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Selective vulnerability of the
intermediate retinal capillary
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cell loss in ocular hypertension
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Introduction: Glaucoma, a disease of retinal ganglion cell (RGC) injury and

potentially devastating vision loss, is associated with both ocular hypertension

(OHT) and reduced ocular blood flow. However, the relationship between

OHT and retinal capillary architecture is not well understood. In this project,

we studied microvasculature damage in mice exposed to mild levels of

induced OHT.

Methods: Mild OHT was induced with the microbead model for 2

weeks. At this time point, some retinas were immunostained with CD31

(endothelium), Collagen IV (basement membrane), and RBPMS (RGCs) for

z-stack confocal microscopy. We processed these confocal images to

distinguish the three retinal capillary plexi (superficial, intermediate, and

deep). We manually counted RGC density, analyzed vascular complexity, and

identified topographical and spatial vascular features of the retinal capillaries

using a combination of novel manual and automated workflows. Other retinas

were dissociated and immunopanned to isolate RGCs and amacrine cells

(ACs) for hypoxia gene array analysis.

Results: RGC counts were normal but there was decreased overall retinal

capillary complexity. This reduced complexity could be explained by

abnormalities in the intermediate retinal capillary plexus (IRCP) that spared

the other plexi. Capillary junction density, vessel length, and vascular area

were all significantly reduced, and the number of acellular capillaries was

dramatically increased. ACs, which share a neurovascular unit (NVU) with the

IRCP, displayed a marked increase in the relative expression of many hypoxia-

related genes compared to RGCs from the same preparations.
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Discussion: We have discovered a rapidly occurring, IRCP-specific, OHT-

induced vascular phenotype that precedes RGC loss. AC/IRCP NVU

dysfunction may be a mechanistic link for early vascular remodeling in

glaucoma.

KEYWORDS

ocular hypertension, capillary remodeling, hypoxia, glaucoma, neurovascular unit
(NVU)

Introduction

Glaucoma is chronic, progressive optic nerve degeneration
characterized by the irreversible loss of retinal ganglion cells
(RGCs) and damage to the optic nerve head (ONH). It is
one of the leading causes of blindness with an expected
global disease burden of over 100 million patients (Tham
et al., 2014). Traditionally, the pathogenesis of glaucoma has
been explained by two clinical models: the mechanical and
vascular theories of glaucoma. Elevated intraocular pressure
(IOP), or ocular hypertension (OHT), drives the mechanical
theory, while microvascular deficits and reduced blood flow
drive the vascular theory. However, the two theories may
not be mutually exclusive. For example, rodent experimental
glaucoma models have shown that reduced blood flow, oxidative
stress, and the resultant endoplasmic reticulum (ER) stress
activation due to the local hypoxic conditions in the ONH
and inner retina lead to neurodegeneration (Doh et al., 2010;
Chidlow et al., 2017; Syc-Mazurek et al., 2017; Kasetti et al.,
2020). Moreover, clinical studies in glaucoma patients using
ocular coherence tomography angiography (OCTA) report that
transient IOP fluctuations may cause hypoxic injury which
leads to microvascular changes in both the retina and ONH
(Yarmohammadi et al., 2016; Jia et al., 2017; Liu et al., 2019;
Tepelus et al., 2019). Despite these intriguing correlations among
IOP, glaucoma, and retinal vasculature, a direct cause and effect
relationship between IOP and vascular abnormalities has not
been established.

The complex vasculature of the inner retina is a three-
tiered network consisting of the superficial retinal capillary
plexus (SRCP), intermediate retinal capillary plexus (IRCP),
and deep retinal capillary plexus (DRCP). The SRCP supplies
the retinal nerve fiber layer (RNFL), RGC somas, and the
dendrites of ON-RGCs in the inner plexiform layer (IPL). The
IRCP maintains the dendrites of the OFF-RGCs in the IPL and
amacrine cells (ACs) in the inner nuclear layer (INL). The DRCP
supports bipolar cells (BPs) and horizontal cells (HCs) in the
outer plexiform layer (OPL; Usui et al., 2015; Nian et al., 2021).
Each plexus supports a neurovascular unit (NVU) of neurons,
pericytes, endothelial cells, and astrocytes, the components of
which differ according to the depth of the retina and the
associated capillary plexus (Usui et al., 2015; Nian et al., 2021).

Even though RGCs are the primary cells affected in
glaucoma, a range of electrophysiological, anatomic, and
transcriptional studies have shown that early dysfunction is also
seen in ACs, OFF-RGCs, and their synapses, often before RGC
soma loss (Dijk et al., 2004; Kielczewski et al., 2005; Crish et al.,
2010; Sappington et al., 2010; Gunn et al., 2011; Frankfort et al.,
2013; Pang et al., 2015; Akopian et al., 2019; Park et al., 2019;
Tao et al., 2019). The timing and mechanism of these events,
especially in the setting of normal RGC soma numbers, remain
unclear. In this manuscript, we utilize an experimental glaucoma
model of mild OHT in mice which has only minimal RGC loss
(7.4%) after 6 weeks of IOP elevation (Frankfort et al., 2013)
and no obvious RGC loss after 2 weeks of IOP elevation (Tao
et al., 2019). With this model, we test the hypothesis that vascular
changes occur rapidly in the anatomic region of highest neuronal
and dendritic susceptibility to elevated IOP—the distal IPL and
INL, where OFF-RGC dendrites and ACs reside, respectively.
Furthermore, we determine if these changes precede RGC loss.

Methods and materials

Animal use and induction of
experimental glaucoma

All animal experiments were approved by the Institutional
Animal Care and Use Committee of Baylor College of Medicine
and conducted in adherence with the ARVO Statement for
the use of animals in ophthalmic and vision research and the
NIH guide for the use of laboratory animals. C57BL6J (Wild
type, WT) mice were purchased from Jackson laboratories
(stock no. 000664). Twelve-week-old mice were injected with
polystyrene beads or saline followed by sodium hyaluronate
in the anterior chamber of one eye as previously described
and observed for 2 weeks (Frankfort et al., 2013; Tao et al.,
2020a). Briefly, mice were given an intraperitoneal injection of
a stock anesthetic of ketamine 37.5 mg/ml, xylazine 1.9 mg/ml,
and acepromazine 0.37 mg/ml. The experimental eye was
dilated with 1% tropicamide and 2.5% phenylephrine and
the cornea was topically anesthetized with 0.5% proparacaine
hydrochloride. A mix of polystyrene beads in a total volume
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of 1.5 µl (6 µm diameter blue polystyrene beads, cat#15715-
5; and 1 µm diameter yellow polystyrene beads, cat#15713-15;
Polysciences, Inc., Warrington, PA) followed by 3 µl of sodium
hyaluronate (cat#571182 Provisc; Alcon Laboratories, Ft. Worth,
TX) was injected through corneal perforation created with a
30 g needle. The non-injected eye was the intra-animal control
for all experiments. IOP measurements were performed under
isoflurane anesthesia (after 8 min of sedation). IOP values were
obtained three times a week in the morning to confirm persistent
IOP elevation in all mice.

Immunohistochemistry

Retinal dissection was performed following established
protocols in the Frankfort lab (Frankfort et al., 2013; Tao et al.,
2020b). Dissected whole-mount retinas were fixed with 4%
paraformaldehyde for 1 h at room temperature and blocked with
10% donkey serum overnight. Retinas were then incubated in
primary antibodies [Collagen IV (EMD Millipore cat#AB756p;
1:300), CD31 (BD bioscience cat#550274; 1:50), and RBPMS
(Phospho solutions cat#1832; 1:250)] diluted with 3% donkey
serum for 5 days at 4◦C, followed by overnight incubation at
4◦C in secondary antibodies [Alexa fluor 647 donkey anti-rabbit
(Jackson Immuno Research Labs cat# 711-605-152; 1:300),
Cy3 donkey anti-rat (Jackson Immuno Research Labs cat#712-
165-153; 1:300), Alexa fluor 488 donkey anti-guinea pig (Jackson
Immuno Research Labs cat#706-545-148; 1:300), and Hoechst
33,342 nuclear staining (Invitrogen cat#H3570; 1:1,000)] diluted
with 3% donkey serum.

Image processing and analysis

Z stack images of flat-mounted retinas were acquired with
laser confocal microscopy (Zeiss LSM 800). 10× images of
the entire retina were collected for Collagen IV (COL IV)
and CD31. 20× images were collected for COL IV, CD31,
RBPMS, and Hoechst in four quadrants of the retina at
a position 750 µm from the optic nerve (Frankfort et al.,
2013). RBPMS positive RGCs were manually counted by an
investigator who was blinded to the experimental conditions
using the ImageJ cell counter plugin. Sholl analysis of 10×
CD31 immunostained images was performed to determine
differences in the complexity of the entire retinal vasculature.
For the Sholl analysis, we calculated the number of vasculature
intersections with concentric rings of increasing radii (50
µm increments) from the optic nerve head up to 1,500 µm
using the ImageJ Sholl plugin. An estimate of the density of
intersections in a full ring [Dring (r, δr)] with radius r and with
radial thickness δr was obtained by dividing the experimentally
observed number of interactions (Iobs) by the area of the ring

(Aring; van Pelt et al., 2014). In our analysis, a radial thickness of
δr = 1 µm was used for each ring.

Dring =
Iobs

Aring
=

Iobs

2πrδr

Additional processing of 20× magnification images was
performed with ImageJ to separate stacked images for each
retinal plexus for COL IV and CD31. These images were
analyzed with NIH open-source AngioTool software using a
custom workflow (Supplementary Figure 1). This software
computes topographical vascular features such as capillary
branch points (junctions) and spatial dimensions such as
vascular length and vascular coverage percentage area, to
provide semi-automated quantification which limits investigator
bias (Zudaire et al., 2011). Acellular capillary density was
manually counted in COL IV immunostained retinas at 20×
magnification.

Amacrine cell (AC) and retinal ganglion
cell (RGC) isolation and PCR array

ACs and RGCs were isolated using a previously described
immunopanning technique (Park et al., 2019, 2020). Positive
panning plates for CD15+ (anti-SSEA-1 #BD560079; BD
Pharmingen, San 136 Jose, CA) and CD57+ (anti-HNK-
1/N-CAM#C6680-100TST; Sigma Aldrich, St. Louis, MO)
specific for ACs, and the positive panning plate for Thy1.2
(#MCA02R; Bio-Rad Antibodies, Hercules, CA) specific for
RGCs were washed to remove any non-adherent retinal cells.
Adherent ACs and RGCs were dissociated using trypsin and
further processed to isolate RNA. For the PCR array, total
RNA isolation was performed according to the manufacturer’s
protocol using the TRIzol/spin column-based nucleic acid
extraction kit (Direct-Zol; #R2050, Zymo Research, Irvine,
CA, USA). Following cDNA construction, hypoxia-related
gene expression was measured using the RT2 Profiler PCR
Arrays: The Mouse Hypoxia Signaling Pathway (GeneGlobe
ID-PAMM-032Z, Qiagen). Gene expression was normalized to
housekeeping genes.

Statistical analysis

Data are presented throughout as mean ± SEM. A
comparison of cumulative IOP over time was performed by
calculating the area under the curve (AUC) using the trapezoidal
method. The final average IOP was performed using paired t-
tests (two-sided). For Sholl analysis, the number of intersections
was plotted against the radius and the AUC was calculated.
Retinal vasculature data were analyzed using paired t-tests (two-
sided). The PCR array for gene expression was expressed as a
heatmap using the log transformation values, with p = 0.05 as
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the cutoff for significance. All the analyses were conducted
using Prism (GraphPad, La Jolla, CA). The thresholds for
statistical significance are represented as ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p< 0.001).

Results

Mild OHT for 2 weeks does not cause
RGC loss

Eyes injected with polystyrene beads demonstrated mild
OHT with IOP elevation of 18.15% ± 4.38% (p < 0.01)
compared to the fellow, non-injected eyes (Figures 1A–C).
RGC density (cells/mm2) was determined using RBPMS (RGC
marker) immunostaining and was similar between IOP elevated
and control eyes. This suggests that no RGC loss occurred at this
level and duration of IOP elevation (Figure 1D; Supplementary
Figure 2).

Mild OHT for 2 weeks causes reduced
retinal capillary complexity

We next assessed retinal capillary complexity using
immunostaining with CD31 (endothelial cell marker) at the
same time point, 2 weeks after IOP elevation, using Sholl
analysis (Figure 2A). The AUC of the number of intersections
was reduced for OHT (241,104 ± 4,512) compared to control
(267,314 ± 4,028) eyes, indicating an overall reduction of
retinal complexity (p < 0.001; Figure 2B). In control eyes, the
relative vascular complexity showed a gradual increase from
the optic nerve head to the mid-retina which then stabilized
to a plateau phase from the mid-retina to the periphery, as
expected (Figure 2C; Giannakaki-Zimmermann et al., 2016;
Campbell et al., 2017; Lavia et al., 2020). In OHT eyes, our
data demonstrated that retinal complexity started to diminish
prior to the mid-retina (∼300 µm), with persistently reduced
complexity all the way to the periphery (Figure 2C). Therefore,
2 weeks of mild OHT significantly reduced the complexity of
the retinal microvasculature despite no obvious effect on RGC
density.

Mild OHT for 2 weeks preferentially
impacts the intermediate retinal capillary
plexus

To assess plexus-specific phenotypes after mild IOP
elevation, we developed a novel image analysis workflow
using ImageJ and AngioTool software (NIH open-source,
Supplementary Figure 1 and “Methods” Section; Zudaire

FIGURE 1

(A) Average daily intraocular pressure (IOP) over the 2-week long
experiment. (B) Cumulative IOP normalized to baseline. There
was a consistent elevation in cumulative IOP throughout the
study (paired t-test, n = 7; four females, three males). (C) Average
IOP of all measurements. Bead injected eyes showed a significant
increase in IOP compared to normal eyes (paired t-test, n = 7;
**p < 0.01). (D) RGC density was equivalent between control and
ocular hypertension (OHT) eyes (ns, nonsignificant). *p < 0.05,
**p < 0.01.

et al., 2011). Stacked images of each capillary plexus
immunostained for both COL IV (basement membrane
marker) and CD31 (endothelial marker, Figure 3A) were
analyzed to semi-automatically quantify the vascular anatomical
features and spatial distribution of the retinal capillaries. After
2 weeks of mild OHT, there was a significant reduction in the
number of capillary junctions/mm2 (junction density) for both
CD31 (26% ± 5.91%, p ≤ 0.01) and COL IV (26% ± 5.77%,
p ≤ 0.01) in the IRCP for OHT eyes (Figure 3B). Similarly,
we saw an 8% decrease in the junction density in the DRCP
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FIGURE 2

(A) Representative images of CD31 immunostained retinas for control (top) and OHT (bottom) eyes. Left panels. Original image (scale bar = 500
µm). Middle two panels. Binary image of the same retinas with inset showing increased magnification. Right panels. Retina showing Sholl analysis
patterns (right panels). (B,C) Sholl analysis for radii ranging from 0 to 1,500 µm. (B) The total number of intersections was significantly reduced
in OHT retinas (AUC; ***p < 0.001). (C) Graph showing the total number of intersections as a function of the retinal explant area (intersection
density) for both control and OHT eyes.
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FIGURE 3

(A) Representative images for Collagen IV and CD31 immunostained retinas for superficial retinal capillary plexus (SRCP), intermediate retinal
capillary plexus (IRCP), and deep retinal capillary plexus (DRCP; scale bar = 200 µm). (B) Junction density (number of junctions/mm2) for
CD31 and Collagen IV immunostained retinas. No significant changes were observed for the SRCP. There was a significant reduction in junction
density for both CD31 and Collagen IV in the IRCP for OHT retinas (paired t-test; **p < 0.01). Junction density was reduced for CD31 but not
Collagen IV for OHT retinas in the DRCP (paired t-test; *p < 0.05).
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for CD31 but not COL IV. There was no reduction in the
junction density in SRCP for either CD31 or COL IV. These data
suggest that the IRCP is the most susceptible plexus to mild IOP
elevation.

Next, we studied spatial vascular features in the capillary
plexus. The total capillary vessel length/mm2 (vessel length) was
reduced for both CD31 (12% ± 2.04%, p ≤ 0.01) and COL IV
(12% ± 2.55%, p ≤ 0.001) in the IRCP after 2 weeks of mild
OHT (Figure 4A). There was also a significant decrease in the
vessel area percentage for CD31 (19% ± 2.09%, p ≤ 0.01) but
not COL IV in the IRCP (Figure 4B). Neither of these spatial
vascular features were significantly changed in the SRCP or
DRCP.

Since COL IV identifies the basement membrane and
CD31 marks endothelial cells they normally exist in a precise
spatial relationship in which COL IV surrounds CD31. After
injury, however, this relationship can be disturbed as endothelial
cells retract, leaving behind the basement membrane. These
acellular capillaries or “ghost vessels” represent capillary
dropout (Baluk et al., 2003; Veenstra et al., 2015). Thus,
to further assess IRCP-specific changes to spatial vascular
features we interrogated the relationship between COL IV and
CD31. Acellular capillary density was significantly increased
(Figures 5A,B) after 2 weeks of mild OHT (134.9% ± 44.6%,
p ≤ 0.01). Importantly, acellular capillaries can be differentiated
from the inter pericyte tunneling nanotubes (IP-TNTs) as the
latter are much thinner and are associated with a pericyte
proximally or distally (Figure 5C; Alarcon-Martinez et al.,
2020).

Taken together, these data suggest that capillary dropout and
remodeling in the IRCP are among the earliest plexus-specific,
identifiable and quantifiable responses to mild IOP elevation.

Mild OHT for 2 weeks causes increased
hypoxia in amacrine cells (ACs)

Since regulation of the IRCP involves the interplay of
signals from several NVU members including HIF1α-dependent
signaling from ACs (Usui et al., 2015), we further investigated
whether ACs displayed evidence of local hypoxia. To do so, in
a parallel experiment, after 2 weeks of bead- (OHT, average
IOP increase = 1.53 mmHg) or saline-injection (control, no IOP
increase), ACs and RGCs were isolated using immunopanning
(Park et al., 2019, 2020). Extracted RNA was used to quantify
gene transcription from a series of hypoxia related genes
(RT Profiler; Qiagen). We found a relative increase in the
expression of many hypoxia-dependent genes in ACs»RGCs
from mild OHT eyes. Interestingly, this included several HIF1α

target genes related to vascular remodeling, angiogenesis,
inflammation, neurodegeneration, and metabolite transport
(Figure 6A). Thus, it is likely that local hypoxia in ACs but

not RGCs is an early indicator of IOP-induced molecular
change.

Discussion

In this study, we show that mild OHT causes preferential
IRCP remodeling and local hypoxia which precedes RGC loss.
This novel vascular phenotype has several implications for
glaucoma pathogenesis.

The IRCP develops at around p12–p15 as AC synaptic
development and resultant increases in energy demand trigger
the upward sprouting of the IRCP from the DRCP as
directed by a transient gradient of ischemia-driven VEGF.
This pathway is again utilized during adulthood as ACs
regulate and maintain the IRCP via HIF-1α/VEGF-dependent
mechanisms (Voinescu et al., 2009; Usui et al., 2015). This
signaling likely works through NVUs which consist of ACs,
endothelial cells, pericytes, and glia (intermediate plexus
NVU, or iNVU; Usui et al., 2015; Nian et al., 2021).
Interestingly, the IRCP is the most vulnerable of all three
plexi to hypoxia and oxidative stress (Usui et al., 2015).
Our data, which show enhanced sensitivity of the IRCP to
IOP elevation and upregulation of HIF-1α/VEGFα expression
in ACs, support and expand these observations. Indeed,
multiple studies in experimental glaucoma have found that
ACs are among the first neurons to be affected, but the
mechanism of their initial injury is unclear (Gunn et al.,
2011; Pang et al., 2015; Akopian et al., 2019). Therefore, we
propose that early iNVU dysfunction is the linking event
between IRCP remodeling and AC dysfunction in experimental
glaucoma.

NVU crosstalk among its four cell types is complex
(Kugler et al., 2021; Nian et al., 2021). While our data
cannot clearly distinguish the absolute first event in iNVU
dysfunction, multiple possibilities can explain the combination
of IRCP remodeling, AC dysfunction, and AC upregulation of
HIF-1α/VEGFα signaling (Figure 6B). Upregulation of HIF-
1α/VEGFα signaling is known to cause increased capillary
development (Ramakrishnan et al., 2014; Zimna and Kurpisz,
2015). However, since we see the opposite—decreased IRCP
capillary complexity—it is unlikely that direct, IOP-induced
AC injury is the first event in iNVU dysfunction. Rather,
the decreased IRCP complexity that we see may represent
vascular stress, and the upregulation of HIF-1α/VEGFα

signaling that we see in ACs is therefore more likely to
be a compensatory response to local hypoxia (Schulz et al.,
2012; Tsuboi et al., 2015). Other NVU components such
as pericytes and glial cells also play important roles in
retinal capillary development and control capillary blood
flow according to neuronal demand (Zhang and Stone,
1997; Bergers and Song, 2005; Wareham and Calkins, 2020).
Additional studies will be necessary to distinguish the
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FIGURE 4

(A) Total capillary vessel length (µm/mm2) in CD31 and Collagen IV immunostained retinas. The total length was reduced for both CD31 and
Collagen IV in the IRCP for OHT retinas (paired t-test; **p < 0.01). No significant changes were seen in the SRCP and DRCP. (B) Percentage of
the retina covered by vessels (vessel area %) for CD31 and Collagen IV immunostained retinas. The vessel area percentage was decreased for
CD31 but not for Collagen IV in the IRCP for OHT retinas (paired t-test; ***p < 0.001). No significant changes were seen in the SRCP or DRCP.

specific order and location of NVU dysregulation after IOP
elevation.

Our data may also explain the observation that OFF-
RGCs, and in particular their dendrites, are more susceptible
to IOP elevation than ON-RGCs (Della Santina et al., 2013;
El-Danaf and Huberman, 2015; Ou et al., 2016; Della Santina
and Ou, 2017; Sabharwal et al., 2017). Since the primary
blood supply for the OFF stratum of the IPL (dendrites
of OFF-RGCs) is the IRCP (Usui et al., 2015; Nian et al.,
2021), the reduced local blood flow expected with IOP-induced
IRCP capillary retraction is a plausible anatomic explanation.
We observed subtle changes in the expression of HIF-

1α targets in RGCs and these may represent OFF-RGCs.
However, additional studies will be required to confirm
this.

Interestingly, the impact of OHT on the capillary
plexi may differ according to the level and/or duration
of IOP elevation. For example, a previous study from
our lab found that acutely elevated IOP to high levels
led to delayed capillary injury to both the SRCP and the
IRCP (Tao et al., 2020b). The very high levels of IOP in
that study (>50 mmHg) suggest that distinct IOP injury
thresholds may exist for the IRCP (low IOP) and the SRCP
(high IOP). This interpretation is consistent with other
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FIGURE 5

(A) Representative IRCP images for Collagen IV and CD31 immunostained retinas (top; scale bar = 200 µm) with zoom for additional detail
(bottom). Magnified images show examples of acellular capillaries (ghost vessels) marked with white asterisks. (B) Acellular capillary density
(acellular capillaries/mm2) was greatly increased in the IRCP for OHT retinas (paired t-test; **p < 0.01). (C) Different magnified region of the
same representative images (A, top) highlights the difference between acellular capillaries (white asterisks) and inter-pericyte tunneling nanotubes
(IP-TNTs; white arrowhead).

threshold effects that have been seen in induced glaucoma
models (Tao et al., 2019, 2020a) as well as the differential
effects of acute (HIF-1α related) and chronic (HIF-2α

related) hypoxia on cellular injury (Tezel and Wax, 2004;
Mowat et al., 2010).

This study is limited to observations of changes in
the structural anatomy of the retinal vasculature and does
not assess the underlying vascular physiology of the IRCP.
Nevertheless, the findings in this manuscript may help explain
the pathogenesis of several findings in patients with glaucoma.
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FIGURE 6

(A) Relative gene expression of hypoxia pathway genes in pooled immunopanned amacrine cells (ACs) and retinal ganglion cells (RGCs) from
mild OHT and saline control eyes. RT Profiler was used to quantify the relative expression of multiple hypoxia genes. After IOP elevation, ACs
(column 4), but not RGCs (column 3), show a relative increase in expression (red) of the HIF1α-target genes VEGFα, Epo, Angpt4, Nfkb, Slc16a3,
Slc2a3, and Ddit4 (n = 3 biological replicates). (B) Potential model of OHT impact on the retinal vasculature. With mild OHT, the resulting hypoxia
and oxidative stress lead to microvascular remodeling in the retinal capillary plexi and disrupted physiology of retinal cells. The earliest impacted
retinal cell and retinal capillary plexus are ACs and the IRCP, respectively. It is likely that neurovascular unit (NVU) dysfunction results in abnormal
HIF1α/VEGFα signaling to cause AC-Endothelial cell-pericyte miscommunication and resultant IRCP remodeling.

First, conditions associated with abnormal blood circulation
(migraines, Reynaud’s phenomenon, systemic hypotension, etc.)
are well associated with normal tension glaucoma (Mallick
et al., 2016; Chan et al., 2017). Reduced local blood flow
or tissue oxygenation at the level of the capillary plexi
may provide a pathogenic link. Second, the prevalence of
glaucoma increases with age (Allison et al., 2020; Zhang
et al., 2021). Similarly, aging reduces vascular plasticity/capillary
remodeling (Lahteenvuo and Rosenzweig, 2012; Xu et al.,
2017). Our data suggest that inspection of the IRCP in

the elderly population might hold diagnostic and predictive
value for glaucoma, as it does for other retinal diseases
(Iafe et al., 2016; Ye et al., 2020; Gao et al., 2022). Third,
small fluctuations in IOP cause microvascular injury and
are associated with additional RGC loss even when average
IOPs are equivalent (Nouri-Mahdavi et al., 2004; Caprioli and
Coleman, 2008; Nita and Grzybowski, 2016; Wareham and
Calkins, 2020). Thus, small variations in IOP may create a
susceptible environment for neuronal injury in normal tension
or treated glaucoma.
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