Space Sci. 9:1005977.
doi: 10.3389/fspas.2022.1005977

COPYRIGHT

© 2022 Ringuette, De Zeeuw,
Rastaetter, Pembroke, Gerland and
Garcia-Sage. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Original Research
PUBLISHED 05 December 2022
DOI 10.3389/fspas.2022.1005977

https://www.frontiersin.org/articles/10.3389/fspas.2022.1005977/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1005977/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1005977/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1005977/full
https://orcid.org/0000-0002-5718-1303
https://orcid.org/0000-0001-6398-8755
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.1005977&domain=pdf&date_stamp=2022-12-05
mailto:Rebecca.ringuette@gmail.com
https://doi.org/10.3389/fspas.2022.1005977
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.1005977

1 Introduction

Developing a flythrough capability for in-situ observations

simulated by a given model is straightforward. All one must do is

create a routine to read in the given dataset, a routine to

interpolate between points on the given grids, including time,

and some sort of interface that combines them. More advanced

versions of this also account for conversion to a commonly-used

coordinate system, especially if the model output is given on a

coordinate system custom to the model. This single shot

approach is what is currently used at the Community

Coordinated Modeling Center to provide a flythrough

functionality for the various models hosted there. As part of

the resources offered for various simulation outputs, CCMC’s

users can select a sample of satellite tracks to fly through the

simulation output, which are then offered to the public. These

resources have been used to compare observational data to

multiple model outputs (e.g. Ridley et al., 2016).

The satellite tracing for each of the various simulations used

in the example study referenced were done with code custom to

each model. Also, only two options for satellite tracks are

available. Users can request those available through SSCWeb1

or upload their own, which precludes users from implementing

custom trajectories or trajectories from other sources and in

other formats. As the number of hosted models increases at

CCMC, and the number of satellites in orbit drastically increases,

the software providing this capability requires drastic changes in

order to keep up with the increasing variety of user needs.

The model flythrough services offered by CCMC are further

limited by the interface itself. The run-on-request visualization

interface does offer static visualization and data downloads for

flythrough results, but does not offer model-data or multi-model

comparisons2. A second lesser known interface, called the Virtual

Model Repository Tools, offers model-data comparisons, also as

static visualizations, but does not offer the option to download

the data used to create the plots3. Although these capabilities

would be beneficial to offer for all models and satellite

trajectories, a pre-defined interface for this capability such as

the one provided by CCMC is difficult to maintain. The current

library of code also sometimes requires regridding before using

the flythrough in IDL, which is not satisfactory for all

applications. A more flexible solution is required.

Pysat, the Python satellite data analysis toolkit (Stoneback

et al., 2018), offers a partial solution to this problem. The pysat.

models interface provides a model-agnostic interface for two ITM

models4. However, there are no coordinate conversions

incorporated into the interface. This becomes problematic

when comparing the simulated data to observational data in a

different coordinate system, and prohibitive when dealing with

simulation outputs in custom or model-specific coordinate

systems. In its current state, pysat does not have the software

structure to accommodate a large variety of simulation outputs.

Kamodo solves this problem by using a ‘plug-and-play’

interface design as a framework to incorporate any simulation

output desired and in any coordinate system. At its roots,

Kamodo is a Python open-source software package that

provides a powerful array of capabilities for a given

functionalized dataset (Pembroke et al., 2022). The capabilities

include quick, interactive visualizations, easy function

composition, unit conversions, and automatic LaTeX

rendering of syntax all with simplistic syntax5. Applying these

capabilities to simulation outputs provides for the first time a

direct functionalized access method for users to interact with

these data. This direct access abstracts away the custom and often

complex coordinate grids, verified interpolation on these grids,

the large range of data file formats, and the translation of cryptic

variable names to standard representations. In order to enable

this access, a network of model-specific interfaces called ‘model

readers’ was created (Ringuette et al., 2022a). These model

readers were designed to provide identical interfaces to a large

set of simulation outputs (see Figure 1 for an example).

Eleven types of simulation outputs are currently represented

in this network, with numerous additions in process. The

simulation outputs in the ITM domain include the CTIPe

(Coupled Thermosphere Ionosphere Plasmasphere

Electrodynamics model, Codrescu et al., 2008), IRI

(International Reference Ionosphere model, Bilitza 2018),

GITM (Global Ionosphere Thermosphere Model, Ridley et al.,

2006), SWMF (Space Weather Modeling Framework, Toth et al.,

2007, ionosphere electrodynamics portion only), TIE-GCM

(Thermosphere Ionosphere Electrodynamics General

Circulation Model, Qian et al., 2013), SuperDARN (Super

Dual Auroral Radar Network, both the default and equal-area

grids, Thomas and Shepherd, 2018), WACCM-X (Whole

Atmosphere Community Climate Model with thermosphere

and ionosphere extension, Liu et al., 2018), DTM (Drag

Temperature Model, Bruinsma, 2015), WAM-IPE (the

coupled Whole Atmosphere Model and Ionosphere

Plasmasphere Electrodynamics model, Maruyama et al., 2016;

Fang et al., 2022), and AMGeO (Assimilative Mapping of

1 https://sscweb.gsfc.nasa.gov/.

2 See https://ccmc.gsfc.nasa.gov/results/index.php, search for existing
simulation runs, and use one of the timeseries visualization links (e.g.,
“Timeseries in Magnetosphere”) in each run’s page, see https://ccmc.gsfc.
nasa.gov/results/viewrun.php?domain=GM&runnumber=Junying_Yang_
042021_1 for a specific example andclick ononeof the links at the bottom
of the page/

3 See https://ccmc.gsfc.nasa.gov/ungrouped/GM_IM/GM_analysis.php,
and https://ccmc.gsfc.nasa.gov/ungrouped/GM_IM/GM_analysis.php?
Pid=21127&Pt=BO&Ps=Cluster-1 for a specific example.

4 https://pysat.readthedocs.io/en/latest/instruments/pysatModels.html.

5 https://ensemblegovservices.github.io/kamodo-core/.

Frontiers in Astronomy and Space Sciences frontiersin.org02

Ringuette et al. 10.3389/fspas.2022.1005977

https://sscweb.gsfc.nasa.gov/
https://ccmc.gsfc.nasa.gov/results/index.php
https://ccmc.gsfc.nasa.gov/results/viewrun.php?domain=GM&runnumber=Junying_Yang_042021_1
https://ccmc.gsfc.nasa.gov/results/viewrun.php?domain=GM&runnumber=Junying_Yang_042021_1
https://ccmc.gsfc.nasa.gov/results/viewrun.php?domain=GM&runnumber=Junying_Yang_042021_1
https://ccmc.gsfc.nasa.gov/ungrouped/GM_IM/GM_analysis.php
https://ccmc.gsfc.nasa.gov/ungrouped/GM_IM/GM_analysis.php?Pid=21127&Pt=BO&Ps=Cluster-1
https://ccmc.gsfc.nasa.gov/ungrouped/GM_IM/GM_analysis.php?Pid=21127&Pt=BO&Ps=Cluster-1
https://pysat.readthedocs.io/en/latest/instruments/pysatModels.html
https://ensemblegovservices.github.io/kamodo-core/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

Geospace Observations, AMGeO Collaboration 2019) models. The

eleventh simulation output is from the OpenGGCM model (Open

Geospace General Circulation Model, Raeder et al., 2001, global

magnetosphere outputs only). Several simulation outputs are in the

process of being added: ADELPHI (AMPERE-Derive

ELectrodynamic Properties of the High-latitude Ionosphere model,

Robinson et al., 2021), SWMF (global magnetosphere portion), CIMI

(Comprehensive Inner-Magnetosphere Ionosphere model, Fok et al.,

2014), MARBLE (Bard and Dorelli, 2021, development via

collaboration), and GAMERA (Grid Agnostic MHD for Extended

Research Applications, Zhang et al., 2019, development via

collaboration). Many more simulation outputs are planned to be

added in the coming months.

We have built the first model-agnostic flythrough capability in

Kamodo based on this growing network ofmodel readers.We further

add compatibility with numerous satellite trajectories by linking to

repositories providing them (e.g. SSCWeb), and include coordinate

conversions for a wide array of coordinate systems. The code used to

provide the flythrough capability is open source and available at the

official NASA Kamodo repository6. The CCMC collaborates with

Ensemble Consultancy to maintain the core capabilities of Kamodo,

which the described capabilities depend on (also available on

GitHub7).

The remainder of this paper describes the features included

in the flythrough capability, then demonstrates a few science

cases it can be used for. Section 2 provides a description of the

flythrough capability, including the various functions and

features. This is followed by a few sample science applications

in section 3, such as a model-data comparison and an ensemble

modeling example. Also included in the section is an example

workflow demonstrating interoperability of Kamodo with pysat,

the last core PyHC (Python in Heliophysics Community8)

Python package lacking such an example. Some concluding

remarks and an outline of our future plans are given in

section 4. Throughout the text, this paper will use italics when

referring to a function or variable.

2 Kamodo’s flythrough description

Kamodo’s in-situ flythrough capability is built upon a

network of model-agnostic model interfaces. These scripts

provide direct access to the chosen simulation outputs with

simplistic syntax that remains the same regardless of the

simulation data chosen (see Figure 1 for an example). In

addition to the features already described, the model readers

perform linear interpolation in all time+spatial dimensions

FIGURE 1
An example of a model reader interface in Kamodo. After an import statement, the user retrieves the model reader for the desired model with
the first command, and then functionalizes the data with the second command of the same block. The only user-supplied information needed is
which model is desired and the location of the data. The output shows the functionalized data for the variables found in the files indicated. Once the
data is functionalized, all of the capabilities of Kamodo are available through simple commands. See Pembroke et al., 2022 and Ringuette et al.,
2022a for more information.

6 https://github.com/nasa/Kamodo.

7 https://github.com/EnsembleGovServices/kamodo-core. 8 https://heliopython.org/.

Frontiers in Astronomy and Space Sciences frontiersin.org03

Ringuette et al. 10.3389/fspas.2022.1005977

https://github.com/nasa/Kamodo
https://github.com/EnsembleGovServices/kamodo-core
https://heliopython.org/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

between data files and align each simulation output with a

coordinate system defined by either SpacePy or AstroPy

(SpacePy: Morley et al., 2011, AstroPy: AstroPy Collaboration

et al., 2013 and AstroPy Collaboration et al., 2018). These

uniform features allowed for a straightforward software design

in the flythrough scripts.

The base function that is used for all variations of Kamodo’s

flythrough capability isModelFlythrough. This function takes the

trajectory as four one-dimensional arrays of time and spatial

positions and ‘flies’ the trajectory in the given coordinate system

through the chosen model data in a sequence of five steps. The

required inputs to the function include the trajectory arrays,

coordinate system information, the chosen model and variable

names, and the directory containing the model data. After some

initial checks, the ModelFlythrough function (1) retrieves the

model reader for the chosen model without executing the model

reader script. The function then (2) compares the time values in

the trajectory with the time ranges associated with the set of files

in the given directory, and discards all times and their associated

positions not covered by the chosen model data. The given

positions are then (3) converted to the coordinate system for

the given model. Next, (4) the retrieved model reader uses

Kamodo to functionalize the chosen variable data for each of

the model output files associated with a trajectory position, and

the value of each requested variable is calculated via interpolation

at the given trajectory positions. The calculated values are then

(5) returned in a Python dictionary with the trajectory times and

positions in the original coordinate system. Users also have the

option of saving the trajectory and the corresponding variable

calculations in one of three output file formats, which are all

compatible with various complementary routines included in the

flythrough software, such as those used in the examples in

section 3. Additional output format options are planned for

enhanced interoperability with other CCMC services, including

CAMEL (Rastaetter et al., 2019).

The logic contained in the ModelFlythrough function is

model-agnostic both in syntax and in software design as a

result of the model-agnostic syntax of the model reader

library. However, the various model outputs are based on

quite different coordinate systems, some specific to the model,

which presented a challenge. Additionally, users desired more

flexibility on the trajectory input options and in the

automatically-produced publication-quality visualization

capabilities, so we built a small library of functions to

accommodate those requests. Our current solutions to these

challenges are described in the next three subsections.

2.1 Coordinate systems

Satellite trajectories are often not available in the same coordinate

system as the simulation outputs. Similarly, simulation outputs are

often in varying coordinate systems, making comparisons across

different models difficult. For example, the AMGeO empirical

model produces output in the solar magnetic coordinate system at

a constant altitude, while the TIE-GCM physics-based model output

instead uses geodetic coordinates with pressure level as the vertical

coordinate. Directly comparing data from the two models without

converting the coordinates is difficult at best due to the different

rotating frames and different vertical scales of the two coordinate

systems. (Note that the corresponding altitude for a given pressure

level changes with location and time.) Kamodo’s flythrough simplifies

this complex problem by incorporating the coordinate systems

defined in AstroPy and SpacePy and the coordinate conversion

functions in those packages. Model-specific coordinate conversions

are handled individually within a standard framework.

Standard coordinate conversions are implemented by calling the

ConvertCoord function automatically during step 3 from the utils.py

script in the kamodo_ccmc/flythrough directory on GitHub. This

function is a simple wrapper for the coordinate conversion

capabilities in the AstroPy and SpacePy packages, and is written

both for automatic execution by the flythrough functions and for

direct user interaction. The input variables include the one

dimensional arrays for the time and spatial coordinate values, and

a few strings for the user to indicate the input and output coordinate

systems. ConvertCoord determines which software package the input

and output coordinate systems belong to, creates the appropriate

coordinate object using the input data, performs the coordinate

conversion, and returns the new coordinate values in one

dimensional arrays (see the Trajectory_Coords_Plots notebook for

more details9 and Figure 2 below for a concept map). However, the

function can only be used when both the input and output coordinate

systems are defined in one of the two packages mentioned.

Some simulation outputs are given in a coordinate system

specific to the model and not defined in either the AstroPy or

SpacePy software packages. In those cases, we rely on custom

coordinate conversion functions in the model readers to link

between a coordinate system defined in either package and the

coordinate system defined in the model. Current examples of this

work can be found in the CTIPe and TIE-GCMmodel readers for

conversions between pressure level and altitude. This approach

uses Kamodo’s function composition capabilities, and will soon

be applied to models with more complex coordinate systems,

such as those based on pitch angle and energy (Ringuette et al.,

2022a). By linking the model-specific coordinate system to a

coordinate system defined in one of the linked packages, the

flythrough functionality will then be able to convert to any

desired coordinate system. Collaborations with model

developers on this challenge have begun for a few models.

9 https://github.com/nasa/Kamodo/tree/master/docs/notebooks.

Frontiers in Astronomy and Space Sciences frontiersin.org04

Ringuette et al. 10.3389/fspas.2022.1005977

https://github.com/nasa/Kamodo/tree/master/docs/notebooks
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

2.2 Input trajectories

During the initial development, we identified five possible

types of desired input methods for satellite trajectories: one from

satellite ephemerides obtained from SSCWeb, one from a file of

two-line elements (TLEs), one from a file of previously obtained

satellite positions, one from a variable defined in the user’s

Python session memory, and one from a sample trajectory

generator. To avoid duplicated code across the five

possibilities, we chose the session memory example as the

simplest example and designed the base functionality

accordingly (the ModelFlythrough function described above).

The remaining flythrough functions call the various specific

trajectory functions and then call the ModelFlythrough

function to perform the flythrough.

The five flythrough functions are the RealFlight, TLEFlight,

FakeFlight, MyFlight, and ModelFlythrough functions (see

Table 1). As mentioned above, the ModelFlythrough function

takes the given trajectory, provided as four one-dimensional

arrays, and flies it through the chosen simulation output. The

RealFlight function calls the SatelliteTrajectory function to

retrieve a real satellite trajectory in the form of four one-

dimensional arrays from the SSCWeb10 through an existing

HAPI interface for this resource (Weigel et al., 2021). The

function then calls the ModelFlythrough function to fly that

trajectory through the data. An alternative option is provided

with the TLEFlight function, which calls the TLETrajectory

function to convert TLEs into a trajectory of the same

structure as above using the SGP4 propagator (Simplified

General Perturbations11: Vallado and Crawford 2008). The

four one-dimensional arrays containing the trajectory

information are then fed to the ModelFlythrough function as

before. Similarly, theMyFlight function allows the user to provide

the trajectory through a simply structured file either in comma-

separated, tab-separated, or netCDF4 format options, and then

callsModelFlythrough. This function was specifically designed to

easily fly a previously saved trajectory through a different set of

model data to simplify comparisons across multiple models and

model outputs. This capability has proved especially useful for

users desiring to use a real satellite trajectory previously used but

finding themselves without internet access.

Finally, the FakeFlight function calls the SampleTrajectory

function, which constructs a sample satellite trajectory based

on a variety of input parameters, and then flies that trajectory

through the simulation output using the ModelFlythrough

function. The simplest call to the SampleTrajectory function

only requires start and end times in UTC to create a synthetic

trajectory in geodetic spherical coordinates similar in nature

FIGURE 2
Concept map for the ConvertCoords function. Blue boxes indicate conditional arguments, yellow boxes show tasks executed depending upon
the evaluation result of the preceding conditional argument. Error catching logic is not included in the figure for simplicity. The inputs to the
argument include one dimensional arrays of the time and spatial coordinates (4 1D arrays), and four strings indicating the input and output coordinate
systems andwhether each is Cartesian or spherical. The values returned are one dimensional arrays of the spatial coordinates (3 1D arrays) and a
list of strings containing the units of the output coordinates. Model-specific coordinates are handled external to this function.

10 https://sscweb.gsfc.nasa.gov/.
11 https://pypi.org/project/sgp4/,https://help.agi.com/stk/index.htm#stk/

vehSat_orbitProp_msgp4.htm.

Frontiers in Astronomy and Space Sciences frontiersin.org05

Ringuette et al. 10.3389/fspas.2022.1005977

https://sscweb.gsfc.nasa.gov/
https://pypi.org/project/sgp4/
https://help.agi.com/stk/index.htm
https://help.agi.com/stk/index.htm
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

to a low earth orbit (see Figure 3). Various default values can

be adjusted in the function call to change the longitudinal

precession rate per orbit, the maximum and minimum

latitudes, the maximum and minimum initial heights, the

decay rate of the height, and the time cadence of the

returned positions. The trajectory produced by the

SampleTrajectory function is not meant to fully simulate

any actual satellite orbit, but to simply give users a

reasonable starting point if no actual trajectory is decided

upon yet. The three trajectory functions, SatelliteTrajectory,

TLETrajectory, and SampleTrajectory, may also be called

independent of the other functions for additional uses, such

as retrieving and modifying a real satellite trajectory before

flying it through a set of model data, or visualizing a trajectory

created from TLEs. Because these five flythrough functions are

based on a network of readers with model-agnostic syntax, the

flythrough function syntaxes are also model-agnostic.

An example of Kamodo’s RealFlight function is presented in

Figure 4. The first block shows the two required import

statements followed by the definition of various input values.

The input values related to the satellite should be determined

using the SSCWeb website9. The parameters related to the

simulation output data, such as the time values in UTC

timestamps (start_utcts and end_utcts, the number of seconds

since 1 January 1970 at midnight UTC) and the variable names,

can be obtained using the various functions demonstrated in the

SF_IntroFunctions notebook8. The second block shows the

syntax of the RealFlight function, which is notably identical

regardless of the model chosen. The final block shows a

simple method to functionalize the object returned by the

TABLE 1 Flythrough Functions. The function names are followed by the minimum syntax required for each of the four flythrough functions. The
source of each of the trajectories is indicated in the last column. SatelliteTrajectory, TLETrajectory, and SampleTrajectory are functions available
through the flythrough software. See text for a basic description of each, and the example notebooks and documentation for more information8.

Function name Minimum syntax required Trajectory source

ModelFlythrough ModelFlythrough (model, file_dir, variable_list, sat_time, c1, c2, c3, coord_sys) Session memory

RealFlight RealFlight (dataset, start, stop, model, file_dir, variable_list) SSCWeb via SatelliteTrajectory

TLEFlight TLEFlight (tle_file, start, stop, time_cadence, model, file_dir, variable_list) Text file containing TLEs via TLETrajectory

FakeFlight FakeFlight (start_time, stop_time, model, file_dir, variable_list) SampleTrajectory

MyFlight MyFlight (traj_file, model, file_dir, variable_list) File previously produced by a flythrough function

FIGURE 3
The default trajectory produced by the SampleTrajectory function. Together, the plots show the position of the imaginary satellite in geodetic
spherical coordinates (longitude, latitude, and altitude) for a 24-h period. Note the longitude begins at -180 but ends slightly above that value due to
the precession in longitude, which can be chosen by the user. The default latitude range is centered on the equator as shown, but any continuous
range can be chosen. By default, the altitude varies in each orbit and degrades slowly over time. The rate of degradation can also be adjusted via
an input parameter. See documentation for more details9.

Frontiers in Astronomy and Space Sciences frontiersin.org06

Ringuette et al. 10.3389/fspas.2022.1005977

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

function call. Note that the TIE-GCM model outputs use

pressure level as the vertical coordinate, but no additional

commands or parameters are needed as the conversions

between pressure level and altitude (or radius) are handled

internally and automatically.

Regardless of the flythrough function chosen, the object

returned by each function call is identical in structure.

Consequently, the Functionalize_SFResults function can be

used to functionalize any of these objects. Once the returned

object is functionalized, all of the previously described core

capabilities of Kamodo are available to the user, including

simplistic access to interactive plotting (see the bottom section

of Figure 7 below).

2.3 Custom visualizations

If the user defines the name of the output file in any of the

flythrough function calls, then the resulting data is written to the

named file and two custom visualizations are automatically

generated for each variable (see Figures 5, 6 below). Both

visualizations are designed using Plotly (Plotly Technologies

Inc, 2015), and are produced by calling the SatPlot4D

function with different parameters (see the

SF_Traj_Coords_Plots notebook for details8).

Figure 5 shows the full interactive spatial representation of the

entire chosen trajectory in GSE coordinates. The colors indicate the

total electron content (TEC) at the given location and time, as

indicated by the colorbar at right. Users can pan, zoom, and hover

over the image to inspect more closely. All interactivity is saved to an

html file. Figure 6 shows the same information plotted as four time

series. Zooming into one of the four plot sections results in the same

zooming for the other three plots. Similar versions of these plots are

saved on the NASA Kamodo repository8. Several options are

available, especially for plots similar to Figure 5, and are

explained in the referenced notebook. For additional visualization

capabilities, see Ringuette et al., 2022a.

3 Example science workflows

Kamodo’s model-agnostic flythrough capability reduces

data-model, model-model comparisons, and even ensemble

modeling analysis to a few lines of code, regardless of the

FIGURE 4
Example notebook demonstrating the model-agnostic syntax of the RealFlight flythrough function. The first block (A) shows the two required
import statements and chosen variable values. The datetime package is imported to deal with the generation of the UTC timestamps. The second
block (B) presents the model-agnostic syntax of the function call, and the last block (C) shows a simple way to functionalize the Python object
returned by the flythrough function.

Frontiers in Astronomy and Space Sciences frontiersin.org07

Ringuette et al. 10.3389/fspas.2022.1005977

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

model or trajectory desired. Examples of these applications

are given in the following subsections, followed by an

example of interoperability of Kamodo with pysat. Links to

examples of interoperability of Kamodo with the remaining

PyHC core packages are also given in this section. In addition

to being used in the example workflows, the flythrough

capability is being used from the command line to

incorporate physics-based models into GEODYN II, an

orbit propagator written in FORTRAN (Luthcke et al.,

2006; Garcia-Sage et al., 2021).

3.1 Model-data comparison workflow

Simplistic data-model comparisons using in-situ data are

now possible with a few lines of code for an expanding range of

models and a wide range of trajectories. Combining the

RealFlight function demonstrated in Figure 4 with the

CDAWeb12 interface in Kamodo results in the simple

workflow displayed in Figure 7. The top block in the figure

uses the syntax taken from Figure 4 to fly the chosen satellite

through the model data produced by the TIE-GCM model. The

time range of the model data was chosen to cover the time range

of the desired observational data. We note that any of the

flythrough functions can be interchanged in place of the

RealFlight function shown in the example without changing

the syntax of the remaining blocks due to the identical data

structures returned.

In this case, the observational dataset is the ion temperature

observed by the Coupled Ion-Neutral Dynamics Investigations

(CINDI) mission (Coley et al., 2010). Retrieval of the data is

demonstrated in the second block. The parameter values shown in

that block canbe determined through theCDAWebwebsite.Once the

data is retrieved, it can be easily functionalized using the

Functionalize_TimeSeries function as shown in the same block.

Note that this function can only be used to functionalize one

dimensional time series data. Other methods are available to

functionalize higher dimensionality data (see Kamodo

documentation4). Once both the simulated and observed data are

functionalized, all of the core capabilities available through Kamodo

are easily accessible, including the fully interactive plotting shown in

the bottom block. We note the two datasets are plotted using their

FIGURE 5
An example of a fully interactive 3D plot. In this case, the total electron content (TEC) is plotted for the entirety of a given satellite trajectory. TEC
values are indicated by the colorbar at right, and the model source and coordinate system are printed in the top left corner. The purple box contains
the coordinate information in GSE coordinates, both in Cartesian and spherical, the TEC value, also indicated by the color of the box, and the date and
time in UTC for the data point hovered over by the mouse. The symbols on the top right are the typical buttons provided by Plotly. The plot is
saved as a fully interactive html file. An example is included on the NASA Kamodo repository5.

12 https://cdaweb.gsfc.nasa.gov/index.html.

Frontiers in Astronomy and Space Sciences frontiersin.org08

Ringuette et al. 10.3389/fspas.2022.1005977

https://cdaweb.gsfc.nasa.gov/index.html
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

original time resolutions - every minute for the TIE-GCM simulation

output and every second for the CINDI data. The ‘DIFF’ dataset

generated by function composition in the second block is calculated

and plotted using the finer time resolution of the CINDI dataset.

Additional observational and simulated datasets can be added and

functionalized using the same syntax to extend the comparison.

3.2 Ensemblemodeling exampleworkflow

Expanding the model-data comparison to include multiple

models leads to another science use case called ensemble modeling.

(We use the term ‘ensemble modeling’ in the same sense as in

hurricane track prediction, which means to predict a given variable

based on the distribution of predictions given by various models.) In

this use case, the desired flythrough is called once for each simulation

output per desired trajectory. Once the outputs are functionalized,

function composition can be used to combine the results in a weighted

average, even if the weights depend on another parameter.

Figure 8 below demonstrates a simple example of such a

workflow. Two simulation outputs from different models were

prepared for the same time range. For simplicity, the example uses

the same trajectory function as in Figure 4 to fly the C/NOFS

trajectory through both simulation outputs (blocks 1 and 2). The

next block shows how to pull the results from eachRealFlight function

call into the same Kamodo object. This block also shows how to use

the function composition capability in Kamodo-core to combine the

results from each into a custom average calculation. Plotting any or all

of the functions is similarly simplistic as in Figure 7, but is not shown

for brevity. Thisworkflow can be easily expanded to include additional

simulation outputs, more complex functions, unit conversions, and

other useful features.

3.3 Interoperable workflows

Kamodo is now one of the core packages in the PyHC

group and is also interoperable with all of the other core

packages. An example workflow of analyzing MMS data

(Polson et al., 202213) demonstrates the interoperability

FIGURE 6
An example of a fully interactive 1D plot. As in Figure 5, the total electron content (TEC) is plotted for the entirety of a given satellite trajectory at
top (A), followed by the trajectory parameters in Cartesian coordinates in the remaining three plots (B–D). The model source and coordinate system
are printed in the top left corner. Hovering over a value in any of the plots gives a box containing the value and the date and time in UTC. The symbols
on the top right are the typical buttons provided by Plotly. The plot is saved as a fully interactive html file. An example is included on the NASA
Kamodo repository5.

13 https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-
9c94-c4a9c4e8e54d/project/PyHC-Paper-101b9646-3fd0-4978-a48e-
a4f3e708a0ac/%2FMaking_an_Executable_Paper_with_the_Python_in_
Heliophysics_Community_to_Foster_ Open_Science_and_Improve_
Reproducibility_ipynb.

Frontiers in Astronomy and Space Sciences frontiersin.org09

Ringuette et al. 10.3389/fspas.2022.1005977

https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-101b9646-3fd0-4978-a48e-a4f3e708a0ac/%2FMaking_an_Executable_Paper_with_the_Python_in_Heliophysics_Community_to_Foster_Open_Science_and_Improve_Reproducibility_
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-101b9646-3fd0-4978-a48e-a4f3e708a0ac/%2FMaking_an_Executable_Paper_with_the_Python_in_Heliophysics_Community_to_Foster_Open_Science_and_Improve_Reproducibility_
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-101b9646-3fd0-4978-a48e-a4f3e708a0ac/%2FMaking_an_Executable_Paper_with_the_Python_in_Heliophysics_Community_to_Foster_Open_Science_and_Improve_Reproducibility_
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-101b9646-3fd0-4978-a48e-a4f3e708a0ac/%2FMaking_an_Executable_Paper_with_the_Python_in_Heliophysics_Community_to_Foster_Open_Science_and_Improve_Reproducibility_
https://deepnote.com/workspace/shawn-polson-c095a0fb-f02d-416d-9c94-c4a9c4e8e54d/project/PyHC-Paper-101b9646-3fd0-4978-a48e-a4f3e708a0ac/%2FMaking_an_Executable_Paper_with_the_Python_in_Heliophysics_Community_to_Foster_Open_Science_and_Improve_Reproducibility_
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

FIGURE 7
Example of model-data comparison. The first block (A) uses Kamodo’s RealFlight function to fly the chosen satellite trajectory through the
chosen simulation output. The second block (B) retrieves the ion temperature data from the same satellite and adds it to the previously created
kamodo_object variable. The difference between the two datasets is easily calculated via function composition. A fully interactive plot showing the
three variables is easily created in the third block (C).

Frontiers in Astronomy and Space Sciences frontiersin.org10

Ringuette et al. 10.3389/fspas.2022.1005977

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

of Kamodo with several other Python packages, including

SpacePy, PlasmaPy, and pySPEDAS14 (PlasmaPy

Community 2022). Another workflow shown at the

2022 PyHC Summer School demonstrated using SunPy

and Kamodo together15. Finally, an interface

exists between the pysat and kamodo packages16, but no

workflow using the two packages is known to exist.

In this section, we feature a workflow combining pysat and

Kamodo to compare simulated and observed data (Figure 9). The

workflow presented in Figure 9 is identical to the workflow presented

in section 3.1, but instead uses pysat to retrieve the desired data. We

adapted code from the pysat example notebooks given at the

2022 PyHC Summer School to implement pysat in this manner.

One advantage to this choice is to use the data filtering in pysat to

clean the observed data before comparing it with the simulated

data, which results in a better comparison to the simulated data.

Comparing the final plots at the bottom of Figures 7, 9

shows the differences between the two analysis methods,

especially the reduction and removal of several spikes in

the data in Figure 9 as compared to Figure 7 (orange in

both plots). As noted in the model-data comparison

presented in section 3.1, the simulated data is plotted using

its original time cadence of every minute, and the CINDI data

and ‘DIFF’ function are plotted every second, with identical

timestamps as in Figure 7. The exception to this 17results from

the data removed by the cleaning process. Figure 10 shows the

FIGURE 8
Example of ensemble modeling workflow. The first two blocks (A and B) use Kamodo’s RealFlight function to fly the chosen satellite trajectory
through two simulation outputs. In the third block (C), the functions are collected into a single Kamodo object for further computation via function
composition.

14 https://pyspedas.readthedocs.io/en/latest/.

15 https://github.com/heliophysicsPy/summer-school/tree/main/
kamodo-tutorial.

16 https://pypi.org/project/pysat-kamodo/. 17 https://github.com/heliophysicsPy/summer-school.

Frontiers in Astronomy and Space Sciences frontiersin.org11

Ringuette et al. 10.3389/fspas.2022.1005977

https://pyspedas.readthedocs.io/en/latest/
https://github.com/heliophysicsPy/summer-school/tree/main/kamodo-tutorial
https://github.com/heliophysicsPy/summer-school/tree/main/kamodo-tutorial
https://pypi.org/project/pysat-kamodo/
https://github.com/heliophysicsPy/summer-school
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

FIGURE 9
Example of model-data comparison using pysat and Kamodo. The first block (A) is identical to the first block of Figure 7. The second block (B)
proceeds to use pysat to retrieve the same data as in Figure 7, but applies the data cleaning routines for the data implemented in pysat. The next block
(C) converts the times to UTC timestamps, functionalizes the data, and adds the functionalized data to the existing Kamodo object. The output of the
final block (D) is similar to that of Figure 7, but now contains the cleaned observational data instead of the raw data.

Frontiers in Astronomy and Space Sciences frontiersin.org12

Ringuette et al. 10.3389/fspas.2022.1005977

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

data gaps in the cleaned CINDI data in a zoomed-in section of

the graph centered on the spike just before 1600 UTC on

18 March 2015 as compared to the original data retrieved via

Kamodo’s CDAWeb HAPI interface. These data gaps are

propagated to the DIFF function automatically as part of

the function composition.

The simulated data and the chosen observational dataset in

this workflow can both be changed to the user’s specific goal,

along with the dates and the analysis function. In the future, we

are eager to use pysat’s developing interface to orbit propagators

as input to Kamodo’s flythrough functions, and to use Kamodo to

incorporate physics-based models into those orbit propagators.

4 Summary

Kamodo’s satellite flythrough capability decreases the

utilization barrier for heliophysics model outputs by

providing a model-agnostic utility for the entire

community. As the library of models implemented in

Kamodo expands, so will the capability of the flythrough

tools. Our first focus has been to add a variety of

ionosphere-thermosphere-mesosphere simulation outputs to

Kamodo in support of the upcoming Geospace Dynamics

Constellation mission. We are continuing to add more

simulation outputs to Kamodo in this domain, and are now

expanding our efforts into the geospace domain. Expanding to

include geospace model outputs requires a new approach to

coordinate conversions due to the often model-specific

coordinate systems involved (see Ringuette et al., 2022a).

However, this is easily incorporated into the current

software architecture by using the function composition

capability inherent in Kamodo. Further expansion into

heliosphere and solar physics model outputs is also

planned. We intend for Kamodo to become the new user

interface for interacting with all model outputs on the CCMC

website, including the Instant Run, Runs-on-Request, and

real-time model output visualization interfaces.

Accomplishing this goal will require increasing the

capability well beyond what is currently offered. Kamodo’s

continuing development as open-source software will also

deliver the same powerful solution for users on their own

computers and on the cloud.

Additional capabilities based on the flythrough are also in

development. For example, we have developed a satellite

constellation mission planning tool in support of the

Geospace Dynamics Constellation mission (Pfaff, 2016)

that is now available on GitHub as part of the Kamodo

CCMC software package for user testing. To increase

accessibility of model outputs, we are beginning work on

adding HAPI as a layer on top of the RealFlight and

TLEFlight flythrough functions and on top of the model

reader interfaces. This will enable the community to more

easily access and download model outputs by only serving the

desired portions of the data instead of serving the often

prohibitively large files. We are also working to improve

CCMC’s Kamodo documentation, especially including

sample workflows similar to the ones included in this work.

Simple additions planned in the short-term include code

refactoring to generalize the treatment of model-specific

coordinate conversions, and additional sample workflows.

Long term development goals include a line of sight

FIGURE 10
Comparison of themodel-data comparison workflow results using only Kamodo (left, (A) and pysat+Kamodo (right, (B). The data shown in both
plots are approximately 4 min sections of the plots shown in Figure 7 and Figure 9 (less than 1/20 of an orbit). The axes in each plot are nearly
identical, with the TIE-GCM dataset shown in blue (nearly horizontal lines near 1000 K), the CINDI dataset represented in orange, and the DIFF
calculated function in green. The time cadences and values in each plot are identical, except for the data gaps in the right plot. These gaps result
from the data cleaning routines developed for the CINDI data in pysat, and are automatically propagated to the DIFF function in the function
composition performed using Kamodo.

Frontiers in Astronomy and Space Sciences frontiersin.org13

Ringuette et al. 10.3389/fspas.2022.1005977

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

calculation tool and a simulated imagery tool to expand

beyond in-situ applications, cloud capabilities, nowcasting

with continuous runs, satellite drag modeling18, and

reduced code and code-free interfaces to model outputs

(see Figure 6, Figure 7 of Ringuette et al., 2022b).

Building these capabilities on top of Kamodo provides a

powerful foundation for a large range of exciting capabilities,

especially for the complex case of simulation outputs. Since

Kamodo works for any data, our work can be easily extended

into other areas, even outside of the science and research

communities entirely. Applying Kamodo to heliophysics

simulated and observed data is beginning to lower the

utilization barrier for the entire community. Collaborators are

welcome!

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: The simulated datasets analyzed for this study

can be found in the Kamodo Demo directory at CCMC (https://

ccmc.gsfc.nasa.gov/RoR_WWW/output_files/KAMODO_DEMO/).

Additional model outputs can be accessed through the CCMC

(https://ccmc.gsfc.nasa.gov/). The observational dataset from the

CINDI instrument analyzed in this work is available through

NASA SPDF’s CDAWeb HAPI service (https://cdaweb.gsfc.nasa.

gov/index.html).

Author contributions

RR wrote the text of the article, developed and tested the

flythrough functions described, and generated figures. DD

developed the visualization codes and coordinate

conversion codes to support the flythrough functions. LR

directed the development of the flythrough functions. DD

and LR assisted in testing of the software and feedback on its

functionality during development. AP and OG supported

the required functionality by developing and maintaining

the Kamodo-Core software package that the CCMC-

Kamodo package depends on. KG-S assisted in the

development of the TLETrajectory function. LR,

DD, OG, and KG-S also provided feedback on the article

content.

Funding

RR’s work was funded by the CCMC through ADNET

Systems, Inc. DD‘s work was funded by the CCMC through

the Catholic University of America. LR‘s and KG-S‘s work

was funded directly by the CCMC. AP and OG’s work were

funded via a NASA SBIR Phase 2: Space Weather R2O/O2R

Technology Development grant titled “Kamodo

Containerized Space Weather Models” (Contract

#80NSSC20C0290) awarded to Ensemble Government

Services, LLC. The funder was not involved in the study

design, collection, analysis, interpretation of data, the

writing of this article or the decision to submit it for

publication.

Acknowledgments

RR acknowledges Russell Stoneback for helpful

comments on the pysat-Kamodo notebooks. This work

uses simulation results from the Community Coordinated

Modeling Center at Goddard Space Flight Center. The

CCMC is a multi-agency partnership between NASA,

AFMC, AFOSR, AFRL, AFWA, NOAA, NSF, and ONR.

We also acknowledge the use of CINDI data from the

C/NOFS mission, which was provided by the CINDI team

at the University of Texas at Dallas, made available through

NASA SPDF’s CDAWeb HAPI service. The CINDI team was

supported by NASA grant NAS5-01068. See https://hpde.io/

NASA/NumericalData/CNOFS/CINDI/IVM/PT0.5S.html.

Conflict of interest

Author RR was employed by ADNET Systems Inc., a

contractor for NASA GSFC. Authors AP and OG were

employed by Ensemble Government Services.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

18 See http://alpha.drag.ensemblespacelabs.com:1234/, and https://
www.youtube.com/watch?v=vpJgtAMCVvc&ab_channel=Ensemble
for a tutorial video.

Frontiers in Astronomy and Space Sciences frontiersin.org14

Ringuette et al. 10.3389/fspas.2022.1005977

https://ccmc.gsfc.nasa.gov/RoR_WWW/output_files/KAMODO_DEMO/
https://ccmc.gsfc.nasa.gov/RoR_WWW/output_files/KAMODO_DEMO/
https://ccmc.gsfc.nasa.gov/
https://cdaweb.gsfc.nasa.gov/index.html
https://cdaweb.gsfc.nasa.gov/index.html
https://hpde.io/NASA/NumericalData/CNOFS/CINDI/IVM/PT0.5S.html
https://hpde.io/NASA/NumericalData/CNOFS/CINDI/IVM/PT0.5S.html
http://alpha.drag.ensemblespacelabs.com:1234/
https://www.youtube.com/watch?v=vpJgtAMCVvc&ab_channel=Ensemble
https://www.youtube.com/watch?v=vpJgtAMCVvc&ab_channel=Ensemble
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

References

AMGeO Collaboration (2019). A collaborative data science platform for the
geospace community: Assimilative mapping of geospace observations (AMGeO)
v1.0.0. Zenodo. doi:10.5281/zenodo.3564914

AstroPy Collaboration, Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E.,
Aldcroft, T., Davis, M., et al. (2013). Astropy: A community Python package for
astronomy. Astron. Astrophys. 558, A33. doi:10.1051/0004-6361/201322068

AstroPy Collaboration, Sipocz, B. M., Gunther, H. M., Lim, P. L., Crawford, S. M.,
Conseil, S., Shupe, D. L., et al. (2018). The astropy project: Building an open-science
project and status of the v2.0 core package.Astron. J. 156 (3), 123. doi:10.3847/1538-
3881/aabc4f

Bard, C., and Dorellli, J. C. (2021). Magnetotail reconnection asymmetries in an
ion-scale, Earth-like magnetosphere. Ann. Geophys. 39, 991–1003. doi:10.5194/
angeo-39-991-2021

Bilitza, D. (2018). IRI the international standard for the ionosphere. Adv. Radio
Sci. 16, 1–11. doi:10.5194/ars-16-1-2018

Bruinsma, S. (2015). The DTM-2013 thermosphere model. J. Space Weather
Space Clim. 5, A1. doi:10.1051/swsc/2015001

Codrescu, M. V., Fuller-Rowell, T. J., Munteanu, V., Minter, C. F., and Millward,
G. H. (2008). Validation of the coupled thermosphere ionosphere plasmasphere
electrodynamics model: CTIPe-mass spectrometer incoherent scatter temperature
comparison. Space 6, S09005. doi:10.1029/2007SW000364

Coley, W. R., Heelis, R. A., Hairston, M. R., Earle, G. D., Perdue, M. D., Power, R.
A., et al. (2010). Ion temperature and density relationships measured by CINDI
from the C/NOFS spacecraft during solar minimum. J. Geophys. Res. 115, A02313.
doi:10.1029/2009JA014665

Fang, T.-W., Kubaryk, A., Goldstein, D., Li, Z., Fuller-Rowell, T., Millward, G.,
et al. (2022). Space weather environment during the spaceX starlink satellite loss in
february 2022. Space Weather 20, e2022SW003193. doi:10.1029/2022SW003193

Fok, M.-C., Buzulukova, N. Y., Chen, S.-H., Glocer, A., Nagai, T., Valek, P., et al.
(2014). The comprehensive inner magnetosphere-ionosphere model. J. Geophys.
Res. Space Physics 119, 7522–7540. doi:10.1002/2014JA020239

Garcia-Sage, K., Waldron, Z., Rowlands, D., Lemoine, F., Sutton, E., Thayer, J.,
et al. (2021). Expanding and testing orbit propagation capabilities using CCMC-
hosted models. Washington, DC: American Geophysical Union. Presented at the
AGU Fall Meeting 2021, 13-17 December 2021, id. SA31B-04. Available at: https://
ui.adsabs.harvard.edu/abs/2021AGUFMSA31B.04G/abstract.

Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., et al.
(2018). Development and validation of the whole Atmosphere
community climate model with thermosphere and ionosphere extension
(WACCM-X 2.0). J. Adv. Model. Earth Syst. 10, 381–402. doi:10.1002/
2017MS001232

Luthcke, S. B., Rowlands, D. D., Lemoine, F. G., Klosko, S. M., Chinn, D., and
McCarthy, J. J. (2006). Monthly spherical harmonic gravity field solutions
determined from GRACE inter-satellite range-rate data alone. Geophys. Res.
Lett. 33, L02402. doi:10.1029/2005GL024846

Maruyama, N., Sun, Y.-Y., Richards, P. G., Middlecoff, J., Fang, T.-W., Fuller-
Rowell, T. J., et al. (2016). A new source of the midlatitude ionospheric peak density
structure revealed by a new Ionosphere-Plasmasphere model.Geophys. Res. Lett. 43.
doi:10.1002/2015GL067312

Morley, S. K., Welling, D. T., Koller, J., Larsen, B. A., Henderson, M. G., Niehof, J.,
et al. (2011). “SpacePy - a python-based library of tools for the Space sciences,” in
Proceedings of the 9th Python in Science Conference, Austin, TX, July 11–17,
2010, p. 67–72. Editors S. vad der Walt and J. Millman. doi:10.25080/Majora-
92bf1922-00c

Pembroke, A., De Zeeuw, D., Rastaetter, L., Ringuette, R., Gerland, O., Patel, D.,
et al. (2022). Kamodo: A functional api for space weather models and data. J. Open
Source Softw. 7, 4053. doi:10.21105/joss.04053

Pfaff, R. F., Jr. (2016). An overview of the scientific and space weather motivation
for the “Notional” geospace dynamics constellation mission. American Geophysical

Union, Fall General Assembly. Available at: https://ui.adsabs.harvard.edu/abs/
2016AGUFMSA23C..01P

PlasmaPy Community (2022). PlasmaPy, version 0.8.1. Zenodo. doi:10.5281/
zenodo.6774350

Plotly Technologies Inc (2015). Collaborative data science. Montréal, QC: Plotly
Technologies Inc. https://plot.ly.

Polson, S., Ringuette, R., Rastaetter, L., Grimes, E., Niehof, J., Murphy, N.
A., et al. (2022). Making an executable paper with the python in heliophysics
community to foster open science and improve reproducibility. Front.
Astron. Under review.

Qian, L., Burns, A., Emery, B., Foster, B., Lu, G., Maute, A., et al. (2013).
The ncar TIE-GCM: A community model of the coupled thermosphere/
ionosphere system. Geophys. Monogr. Ser. 201, 73–83. doi:10.1029/
2012GM001297

Raeder, J., Wang, Y. L., Fuller-Rowell, T. J., and Singer, H. J. (2001). Global
simulation of space weather effects of the Bastille Day storm. Sol. Phys. 204, 325.
doi:10.1023/A:1014228230714

Rastaetter, L., Wiegand, C., Mullinix, R., and MacNiece, P. J. (2019).
Comprehensive assessment of models and events using library tools (camel)
framework: Time series comparisons. Space Weather 17 (6), 845–860. doi:10.
1029/2018SW002043

Ridley, A., Deng, Y., and Tóth, G. (2006). The global
ionosphere–thermosphere model. J. Atmos. Solar-Terrestrial Phys. 68,
839–864. doi:10.1016/j.jastp.2006.01.008

Ridley, A. J., De Zeeuw, D. L., and Rastätter, L. (2016). Rating global
magnetosphere model simulations through statistical data-model comparisons.
Space 14, 819–834. doi:10.1002/2016SW001465

Ringuette, R., Engell, A., Gerland, O., McGranaghan, R. M., and Thompson,
B. (2022b). The DIARieS ecosystem – a software ecosystem to simplify
discovery, implementation, analysis, reproducibility, and sharing of
scientific results and environments in Heliophysics. Adv. Space Res. doi:10.
1016/j.asr.2022.05.012

Ringuette, R., Rastätter, L., De Zeeuw, D. L., Pembroke, A., and Gerland, O. (2022a).
Simplifying model data access and utilization. Adv. Space Res. under review.

Robinson, R. M., Zanetti, L., Anderson, B., Vines, S., and Gjerloev, J. (2021).
Determination of auroral electrodynamic parameters from AMPERE field-aligned
current measurements. Space 19, e2020SW002677. doi:10.1029/2020SW002677

Stoneback, R., Burrell, A. G., Klenzing, J., and Depew, M. D. (2018). PYSAT:
Python satellite data analysis toolkit. JGR. Space Phys. 123, 5271–5283. doi:10.1029/
2018JA025297

Thomas, E. G., and Shepherd, S. G. (2018). Statistical patterns of ionospheric
convection derived from mid-latitude, high-latitude, and polar SuperDARN HF
radar observations. J. Geophys. Res. Space Phys. 123 (4), 3196–3216. doi:10.1002/
2018JA025280

Toth, G., De Zeeuw, D. L., Gombosi, T. I., Manchester, W. B., Ridley, A. J., Sokolov, I.
V., et al. (2007). Sun-to-thermosphere simulation of the 28-30 october 2003 storm with
the space weather modeling framework. Space 5, S06003. doi:10.1029/2006SW000272

Vallado, D., and Crawford, P. (2008). “SGP4 orbit determination,” in AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, August
18–21, 2008 (Reston, VA: American Institute of Aeronautics and Astronautics).
doi:10.2514/6.2008-6770

Weigel, R. S., Vandegriff, J., Faden, J., King, T., Roberts, D. A., Harris, B., et al.
(2021). HAPI: An API standard for accessing heliophysics time series data. JGR.
Space Phys. 126, 12. doi:10.1029/2021JA029534

Zhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., and
Wiltberger, M. (2019). Gamera: A three-dimensional finite-volume MHD solver for
non-orthogonal curvilinear geometries. Astrophys. J. Suppl. Ser. 244, 20. doi:10.
3847/1538-4365/ab3a4c

Frontiers in Astronomy and Space Sciences frontiersin.org15

Ringuette et al. 10.3389/fspas.2022.1005977

https://doi.org/10.5281/zenodo.3564914
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.5194/angeo-39-991-2021
https://doi.org/10.5194/angeo-39-991-2021
https://doi.org/10.5194/ars-16-1-2018
https://doi.org/10.1051/swsc/2015001
https://doi.org/10.1029/2007SW000364
https://doi.org/10.1029/2009JA014665
https://doi.org/10.1029/2022SW003193
https://doi.org/10.1002/2014JA020239
https://ui.adsabs.harvard.edu/abs/2021AGUFMSA31B..04G/abstract
https://ui.adsabs.harvard.edu/abs/2021AGUFMSA31B..04G/abstract
https://doi.org/10.1002/2017MS001232
https://doi.org/10.1002/2017MS001232
https://doi.org/10.1029/2005GL024846
https://doi.org/10.1002/2015GL067312
https://doi.org/10.25080/Majora-92bf1922-00c
https://doi.org/10.25080/Majora-92bf1922-00c
https://doi.org/10.21105/joss.04053
https://ui.adsabs.harvard.edu/abs/2016AGUFMSA23C..01P
https://ui.adsabs.harvard.edu/abs/2016AGUFMSA23C..01P
https://doi.org/10.5281/zenodo.6774350
https://doi.org/10.5281/zenodo.6774350
https://plot.ly
https://doi.org/10.1029/2012GM001297
https://doi.org/10.1029/2012GM001297
https://doi.org/10.1023/A:1014228230714
https://doi.org/10.1029/2018SW002043
https://doi.org/10.1029/2018SW002043
https://doi.org/10.1016/j.jastp.2006.01.008
https://doi.org/10.1002/2016SW001465
https://doi.org/10.1016/j.asr.2022.05.012
https://doi.org/10.1016/j.asr.2022.05.012
https://doi.org/10.1029/2020SW002677
https://doi.org/10.1029/2018JA025297
https://doi.org/10.1029/2018JA025297
https://doi.org/10.1002/2018JA025280
https://doi.org/10.1002/2018JA025280
https://doi.org/10.1029/2006SW000272
https://doi.org/10.2514/6.2008-6770
https://doi.org/10.1029/2021JA029534
https://doi.org/10.3847/1538-4365/ab3a4c
https://doi.org/10.3847/1538-4365/ab3a4c
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1005977

	Kamodo’s model-agnostic satellite flythrough: Lowering the utilization barrier for heliophysics model outputs
	1 Introduction
	2 Kamodo’s flythrough description
	2.1 Coordinate systems
	2.2 Input trajectories
	2.3 Custom visualizations

	3 Example science workflows
	3.1 Model-data comparison workflow
	3.2 Ensemble modeling example workflow
	3.3 Interoperable workflows

	4 Summary
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

